[GIT] ppl/ppl(master): Fixed ill-positioned \f$.

Module: ppl/ppl Branch: master Commit: 0b97d0055b7b169b8e958f87a6f1fe03f4b44b85 URL: http://www.cs.unipr.it/git/gitweb.cgi?p=ppl/ppl.git;a=commit;h=0b97d0055b7b1...
Author: Roberto Bagnara bagnara@cs.unipr.it Date: Tue Mar 23 17:06:04 2010 +0400
Fixed ill-positioned \f$.
---
doc/definitions.dox | 2 +- 1 files changed, 1 insertions(+), 1 deletions(-)
diff --git a/doc/definitions.dox b/doc/definitions.dox index 6725233..a0f8782 100644 --- a/doc/definitions.dox +++ b/doc/definitions.dox @@ -2199,7 +2199,7 @@ affine expression \f$\mathrm{rhs}\f$. \subsection Grid_Frequency Frequency Operator
Let \f$\cL \in \Gset_n\f$ be any non-empty grid and -\f$\mathrm{expr} = \bigl(\langle \vect{a}, \vect{x} \rangle + b\f$\bigr) +\f$\mathrm{expr} = \bigl(\langle \vect{a}, \vect{x} \rangle + b\bigr)\f$ be a linear expression. Then if, for some \f$b, f \in \Rset\f$, all the points in \f$\cL\f$ satisfy the congruence \f$\cg = ( \mathrm{expr} \equiv_f b )\f$, then the maximum
participants (1)
-
Roberto Bagnara