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CONVEX POLYHEDRA: WHAT AND WHY

What?
Ü regions of R

n bounded by a finite set of hyperplanes.

Why? Solving Classical Data-Flow Analysis Problems!
Ü array bound checking and compile-time overflow detection;
Ü loop invariant computations and loop induction variables.

Why? Verification of Concurrent and Reactive Systems!
Ü synchronous languages;
Ü linear hybrid automata (roughly, FSMs with time requirements);
Ü systems based on temporal specifications.

And Again: Many Other Applications. . .
Ü inferring argument size relationships in logic programs;
Ü termination inference for Prolog programs;
Ü string cleanness for C programs.
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RECENT NEWS I

[...] The Mars Climate Orbiter burned in the martian atmosphere in 1999
after missing its orbit insertion because unit computations were inconsistent.

The same year, Mars Polar Lander is suspected of having crashed on Mars
upon landing when a software flag was not reset properly.

In [. . . ] the 1997 Mars Pathfinder (MPF) technology demonstration mission
[. . . ] a day’s exploration time was lost when ground support teams were
forced to reboot the system while downloading science data.

[. . . ]

NASA’s 2003 Mars Exploration Rover (MER) mission includes two rovers
[. . . ] At a cost of $400 million for each rover, a coding error that shuts down a
rover overnight would in effect be a $4.4 million mistake, as well as a loss of
valuable exploration time on the planet.
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RECENT NEWS II

A previously-unknown software flaw in a widely-deployed General Electric
energy management system contributed to the devastating scope of the
August 14th northeastern U.S. blackout, industry officials revealed this week.

The bug in GE Energy’s XA/21 system was discovered in an intensive code
audit conducted by GE and a contractor in the weeks following the blackout,
according to FirstEnergy Corp., the Ohio utility where investigators say the
blackout began. “It had never evidenced itself until that day,” said spokesman
Ralph DiNicola. “This fault was so deeply embedded, it took them weeks of
poring through millions of lines of code and data to find it.”

[. . . ]

The cascading blackout eventually cut off electricity to 50 million people in
eight states and Canada.
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THE DOUBLE DESCRIPTION METHOD BY MOTZKIN ET AL.

Constraint Representation
Ü If a ∈ R

n, a 6= 0, and b ∈ R, the linear inequality constraint 〈a, x〉 ≥ b

defines a closed affine half-space.
Ü All closed polyhedra can be expressed as the conjunction of a finite

number of such constraints.

Generator Representation
Ü If P ⊆ R

n, a point of P is any p ∈ P .
Ü If P ⊆ R

n and P 6= ∅, a vector r ∈ R
n such that r 6= 0 is a ray of P iff

for each point p ∈ P and each λ ∈ R+, we have p + λr ∈ P .
Ü All closed polyhedra can be expressed as

{

Rρ + Pπ ∈ R
n

∣

∣ ρ ∈ R
r
+, π ∈ R

p
+,

∑p

i=1
πi = 1

}

where R ∈ R
n×r is a matrix having rays of the polyhedron as columns

and P ∈ R
n×p has points of the polyhedron for its columns.

THE DOUBLE DESCRIPTION METHOD BY MOTZKIN ET AL. 6



THE DOUBLE DESCRIPTION METHOD (CONT’D)

Constraint Representation
Ü Special case: n = 0 and P = ∅.

Ü The equality constraint 〈a, x〉 = b defines an affine hyperplane. . .
Ü . . . that is equivalent to the pair 〈a, x〉 ≥ b and 〈−a, x〉 ≥ −b.

Ü If C is a finite set of constraints we call it a system of constraints and
write con(C) to denote the polyhedron it describes.

Generator Representation
Ü Note: P = ∅ if and only if P = ∅.

Ü Note: points are not necessarily vertices and rays are not necessarily
extreme.

Ü We call G = (R, P ) a system of generators and write gen(G) to denote
the polyhedron it describes.
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DD PAIRS AND MINIMALITY

Representing a Polyhedron Both Ways
Ü Let P ⊆ R

n. If con(C) = gen(G) = P , then (C,G) is said to be a DD pair
for P .

Minimality of the Representations
Ü C is in minimal form if there does not exist C′ ⊂ C such that con(C′) = P ;

Ü G = (R, P ) is in minimal form if there does not exist G′ = (R′, P ′) 6= G

such that R′ ⊆ R, P ′ ⊆ P and gen(G′) = P ;

Ü the DD pair (C,G) is in minimal form if C and G are both in minimal form.

But, wait a minute. . .

. . . why keeping two representations for the same object?
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ADVANTAGES OF THE DUAL DESCRIPTION METHOD

Some Operations Are More Efficiently Performed on Constraints
Ü Intersection is implemented as the union of constraint systems.
Ü Adding constraints (of course).
Ü Relation polyhedron-generator (subsumes or not).

Some Operations Are More Efficiently Performed on Generators
Ü Convex polyhedral hull (poly-hull): union of generator systems.
Ü Adding generators (of course).
Ü Projection (i.e., removing dimensions).
Ü Relation polyhedron-constraint (disjoint, intersects, includes . . . ).
Ü Finiteness (boundedness) check.
Ü Time-elapse.

Some Operations Are More Efficiently Performed with Both
Ü Inclusion and equality tests.
Ü Widening.
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FURTHER ADVANTAGES OF THE DUAL DESCRIPTION METHOD

The Principle of Duality
Ü Systems of constraints and generators enjoy a quite strong and useful

duality property.
Ü Very roughly speaking:

Ü the constraints of a polyhedron are (almost) the generators of the
polar of the polyhedron;

Ü the generators of a polyhedron are (almost) the constraints of the
polar of the polyhedron;

Ü the polar of the polar of a polyhedron is the polyhedron itself.
=⇒ Computing constraints from generators is the same problem as

computing generators from constraints.

The Algorithm of Motzkin-Chernikova-Le Verge
Ü Solves both problems yielding a minimized system. . .
Ü . . . and can be implemented so that the source system is also minimized

in the process.
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HANDLING NOT NECESSARILY CLOSED POLYHEDRA: HALBWACHS ET AL.

Strict Inequalities and NNC Polyhedra
Ü If a ∈ R

n, a 6= 0, and b ∈ R, the linear strict inequality constraint
〈a, x〉 > b defines an open affine half-space;

Ü when strict inequalities are allowed in the system of constraints we have
polyhedra that are not necessarily closed: NNC polyhedra.

Encoding NNC Polyhedra as C Polyhedra
Ü call Pn and CPn the sets of all NNC and closed polyhedra, respectively;

Ü each NNC polyhedron P ∈ Pn can be embedded into a closed
polyhedron R ∈ CPn+1:

Ü the additional dimension of the vector space, usually labeled by the
letter ε, encodes the topological closedness of each affine half-space in
the constraint description for P .
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EMBEDDING Pn INTO CPn+1: HALBWACHS ET AL.

If P ∈ Pn and P = con(C), where

C =
{

〈ai, x〉 ./i bi

∣

∣ i ∈ {1, . . . , m}, ai ∈ R
n, ./i ∈ {≥, >}, bi ∈ R

}

,

then R ∈ CPn+1 is defined by R = con
(

con_repr(C)
)

, where

con_repr(C)
def
=

{

0 ≤ ε ≤ 1
}

∪
{

〈ai, x〉 − 1 · ε ≥ bi

∣

∣ i ∈ {1, . . . , m}, ./i ∈ {>}
}

∪
{

〈ai, x〉 + 0 · ε ≥ bi

∣

∣ i ∈ {1, . . . , m}, ./i ∈ {≥}
}

.
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WHAT ARE THE GENERATORS OF NNC POLYHEDRA

Ü A fundamental feature of the DD method: the ability to represent
polyhedra both by constraints and generators.

Ü But what are the generators for NNC polyhedra?

Ü From the New Polka manual (s is the ε coefficient):

Don’t ask me the intuitive meaning of s 6= 0 in rays and vertices !

Ü From the Polka manual:

While strict inequations handling is transparent for constraints
[...] the extra dimension added to the variables space is apparent
when it comes to generators [...]

This makes more difficult to define polyhedra with the only help
of generators : one should carefully study the extra vertices with
non null . /10 23 45 coefficients added to constraints defined
polyhedra [...]
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CLOSURE POINTS TO THE RESCUE

Ü By decoupling the user interface from the details of the particular
implementation, it is possible to provide an intuitive generalization of the
concept of generator system.

Ü The key step is the introduction of a new kind of generators: closure
points:
Ü a vector c ∈ R

n is a closure point of S ⊆ R
n if and only if c ∈ C(S).

Ü Characterization of closure points for NNC polyhedra:
Ü a vector c ∈ R

n is a closure point of the NNC polyhedron P ∈ Pn if
and only if P 6= ∅ and for every point p ∈ P and λ ∈ R such that
0 < λ < 1, it holds λp + (1 − λ)c ∈ P .

Ü All NNC polyhedra can be expressed as
{

Rρ+Pπ+Cγ ∈ R
n

∣

∣ ρ ∈ R
r
+, π ∈ R

p
+, π 6= 0, γ ∈ R

c
+,

∑p

i=1
πi +

∑c

i=1
γi = 1

}

where R ∈ R
n×r is a matrix having rays of the polyhedron as columns,

P ∈ R
n×p has points of the polyhedron for its columns, and C ∈ R

n×c

has closure points of the polyhedron for its columns.
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NOT NECESSARILY CLOSED POLYHEDRA: TAKE TWO

Constraint Representation: con(C)

Ü If a ∈ R
n, a 6= 0, and b ∈ R, the linear non-strict (resp., strict) inequality

constraint 〈a, x〉 ≥ b (resp., 〈a, x〉 > b) defines a closed (resp., open)
affine half-space.

Ü Mixed constraint systems ⇐⇒ NNC polyhedra.

Generator Representation: gen(G), where G = (R, P, C)

Ü r ∈ R
n is a ray of P ⊆ R

n iff it is a direction of infinity for P ;
Ü p ∈ R

n is a point of P ⊆ R
n iff p ∈ P .

Ü c ∈ R
n is a closure point of P ⊆ R

n iff c ∈ C(P).
Ü All NNC polyhedra can be expressed as







Rρ + Pπ + Cγ ∈ R
n

∣

∣

∣

∣

∣

∣

ρ ∈ R
r
+, π ∈ R

p
+, γ ∈ R

c
+,

π 6= 0,
∑p

i=1
πi +

∑c

i=1
γi = 1







.

Ü Extended generator systems ⇐⇒ NNC polyhedra.
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n iff it is a direction of infinity for P ;
Ü p ∈ R

n is a point of P ⊆ R
n iff p ∈ P .

Ü c ∈ R
n is a closure point of P ⊆ R

n iff c ∈ C(P).
Ü All NNC polyhedra can be expressed as







Rρ + Pπ + Cγ ∈ R
n

∣

∣

∣

∣

∣

∣

ρ ∈ R
r
+, π ∈ R

p
+, γ ∈ R

c
+,

π 6= 0,
∑p

i=1
πi +

∑c

i=1
γi = 1







.

Ü Extended generator systems ⇐⇒ NNC polyhedra.
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EXAMPLE USING CONSTRAINTS

P = con
(

{2 ≤ x, x < 5, 1 ≤ y ≤ 3, x + y > 3}
)

.

O x

y

A

B C

D

EXAMPLE USING CONSTRAINTS 16



SAME EXAMPLE USING GENERATORS (I)

P = gen
(

(R, P, C)) = gen
(

(∅, ∅, ∅)
)

.

O x

y

SAME EXAMPLE USING GENERATORS (I) 17



SAME EXAMPLE USING GENERATORS (II)

P = gen
(

(R, P, C)) = gen
(

(

∅, {A}, ∅
)

)

.

O x

y

A

SAME EXAMPLE USING GENERATORS (II) 18



SAME EXAMPLE USING GENERATORS (III)

P = gen
(

(R, P, C)) = gen
(

(

∅, {A}, {B}
)

)

.

O x

y

A

B

SAME EXAMPLE USING GENERATORS (III) 19



SAME EXAMPLE USING GENERATORS (IV)

P = gen
(

(R, P, C)) = gen
(

(

∅, {A}, {B, C}
)

)

.

O x

y

A

B C
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SAME EXAMPLE USING GENERATORS (V)

P = gen
(

(R, P, C)) = gen
(

(

∅, {A}, {B, C, D}
)

)

.

O x

y

A

B C

D
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SAME EXAMPLE USING GENERATORS (VI)

P = gen
(

(R, P, C)) = gen
(

(

∅, {A, E}, {B, C, D}
)

)

.

O x

y

A

B C

D

E

SAME EXAMPLE USING GENERATORS (VI) 22



ENCODING NNC POLYHEDRA AS C POLYHEDRA

Ü Let Pn and CPn be the sets of all NNC and closed polyhedra,
respectively: each P ∈ Pn can be embedded into R ∈ CPn+1.

Ü A new dimension is added, the ε coordinate:

• to distinguish between strict and non-strict constraints;
• to distinguish between points and closure points.

Ü (Will denote by e the coefficient of the ε coordinate.)

Ü The encoded NNC polyhedron:

P = [[R]]
def
=

{

v ∈ R
n

∣

∣ ∃e > 0 . (vT
, e)T ∈ R

}

.
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EXAMPLE: ENCODING P1 INTO CP2

R1 encodes P1 = con
(

{0 < x ≤ 1}
)

,

R2 encodes P2 = con
(

{2 ≤ x ≤ 3}
)

.

ε ≤ 1

O x

ε

A

B

C

F

D

E

R1

R2

EXAMPLE: ENCODING P1 INTO CP2 24



THE APPROACH BY HALBWACHS ET AL. REVISITED

Ü If P ∈ Pn and P = con(C), where

C =
{

〈ai, x〉 ./i bi

∣

∣ i ∈ {1, . . . , m}, ai ∈ R
n
, ./i ∈ {≥, >}, bi ∈ R

}

,

then R ∈ CPn+1 is defined by R = con
(

con_repr(C)
)

, where

con_repr(C)
def
=

{

0 ≤ ε ≤ 1
}

∪
{

〈ai, x〉 − 1 · ε ≥ bi

∣

∣ i ∈ {1, . . . , m}, ./i ∈ {>}
}

∪
{

〈ai, x〉 + 0 · ε ≥ bi

∣

∣ i ∈ {1, . . . , m}, ./i ∈ {≥}
}

.

Ü If P ∈ Pn and P = gen(G), where G = (R, P, C), then R ∈ CPn+1 is
defined by R = gen

(

gen_repr(G)
)

= gen
(

(R′, P ′)
)

, where

R
′ =

{

(rT
, 0)T

∣

∣ r ∈ R
}

,

P
′ =

{

(pT
, 1)T, (pT

, 0)T
∣

∣ p ∈ P
}

∪
{

(cT
, 0)T

∣

∣ c ∈ C
}

.
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THE APPROACH BY HALBWACHS ET AL. (CONT’D)
Ü With a little precaution the operations on representations do (or can be

slightly modified to do) what is expected:
Ü intersection;
Ü convex polyhedral hull;
Ü affine image and preimage;
Ü ...

Ü This encoding is used in the New Polka library by B. Jeannet and in the
Parma Polyhedra Library.

Ü Is this approach the only possible one?

Ü Can we generalize this construction so as to preserve its good qualities?

THE APPROACH BY HALBWACHS ET AL. (CONT’D) 26



THE CONSTRAINT ε ≤ δ IS NEEDED . . .

Suppose we do not add any ε-upper-bound constraint:

R1 encodes P1 = con
(

{0 < x < 1}
)

,

R2 encodes P2 = con
(

{2 ≤ x ≤ 3}
)

.

x

ε

R1

R2

ε ≤ 1

THE CONSTRAINT ε ≤ δ IS NEEDED . . . 27



. . . BECAUSE OTHERWISE THE POLY-HULL IS NOT CORRECT

The poly-hull P1 ] P2 is not represented correctly by R1 ]R2.

P1 ] P2
def
= con

(

{0 < x ≤ 3}
)

,

R1 ]R2 encodes P ′ = con
(

{0 ≤ x ≤ 3}
)

.

x

ε

R1

R2

ε ≤ 1

R1 ]R2

. . . BECAUSE OTHERWISE THE POLY-HULL IS NOT CORRECT 28



THE CONSTRAINT ε ≥ 0 IS NEEDED . . .

Suppose we do not add the non-negativity constraint for ε:

R1 encodes P1 = con
(

{0 < x < 1}
)

,

R2 encodes P2 = con
(

{2 ≤ x ≤ 3}
)

.

ε ≤ 1

R1

R2

x

ε

THE CONSTRAINT ε ≥ 0 IS NEEDED . . . 29



. . . FOR THE SAME REASON . . .

The poly-hull P1 ] P2 is not represented correctly by R1 ]R2.

P1 ] P2
def
= con

(

{0 < x ≤ 3}
)

,

R1 ]R2 encodes P ′′ = con
(

{0 < x < 4}
)

.

ε ≤ 1

R1

R2

R1 ]R2

x

ε

. . . FOR THE SAME REASON . . . 30



. . . BUT THIS TIME THERE IS A WORKAROUND!

In the encoding, for each strict inequality constraint, do also add the
corresponding non-strict inequality.

R′
1

def
= con

(

{ε ≤ 1, x − ε ≥ 0, x ≥ 0,−x − ε ≥ −1,−x ≥ −1}
)

.

x

ε ε ≤ 1

R′
1

R2

. . . BUT THIS TIME THERE IS A WORKAROUND! 31
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1
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x

ε
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THE ALTERNATIVE ENCODING

Ü If P ∈ Pn and P = con(C), where

C =
{

〈ai, x〉 ./i bi

∣

∣ i ∈ {1, . . . , m}, ai ∈ R
n
, ./i ∈ {≥, >}, bi ∈ R

}

,

then R ∈ CPn+1 is defined by R = con
(

con_repr(C)
)

, where

con_repr(C)
def
=

{

ε ≤ 1
}

∪
{

〈ai, x〉 − 1 · ε ≥ bi

∣

∣ i ∈ {1, . . . , m}, ./i ∈ {>}
}

∪
{

〈ai, x〉 + 0 · ε ≥ bi

∣

∣ i ∈ {1, . . . , m}, ./i ∈ {≥, >}
}

.

Ü If P ∈ Pn and P = gen(G), where G = (R, P, C), then R ∈ CPn+1 is
defined by R = gen

(

gen_repr(G)
)

= gen
(

(R′, P ′)
)

, where

R
′ =

{

(0T
,−1)T

}

∪
{

(rT
, 0)T

∣

∣ r ∈ R
}

,

P
′ =

{

(pT
, 1)T

∣

∣ p ∈ P
}

∪
{

(qT
, 0)T

∣

∣ q ∈ C
}

.
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CONSTRAINT-BIASED VS GENERATOR-BIASED REPRESENTATIONS

Ü The alternative encoding has dual properties with respect to the original
by Halbwachs et al.
Ü With the original, the encoding of an NNC polyhedron may require a

similar number of constraints but about twice the number of
generators: it is constraint-biased .

Ü With the alternative, it may require a similar number of generators
but twice the number of constraints: this encoding is
generator-biased .

=⇒ Due to the use of exponential algorithms, their computational behavior
can vary wildly depending on the operation and on the actual polyhedra
being manipulated.

=⇒ The performance of one encoding with respect to the other will heavily
depend on the particular application.

CONSTRAINT-BIASED VS GENERATOR-BIASED REPRESENTATIONS 34



MINIMIZATION OF ε-POLYHEDRA

Ü A minimized encoding may represent a non-minimized NNC polyhedron.

Ü In other words: in no way does minimization of the representation in
CPn+1 imply minimization of the NNC polyhedron in Pn.
Ü this is true for both encodings.

Ü There are examples where a “minimized” representation has more than
half of the constraints that are redundant.

Ü This causes both efficiency and usability problems:
Ü performance can be severely limited by the presence of redundant

constraints and generators;
Ü the client application must distinguish between the real

constraints/generators and the surrounding noise.

MINIMIZATION OF ε-POLYHEDRA 35



STRONG MINIMIZATION OF ε-POLYHEDRA

Ü A solution to this problem is presented in the paper:

Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella
A New Encoding and Implementation of Not Necessarily Closed Convex
Polyhedra
Quaderno 305, Department of Mathematics, University of Parma, 2002
Available at � � � ��� � �� � � � �� � $ � # � � � # � �

Ü There, we define a general notion of strong minimization that
encompasses both the constraint- and the generator-biased encodings.

Ü Moreover, this notion of minimization maps constraint-biased
representations to constraint-biased ones and likewise for the
generator-biased representations.

Ü The contribution is important also from the practical point of view: the
strong minimization procedure we propose is very efficient.

STRONG MINIMIZATION OF ε-POLYHEDRA 36



THE IMPACT OF STRONG MINIMIZATION

# Pi + # Ci eval Inters (# Ci ) Poly-hull (# Gij ) Final result (# C)

1st arg 2nd arg 1st arg 2nd arg res smf time time-smf

a 48 48 131 77 356 56 0.91 0.01

4 + 8 b 32 32 40 17 156 56 0.08 0.00

c 48 32 132 17 251 56 0.16 0.00

a 62 62 209 125 537 59 2.29 0.01

8 + 8 b 36 36 50 21 308 59 0.25 0.00

c 62 36 190 21 332 59 0.37 0.00

a 132 132 414 305 2794 227 118.64 0.45

8 + 10 b 68 68 58 25 1084 227 1.42 0.06

c 132 68 261 25 1423 227 3.96 0.08

a 178 178 697 657 5078 235 932.72 2.07

16 + 10 b 80 80 78 29 1775 235 5.24 0.14

c 178 80 418 29 1238 235 9.48 0.08

THE IMPACT OF STRONG MINIMIZATION 37



CONCLUSION

Ü Convex polyhedra provide the basis for several abstractions used in
static analysis and computer-aided verification of complex system.

Ü Some of these applications require the manipulation of convex
polyhedra that are not necessarily closed.

Ü We have proposed an elegant way of decoupling the essential
geometric features of NNC polyhedra from their implementation.

Ü This separation, besides providing a natural and easy to use interface,
enables the search for new implementation techniques.

Ü We have shown that the standard implementation of NNC polyhedra,
which happens to be biased for constraint-intensive computations, has a
dual that is biased for generator-intensive computations.

Ü We have implemented all these ideas in the Parma Polyhedra Library

6 7 7 8 9 : :<; ; ; = >? = @A B 8DC = B 7 : 8 8DE :
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