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MOTIVATIONS

Ü The design of abstract domains is a difficult task . . .

Ü . . . thus, there continues to be strong interest in techniques that derive
enhanced abstract domains by applying systematic constructions to
simpler, existing domains [Cousot and Cousot, POPL’79].

Ü Most studies concentrate on the definition of the carrier of the enhanced
abstract domain, since (under suitable hypotheses) the optimal abstract
operators can be induced from it.

Ü But the optimal operators are often difficult to implement, motivating the
interest on generic techniques whereby correct domain operations are
derived (semi-) automatically from those of the base-level domains
[Cortesi et al., SCP’00; Cousot and Cousot, POPL’79; Filé and Ranzato,
TCS’99].

Ü Among the abstract operators, widenings are special: besides
correctness, a proper widening operator also has to provide a finite
convergence guarantee.
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GOAL AND PLAN OF THE TALK

Ü Our goal: consider a disjunctive refinement of an abstract domain and
provide parametric constructions for lifting any widening defined on the
base-level domain to a proper widening on the enhanced domain.

Ü Plan of the talk:

1. clarify what we mean by proper widening;
2. present the finite powerset construction;
3. present two different strategies for transforming an extrapolation

operator into a proper widening.

Ü Throughout the talk, we will instantiate the concepts on the finite
powerset domain built upon the abstract domain of convex polyhedra, a
non-toy example having several practical applications.
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THE ABSTRACT INTERPRETATION FRAMEWORK

An instance of [Cousot and Cousot, JLC ’92, Section 7].

Ü The concrete domain 〈C,v,⊥,>,t,u〉 is a complete lattice;

Ü The concrete approximation relation c1 v c2 holds if c1 is a stronger
property than c2;

Ü The concrete semantics is c = Fω(⊥), where F : C → C is continuous.

Ü The abstract domain 〈D,`, 0,⊕〉 is a join-semilattice;

Ü The two domains are related by a monotonic and injective
concretization function γ : D → C; thus, the abstract partial order ` is
indeed the approximation relation induced on D by γ.

Ü We assume the existence of a sound monotonic abstract semantic
function F] : D → D, so that

∀c ∈ C : ∀d ∈ D : c v γ(d) =⇒ F(c) v γ
(
F](d)

)
.
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A WORKING EXAMPLE (I)
Ü A collecting semantics gathering relational information about the

possible values of numerical variables can be based on the concrete
domain:

〈
℘(Rn),⊆, ∅, R

n
,∪,∩

〉
.

Ü The abstract domain of closed convex polyhedra [Cousot and
Halbwachs, POPL’78] is the (non-complete) lattice

ĈPn := 〈CPn,⊆, ∅, R
n
,],∩〉

which is related to the concrete domain by γ(P) := P .
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PROBLEMS IN THE ABSTRACT SEMANTICS COMPUTATION

Ü The “limit” of the abstract computation may not be representable in the
abstract domain (e.g., a circle is not a polyhedron);

Ü Reaching a post-fixpoint of the abstract semantic function may require
an infinite number of computation steps;

Ü Even when the abstract computation is intrinsically finite, it may be
practically unfeasible if it requires too many abstract iterations; for
instance,

� ��� � �

�� �	 
 � � �  � � � � ��

� ��� ��  � � ��� � � � � �
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Widening operators try to solve all of these problems at once.
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DEFINITION OF WIDENING OPERATOR

A minor variant of the classical one [Cousot and Cousot, PLILP’92]:

Ü The partial operator ∇ : D × D � D is a widening if
À ∀d1, d2 ∈ D : d1 ` d2 =⇒ d2 ` d1 ∇ d2;
Á for each increasing chain d0 ` d1 ` · · · , the increasing chain defined

by d′

0 := d0 and d′

i+1 := d′

i ∇ (d′

i ⊕ di+1), for i ∈ N, is not strictly
increasing.

Ü Note: any widening ∇ induces on D a partial order relation `∇

satisfying the ACC; this is defined as the reflexive and transitive closure
of

{
(d1, d) ∈ D × D

∣∣ ∃d2 ∈ D . d1  d2 ∧ d = d1 ∇ d2

}
.

Ü The upward iteration sequence with widenings (starting from 0 ∈ D)

di+1 =





di, if F](di) ` di;

di ∇
(
di ⊕ F](di)

)
, otherwise;

converges after a finite number of iterations.
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A WORKING EXAMPLE (II)
Ü The abstract domain ĈPn has infinite ascending chains;

Ü It comes equipped with the standard widening [Cousot and Halbwachs,
POPL’78] or other widenings improving upon it [Bagnara et al., SAS’03].

O

P2

P1
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THE FINITE POWERSET CONSTRUCTION (I)
Ü Similar to the disjunctive completion of [Cousot and Cousot, POPL’79],

obtained by a variant of the down-set completion construction of
[Cousot and Cousot, JLP ’92].

Ü An element of the powerset is a non-redundant and finite collection of
objects of the base domain: each object in the collection has to be
maximal wrt the partial order `.

Ü The finite powerset domain over D̂ is the join-semilattice

D̂P :=
〈
℘fn(D,`),`P, 0P,⊕P

〉
,

where 0P := ∅ and S1 ⊕P S2 := Ω`

D(S1 ∪ S2).
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THE FINITE POWERSET CONSTRUCTION (II)
Ü The partial order `P corresponds to the Hoare’s powerdomain ordering:

S1 `P S2 ⇐⇒ ∀d1 ∈ S1 : ∃d2 ∈ S2 . d1 ` d2.

Ü A kind of Egli-Milner partial order relation will be also used:
S1 `EM S2 ⇐⇒ S1 = 0P ∨

(
S1 `P S2 ∧ ∀d2 ∈ S2 : ∃d1 ∈ S1 . d1 ` d2

)
.

Ü The concretization function is γP : ℘fn(D,`) → C defined by

γP(S) :=
⊔{

γ(d)
∣∣ d ∈ S

}
.

It is monotonic, but not necessarily injective.

Ü A correct abstract semantic function F]
P : ℘fn(D,`) → ℘fn(D,`) is

assumed. This can be defined as the element-wise lifting

F]
P(S) := Ω`

D

({
F](d)

∣∣ d ∈ S
})

,

provided, e.g., the concrete function F is additive.
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A WORKING EXAMPLE (III)
Ü The finite powerset of closed convex polyhedra is the (non-complete)

join-semilattice (ĈPn)P := 〈℘fn(CPn,⊆),⊆P, ∅,]P〉.

Ü The induced concretization function is γP(S) :=
⋃

S.

Ü Since additivity corresponds to linearity, many well-known abstract
semantics operators (e.g., affine image and pre-image operators,
conjunctions of linear constraints, projections, embeddings, etc.) can be
easily lifted from ĈPn to the powerset (ĈPn)P.
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A WORKING EXAMPLE (IV)

O

T1

P1 P2

P3

T1 = {P1,P2,P3} ∈ ℘fn(CP2)
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A WORKING EXAMPLE (V)

O

T2

Q1

P1 P2

P3

T2 = {Q1,P1,P2,P3} /∈ ℘fn(CP2)
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A WORKING EXAMPLE (VI)

O

Q1

Q2

Q3

P1 P2

P3

T1 = {P1,P2,P3}, T2 = {Q1,Q2,Q3}

T1 `P T2, T1 0EM T2

A WORKING EXAMPLE (VI) 16



PROBLEMS IN THE ABSTRACT COMPUTATION (AGAIN)
Ü Infinite ascending chain may be obtained even when the base-level

domain satisfies the ACC;

Ü The “limit” of the abstract computation may not be representable in the
abstract domain (e.g., infinite collections of polyhedra);

Ü The element-wise lifting of ∇ is not a widening on D̂P, since
À the lifting may not be an upper bound operator, because the

base-level widening ∇ may be undefined on some pairs;
Á the finite convergence guarantee can be lost.

PROBLEMS IN THE ABSTRACT COMPUTATION (AGAIN) 17



DEFINING EXTRAPOLATION HEURISTICS

Ü The correctness problem can be solved by defining a ∇-connected
extrapolation heuristics h∇

P : ℘fn(D,`)2 � ℘fn(D,`): for all S1 P S2,

S2 `EM h
∇

P (S1, S2);

∀d ∈ h
∇

P (S1, S2) \ S2 : ∃d1 ∈ S1 . d1 ∇ d;

∀d ∈ h
∇

P (S1, S2) ∩ S2 :
(
(∃d1 ∈ S1 . d1  d) → (∃d

′

1 ∈ S1 . d
′

1 ∇ d)
)
.

Ü For instance, the following is a generalized and simplified version of an
operator proposed by [Bultan et al., TOPLAS’99]:

h
∇

P (S1, S2) := S2 ⊕P Ω`

D

(
{ d1 ∇ d2 ∈ D | d1 ∈ S1, d2 ∈ S2, d1  d2 }

)
.
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NO FINITE CONVERGENCE GUARANTEE (I)

O

T2

P1 P2

NO FINITE CONVERGENCE GUARANTEE (I) 19



NO FINITE CONVERGENCE GUARANTEE (II)

O

T2

T3

P1 P2 P3

Note that T2 0EM T3

NO FINITE CONVERGENCE GUARANTEE (II) 20



NO FINITE CONVERGENCE GUARANTEE (III)

O

h∇

P (T3, T4) = T4

P1 P2 P3

NO FINITE CONVERGENCE GUARANTEE (III) 21



NO FINITE CONVERGENCE GUARANTEE (IV)

O

Tj = {Pi | 1 ≤ i ≤ j }

h∇

P (Tj , Tj+1) = Tj+1

T3

T4

P1 P2 P3 P4 P5 P6
. . .

NO FINITE CONVERGENCE GUARANTEE (IV) 22



WIDENINGS BASED ON A CARDINALITY THRESHOLD?
Ü To solve this convergence problem, the “widening” operator proposed in

[Bultan et al., TOPLAS’99] fixes an upper bound k ∈ N for the number of
disjuncts in an abstract collection. When the second argument S2

reaches this cardinality threshold, it is replaced by ⇑k(S2), where some
of the disjuncts are collapsed (or “coalesced” [Bourdoncle, JFP’92]), i.e.,
replaced by their join.

Ü There is an example showing that this strategy may fail to enforce the
finite convergence guarantee. The reason is that the reduction operator
Ω`

D interferes with the extrapolation heuristics h∇

P , so that the threshold
k is never reached.

Ü Anyway, the above approach can be “patched” by considering a different
extrapolation heuristics (see the TR version of our paper).
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WIDENINGS BASED ON EGLI-MILNER CONNECTORS (I)
Ü An Egli-Milner connector �EM is an upper bound for the relation `EM.

Ü For any EM-connector �EM and any ∇-connected extrapolation
heuristics h∇

P , let S1 EM∇P S2 := h∇

P (S1, S1 �EM S2).

O

P1 P2 P3 P4

T3 0EM T4
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WIDENINGS BASED ON EGLI-MILNER CONNECTORS (II)
Ü An Egli-Milner connector �EM is an upper bound for the relation `EM;

Ü For any EM-connector �EM and any ∇-connected extrapolation
heuristics h∇

P , let S1 EM∇P S2 := h∇

P (S1, S1 �EM S2).

O

P1 P2 P3

P′

P4

T3 �EM T4 = {P1,P2,P′}
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WIDENINGS BASED ON EGLI-MILNER CONNECTORS (III)
Ü An Egli-Milner connector �EM is an upper bound for the relation `EM;

Ü For any EM-connector �EM and any ∇-connected extrapolation
heuristics h∇

P , let S1 EM∇P S2 := h∇

P (S1, S1 �EM S2).

O

P1 P2 P3 ∇ P′

T3 EM∇P T4
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WIDENINGS BASED ON CERTIFICATES

Ü A possible tactic when proving that an upper bound operator
� : D × D → D is indeed a widening on D̂ is to provide a sort of
“convergence certificate.”

Ü A finite convergence certificate for � on D̂ is a triple (O,�, µ) where
À O is a set with well-founded ordering �;
Á µ : D → O, which is called level mapping, satisfies

∀d1, d2 ∈ D : d1  d2 =⇒ µ(d1) � µ(d1 � d2).

Ü For instance, a certificate for the standard widening on ĈPn can be
obtained by taking (O,�) be the lexicographic product of two copies of
(N, >) and defining µ(P) =

(
n − dim(P),# C

)
, where C is a constraint

system in minimal form for P .

Ü A finitely computable certificate can be used to lift a widening operator
on D̂ to work on the finite powerset domain D̂P.

WIDENINGS BASED ON CERTIFICATES 27



WIDENINGS BASED ON CERTIFICATES

Ü A possible tactic when proving that an upper bound operator
� : D × D → D is indeed a widening on D̂ is to provide a sort of
“convergence certificate.”

Ü A finite convergence certificate for � on D̂ is a triple (O,�, µ) where
À O is a set with well-founded ordering �;
Á µ : D → O, which is called level mapping, satisfies

∀d1, d2 ∈ D : d1  d2 =⇒ µ(d1) � µ(d1 � d2).

Ü For instance, a certificate for the standard widening on ĈPn can be
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LIFTING THE CERTIFICATE ON THE POWERSET DOMAIN

Ü Let (O,�, µ) be a certificate for a widening ∇ on D̂.

Ü The relation yP ⊆ ℘fn(D,`) × ℘fn(D,`) is such that S1 yP S2 iff one
of the following holds:

µ(⊕S1) � µ(⊕S2);

µ(⊕S1) = µ(⊕S2) ∧ #S1 > 1 ∧ # S2 = 1;

µ
(
⊕S1) = µ(⊕S2) ∧ #S1 > 1 ∧ # S2 > 1 ∧ µ̃(S1) � µ̃(S2)

where µ̃(S) denotes the multiset over O obtained by applying µ to each
abstract element in S.

Ü yP satisfies the ACC.
Ü Intuitively, a certificate (OP,�P, µP) for D̂P will be defined as

µP(S1) �P µP(S2) ⇐⇒ S1 yP S2;

µP(S1) = µP(S2) ⇐⇒ S1 6yP S2 ∧ S2 6yP S1.
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LIFTING THE CERTIFICATE: 1ST CASE (I)

O

T1

T2
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LIFTING THE CERTIFICATE: 1ST CASE (II)

O

dim(]T1) = 1 < 2 = dim(]T2)

=⇒ µ(]T1) � µ(]T2)

=⇒ T1 yP T2

]T2

]T1
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LIFTING THE CERTIFICATE: 2ND CASE (I)

O

T1 = {P1,P2,P3,P4,P5}

T2 = {P6}

P1 P2

P3 P4

P5 P6
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LIFTING THE CERTIFICATE: 2ND CASE (II)

O

µ(
⊎

T1) = µ(
⊎

T2)

#T1 = 5 > 1, # T2 = 1

=⇒ T1 yP T2

P1 P2

P3 P4

P5 P6

⊎
T1

⊎
T2
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LIFTING THE CERTIFICATE: 3RD CASE (I)

O

T1 = {P1,P2,P3,P4,P5}

T2 = {P1,P2} ∪ {P6,P7,P8}

P1 P2

P3 P4

P5

P6

P7

P8
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LIFTING THE CERTIFICATE: 3RD CASE (II)

O

µ(
⊎

T1) = µ(
⊎

T2)

µ̃(T1) = {(2, 4)4, (2, 6)1} � {(2, 4)5} = µ̃(T2)

=⇒ T1 yP T2

P1 P2

P3 P4

P5

P6

P7

P8
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A CERTIFICATE-BASED WIDENING

Ü A subtraction for D̂ is a partial operator 	 : D × D � D such that
d2 ` d1 implies both d1 	 d2 ` d1 and d1 = (d1 	 d2) ⊕ d2.

Ü For ĈPn, the closed convex set-difference operator is a subtraction.

Ü A certificate-based widening µ∇P is such that

S1 µ∇P S2 :=





S1 �P S2, if S1 yP S1 �P S2;

(S1 �P S2) ⊕P {d}, if
⊕

S1 
⊕

(S1 �P S2);
{⊕

S2

}
, otherwise.

where �P is an arbitrary upper bound operator for D̂P and
d =

(⊕
S1 ∇

⊕
(S1 �P S2)

)
	

(⊕
(S1 �P S2)

)
.

Ü In the next examples we consider �P := ⊕P, so that S1 �P S2 = S2.
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CERTIFICATE-BASED WIDENING: 1ST CASE (I)

O

T1 yP T2

T1

T2
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CERTIFICATE-BASED WIDENING: 1ST CASE (II)

O

T1 µ∇P T2 = T2
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CERTIFICATE-BASED WIDENING: 2ND CASE (I)

O

T1 = {P1,P2,P3}

T2 = T1 ∪ {P4}

T1 6yP T2

P1

P2

P3

P4
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CERTIFICATE-BASED WIDENING: 2ND CASE (II)

O

]T1  ]T2

P1

P2

P3

]T1

P4 ]T2
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CERTIFICATE-BASED WIDENING: 2ND CASE (III)

O

µ(]T1) � µ(]T1 ∇ ]T2)

=⇒ T1 yP ]T1 ∇ ]T2

P1

P2

P3

P4

]T2

]T1 ∇ ]T2
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CERTIFICATE-BASED WIDENING: 2ND CASE (IV)

O

T1 µ∇P T2 = T2 ∪ {d}

P1

P2

P3

P4

d = (]T1 ∇ ]T2) 	 ]T2
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CERTIFICATE-BASED WIDENING: LAST CASE (I)

O

T1 = {P1,P2,P3,P4}

T2 = T1 ∪ {P5,P6,P7}

T1 6yP T2

P1 P2

P3 P4

P5

P6

P7
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CERTIFICATE-BASED WIDENING: LAST CASE (II)

O

T1 µ∇P T2 = {]T2}

P1 P2

P3 P4

P5

P6

P7

]T1 = ]T2

CERTIFICATE-BASED WIDENING: LAST CASE (II) 43



INSTANTIATING THE CERTIFICATE-BASED WIDENING

Ü We can consider any finite set of upper bound operators �P
1, . . . , �P

m,
therefore tuning the precision/complexity tradeoff of the widening.

Ü In particular, when computing S1 ∇P S2, some of the elements occurring
in the second argument S2 may be merged (i.e., joined) together,
without affecting the finite convergence guarantee.

Ü A specific merging heuristics was initially proposed in [Bultan et al.,
TOPLAS’99]; in the paper we discuss how the coarseness of the
corresponding approximation can be controlled by a congruence
relation on D̂P.
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CONCLUSION

Ü We have studied the the systematic lifting of widening operators for the
finite powerset construction:

Ü we have proposed two widening strategies, either based on the use
of a Egli-Milner connector or of a finite convergence certificate; a
third strategy, based on a cardinality threshold, is proposed in the
TR version of the paper;

Ü all construction are parametric in the specification of several
auxiliary operators, allowing for a finer control on the
efficiency/precision tradeoff.

Ü The framework has been instantiated on the finite powerset domain of
convex polyhedra, providing examples for the choice of the parameters.
A preliminary experimental evaluation is ongoing using the Parma
Polyhedra Library.
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