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PLAN OF THE TALK

À The What and Why of the Parma Polyhedra Library

Á Current status of the Parma Polyhedra Library

Â Intervals and Boxes

Ã Bounded Differences and Octagons

Ä Grids
Ü Two Representations
Ü Comparison, Join and Intersection Operations
Ü Reducing and Converting the Representations
Ü Related Work

Å Summary
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THE PROBLEM

Ü Programs need to be designed, developed and maintained over their
entire lifespan (up to 20 and more years) at reasonable costs;

Ü programs have exploded in size over the last 25 years so that more and
more with tens of millions of lines of code are in general use;

Ü unassisted development and maintenance teams do not stand a chance
to follow such an explosion in size and complexity;

Ü the large number of bugs in much of our software is hardly bearable
even in office applications. . .
Ü . . . no safety critical application can tolerate this failure rate;

Ü the problem of software reliability is one of the most important problems
computer science has to face;

Ü this justifies the growing interest in mechanical tools to help the
programmer reasoning about programs.
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RECENT NEWS I

[...] The Mars Climate Orbiter burned in the martian atmosphere in 1999
after missing its orbit insertion because unit computations were inconsistent.

The same year, Mars Polar Lander is suspected of having crashed on Mars
upon landing when a software flag was not reset properly.

In [. . . ] the 1997 Mars Pathfinder (MPF) technology demonstration mission
[. . . ] a day’s exploration time was lost when ground support teams were
forced to reboot the system while downloading science data.

[. . . ]

NASA’s 2003 Mars Exploration Rover (MER) mission includes two rovers
[. . . ] At a cost of $400 million for each rover, a coding error that shuts down a
rover overnight would in effect be a $4.4 million mistake, as well as a loss of
valuable exploration time on the planet.
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RECENT NEWS II
On Aug 14 2003, 50 ml people in the US and Canada had no electricity.

A number of factors and failings came together to make the blackout the
worst outage in North American history. One of them was buried in a
massive piece of software compiled from four million lines of C code [. . . ].

Sometimes working late into the night and the early hours of the morning,
the team pored over the approximately one-million lines of code that
comprise the XA/21’s Alarm and Event Processing Routine, written in the C
and C++ programming languages. “This fault was so deeply embedded, it
took them weeks of poring through millions of lines of code and data to find
it.” FE spokesman Ralph DiNicola said.

We had in excess of three million online operational hours in which nothing
had ever exercised that bug. I’m not sure that more testing would have
revealed it. – GE Energy’s Mike Unum [. . . ]
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AN EXAMPLE: IS . � / .10 243 WELL-DEFINED?

Many things may go wrong
Ü ! and/or ) may be uninitialized;
Ü ! % ) may overflow;
Ü ! and ) may be equal (or ! % ) may overflow): division by 0;
Ü ! � 5 ! % )76 may overflow (or underflow).

What can we do about it?
Ü full verification is undecidable;
Ü code review: complex, expensive and with volatile results;
Ü dynamic testing plus debugging: complex, expensive, does not scale

(the cost of testing goes as the square of the program size), but it is
repeatable;

Ü formal methods: complex and expensive but reusable, can be very
thorough, repeatable, scale up to a certain program size then become
unapplicable (we are working to extend that limit).

AN EXAMPLE: IS8 9: 8 ; < = WELL-DEFINED? 6



LIMIT VS. DISTRIBUTION INFORMATION

Most numerical abstract domains are meant to describe limit
information, i.e., bounds within which the values must lie
Ü intuitively based on convex-set approximation

Ü non-relational: bounding boxes;
Ü relational: bounded differences, octagons, convex polyhedra.

But convex-set based approximations may be too coarse and fail to
capture distribution information. . .
Ü . . . so we need alternative approximations such as:

Ü a small number of mainly irregular convex-set approximations;
Ü a large (even infinite) number of repetitive occurrences of a single

pattern to represent distribution information;
Ü combinations of the two things above.
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CONVEX POLYHEDRA: WHAT AND WHY

What?
Ü regions of Rn bounded by a finite set of hyperplanes.

Why? Solving Classical Data-Flow Analysis Problems!
Ü array bound checking and compile-time overflow detection;
Ü loop invariant computations and loop induction variables.

Why? Verification of Concurrent and Reactive Systems!
Ü synchronous languages;
Ü linear hybrid automata (roughly, FSMs with time requirements);
Ü systems based on temporal specifications.

And Again: Many Other Applications. . .
Ü inferring argument size relationships in logic programs;
Ü termination inference for Prolog programs;
Ü string cleanness for C programs.
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EXAMPLE: CONSTRAINT AND GENERATOR DESCRIPTIONS

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2






points:
{

(4, 1), (1, 4)
}

rays: {(1, 2), (2, 1)}
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THE PARMA POLYHEDRA LIBRARY

Ü A collaborative project started in January 2001 at the Department of
Mathematics of the University of Parma.
Ü The University of Leeds (UK) is now a major contributor to the library.

Ü It aims at becoming a truly professional library for the handling (not
necessarily closed) rational convex polyhedra. We are almost there.

Ü Targeted at abstract interpretation and computer-aided verification.
Ü Free software released under the GNU General Public License.

Why yet another library? Some limitations of existing ones:
Ü data-structures employed cannot grow/shrink dynamically;
Ü possibility of overflow, underflow and rounding errors;
Ü unsuitable mechanisms for error detection, handling and recovery;

Ü (cannot reliably resume computation with an alternative method,
e.g., by reverting to an interval-based approximation).

Ü Several existing libraries are free, but they do not provide adequate
documentation for the interfaces and the code.

THE PARMA POLYHEDRA LIBRARY 10



PARMA POLYHEDRA LIBRARY: WHERE WE ARE

PPL 0.5 (released on April 28, 2003)
Ü Best available support for both closed and not necessarily closed (NNC)

convex polyhedra.

Ü A new widening operator that is always more precise than the standard
widening.

Ü Clean, safe and natural interfaces for C, C++ and Prolog.

Ü Comprehensive documentation for both users and developers.

Ü Users (VERIMAG, CMU × 2, ENS Cachan, UMich (Spin), UWisc, . . . )
are quite satisfied with the performance.

PARMA POLYHEDRA LIBRARY: WHERE WE ARE 11



PARMA POLYHEDRA LIBRARY: WHERE ARE WE GOING

PPL 0.6 (to be released by the end of July 2004)
Ü Generic support for finite powerset domains, including widening

operators.

Ü Instantiation on powersets of polyhedra: includes the first proposals of
non-trivial widenings for this domain.

Ü Summarization operators, as proposed by Gopan et al. at TACAS’04.

PPL 0.7 (to be released by the end of 2004)
Ü An implementation of the simplex algorithm.

Ü Support the use of native integers with overflow detection.

Ü Serialization and deserialization operators.

Ü A preliminary implementation for bounded differences and octagons.

Ü New OCaml interface.

Ü . . .
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PARMA POLYHEDRA LIBRARY: WHERE WILL WE GO

PPL 0.8, 0.9, 0.10, . . . (release dates unknown)
Ü Support for intervals and boxes.

Ü New implementations, based on intervals, for bounded differences,
octagons, bounded quotients and other numeric abstractions.

Ü Support for grids and Z-polyhedra.

Ü Generic support for ask-and-tell domains.

Ü Cartesian factoring, as proposed by Halbwachs et al. at SAS’03.

Ü New Java interface.

Ü . . .
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INTERVALS AND BOUNDING BOXES

O x

y







2 ≤ x ≤ 18

3 ≤ y ≤ 21
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INTERVALS

Ü One of the first numerical abstract domains ever proposed (Cousot &
Cousot, 1976).

Ü The only one with a real scalability guarantee (linear complexity in the
number of variables).

Ü Useful as a fall-back domain and for the realization of more complex
domains.

Ü Despite this no available implementation is really suitable for the
purposes of abstract interpretation:
Ü lack of support for non-closed intervals (cannot represent constraints

of the form ±x < b); and/or
Ü limited choice of the data type used to represent boundaries; and/or
Ü unsound implementation (use floating point numbers to represent

the boundaries disregarding rounding errors).

INTERVALS 15



INTERVALS, CONT.
Ü Work has already started on a brand new implementation of intervals,

especially targeted at the needs of abstract interpretation:
Ü support closed as well as non-closed intervals;
Ü provide a wide selection of number families for the representation of

the boundaries; initially, native integers (8, 16, 32 and 64 bits wide),
native floats (32, 64 and 128 bits wide), unlimited precision integers
and rationals;

Ü support for different controlled rounding strategies (ensuring various
degrees of portability and efficiency);

Ü support for both intervals of real numbers and intervals of integer
numbers (independently from the type of the boundaries).

INTERVALS, CONT. 16



BOUNDED DIFFERENCES

O x

y















2 ≤ x ≤ 18

3 ≤ y ≤ 21

−10 ≤ x − y
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OCTAGONS

O x

y



























2 ≤ x ≤ 18

3 ≤ y ≤ 21

−10 ≤ x − y

11 ≤ x + y ≤ 33
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BOUNDED DIFFERENCES, OCTAGONS AND BEYOND

Ü Initial implementations are almost finished:
Ü for bounded differences, a standard implementation based on

difference bound matrices is finished and ready to be incorporated
into the PPL;

Ü for intervals, an implementation based on papers of Miné is almost
finished.

Ü These implementations have several limitations:
Ü they only supports closed polyhedra;
Ü lack a satisfactory widening operator.

Ü New implementations will be based on intervals.

Ü Beyond: the interval abstraction can be used as the basis of other
numerical abstractions, such as bounded quotients (Bagnara, 1997).

BOUNDED DIFFERENCES, OCTAGONS AND BEYOND 19



LIMIT VS. DISTRIBUTION INFORMATION

Most numerical abstract domains are meant to describe limit
information, i.e., bounds within which the values must lie
Ü intuitively based on convex-set approximation

Ü non-relational: bounding boxes;
Ü relational: bounded differences, octagons, convex polyhedra.

But convex-set based approximations may be too coarse and fail to
capture distribution information. . .
Ü . . . so we need alternative approximations such as:

Ü a small number of mainly irregular convex-set approximations;
Ü a large (even infinite) number of repetitive occurrences of a single

pattern to represent distribution information;
Ü combinations of the two things above.
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DEALING WITH A FEW IRREGULAR APPROXIMATIONS

In this case, the finite powerset construction may be an appropriate
approximation domain:
Ü having a small number of elements enables the tuning of the

efficiency/precision tradeoff;

Ü each element in the finite collection can be approximated independently
from the other elements.

DEALING WITH A FEW IRREGULAR APPROXIMATIONS 21



DEALING WITH REPETITION OF A SINGLE PATTERN

In this case, distribution information is more important than limit
information:
Ü linear domains representing discrete and linearly repetitive values

Ü the integer lattice...
Ü integral lattices...
Ü or, more generally, a domain G of grids.

DEALING WITH REPETITION OF A SINGLE PATTERN 22



COMBINING LIMIT AND DISTRIBUTION INFORMATION

Generalize and/or specialize the work on Z-polyhedra
Ü G-?

Ü finite powerset of G-?

where ? may be
Ü bounding boxes,

Ü bounded differences,

Ü octagons,

Ü (convex) polyhedra,

Ü . . .

COMBINING LIMIT AND DISTRIBUTION INFORMATION 23



GRID: A SIMPLE EXAMPLE IN 2D

In a computation, where x, y are declared as integers, we want to
verify that x − 3y is never zero.

+ = a concrete value

O

1

2

3

4

5

1 2 3 4 5

+

+

+

+

+

x

y

Concrete Domain

O

1

2

3

4

5

1 2 3 4 5

+

+

+

+

+

x

y

An Integer Grid
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GRID: A SIMPLE EXAMPLE IN 2D
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GRID: A SIMPLE EXAMPLE IN 2D
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GRID: A SIMPLE EXAMPLE IN 2D

In a computation, where x, y are declared as integers, we want to
verify that x − 3y is never zero.
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GRID: A SIMPLE EXAMPLE IN 2D

In a computation, where x, y are declared as integers, we want to
verify that x − 3y is never zero.
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GRID: A SIMPLE EXAMPLE IN 2D

In a computation, where x, y are declared as integers, we want to
verify that x − 3y is never zero.
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A PROGRAM AND A GRID REPRESENTION
H IKJ L H M N O

P IKJ Q P R H R N O

S TU V IKJ N W T X

P IKJ P M L R H O

H IKJ H M L

YZ [ S TU

Then, at the start of each S TU loop, H and P can take values

. . . , (−3,−3), (−3,−1), (−3, 2), (−3, 5), . . .

. . . , (−1,−3), (−1, 0), (−1, 3), (−1, 6), . . .

. . . , ( 1,−2), ( 1, 1), ( 1, 4), ( 1, 7), . . .

. . . , ( 3,−1), ( 3, 2), ( 3, 5), ( 3, 8), . . .

A PROGRAM AND A GRID REPRESENTION 27



GRID REPRESENTION: GENERATORS AND CONGRUENCES

This grid can be represented by a set of generating points or
congruence relations:

-4
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4

2

-2 2 4

\]
\]

\]
\]

\]
\]

\]

\]
\]

\]

\]
\]

\]
\]

\]
\]

\]

^
^

^

Generators:
{

(1, 1)T, (1, 4)T, (3, 2)T
}

-4

-2

4

2

-2 2 4

Congruences:
{

(x ≡2 1), (x + y ≡3 2)
}
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GRID REPRESENTION: GENERATORS AND CONGRUENCES

This grid can be represented by a set of generating points or
congruence relations:
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_`

_`
_`

_`

_`
_`
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_`

_`

a
a

a

Generators:
{

(1, 1)T, (1, 4)T, (3, 2)T
}

-4

-2

4

2

-2 2 4

Congruences:
{

(x ≡2 1), (x + y ≡3 2)
}
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GRID REPRESENTION: EQUALITIES AND LINES

We also allow for equalities to hold and directions or lines where the
vectors of the grid can take any, possibly non-integral, numerical
values.
Ü Equalities can be defined as a “modulo 0” congruence relation.

For instance, (x + y ≡0 5) denotes the equality (x + y = 5).

Ü A separate set of lines defines a vector space, that is, the directions
where the values are unrestricted. Thus a generator system for a grid is
a pair of sets of vectors, (L, P )

L is the set of generating lines and
P is the set of generating points.

For instance, ({(1, 1)T}, {(0, 0)T, (1, 0)T}) generates the set of lines
that satisfy the congruence x − y ≡1 0.

GRID REPRESENTION: EQUALITIES AND LINES 29



GRID REPRESENTION: LINES AND VECTOR SPACES

Consider the grid that is described by just the singleton set of
congruence relations:

{

(x + y ≡3 2)
}

-4

-2

4

2

-2 2 4

Generators:
(

{

(−1, 1)T
}

,
{

(1, 1)T, (1, 4)T
}

)

-4

-2

4

2

-2 2 4

Congruences:
{

(x + y ≡3 2)
}
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GRID REPRESENTION: LINES AND VECTOR SPACES

Consider the grid that is described by just the singleton set of
congruence relations:

{

(x + y ≡3 2)
}
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(x + y ≡3 2)
}
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GRID REPRESENTION: EQUALITIES

Consider the grid that is generated by just the points
{

(1, 4)T, (3, 2)T
}

:
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{

(1, 4)T, (3, 2)T
}
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Congruences:
{

(x ≡2 1), (x + y = 5)
}
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GRID REPRESENTION: EQUALITIES

Consider the grid that is generated by just the points
{

(1, 4)T, (3, 2)T
}

:

-4

-2

4

2

-2 2 4

jk
jk

jk
jk

jk
jk

jk

jk
jk

jk

jk
jk

jk
jk

jk
jk

jk
jklm

lm

lm

lm

n

n

Generators:
{
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(x ≡2 1), (x + y = 5)
}
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GENERATING AND DESCRIBING A GRID

Suppose C is a finite set of congruence relations in Qn.
Then the grid G described by C is the set

G = gcon(C) :=

{

~v ∈ Rn

∣

∣

∣

∣

∣

∀
(

〈~a, ~x〉 ≡k b
)

∈ C : 〈~a,~v〉 ≡k b

}

.

Suppose L, P ⊆ Qn are finite sets such that ~0 /∈ L.
Then, if # L = ` and # P = p, the grid G generated by (L, P ) is

G = ggen
(

(L, P )
)

:=
{

L~λ+P~π ∈ Rn
∣

∣ ~λ ∈ R`, ~π ∈ Zp,
∑p

i=1 πi = 1
}

.

GENERATING AND DESCRIBING A GRID 32



EXAMPLE: DESCRIBING A GRID

Consider the set C of congruence relations,
{

(x ≡2 1), (x + y ≡3 2)
}

.

Then the grid G described by C contains every point ~v = (v1, v2) ∈ Rn

that satisfies

v1 ≡2 1,

v1 + v2 ≡3 2.

In particular, (1, 1)T, (1, 4)T, (3, 2)T ∈ G.

EXAMPLE: DESCRIBING A GRID 33



EXAMPLE: GENERATING A GRID

Consider the generating points:

P =
{

(1, 1)T, (1, 4)T, (3, 2)T
}

,

then P~π where ~π ∈ Z3 and
∑p

i=1 πi = 1 generates all the points in
the grid. For instance

(1, 7)T = −(1, 1)T + 2 ∗ (1, 4)T, ~π = (−1, 2, 0)T;

(3, 5)T = −(1, 1)T + (1, 4)T + (3, 2)T, ~π = (−1, 1, 1)T.

EXAMPLE: GENERATING A GRID 34



A DOUBLE DESCRIPTION FOR GRIDS

Suppose

G = gcon(C) = ggen
(

(L, P )
)

.

Then we say that
(

C, (L, P )
)

is a Double Description (DD) pair for G
and we write

G ≡
(

C, (L, P )
)

.

Note that it can be shown that a set of points can be described by a
congruence system iff there is a generator system that can generate
the same set.

A DOUBLE DESCRIPTION FOR GRIDS 35



GRID DD PAIRS: EXAMPLES

-4
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(−1, 1)T
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C =
{

(x + y = 5), (x ≡2 1)
}

G ≡
(

C, (L, P )
)
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C′ =
{

(x + y ≡3 2)
}

G′ ≡
(

C′, (L′, P ′)
)
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GRID DD PAIRS: EXAMPLES
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}

)
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C =
{

(x + y = 5), (x ≡2 1)
}

G ≡
(

C, (L, P )
)
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C′ =
{

(x + y ≡3 2)
}

G′ ≡
(

C′, (L′, P ′)
)
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OPERATIONS ON GRIDS: COMPARISON

We need several grid operations including the key lattice operations
of comparison, join and intersection.

Comparison:
Given any two non-empty grids G = ggen

(

(L, P )
)

and G′ = gcon(C′)

in Gn, then G ⊆ G′ if and only if:

∀
(

〈~a, ~x〉 ≡k b
)

∈ C′ : ∀~p ∈ P : 〈~a, ~p〉 ≡k b,

∀
(

〈~a, ~x〉 ≡k b
)

∈ C′ : ∀~̀∈ L : 〈~a,~l〉 ≡k 0.
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OPERATIONS ON GRIDS: JOIN

Grid-join:
Given any two grids G1,G2 ∈ Gn, then the grid-join of G1 and G2 is the
smallest grid containing both G1 and G2.

Suppose Gi = ggen
(

(Li, Pi)
)

, for i = 1, 2. Then

G1 ⊕ G2 := ggen
(

(L1 ∪ L2, P1 ∪ P2)
)

is the grid-join of G1 and G2.

OPERATIONS ON GRIDS: JOIN 38



OPERATIONS ON GRIDS: INTERSECTION

Grid-intersection:
Given a pair of grids G1,G2 ∈ Gn, the grid-intersection of G1 and G2 is
the largest grid whose points lie in both G1 and G2.

Suppose Gi = gcon(Ci), for i = 1, 2. Then

G1 ∩ G2 := gcon(C1 ∪ C2)

is the grid-intersection of G1 and G2.
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GRID JOIN AND INTERSECTION: EXAMPLE
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{| G = ggen
((

∅, {(2, 2)T, (0, 3), (0, 0)}T
))

}~ G′ = ggen
((

∅, {(4, 2)T, (0, 3)T, (0, 0)T}
))

� G ⊕ G′ = ggen
((

∅, {(2, 0)T, (0, 1)T}
))

.
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G = gcon

(

{(x ≡2 0), (−x + y ≡3 0)}
)

G′ = gcon
(

{(x ≡4 0), (−x + 2y ≡6 0)}
)

G ∩ G′ = gcon
(

{(x ≡12 0), (y ≡3 0)}
)

.
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GRID JOIN AND INTERSECTION: EXAMPLE
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∅, {(2, 2)T, (0, 3), (0, 0)}T
))

�� G′ = ggen
((

∅, {(4, 2)T, (0, 3)T, (0, 0)T}
))

� G ⊕ G′ = ggen
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))
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�� G = gcon
(

{(x ≡2 0), (−x + y ≡3 0)}
)

�� G′ = gcon
(

{(x ≡4 0), (−x + 2y ≡6 0)}
)

��� G ∩ G′ = gcon
(

{(x ≡12 0), (y ≡3 0)}
)

.

GRID JOIN AND INTERSECTION: EXAMPLE 40-A



GRID REPRESENTATIONS: REDUCTION AND CONVERSION

It can be seen from these operations that we need algorithms:
Ü For reducing the size of the representations, since any grid in Gn can be

represented by:
Ü a reduced set of congruences of cardinality of at most n;
Ü a reduced set of lines and points of cardinality of at most n + 1.

Ü For converting from one representation to the other.
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GRID: REDUCED FORM FOR CONGRUENCE SYSTEMS

The max number of congruences needed to describe a grid is n.

Examples: Suppose

C1 =
{

(x ≡2 0), (x ≡2 1)}; C′
1 =

{

(x ≡3 0), (x ≡3 1)};

C2 =
{

(x ≡1 0), (x ≡2 1)}; C′
2 =

{

(x ≡2 1)};

C3 =
{

(x ≡3 2), (x ≡2 1)}; C′
3 =

{

(x ≡6 5)}.

Both C1 and C′
1 are inconsistent and both describe the empty grid.

Congruence (x ≡1 0) is redundant in C2 so that gcon(C2) = gcon(C′
2).

Although neither (x ≡3 2) nor (x ≡2 1) are redundant,
gcon(C3) = gcon(C′

3) and # C′
3 = 1 < # C3 = 2.
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GRID: REDUCED FORM FOR GENERATOR SYSTEMS

Similarly, the max number of lines and points needed to generate a
grid is n + 1.

Examples:

(L1, P1) =
(

{

(1)
}

, ∅

)

; (L′
1, P1) =

(

∅, ∅

)

.

ggen
(

(L1, P1)
)

= ggen
(

(L′
1, P1)

)

= ∅

Only (L′
1, P1) is in reduced form.

(L2, P2) =
(

∅,
{

(3), (5), (8)
}

)

; (L2, P
′
2) =

(

∅,
{

(3), (4)
}

)

(L2, P
′′
2 ) =

(

∅,
{

(0), (1)
}

)

ggen
(

(L2, P2)
)

= ggen
(

(L2, P
′
2)

)

= ggen
(

(L2, P
′′
2 )

)

Although no point in P2 is redundant, (L2, P2) is not reduced.
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REDUCED FORM: GENERATOR SYSTEMS. (CONT.)

(L3, P3) =
(

{

(0, 1)T, (1, 1)T, (1, 2)T
}

,
{

(0, 0)T, (1, 0)T
}

)

;

(L′
3, P3) =

(

{

0, 1)T, (1, 1)T
}

,
{

(0, 0)T, (1, 0)T
}

)

;

(L′
3, P

′
3) =

(

{

0, 1)T, (1, 1)T
}

,
{

(0, 0)T
}

)

.

The line (1, 2)T is redundant in L3.

But (1, 0)T is a redundant point in (L′
3, P3) since, letting:

λ1 = 1, λ2 = −1, π1 = 1,

(1, 0)T = λ1(1, 1)
T + λ2(0, 1)

T + π1(0, 0)
T,

and ggen
(

(L3, P3)
)

= ggen
(

(L′
3, P3)

)

= ggen
(

(L′
3, P

′
3)

)

.
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GRIDS: RELATED WORK

À Text books on linear and integer programming and optimizations
describe a parameter representation (similar to the generator
representation) for full dimensional, integral grids.
Ü Schriver (1986) and
Ü Nemhauser and Wolsey (1988);

Á A domain of full dimensional, integral grids for Z-polyhedra
Ü Ancourt (1991),
Ü Quinton, Rajopadhye and Risset (1996), and
Ü Nookala and Risset (2000);

Â Congruence and parameter representations for integral and rational
grids with algorithms for conversion and reduction, although these are
mainly for integral pointed grids
Ü Granger (1989, 1991 and 1997).
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SUMMARY OF FUTURE PLANS

New releases for the Parma Polyhedra Library are planned for July
(0.6), December (0.7) and in 2005 and beyond (0.8, 0.9, . . . ):
Ü Many new domains including intervals and bounding boxes, bounded

differences and quotients, grids, and octagons.

Ü New domain constructions including powersets, ask-and-tell, and
generalizations of Z-polyhedra to G-?.

Ü New language interfaces including OCaml and Java.

Ü New operators such as the ones for summarization, and serialization
and deserialization.

Ü Other new features such as the simplex algorithm, native integers with
overflow detection, and cartesian factoring.
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FOR MORE INFORMATION:
� � � � � � ��� � � � �� �  ¡ ¢ �¤£ � ¢ � � � �¤¥ �

There you can find:
Ü releases and development snapshots;

Ü documentation and installation instructions;

Ü mailing lists for users and developers;

Ü papers and technical reports;

Ü slides of our presentations;

Ü an extensive bibliography (in BibTeX format) on the subject;

Ü links to relevant sources of information.
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