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THE PROBLEM

Ü Hardware is millions of times more powerful than it was 25 years ago;
Ü program sizes have exploded in similar proportions;
Ü large and very large programs (up to tens of millions of lines of code)

are and will be in widespread use;
Ü they need to be designed, developed and maintained over their entire

lifespan (up to 20 and more years) at reasonable costs;
Ü unassisted development and maintenance teams do not stand a chance

to follow such an explosion in size and complexity;
Ü many pieces of software exhibit a number of bugs that is sometimes

hardly bearable even in office applications. . .
Ü . . . no safety critical application can tolerate this failure rate;

Ü the problem of software reliability is one of the most important problems
computer science has to face;

Ü this justifies the growing interest in mechanical tools to help the
programmer reasoning about programs.
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AN EXAMPLE: IS � � � ��� ��� WELL-DEFINED?

Many things may go wrong
Ü � and/or � may be uninitialized;
Ü ��� � may overflow;
Ü � and � may be equal (or ��� � may overflow): division by 0;
Ü � � � ��� ��� may overflow (or underflow).

What can we do about it?
Ü full verification is undecidable;
Ü code review: complex, expensive and with volatile results;
Ü dynamic testing plus debugging: complex, expensive, does not scale

(the cost of testing goes as the square of the program size), but it is
repeatable;

Ü formal methods: complex and expensive but reusable, can be very
thorough, repeatable, scale up to a certain program size then become
unapplicable (we are working to extend that limit).
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FORMAL PROGRAM VERIFICATION METHODS

Purpose
Ü To mechanically prove that all possible program executions are correct

in all specified execution environments. . .
Ü . . . for some definition of correct:

Ü absence of some kinds of run-time errors;
Ü adherence to some partial specification. . .

Several methods
Ü deductive methods;
Ü model checking;
Ü program typing;
Ü static analysis.

Because of the undecidability of program verification
Ü all methods are partial or incomplete;
Ü all resort to some form of approximation.
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ABSTRACT INTERPRETATION

Ü The right framework to work with the concept of sound approximation;

Ü a theory for approximating sets and set operations as considered in set
(or category) theory, including inductive definitions;

Ü a theory of approximation of the behavior of dynamic discrete systems;

Ü Computation takes place on a domain of abstract properties: the
abstract domain. . .

Ü . . . using abstract operations which are sound approximations of the
concrete operations.

Ü Correctness follows by design!

Ü The abstraction (approximation) can be coarse enough to be finitely
computable, yet be precise enough to be practically useful.

Ü Examples: casting out of nines and rule of signs.
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CONVEX POLYHEDRA AND BEYOND

What?
Ü regions of R

n bounded by a finite set of hyperplanes.

Restrictions, interesting for efficiency reasons:
Ü bounding boxes;
Ü systems of bounded differences;
Ü octagons.

Generalizations and extensions, interesting for expressivity reasons:
Ü not necessarily closed polyhedra (boxes, differences, octagons);
Ü grids;
Ü trapezoidal congruences;
Ü intersections of the above (Z-polyhedra);
Ü sets of the above (sets of bounding boxes, sets of polyhedra, sets of

grids, sets of Z-polyhedra, . . . ).
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WHY ARE THESE INTERESTING AND USEFUL?

Solving classical data-flow analysis problems!
Ü array bound checking;

Ü compile-time overflow detection;

Ü loop invariant computations and loop induction variables.

Verification of concurrent and reactive systems!
Ü synchronous languages;

Ü linear hybrid automata (roughly, FSMs with time requirements);

Ü systems based on temporal specifications.

And again: many other applications. . .
Ü inferring argument size relationships in logic programs;

Ü termination inference for logic and functional programs.
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NUMERICAL ABSTRACTIONS: NO ABSTRACTION

O x

y

{

. . . , (2, 9), . . . , (12, 21) . . . ,
}
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NUMERICAL ABSTRACTIONS: SIGNS

O x

y
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



x ≥ 0

y ≥ 0
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NUMERICAL ABSTRACTIONS: BOUNDING BOXES

O x
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2 ≤ x ≤ 18

3 ≤ y ≤ 21
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NUMERICAL ABSTRACTIONS: SIMPLE CONGRUENCES

O x
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x = 0 mod 2

y = 0 mod 3
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NUMERICAL ABSTRACTIONS: BOUNDED DIFFERENCES
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NUMERICAL ABSTRACTIONS: OCTAGONS
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NUMERICAL ABSTRACTIONS: OCTAGONS 14



NUMERICAL ABSTRACTIONS: CONVEX POLYHEDRA
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NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (I)
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NUMERICAL ABSTRACTIONS: RELATIONAL CONGRUENCES

O x
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x + y = 1 mod 2
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NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (II)
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NUMERICAL ABSTRACTIONS: RELATIONAL CONGRUENCES (II)
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NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (III)
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NUMERICAL ABSTRACTIONS: TRAPEZOIDAL CONGRUENCES
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x + 3y ∈ [4, 10] mod 11

5x − y ∈ [0, 11] mod 16
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EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

$ %'& ( ) * %'& ( )

+, -. / $ 0 & 1 ( ( 23

4 /5 2 67 8 )

-9 7 :, /; $ %'& $< =

/ . > / $ %'& $< 1 ) * %'& * < 1 )

/; 2 -9

/; 2 +, -. /
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ANOTHER EXAMPLE: VALIDATION OF ARRAY REFERENCES

?@A BCD EF GHI F I JK LD A F F MI NO n ≥ 2

HI F LP Q GI R HS TO U V W HI F E P Q I W H I F H J X WK LD A F Y WH K LZ Q T F ?@ I L P Q L[ V W Y P Q F M L N W@ LC @ Y P Q F M E N W F M E N P Q F M V N W E P Q E [ V W@ I R H K
\ ? H L@ E Z Q T RD

r ≥ 2, 2l ≤ n + 1, r + 3 ≤ n, 2l + 2r + 1 ≤ 3n, l ≥ 1, r ≤ n

H P Q L W X P Q T] H W\ ? H L@ X_^ Q E RD

r ≥ 2, 2l ≤ n + 1, r + 3 ≤ 2n, l ≥ 1, r ≤ n, 2i = j, l ≤ i,

2i + 6l + r + 18 ≤ 12n, j ≤ r, 2l + 2r + 1 ≤ 3n, 4i + 2l + 1 ≤ 2r + 3n

H K X^ Q E [ V

r ≥ 2, 2l ≤ n + 1, r + 3 ≤ 2n, l ≥ 1, r ≤ n, 2i = j, l ≤ i,

2i + 6l + r + 18 ≤ 12n, j ≤ r − 1, 2l + 2r + 1 ≤ 3n, 4i + 2l + 1 ≤ 2r + 3n

A I R F M X N^ F M X U V N F ?@ I X P Q X U V W @ I R H K

H K Y Z Q F M X N F ?@ I ` E@A Y W @ I R H K

r + 3 ≤ 2n, l ≥ 1, r ≤ n, j ≤ 2i + 1, 2i ≤ j, l ≤ i, j ≤ r, 2l + 2r + 1 ≤ 3n

F MH N P Q F M X N W H P Q X W X P Q T] X W@ I R \ ? H L@

j + 2 ≤ 2i + r, 2j + 2l ≤ 4i + n + 1, r + 3 ≤ 2n, l ≥ 1, r ≤ n,

7j + 6l + r + 18 ≤ 12i + 12n, 2i ≤ j ≤ 2i + 1, l ≤ i, 2l + 2r + 1 ≤ 3n,

8j + 2l + 1 ≤ 12i + 2r + 3n

F MH N P Q Y WH K L Z Q T F ?@ I L P Q L[ V W Y P Q F M L N W@ LC @ Y P Q F M E N W F M E N P Q F M V N W E P Q E [ V W@ I R H K
F M V N P Q Y W@ I R \ ? H L@

ANOTHER EXAMPLE: VALIDATION OF ARRAY REFERENCES 36



THE DOUBLE DESCRIPTION METHOD BY MOTZKIN ET AL.

Constraint Representation
Ü If a ∈ R

n, a 6= 0, and b ∈ R, the linear inequality constraint 〈a, x〉 ≥ b

defines a closed affine half-space.
Ü All closed polyhedra can be expressed as the conjunction of a finite

number of such constraints.

Generator representation
Ü If P ⊆ R

n, a point of P is any p ∈ P .
Ü If P ⊆ R

n and P 6= ∅, a vector r ∈ R
n such that r 6= 0 is a ray of P iff

for each point p ∈ P and each λ ∈ R+, we have p + λr ∈ P .
Ü All closed polyhedra can be expressed as

{

Rρ + Pπ ∈ R
n

∣

∣ ρ ∈ R
r
+, π ∈ R

p
+,

∑p

i=1
πi = 1

}

where R ∈ R
n×r is a matrix having rays of the polyhedron as columns

and P ∈ R
n×p has points of the polyhedron for its columns.
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2






points:
{

(4, 1), (1, 4)
}

rays: {(1, 2), (2, 1)}
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THE DOUBLE DESCRIPTION METHOD (CONT’D)

Constraint representation
Ü Special case: n = 0 and P = ∅.

Ü The equality constraint 〈a, x〉 = b defines an affine hyperplane. . .
Ü . . . that is equivalent to the pair 〈a, x〉 ≥ b and 〈−a, x〉 ≥ −b.

Ü If C is a finite set of constraints we call it a system of constraints and
write con(C) to denote the polyhedron it describes.

Generator representation
Ü Note: P = ∅ if and only if P = ∅.

Ü Note: points are not necessarily vertices and rays are not necessarily
extreme.

Ü We call G = (R, P ) a system of generators and write gen(G) to denote
the polyhedron it describes.

THE DOUBLE DESCRIPTION METHOD (CONT’D) 39



DD PAIRS AND MINIMALITY

Representing a polyhedron both ways
Ü Let P ⊆ R

n. If con(C) = gen(G) = P , then (C,G) is said to be a DD pair
for P .

Minimality of the representations
Ü C is in minimal form if there does not exist C′ ⊂ C such that con(C′) = P ;

Ü G = (R, P ) is in minimal form if there does not exist G′ = (R′, P ′) 6= G

such that R′ ⊆ R, P ′ ⊆ P and gen(G′) = P ;

Ü the DD pair (C,G) is in minimal form if C and G are both in minimal form.

But, wait a minute. . .

. . . why keeping two representations for the same object?

DD PAIRS AND MINIMALITY 40



ADVANTAGES OF THE DUAL DESCRIPTION METHOD

Some operations are more efficiently performed on constraints
Ü Intersection is implemented as the union of constraint systems.
Ü Adding constraints (of course).
Ü Relation polyhedron-generator (subsumes or not).

Some operations are more efficiently performed on generators
Ü Convex polyhedral hull (poly-hull): union of generator systems.
Ü Adding generators (of course).
Ü Projection (i.e., removing dimensions).
Ü Relation polyhedron-constraint (disjoint, intersects, includes . . . ).
Ü Finiteness (boundedness) check.
Ü Time-elapse.

Some operations are more efficiently performed with both
Ü Inclusion and equality tests.
Ü Widening.

ADVANTAGES OF THE DUAL DESCRIPTION METHOD 41



FURTHER ADVANTAGES OF THE DUAL DESCRIPTION METHOD

The principle of duality
Ü Systems of constraints and generators enjoy a quite strong and useful

duality property.
Ü Very roughly speaking:

Ü the constraints of a polyhedron are (almost) the generators of the
polar of the polyhedron;

Ü the generators of a polyhedron are (almost) the constraints of the
polar of the polyhedron;

Ü the polar of the polar of a polyhedron is the polyhedron itself.
=⇒ Computing constraints from generators is the same problem as

computing generators from constraints.

The algorithm of Motzkin-Chernikova-Le Verge
Ü Solves both problems yielding a minimized system. . .
Ü . . . and can be implemented so that the source system is also minimized

in the process.

FURTHER ADVANTAGES OF THE DUAL DESCRIPTION METHOD 42



THE PARMA POLYHEDRA LIBRARY

Ü A collaborative project started in January 2001 at the Department of
Mathematics of the University of Parma.
Ü The University of Leeds (UK) is now a major contributor to the library.

Ü It aims at becoming a truly professional library for the handling (not
necessarily closed) rational convex polyhedra. We are almost there.

Ü Targeted at abstract interpretation and computer-aided verification.
Ü Free software released under the GNU General Public License.

Why yet another library? Some limitations of existing ones:
Ü data-structures employed cannot grow/shrink dynamically;
Ü possibility of overflow, underflow and rounding errors;
Ü unsuitable mechanisms for error detection, handling and recovery;

Ü (cannot reliably resume computation with an alternative method,
e.g., by reverting to an interval-based approximation).

Ü Several existing libraries are free, but they do not provide adequate
documentation for the interfaces and the code.

THE PARMA POLYHEDRA LIBRARY 43



PPL FEATURES

Portability across different computing platforms
Ü written in standard C++;
Ü but the the client application needs not be written in C++.

Absence of arbitrary limits
Ü arbitrary precision integer arithmetic for coefficients and coordinates;
Ü all data structures can expand automatically (in amortized constant

time) to any dimension allowed by the available virtual memory.

Complete information hiding
Ü the internal representation of constraints, generators and systems

thereof need not concern the client application;
Ü implementation devices such as the positivity constraint are invisible

from outside;
Ü all the matters regarding the ε-representation encoding of NNC

polyhedra are also invisible from outside.
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PPL FEATURES: HIDING PAYS

Expressivity
Ü ‘ a b cd e b f gih j d k ’ and ‘ l m � �n d a b e � ’ is valid syntax both for the

C++ and the Prolog interfaces;

Ü we expect the planned Objective Caml, Java and Mercury interfaces to
be as friendly as these;

Ü even the C interface refers to concepts like linear expression, constraint
and constraint system
Ü (not to their possible implementations such as vectors and matrices).

Failure avoidance and detection
Ü illegal objects cannot be created easily;

Ü the interface invariants are systematically checked.

Efficiency
Ü can systematically apply incremental and lazy computation techniques.
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PPL FEATURES: LAZINESS AND INCREMENTALITY

Dual description
Ü we may have a constraint system, a generator system, or both;
Ü in case only one is available, the other is recomputed only when it is

convenient to do so.

Minimization
Ü the constraint (generator) system may or may not be minimized;
Ü it is minimized only when convenient.

Saturation matrices
Ü when both constraints and generators are available, some computations

record here the relation between them for future use.

Sorting matrices
Ü for certain operations, it is advantageous to sort (lazily and

incrementally) the matrices representing constraints and generators.
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PPL FEATURES: SUPPORT FOR ROBUSTNESS
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PPL FEATURES: COMPLETE, NATURAL SUPPORT FOR NNC POLYHEDRA

Ü If a ∈ R
n, a 6= 0, and b ∈ R, the linear strict inequality constraint

〈a, x〉 > b defines an open affine half-space;
Ü when strict inequalities are allowed in the system of constraints we have

polyhedra that are not necessarily closed: NNC polyhedra.
Ü A fundamental feature of the DD method: the ability to represent

polyhedra both by constraints and generators.
Ü But what are the generators for NNC polyhedra?
Ü Previous works/implementations did not offer a satisfactory answer.
Ü By decoupling the user interface from the details of the particular

implementation, it is possible to provide an intuitive generalization of the
concept of generator system.

Ü The key step is the introduction of a new kind of generators: closure
points:
Ü a vector c ∈ R

n is a closure point of S ⊆ R
n if and only if c ∈ C(S).

Ü Only the PPL provides, today, this level of support for NNC polyhedra.
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MORE PPL FEATURES

Sophisticated widening techniques
Ü The first widening operator on convex polyhedra beating the standard

one (after 25 years of its introduction).
Ü Widening with tokens: an improvement over the delayed widening

technique.

The finite powerset construction
Ü A generic construction that upgrades an abstract domain by allowing for

the exact representation of finite disjunctions of its elements.
Ü The PPL offers a generic implementation that can be applied to

polyhedra, bounding boxes, octagons, grids, . . .
Ü Moreover, this comes with generic widening techniques (implementation

in progress, paper to appear at VMCAI’04);
Ü when instantiated on finite powersets of polyhedra, these provide the

first widening operators on that domain!
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PPL COMING FEATURES

Support for special classes of polyhedra
Ü A first implementation of bounded differences and octagons is ready;
Ü a second, more refined implementation will be ready by Q1 2004.
Ü Partial implementations of intervals and bounding boxes exist: they are

waiting for someone to finish them.
Ü Distinctive features are (beyond the ones already mentioned for the

entire library) the tight and smooth integration of all the polyhedra
classes and refined widening operators.

Grids and Z-Polyhedra
Ü A new domain of grids is under development; including support for

Ü rational as well as integer values,
Ü directions where values will be unrestrained.

Ü A Z-Polyhedron, which is the intersection of a polyhedron and a grid, will
be added once we have the grid domain in the PPL.
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NOT THE CONCLUSION

Ü Convex polyhedra are the basis for several abstractions used in static
analysis and computer-aided verification of complex and sometimes
mission critical systems.

Ü For that purposes an implementation of convex polyhedra must be firmly
based on a clear theoretical framework and written in accordance with
sound software engineering principles.

Ü In this talk we have presented some of the most important ideas that are
behind the Parma Polyhedra Library.

Ü The Parma Polyhedra Library is free software released under the GPL:
code and documentation can be downloaded and its development can
be followed at� } } uw� � �� � � � s � � {| q u l � q } � u uwv � .

NOT THE CONCLUSION 51



DON’T ASK WHAT THE PPL CAN DO FOR YOU;
ASK WHAT YOU CAN DO FOR THE PPL (I)

Research work to improve the PPL
Ü efficient implementation of polyhedra operations;

Ü positive polyhedra;

Ü normal forms;

Ü widening and narrowing . . .

Research work using the PPL
Ü absence of buffer overflows for C and C++ programs;

Ü analysis of (machine- and hand-generated) assembly programs;

Ü argument size relations for functional and logic programs;

Ü optimization of array checks in Java programs;

Ü verification of communication and synchronization protocols;

Ü verification of linear hybrid systems . . .
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DON’T ASK WHAT THE PPL CAN DO FOR YOU;
ASK WHAT YOU CAN DO FOR THE PPL (II)

Small/medium projects
Ü internationalization of the library using � x } } x � } ;
Ü better regression testing with r x � m �| { ;
Ü better STL iterators to go through constraint and generator systems;
Ü more efficient construction of linear expressions, constraints and

generators using expression templates;
Ü efficient serialization of the various numerical abstractions;
Ü implementation of the extrapolation operators of Henzinger et al.;
Ü efficient implementation of convexity recognition of the union of

polyhedra (algorithms of Bemporad et al.);
Ü implementation of a “robust polyhedron” class;
Ü complete the implementation of the watchdog library;
Ü implementation of cartesian factoring (Halbwachs et al.) . . .
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DON’T ASK WHAT THE PPL CAN DO FOR YOU;
ASK WHAT YOU CAN DO FOR THE PPL (III)

Medium/big projects
Ü experiment with different implementations of unlimited precision integers

(e.g., u { l x| { t );
Ü complete the implementation of the interval library;
Ü Java interface;
Ü O’Caml interface;
Ü Mercury interface;
Ü web-based demo (full of bells and whistles);
Ü incorporate the library into various analysis tools;
Ü implement some variant of the simplex algorithm;
Ü implement cutting-plane methods (Gomory, Chvátal, . . . );
Ü complete the implementation of the Ask-and-Tell construction;
Ü . . .
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