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THE PROBLEM

Hardware is millions of times more powerful than it was 25 years ago;
program sizes have exploded in similar proportions;

large and very large programs (up to tens of millions of lines of code)
are and will be in widespread use;

they need to be designed, developed and maintained over their entire
lifespan (up to 20 and more years) at reasonable costs;

unassisted development and maintenance teams do not stand a chance
to follow such an explosion in size and complexity;

many pieces of software exhibit a number of bugs that is sometimes

hardly bearable even in office applications. ..
=¥ ...no safety critical application can tolerate this failure rate;

the problem of software reliability is one of the most important problems
computer science has to face;

this justifies the growing interest in mechanical tools to help the
programmer reasoning about programs.

'HE PROBLEM



Many things may go wrong
=» x and/or y may be uninitialized,;
x-y may overflow;
x and y may be equal (or x-y may overflow): division by 0;
x/ (x-y) may overflow (or underflow).
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What can we do about it?

=>» full verification is undecidable;

=» code review: complex, expensive and with volatile results;

=» dynamic testing plus debugging: complex, expensive, does not scale
(the cost of testing goes as the square of the program size), but it is
repeatable;

=» formal methods: complex and expensive but reusable, can be very
thorough, repeatable, scale up to a certain program size then become
unapplicable (we are working to extend that limit).

\N EXAMPLE: IS x/(x-v) WELL-DEFINED?



FORMAL PROGRAM VERIFICATION METHODS

Purpose

=» To mechanically prove that all possible program executions are correct
in all specified execution environments. . .

=>» ...for some definition of correct:
=» absence of some kinds of run-time errors;

=» adherence to some partial specification. ..

Several methods
=» deductive methods;
=» model checking;
=» program typing;
=¥ static analysis.
Because of the undecidability of program verification

=» all methods are partial or incomplete;
=» all resort to some form of approximation.

"ORMAL PROGRAM VERIFICATION METHODS
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The right framework to work with the concept of sound approximation;

J

a theory for approximating sets and set operations as considered in set
(or category) theory, including inductive definitions;

J

a theory of approximation of the behavior of dynamic discrete systems;

J

Computation takes place on a domain of abstract properties: the
abstract domain. ..

=» ...using abstract operations which are sound approximations of the
concrete operations.

J

Correctness follows by design!

J

The abstraction (approximation) can be coarse enough to be finitely
computable, yet be precise enough to be practically useful.

=» Examples: casting out of nines and rule of signs.

\BSTRACT INTERPRETATION



What?
=» regions of R™ bounded by a finite set of hyperplanes.

Restrictions, interesting for efficiency reasons:
=» bounding boxes;

=» systems of bounded differences;

=» octagons.

Generalizations and extensions, interesting for expressivity reasons:
not necessarily closed polyhedra (boxes, differences, octagons);

grids;

trapezoidal congruences;

intersections of the above (Z-polyhedra);

sets of the above (sets of bounding boxes, sets of polyhedra, sets of
grids, sets of Z-polyhedra, ...).

J
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Solving classical data-flow analysis problems!

=» array bound checking;
=» compile-time overflow detection;
=» loop invariant computations and loop induction variables.

Verification of concurrent and reactive systems!

=» synchronous languages;
=» linear hybrid automata (roughly, FSMs with time requirements);
=» systems based on temporal specifications.

And again: many other applications. ..

=» inferring argument size relationships in logic programs;
=» termination inference for logic and functional programs.

VHY ARE THESE INTERESTING AND USEFUL?



NUMERICAL ABSTRACTIONS: NO ABSTRACTION
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NUMERICAL ABSTRACTIONS: SIGNS
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NUMERICAL ABSTRACTIONS: BOUNDING BOXES
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NUMERICAL ABSTRACTIONS: SIMPLE CONGRUENCES
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NUMERICAL ABSTRACTIONS: BOUNDED DIFFERENCES
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NUMERICAL ABSTRACTIONS: OCTAGONS
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NUMERICAL ABSTRACTIONS: CONVEX POLYHEDRA
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NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (I)
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NUMERICAL ABSTRACTIONS: RELATIONAL CONGRUENCES
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NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (ll)
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NUMERICAL ABSTRACTIONS: RELATIONAL CONGRUENCES (ll)
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NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (lll)
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NUMERICAL ABSTRACTIONS: TRAPEZOIDAL CONGRUENCES
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EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

while x <= 100 do

read(b) ;
if b then x := x+2

else x = x+1; y := y+1;

endif

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS



EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do

read(b) ;
if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS



EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do
r=1y =
read(b) ;

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS



EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do

if b then x := x+2
x=2,y=0

else x = x+1; y := y+1;
x=1y=1

endif

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS



EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

x :=0; y := 03
r=y=20
while x <= 100 do

if b then x := x+2
x=2,y=0

else x = x+1; y := y+1;
x=1y=1

endif

endwhile

Y

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

26



EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

x :=0; y := 03

r=y=20
while x <= 100 do
r =1y =
read(b) ;
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EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
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EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
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EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

x :=0; y := 03
r=y=20
while x <= 100 do
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read(b) ;
if b then x := x+2

else x := x+1; y := y+1;
endif
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endwhile
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EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03
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0<y<maty<?2 y
read(b) ;

if b then x := x+2
0<y<z—-2,xz+y <4

else x = x+1; y := y+1;

endif Xe)

endwhile
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EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
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ANOTHER EXAMPLE: VALIDATION OF ARRAY REFERENCES

heapsort(int n, float t[n]) n > 2

int 1 := (n div 2) + 1; int r := n; int i, j; float k;

if 1 >= 2 then 1 :=1 - 1; k := t[1];

else k := tlr]l; tlrl t[1]; r :=r - 1;

endif

while r >= 2 do

r>2,21<n+1,r4+43<n,204+2r4+1<3n,l 21, r<n

i:=1; j :=2 % i

while j <= r do
r>2,2l<n+1,r4+3<2n,l >21,r<n,2t=73,1 <1,
2t 4+6l4+r+ 18 < 12n,5 < r,2l4+2r+1<3n,41+ 21+ 1< 2r 4+ 3n
if j <=1 - 1
r>2,2l<n+1,r4+3<2n,l >21,r<n,2t=73,1 <1,
21 +6l4+r+18< 12n,j < r—1,21+2r+1<3n,4i+20+1< 2r 4 3n
and t[j] < t[j+1] then j := j+1; endif
if k >= t[j] then break; endif
r+3<2n,l>1,r<n,j<2i4+1,21: < 5,1 <4,757<r,20l4+2r4+1<3n
t[i] := t[jl; i := j; j := 2 * j;
endwhile
i+2<2i4+nr,274+2l<4di4+n+1,r+3<2n, 1l >21,r<n,
73 +6l4+r+18<12i+12n,2: < 53 < 2¢:+ 1,1 < 4,2l 4+2r+1 < 3n,
85 +204+ 1< 127 4 2r 4+ 3n
t[i] := k;
if 1 >= 2 thenl :=1 - 1; k := t[1];
else k := t[r]; tlxr] := t[1]; r :=r - 1;
endif
t[1] :=
endwhile

-

\NOTHER EXAMPLE: VALIDATION OF ARRAY REFERENCES



THE DOUBLE DESCRIPTION METHOD BY MOTZKIN ET AL.

Constraint Representation
- Ifa € R", a # 0, and b € R, the linear inequality constraint (a,x) > b
defines a closed affine half-space.
=>» All closed polyhedra can be expressed as the conjunction of a finite
number of such constraints.

Generator representation
= If P CR"™, apointof Pis any p € P.
= If P CR"and P # @, avector r € R™ such that » # 0 is a ray of P iff
for each point p € P and each A € R, , we have p + Ar € P.

=>» All closed polyhedra can be expressed as
{Rp+PreR" |peR,,meRY,YP m=1}

where R € R™*" is a matrix having rays of the polyhedron as columns
and P € R"*? has points of the polyhedron for its columns.

'HE DOUBLE DESCRIPTION METHOD BY MOTZKIN ET AL.
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EXAMPLE: DOUBLE DESCRIPTION

f:v+y25
x— 2y <2
Yy —2x <2

"

. points: {(4,1),(1,4)}
rays: {(1,2),(2,1)}

L/

AN

Y

/

/
BN :

-XAMPLE: DOUBLE DESCRIPTION
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THE DOUBLE DESCRIPTION METHOD (CONT’D)

Constraint representation

=» Special case: n=0and P = &.

=» The equality constraint (a, ) = b defines an affine hyperplane. ..
=» ...thatis equivalent to the pair (a,x) > b and (—a,x) > —b.

=» If C is afinite set of constraints we call it a system of constraints and
write con(C) to denote the polyhedron it describes.

Generator representation
=> Note: P=g ifandonly if P = @.
=» Note: points are not necessarily vertices and rays are not necessarily
extreme.
=> We call G = (R, P) a system of generators and write gen(G) to denote
the polyhedron it describes.

'HE DOUBLE DESCRIPTION METHOD (CONT’'D) 39



DD PAIRS AND MINIMALITY

Representing a polyhedron both ways
= Let P CR". If con(C) = gen(G) = P, then (C, G) is said to be a DD pair
for P.
Minimality of the representations

=» Cis in minimal form if there does not exist C’ C C such that con(C") = P;

- G = (R, P) is in minimal form if there does not exist G’ = (R, P") # G
such that R" C R, P’ C P and gen(G') = P;

=» the DD pair (C,G) is in minimal form if C and G are both in minimal form.

But, wait a minute. ..

... why keeping two representations for the same object?

)D PAIRS AND MINIMALITY 40



Some operations are more efficiently performed on constraints
=>» Intersection is implemented as the union of constraint systems.
=» Adding constraints (of course).
=» Relation polyhedron-generator (subsumes or not).

Some operations are more efficiently performed on generators
=» Convex polyhedral hull (poly-hull): union of generator systems.

Adding generators (of course).

Projection (i.e., removing dimensions).

Relation polyhedron-constraint (disjoint, intersects, includes .. .).

Finiteness (boundedness) check.

=» Time-elapse.

->
->
->
->

Some operations are more efficiently performed with both
=?» Inclusion and equality tests.
= Widening.

\DVANTAGES OF THE DUAL DESCRIPTION METHOD

41



The principle of duality
=» Systems of constraints and generators enjoy a quite strong and useful
duality property.
=» Very roughly speaking:
=» the constraints of a polyhedron are (almost) the generators of the
polar of the polyhedron;
=» the generators of a polyhedron are (almost) the constraints of the
polar of the polyhedron;
=» the polar of the polar of a polyhedron is the polyhedron itself.
—> Computing constraints from generators is the same problem as
computing generators from constraints.

The algorithm of Motzkin-Chernikova-Le Verge
=» Solves both problems yielding a minimized system. ..

=» ...and can be implemented so that the source system is also minimized
in the process.

"URTHER ADVANTAGES OF THE DUAL DESCRIPTION METHOD
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=» A collaborative project started in January 2001 at the Department of

Mathematics of the University of Parma.
=» The University of Leeds (UK) is now a major contributor to the library.

=» It aims at becoming a truly professional library for the handling (not
necessarily closed) rational convex polyhedra. We are almost there.

=» Targeted at abstract interpretation and computer-aided verification.
=» Free software released under the GNU General Public License.

Why yet another library? Some limitations of existing ones:
=» data-structures employed cannot grow/shrink dynamically;
=» possibility of overflow, underflow and rounding errors;

=» unsuitable mechanisms for error detection, handling and recovery;
=» (cannot reliably resume computation with an alternative method,

e.g., by reverting to an interval-based approximation).
=» Several existing libraries are free, but they do not provide adequate
documentation for the interfaces and the code.

'HE PARMA POLYHEDRA LIBRARY



Portability across different computing platforms
=>» written in standard C+;

=» but the the client application needs not be written in C++.

Absence of arbitrary limits

=» arbitrary precision integer arithmetic for coefficients and coordinates;
=» all data structures can expand automatically (in amortized constant
time) to any dimension allowed by the available virtual memory.

Complete information hiding
=» the internal representation of constraints, generators and systems
thereof need not concern the client application;

=» implementation devices such as the positivity constraint are invisible
from outside;

=» all the matters regarding the e-representation encoding of NNC
polyhedra are also invisible from outside.

PL FEATURES
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Expressivity
=> X + 2«Y + 5 >= 7xZ and ‘ray(3*X + Y)'is valid syntax both for the
C+ and the Prolog interfaces;
=» we expect the planned Objective Caml, Java and Mercury interfaces to
be as friendly as these;
=» even the C interface refers to concepts like linear expression, constraint

and constraint system
=¥ (not to their possible implementations such as vectors and matrices).

Failure avoidance and detection

=» illegal objects cannot be created easily;
=» the interface invariants are systematically checked.

Efficiency
=» can systematically apply incremental and lazy computation techniques.

PL FEATURES: HIDING PAYS 45



Dual description
=» we may have a constraint system, a generator system, or both;
=» in case only one is available, the other is recomputed only when it is
convenient to do so.

Minimization
=» the constraint (generator) system may or may not be minimized,;
=» it is minimized only when convenient.

Saturation matrices
=» when both constraints and generators are available, some computations
record here the relation between them for future use.

Sorting matrices

=» for certain operations, it is advantageous to sort (lazily and
incrementally) the matrices representing constraints and generators.

P FEATURES: LAZINESS AND INCREMENTALITY
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void complex_function(PH& phl, const PH& ph2 ...) {
try {
start_timer (max_time_for_complex_function);
complex_function_on_polyhedra(phl, ph2 ...);

stop_timer();

}

catch (Exception& e) { // Out of memory or timeout...

BoundingBox bbl, bb2;
phl.shrink_bounding_box(bb1l) ;
ph2.shrink_bounding_box (bb2) ;
complex_function_on_bounding_boxes(bbl, bb2 ...);
phl = Polyhedron(bbl);

PL FEATURES: SUPPORT FOR ROBUSTNESS
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L FEATURES: COMPLETE, NATURAL SUPPORT FOR NNC POLYHEDRA

= lfa € R", a # 0,and b € R, the linear strict inequality constraint
(a,x) > b defines an open affine half-space;
=» when strict inequalities are allowed in the system of constraints we have
polyhedra that are not necessarily closed: NNC polyhedra.
=» A fundamental feature of the DD method: the ability to represent
polyhedra both by constraints and generators.
But what are the generators for NNC polyhedra?
Previous works/implementations did not offer a satisfactory answer.
By decoupling the user interface from the details of the particular
implementation, it is possible to provide an intuitive generalization of the
concept of generator system.
=» The key step is the introduction of a new kind of generators: closure

points:
=» avector c € R" is a closure point of S C R™ if and only if ¢ € C(5).

=> Only the PPL provides, today, this level of support for NNC polyhedra.

$ 4 J
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Sophisticated widening techniques
=» The first widening operator on convex polyhedra beating the standard
one (after 25 years of its introduction).

=» Widening with tokens: an improvement over the delayed widening
technique.

The finite powerset construction

=» A generic construction that upgrades an abstract domain by allowing for
the exact representation of finite disjunctions of its elements.

=» The PPL offers a generic implementation that can be applied to
polyhedra, bounding boxes, octagons, grids, ...

=» Moreover, this comes with generic widening techniques (implementation

in progress, paper to appear at VMCAI'04);
=» when instantiated on finite powersets of polyhedra, these provide the

first widening operators on that domain!

fORE PPL FEATURES 49



Support for special classes of polyhedra

=>» A first implementation of bounded differences and octagons is ready;

=» a second, more refined implementation will be ready by Q1 2004.

=» Partial implementations of intervals and bounding boxes exist: they are
waiting for someone to finish them.

=» Distinctive features are (beyond the ones already mentioned for the
entire library) the tight and smooth integration of all the polyhedra
classes and refined widening operators.

Grids and Z-Polyhedra

=» A new domain of grids is under development; including support for
=» rational as well as integer values,
=» directions where values will be unrestrained.

=» A Z-Polyhedron, which is the intersection of a polyhedron and a grid, will
be added once we have the grid domain in the PPL.

P COMING FEATURES 50



=» Convex polyhedra are the basis for several abstractions used in static
analysis and computer-aided verification of complex and sometimes
mission critical systems.

=» For that purposes an implementation of convex polyhedra must be firmly
based on a clear theoretical framework and written in accordance with
sound software engineering principles.

=» In this talk we have presented some of the most important ideas that are
behind the Parma Polyhedra Library.

=» The Parma Polyhedra Library is free software released under the GPL.:
code and documentation can be downloaded and its development can
be followed at http://www.cs.unipr.it/ppl/.

l\OT THE CONCLUSION
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DON’T ASKk WHAT THE PPL CAN Do FOR YOU;
AskK WHAT You CAN Do FoR THE PPL (I)

Research work to improve the PPL
=» efficient implementation of polyhedra operations;
=» positive polyhedra;
=» normal forms;
=» widening and narrowing ...

Research work using the PPL

J

absence of buffer overflows for C and C+ programs;

analysis of (machine- and hand-generated) assembly programs;
argument size relations for functional and logic programs;
optimization of array checks in Java programs;

verification of communication and synchronization protocols;

K R R A

verification of linear hybrid systems ...

\SK WHAT You CAN Do FOR THE PPL (l) 52



Small/medium projects

->

$ 4 I

$

internationalization of the library using gettext;

better regression testing with de jagnu;

better STL iterators to go through constraint and generator systems;
more efficient construction of linear expressions, constraints and
generators using expression templates;

efficient serialization of the various numerical abstractions;
implementation of the extrapolation operators of Henzinger et al.;

=» efficient implementation of convexity recognition of the union of

$ 4

polyhedra (algorithms of Bemporad et al.);

implementation of a “robust polyhedron” class;

complete the implementation of the watchdog library;
implementation of cartesian factoring (Halobwachs et al.) ...

\SK WHAT You CAN DO FOR THE PPL (Il) 53



DON’T ASKk WHAT THE PPL CAN Do FOR YOU;
AskK WHAT You CAN Do FOR THE PPL (lll)

Medium/big projects
=>» experiment with different implementations of unlimited precision integers
(e.g., purenum);
complete the implementation of the interval library;
Java interface;
O’Caml interface;
Mercury interface;
web-based demo (full of bells and whistles);
incorporate the library into various analysis tools;
implement some variant of the simplex algorithm;
implement cutting-plane methods (Gomory, Chvatal, ...);
complete the implementation of the Ask-and-Tell construction;

2K 2IE 2N R R N R N N

\SK WHAT You CAN Do FOR THE PPL (IlI)
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