Convex Polyhedra for the Analysis and
Verification of Hardware and Software Systems:
the “Parma Polyhedra Library”

Roberto BAGNARA, Patricia M. HILL, Enea ZAFFANELLA,
Elisa Riccl, Sara BONINI, Andrea PESCETTI,
Angela STAZZONE, Tatiana ZoOLO, Elena MAzzi,
Barbara QUARTIERI, Katy DOBSON

http://www.cs.unipr.it/ppl/

Dipartimento di Matematica, Universita di Parma, December 11, 2003

The Problem

An Example: Is x/ (x-y) Well-Defined?

Formal Program Verification Methods

Abstract Interpretation

Convex Polyhedra and Beyond

Examples of Numerical Abstractions

An Example Analysis of Imperative Programs
Another Example: Validation of Array References
The Double Description Method by Motzkin et al.
DD Pairs and Minimality

Advantages of the Dual Description Method

The Parma Polyhedra Library

PPL Current and Coming Features

Summary

Projects On and With the PPL

®@Q @ @ ® ®©® 0

® ©

© 000 6eC

’LAN OF THE TALK

$ 4

THE PROBLEM

Hardware is millions of times more powerful than it was 25 years ago;
program sizes have exploded in similar proportions;

large and very large programs (up to tens of millions of lines of code)
are and will be in widespread use;

they need to be designed, developed and maintained over their entire
lifespan (up to 20 and more years) at reasonable costs;

unassisted development and maintenance teams do not stand a chance
to follow such an explosion in size and complexity;

many pieces of software exhibit a number of bugs that is sometimes

hardly bearable even in office applications. ..
=¥ ...no safety critical application can tolerate this failure rate;

the problem of software reliability is one of the most important problems
computer science has to face;

this justifies the growing interest in mechanical tools to help the
programmer reasoning about programs.

'HE PROBLEM

Many things may go wrong
=» x and/or y may be uninitialized,;
x-y may overflow;
x and y may be equal (or x-y may overflow): division by 0;
x/ (x-y) may overflow (or underflow).

$ 4

What can we do about it?

=>» full verification is undecidable;

=» code review: complex, expensive and with volatile results;

=» dynamic testing plus debugging: complex, expensive, does not scale
(the cost of testing goes as the square of the program size), but it is
repeatable;

=» formal methods: complex and expensive but reusable, can be very
thorough, repeatable, scale up to a certain program size then become
unapplicable (we are working to extend that limit).

\N EXAMPLE: IS x/(x-v) WELL-DEFINED?

FORMAL PROGRAM VERIFICATION METHODS

Purpose

=» To mechanically prove that all possible program executions are correct
in all specified execution environments. . .

=>» ...for some definition of correct:
=» absence of some kinds of run-time errors;

=» adherence to some partial specification. ..

Several methods
=» deductive methods;
=» model checking;
=» program typing;
=¥ static analysis.
Because of the undecidability of program verification

=» all methods are partial or incomplete;
=» all resort to some form of approximation.

"ORMAL PROGRAM VERIFICATION METHODS

J

The right framework to work with the concept of sound approximation;

J

a theory for approximating sets and set operations as considered in set
(or category) theory, including inductive definitions;

J

a theory of approximation of the behavior of dynamic discrete systems;

J

Computation takes place on a domain of abstract properties: the
abstract domain. ..

=» ...using abstract operations which are sound approximations of the
concrete operations.

J

Correctness follows by design!

J

The abstraction (approximation) can be coarse enough to be finitely
computable, yet be precise enough to be practically useful.

=» Examples: casting out of nines and rule of signs.

\BSTRACT INTERPRETATION

What?
=» regions of R™ bounded by a finite set of hyperplanes.

Restrictions, interesting for efficiency reasons:
=» bounding boxes;

=» systems of bounded differences;

=» octagons.

Generalizations and extensions, interesting for expressivity reasons:
not necessarily closed polyhedra (boxes, differences, octagons);

grids;

trapezoidal congruences;

intersections of the above (Z-polyhedra);

sets of the above (sets of bounding boxes, sets of polyhedra, sets of
grids, sets of Z-polyhedra, ...).

J

d 4l

JONVEX POLYHEDRA AND BEYOND

Solving classical data-flow analysis problems!

=» array bound checking;
=» compile-time overflow detection;
=» loop invariant computations and loop induction variables.

Verification of concurrent and reactive systems!

=» synchronous languages;
=» linear hybrid automata (roughly, FSMs with time requirements);
=» systems based on temporal specifications.

And again: many other applications. ..

=» inferring argument size relationships in logic programs;
=» termination inference for logic and functional programs.

VHY ARE THESE INTERESTING AND USEFUL?

NUMERICAL ABSTRACTIONS: NO ABSTRACTION

y [J [J
{...,(2,9),...,(12,21)..., }
0 X

\UMERICAL ABSTRACTIONS: NO ABSTRACTION

NUMERICAL ABSTRACTIONS: SIGNS

O

IUMERICAL ABSTRACTIONS: SIGNS

10

NUMERICAL ABSTRACTIONS: BOUNDING BOXES

Y

O X

IUMERICAL ABSTRACTIONS: BOUNDING BOXES 11

NUMERICAL ABSTRACTIONS: SIMPLE CONGRUENCES

» ¢ o © o o o o o o o o o ¢« |xz=0 mod?2

y=0 mod 3

\UMERICAL ABSTRACTIONS: SIMPLE CONGRUENCES

12

NUMERICAL ABSTRACTIONS: BOUNDED DIFFERENCES

y
(0 <2 <18
13 <y<21
| —10<z—y
o) X

\UMERICAL ABSTRACTIONS: BOUNDED DIFFERENCES 13

NUMERICAL ABSTRACTIONS: OCTAGONS

y
,
2<x<18
<3<y§21
—10< 2z —y
11 <z+y<33
0 X

\UMERICAL ABSTRACTIONS: OCTAGONS

14

NUMERICAL ABSTRACTIONS: CONVEX POLYHEDRA

(62 +y <111
3r + 2y < 78
r+y=>11
20 —y > —5
y=>3

Y =21

Y

O X

IUMERICAL ABSTRACTIONS: CONVEX POLYHEDRA 15

NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (I)

y
@ o o p
r=0 mod 2
e o o o
y=0 mod 3
© o o o o o 6 +y < 111
® © 0o 0 0 o o <3:13—|—2y§78
@ ®© o o e @ o o x+y211
20 —y > —9D
e 6 o6 o o o
y =3
® o e o o o
Ly <21
O X

\UMERICAL ABSTRACTIONS: Z-POLYHEDRA (I)

NUMERICAL ABSTRACTIONS: RELATIONAL CONGRUENCES

{x—i—yzl mod 2

Q..O...Q..l‘i»

® © 6 © © o o o o o oXyq

17

\UMERICAL ABSTRACTIONS: RELATIONAL CONGRUENCES

NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (ll)

O

I\

(x—l—yzl mod 2
6z +y < 111

3x + 2y < 78
r+y=>11

20 —y > —9D
y=>3

ly <21

\UMERICAL ABSTRACTIONS: Z-POLYHEDRA (lI)

18

NUMERICAL ABSTRACTIONS: RELATIONAL CONGRUENCES (ll)

Y

\UMERICAL ABSTRACTIONS: RELATIONAL CONGRUENCES (l) 19

NUMERICAL ABSTRACTIONS: Z-POLYHEDRA (lll)

® o o (r=0 mod 2
y=0 mod 3
r+y=1 mod 2
6z +y < 111

3x + 2y < 78
r+y=>11

20 —y > —9D

L\

e © e o o o y =3

ly <21

Y

O X

\UMERICAL ABSTRACTIONS: Z-POLYHEDRA (lIl)

20

NUMERICAL ABSTRACTIONS: TRAPEZOIDAL CONGRUENCES

r—y€[0,11] mod 16

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

while x <= 100 do

read(b) ;
if b then x := x+2

else x = x+1; y := y+1;

endif

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do

read(b) ;
if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do
r=1y =
read(b) ;

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do

if b then x := x+2
x=2,y=0

else x = x+1; y := y+1;
x=1y=1

endif

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

x :=0; y := 03
r=y=20
while x <= 100 do

if b then x := x+2
x=2,y=0

else x = x+1; y := y+1;
x=1y=1

endif

endwhile

Y

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

26

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

x :=0; y := 03

r=y=20
while x <= 100 do
r =1y =
read(b) ;
if b then x := x+2
x=2,y=0
else x = x+1; y := y+1;
x=1y=1
endif
1<z<2;x+y=2
endwhile

Y

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

27

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do
?
read(b) ;

if b then x := x+2

else x := x+1; y := y+1;
endif
1<x<2x+y=2
endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

28

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

x :=0; y := 03

r=y=20
while x <= 100 do
?
read(b) ;

if b then x := x+2

else x := x+1; y := y+1;
endif
1<x<2x+y=2
endwhile

Y

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

29

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

x :=0; y := 03
r=y=20
while x <= 100 do
O<y<z,x+y<?2
read(b) ;
if b then x := x+2

else x := x+1; y := y+1;
endif
1<x<2x+y=2
endwhile

Y

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

30

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do A
0<y<maty<?2 y
read(b) ;

if b then x := x+2
0<y<z—-2,xz+y <4

else x = x+1; y := y+1;

endif Xe)

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do A
0<y<maty<?2 y
read(b) ;

if b then x := x+2
0<y<z—-2,xz+y <4

else x = x+1; y := y+1;
l<y<z,z+y<4
endif Xe)
endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

32

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do A
0<y<maty<?2 y
read(b) ;

if b then x := x+2
0<y<z—-2,xz+y <4

else x = x+1; y := y+1;
I<y<z,zt+y<A4

endif Xe)
O<y<z,2<z+y<A4

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

33

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do A
0<y<maty<?2 y
read(b) ;

if b then x := x+2
0<y<z—-2,xz+y <4

else x = x+1; y := y+1;
I<y<z,zt+y<A4

endif Xe)
O<y<z,2<z+y<A4

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

34

EXAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS
x :=0; y := 03

r=y=20
while x <= 100 do A
0<y<maty<?2 y
read(b) ;

if b then x := x+2
0<y<z—-2,xz+y <4

else x = x+1; y := y+1;
I<y<z,zt+y<A4

endif Xe)
O<y<z,2<z+y<A4

endwhile

-XAMPLE: ANALYSIS OF IMPERATIVE PROGRAMS

35

ANOTHER EXAMPLE: VALIDATION OF ARRAY REFERENCES

heapsort(int n, float t[n]) n > 2

int 1 := (n div 2) + 1; int r := n; int i, j; float k;

if 1 >= 2 then 1 :=1 - 1; k := t[1];

else k := tlr]l; tlrl t[1]; r :=r - 1;

endif

while r >= 2 do

r>2,21<n+1,r4+43<n,204+2r4+1<3n,l 21, r<n

i:=1; j :=2 % i

while j <= r do
r>2,2l<n+1,r4+3<2n,l >21,r<n,2t=73,1 <1,
2t 4+6l4+r+ 18 < 12n,5 < r,2l4+2r+1<3n,41+ 21+ 1< 2r 4+ 3n
if j <=1 - 1
r>2,2l<n+1,r4+3<2n,l >21,r<n,2t=73,1 <1,
21 +6l4+r+18< 12n,j < r—1,21+2r+1<3n,4i+20+1< 2r 4 3n
and t[j] < t[j+1] then j := j+1; endif
if k >= t[j] then break; endif
r+3<2n,l>1,r<n,j<2i4+1,21: < 5,1 <4,757<r,20l4+2r4+1<3n
t[i] := t[jl; i := j; j := 2 * j;
endwhile
i+2<2i4+nr,274+2l<4di4+n+1,r+3<2n, 1l >21,r<n,
73 +6l4+r+18<12i+12n,2: < 53 < 2¢:+ 1,1 < 4,2l 4+2r+1 < 3n,
85 +204+ 1< 127 4 2r 4+ 3n
t[i] := k;
if 1 >= 2 thenl :=1 - 1; k := t[1];
else k := t[r]; tlxr] := t[1]; r :=r - 1;
endif
t[1] :=
endwhile

-

\NOTHER EXAMPLE: VALIDATION OF ARRAY REFERENCES

THE DOUBLE DESCRIPTION METHOD BY MOTZKIN ET AL.

Constraint Representation
- Ifa € R", a # 0, and b € R, the linear inequality constraint (a,x) > b
defines a closed affine half-space.
=>» All closed polyhedra can be expressed as the conjunction of a finite
number of such constraints.

Generator representation
= If P CR"™, apointof Pis any p € P.
= If P CR"and P # @, avector r € R™ such that » # 0 is a ray of P iff
for each point p € P and each A € R, , we have p + Ar € P.

=>» All closed polyhedra can be expressed as
{Rp+PreR" |peR,,meRY,YP m=1}

where R € R™*" is a matrix having rays of the polyhedron as columns
and P € R"*? has points of the polyhedron for its columns.

'HE DOUBLE DESCRIPTION METHOD BY MOTZKIN ET AL.

37

EXAMPLE: DOUBLE DESCRIPTION

f:v+y25
x— 2y <2
Yy —2x <2

"

. points: {(4,1),(1,4)}
rays: {(1,2),(2,1)}

L/

AN

Y

/

/
BN :

-XAMPLE: DOUBLE DESCRIPTION

38

THE DOUBLE DESCRIPTION METHOD (CONT’D)

Constraint representation

=» Special case: n=0and P = &.

=» The equality constraint (a,) = b defines an affine hyperplane. ..
=» ...thatis equivalent to the pair (a,x) > b and (—a,x) > —b.

=» If C is afinite set of constraints we call it a system of constraints and
write con(C) to denote the polyhedron it describes.

Generator representation
=> Note: P=g ifandonly if P = @.
=» Note: points are not necessarily vertices and rays are not necessarily
extreme.
=> We call G = (R, P) a system of generators and write gen(G) to denote
the polyhedron it describes.

'HE DOUBLE DESCRIPTION METHOD (CONT’'D) 39

DD PAIRS AND MINIMALITY

Representing a polyhedron both ways
= Let P CR". If con(C) = gen(G) = P, then (C, G) is said to be a DD pair
for P.
Minimality of the representations

=» Cis in minimal form if there does not exist C’ C C such that con(C") = P;

- G = (R, P) is in minimal form if there does not exist G’ = (R, P") # G
such that R" C R, P’ C P and gen(G') = P;

=» the DD pair (C,G) is in minimal form if C and G are both in minimal form.

But, wait a minute. ..

... why keeping two representations for the same object?

)D PAIRS AND MINIMALITY 40

Some operations are more efficiently performed on constraints
=>» Intersection is implemented as the union of constraint systems.
=» Adding constraints (of course).
=» Relation polyhedron-generator (subsumes or not).

Some operations are more efficiently performed on generators
=» Convex polyhedral hull (poly-hull): union of generator systems.

Adding generators (of course).

Projection (i.e., removing dimensions).

Relation polyhedron-constraint (disjoint, intersects, includes .. .).

Finiteness (boundedness) check.

=» Time-elapse.

->
->
->
->

Some operations are more efficiently performed with both
=?» Inclusion and equality tests.
= Widening.

\DVANTAGES OF THE DUAL DESCRIPTION METHOD

41

The principle of duality
=» Systems of constraints and generators enjoy a quite strong and useful
duality property.
=» Very roughly speaking:
=» the constraints of a polyhedron are (almost) the generators of the
polar of the polyhedron;
=» the generators of a polyhedron are (almost) the constraints of the
polar of the polyhedron;
=» the polar of the polar of a polyhedron is the polyhedron itself.
—> Computing constraints from generators is the same problem as
computing generators from constraints.

The algorithm of Motzkin-Chernikova-Le Verge
=» Solves both problems yielding a minimized system. ..

=» ...and can be implemented so that the source system is also minimized
in the process.

"URTHER ADVANTAGES OF THE DUAL DESCRIPTION METHOD

42

=» A collaborative project started in January 2001 at the Department of

Mathematics of the University of Parma.
=» The University of Leeds (UK) is now a major contributor to the library.

=» It aims at becoming a truly professional library for the handling (not
necessarily closed) rational convex polyhedra. We are almost there.

=» Targeted at abstract interpretation and computer-aided verification.
=» Free software released under the GNU General Public License.

Why yet another library? Some limitations of existing ones:
=» data-structures employed cannot grow/shrink dynamically;
=» possibility of overflow, underflow and rounding errors;

=» unsuitable mechanisms for error detection, handling and recovery;
=» (cannot reliably resume computation with an alternative method,

e.g., by reverting to an interval-based approximation).
=» Several existing libraries are free, but they do not provide adequate
documentation for the interfaces and the code.

'HE PARMA POLYHEDRA LIBRARY

Portability across different computing platforms
=>» written in standard C+;

=» but the the client application needs not be written in C++.

Absence of arbitrary limits

=» arbitrary precision integer arithmetic for coefficients and coordinates;
=» all data structures can expand automatically (in amortized constant
time) to any dimension allowed by the available virtual memory.

Complete information hiding
=» the internal representation of constraints, generators and systems
thereof need not concern the client application;

=» implementation devices such as the positivity constraint are invisible
from outside;

=» all the matters regarding the e-representation encoding of NNC
polyhedra are also invisible from outside.

PL FEATURES

44

Expressivity
=> X + 2«Y + 5 >= 7xZ and ‘ray(3*X + Y)'is valid syntax both for the
C+ and the Prolog interfaces;
=» we expect the planned Objective Caml, Java and Mercury interfaces to
be as friendly as these;
=» even the C interface refers to concepts like linear expression, constraint

and constraint system
=¥ (not to their possible implementations such as vectors and matrices).

Failure avoidance and detection

=» illegal objects cannot be created easily;
=» the interface invariants are systematically checked.

Efficiency
=» can systematically apply incremental and lazy computation techniques.

PL FEATURES: HIDING PAYS 45

Dual description
=» we may have a constraint system, a generator system, or both;
=» in case only one is available, the other is recomputed only when it is
convenient to do so.

Minimization
=» the constraint (generator) system may or may not be minimized,;
=» it is minimized only when convenient.

Saturation matrices
=» when both constraints and generators are available, some computations
record here the relation between them for future use.

Sorting matrices

=» for certain operations, it is advantageous to sort (lazily and
incrementally) the matrices representing constraints and generators.

P FEATURES: LAZINESS AND INCREMENTALITY

46

void complex_function(PH& phl, const PH& ph2 ...) {
try {
start_timer (max_time_for_complex_function);
complex_function_on_polyhedra(phl, ph2 ...);

stop_timer();

}

catch (Exception& e) { // Out of memory or timeout...

BoundingBox bbl, bb2;
phl.shrink_bounding_box(bb1l) ;
ph2.shrink_bounding_box (bb2) ;
complex_function_on_bounding_boxes(bbl, bb2 ...);
phl = Polyhedron(bbl);

PL FEATURES: SUPPORT FOR ROBUSTNESS

47

L FEATURES: COMPLETE, NATURAL SUPPORT FOR NNC POLYHEDRA

= lfa € R", a # 0,and b € R, the linear strict inequality constraint
(a,x) > b defines an open affine half-space;
=» when strict inequalities are allowed in the system of constraints we have
polyhedra that are not necessarily closed: NNC polyhedra.
=» A fundamental feature of the DD method: the ability to represent
polyhedra both by constraints and generators.
But what are the generators for NNC polyhedra?
Previous works/implementations did not offer a satisfactory answer.
By decoupling the user interface from the details of the particular
implementation, it is possible to provide an intuitive generalization of the
concept of generator system.
=» The key step is the introduction of a new kind of generators: closure

points:
=» avector c € R" is a closure point of S C R™ if and only if ¢ € C(5).

=> Only the PPL provides, today, this level of support for NNC polyhedra.

$ 4 J

Pl FEATURES: COMPLETE, NATURAL SUPPORT FOR NNC POLYHEDRA 48

Sophisticated widening techniques
=» The first widening operator on convex polyhedra beating the standard
one (after 25 years of its introduction).

=» Widening with tokens: an improvement over the delayed widening
technique.

The finite powerset construction

=» A generic construction that upgrades an abstract domain by allowing for
the exact representation of finite disjunctions of its elements.

=» The PPL offers a generic implementation that can be applied to
polyhedra, bounding boxes, octagons, grids, ...

=» Moreover, this comes with generic widening techniques (implementation

in progress, paper to appear at VMCAI'04);
=» when instantiated on finite powersets of polyhedra, these provide the

first widening operators on that domain!

fORE PPL FEATURES 49

Support for special classes of polyhedra

=>» A first implementation of bounded differences and octagons is ready;

=» a second, more refined implementation will be ready by Q1 2004.

=» Partial implementations of intervals and bounding boxes exist: they are
waiting for someone to finish them.

=» Distinctive features are (beyond the ones already mentioned for the
entire library) the tight and smooth integration of all the polyhedra
classes and refined widening operators.

Grids and Z-Polyhedra

=» A new domain of grids is under development; including support for
=» rational as well as integer values,
=» directions where values will be unrestrained.

=» A Z-Polyhedron, which is the intersection of a polyhedron and a grid, will
be added once we have the grid domain in the PPL.

P COMING FEATURES 50

=» Convex polyhedra are the basis for several abstractions used in static
analysis and computer-aided verification of complex and sometimes
mission critical systems.

=» For that purposes an implementation of convex polyhedra must be firmly
based on a clear theoretical framework and written in accordance with
sound software engineering principles.

=» In this talk we have presented some of the most important ideas that are
behind the Parma Polyhedra Library.

=» The Parma Polyhedra Library is free software released under the GPL.:
code and documentation can be downloaded and its development can
be followed at http://www.cs.unipr.it/ppl/.

l\OT THE CONCLUSION

51

DON’T ASKk WHAT THE PPL CAN Do FOR YOU;
AskK WHAT You CAN Do FoR THE PPL (I)

Research work to improve the PPL
=» efficient implementation of polyhedra operations;
=» positive polyhedra;
=» normal forms;
=» widening and narrowing ...

Research work using the PPL

J

absence of buffer overflows for C and C+ programs;

analysis of (machine- and hand-generated) assembly programs;
argument size relations for functional and logic programs;
optimization of array checks in Java programs;

verification of communication and synchronization protocols;

K R R A

verification of linear hybrid systems ...

\SK WHAT You CAN Do FOR THE PPL (l) 52

Small/medium projects

->

$ 4 I

$

internationalization of the library using gettext;

better regression testing with de jagnu;

better STL iterators to go through constraint and generator systems;
more efficient construction of linear expressions, constraints and
generators using expression templates;

efficient serialization of the various numerical abstractions;
implementation of the extrapolation operators of Henzinger et al.;

=» efficient implementation of convexity recognition of the union of

$ 4

polyhedra (algorithms of Bemporad et al.);

implementation of a “robust polyhedron” class;

complete the implementation of the watchdog library;
implementation of cartesian factoring (Halobwachs et al.) ...

\SK WHAT You CAN DO FOR THE PPL (Il) 53

DON’T ASKk WHAT THE PPL CAN Do FOR YOU;
AskK WHAT You CAN Do FOR THE PPL (lll)

Medium/big projects
=>» experiment with different implementations of unlimited precision integers
(e.g., purenum);
complete the implementation of the interval library;
Java interface;
O’Caml interface;
Mercury interface;
web-based demo (full of bells and whistles);
incorporate the library into various analysis tools;
implement some variant of the simplex algorithm;
implement cutting-plane methods (Gomory, Chvatal, ...);
complete the implementation of the Ask-and-Tell construction;

2K 2IE 2N R R N R N N

\SK WHAT You CAN Do FOR THE PPL (IlI)

54

