
New Widening Operators
for Convex Polyhedra

Roberto BAGNARA, Patricia M. HILL,
Elisa RICCI, Enea ZAFFANELLA

� � � � � � �� � � � �� � 	
 � �
� � � � � � �
� �

Dipartimento di Matematica, Università di Parma, December 11, 2003 1

MOTIVATIONS

Ü Linear Relation Analysis is a key component of many static analysis and
(semi-) automatic verification tools.

Ü Since it has infinite chains, the domain of convex polyhedra has to be
provided with widening operators.

Ü The standard widening (Cousot and Halbwachs, POPL’78) is the one
and only champion: since then, no challanger has been proposed.

Ü But some applications need more precision. Solutions include:
À the widening delay technique (Cousot, ’81);
Á the widening ‘up to’ technique (Halbwachs, CAV’93);
Â various extrapolation operators (no convergence guarantee).

Ü Our goal: provide a framework for the definition of new widening
operators on convex polyhedra improving upon the precision of the
standard widening.

MOTIVATIONS 2

PLAN OF THE TALK

À Problems in the Approximated Computation of Semantics

Á Widening Operators Are the Solution

Â The Standard Widening on Convex Polyhedra

Ã Some Techniques to Obtain Better Approximations

Ä A New Framework for Improving Upon a Fixed Widening

Å Heuristic Techniques Improving the Standard Widening

Æ Experimental Results

Ç Conclusion

PLAN OF THE TALK 3

COMPUTING THE CONCRETE SEMANTICS

� ��� � � � ��� �� �� �

�� �� � � � � !

x ∈ S ∈ ℘(R)

� ��� �" # �

� � $ � � � �

� % �� �� �

Let F : ℘(R) → ℘(R) be such that

F(X)
def
= {0} ∪ {n + 2 | n ∈ X }

The concrete semantics S is computed
as the least fixpoint of F on the com-
plete lattice 〈℘(R),⊆, ∅, R,∪,∩〉.

COMPUTING THE CONCRETE SEMANTICS 4

COMPUTING THE CONCRETE SEMANTICS

� ��� � � � ��� �� �� �

�� �� � � � � !

x ∈ S ∈ ℘(R)

� ��� �" # �

� � $ � � � �

� % �� �� �

Let F : ℘(R) → ℘(R) be such that

F(X)
def
= {0} ∪ {n + 2 | n ∈ X }

The concrete semantics S is computed
as the least fixpoint of F on the com-
plete lattice 〈℘(R),⊆, ∅, R,∪,∩〉.

COMPUTING THE CONCRETE SEMANTICS 4-A

COMPUTING THE CONCRETE SEMANTICS

� ��� � � � ��� �� �� �

�� �� � � � � !

x ∈ S ∈ ℘(R)

� ��� �" # �

� � $ � � � �

� % �� �� �

Let F : ℘(R) → ℘(R) be such that

F(X)
def
= {0} ∪ {n + 2 | n ∈ X }

The concrete semantics S is computed
as the least fixpoint of F on the com-
plete lattice 〈℘(R),⊆, ∅, R,∪,∩〉.

COMPUTING THE CONCRETE SEMANTICS 4-B

COMPUTING THE CONCRETE SEMANTICS

� ��� � � � ��� �� �� �

�� �� � � � � !

x ∈ S = 2N

� ��� �" # �

� � $ � � � �

� % �� �� �

F(X)
def
= {0} ∪ {n + 2 | n ∈ X }

X0 = ∅;

X1 = F(∅) = {0};

X2 = F(F(∅)) = {0, 2};

. . .

S = Xω = lfp(F) = 2N.

COMPUTING THE CONCRETE SEMANTICS 5

THE DOMAIN CPn OF CLOSED CONVEX POLYHEDRA

A lattice 〈CPn,⊆, ∅, Rn,],∩〉, with infinite chains.

Constraint Representation: P = con(C)

Ü C is a finite set of linear non-strict inequality (resp., equality) constraints.

Ü No redundant constraint + max number of equalities =⇒ minimal form.

Ü Inequalities orthogonal wrt equalities =⇒ orthogonal form.

Generator Representation: P = gen(G)

Ü G = (L, R, P), where
Ü P is a finite set of points of P ;
Ü R is a finite set of rays (directions of infinity) of P ;
Ü L is a finite set of lines (bidirectional rays) of P .

Ü No redundant generator + max number of lines =⇒ minimal form.

Ü Points and rays orthogonal wrt lines =⇒ orthogonal form.

THE DOMAIN CPn OF CLOSED CONVEX POLYHEDRA 6

APPROXIMATING THE SEMANTICS ON CP1

� ��� � � � ��� �� �� �

�� �� � � � � !

x ∈ Q ∈ CP1

� ��� �" # �

� � $ � � � �

� % �� �� �

Let F] : CP1 → CP1 be such that

F](P)
def
= {0}] {n + 2 | n ∈ P }

Correctness of F] wrt F :

X ⊆ P =⇒ F(X) ⊆ F](P).

The concrete semantics S ∈ R is
approximated by computing a post-
fixpoint Q ∈ CP1 of the abstract se-
mantic function F].

APPROXIMATING THE SEMANTICS ON CP1 7

APPROXIMATING THE SEMANTICS ON CP1

� ��� � � � ��� �� �� �

�� �� � � � � !

x ∈ Q ∈ CP1

� ��� �" # �

� � $ � � � �

� % �� �� �

Let F] : CP1 → CP1 be such that

F](P)
def
= {0}] {n + 2 | n ∈ P }

Correctness of F] wrt F :

X ⊆ P =⇒ F(X) ⊆ F](P).

The concrete semantics S ∈ R is
approximated by computing a post-
fixpoint Q ∈ CP1 of the abstract se-
mantic function F].

APPROXIMATING THE SEMANTICS ON CP1 7-A

APPROXIMATING THE SEMANTICS ON CP1

� ��� � � � ��� �� �� �

�� �� � � � � !

x ∈ Q ∈ CP1

� ��� �" # �

� � $ � � � �

� % �� �� �

Let F] : CP1 → CP1 be such that

F](P)
def
= {0}] {n + 2 | n ∈ P }

Correctness of F] wrt F :

X ⊆ P =⇒ F(X) ⊆ F](P).

The concrete semantics S ∈ R is
approximated by computing a post-
fixpoint Q ∈ CP1 of the abstract se-
mantic function F].

APPROXIMATING THE SEMANTICS ON CP1 7-B

APPROXIMATING THE SEMANTICS ON CP1

� ��� � � � ��� �� �� �

�� �� � � � � !

x ∈ Q ∈ CP1

� ��� �" # �

� � $ � � � �

� % �� �� �

Let F] : CP1 → CP1 be such that

F](P)
def
= {0}] {n + 2 | n ∈ P }

Correctness of F] wrt F :

X ⊆ P =⇒ F(X) ⊆ F](P).

The concrete semantics S ∈ R is
approximated by computing a post-
fixpoint Q ∈ CP1 of the abstract se-
mantic function F].

APPROXIMATING THE SEMANTICS ON CP1 7-C

APPROXIMATING THE SEMANTICS ON CP1

F(X)
def
= {0} ∪ {n + 2 | n ∈ X }

F](P)
def
= {0}] {n + 2 | n ∈ P }

X0 = ∅;

X1 = F(∅) = {0};

X2 = F(F(∅)) = {0, 2};

. . .

S = 2N.

P0 = ∅;

P1 = F](∅) = {0};

P2 = F](F](∅)) = [0, 2];

. . .

Q = [0, +∞).

APPROXIMATING THE SEMANTICS ON CP1 8

PROBLEMS IN THE APPROXIMATED COMPUTATION

À The “limit” of the approximated computation may not be representable in
the abstract domain (e.g., a circle is not a polyhedron);

Á Reaching a post-fixpoint may still require an infinite number of
computation steps, as was the case in the example we have seen;

Â Even when the computation is intrinsically finite, it may be practically
unfeasible if it requires too many approximated iterations; for instance,

Widening operators try to solve all of these problems at once.

PROBLEMS IN THE APPROXIMATED COMPUTATION 9

PROBLEMS IN THE APPROXIMATED COMPUTATION

À The “limit” of the approximated computation may not be representable in
the abstract domain (e.g., a circle is not a polyhedron);

Á Reaching a post-fixpoint may still require an infinite number of
computation steps, as was the case in the example we have seen;

Â Even when the computation is intrinsically finite, it may be practically
unfeasible if it requires too many approximated iterations; for instance,

Widening operators try to solve all of these problems at once.

PROBLEMS IN THE APPROXIMATED COMPUTATION 9-A

PROBLEMS IN THE APPROXIMATED COMPUTATION

À The “limit” of the approximated computation may not be representable in
the abstract domain (e.g., a circle is not a polyhedron);

Á Reaching a post-fixpoint may still require an infinite number of
computation steps, as was the case in the example we have seen;

Â Even when the computation is intrinsically finite, it may be practically
unfeasible if it requires too many approximated iterations; for instance,

& ')(* +

,- ./ 0 1 & 2 3 * * * * * * 4 56

& ')(&7 3 + 8 ')(9 1 & 4 +

0: 5 ,- ./ 0

Widening operators try to solve all of these problems at once.

PROBLEMS IN THE APPROXIMATED COMPUTATION 9-B

PROBLEMS IN THE APPROXIMATED COMPUTATION

À The “limit” of the approximated computation may not be representable in
the abstract domain (e.g., a circle is not a polyhedron);

Á Reaching a post-fixpoint may still require an infinite number of
computation steps, as was the case in the example we have seen;

Â Even when the computation is intrinsically finite, it may be practically
unfeasible if it requires too many approximated iterations; for instance,

& ')(* +

,- ./ 0 1 & 2 3 * * * * * * 4 56

& ')(&7 3 + 8 ')(9 1 & 4 +

0: 5 ,- ./ 0

Widening operators try to solve all of these problems at once.

PROBLEMS IN THE APPROXIMATED COMPUTATION 9-C

DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP’92):
Ü Let 〈L,v,⊥,t〉 be a join-semi-lattice. Then, the operator

∇ : L × L � L is a widening on L if
À ∀x, y ∈ L : x v y =⇒ y v x ∇ y;
Á for all increasing chains y0 v y1 v · · · , the chain defined by

x0
def
= y0, . . . , xi+1

def
= xi ∇ (xi t yi+1), . . . is not strictly increasing.

Ü The upward iteration sequence with widenings (starting from x0 = ⊥)

xi+1 =







xi, if F](xi) v xi;

xi ∇
(

xi t F](xi)
)

, otherwise;

converges (to a post-fixpoint of F]) after a finite number of iterations.

DEFINITION OF WIDENING OPERATOR 10

DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP’92):
Ü Let 〈L,v,⊥,t〉 be a join-semi-lattice. Then, the operator

∇ : L × L � L is a widening on L if
À ∀x, y ∈ L : x v y =⇒ y v x ∇ y;
Á for all increasing chains y0 v y1 v · · · , the chain defined by

x0
def
= y0, . . . , xi+1

def
= xi ∇ (xi t yi+1), . . . is not strictly increasing.

Ü The upward iteration sequence with widenings (starting from x0 = ⊥)

xi+1 =







xi, if F](xi) v xi;

xi ∇
(

xi t F](xi)
)

, otherwise;

converges (to a post-fixpoint of F]) after a finite number of iterations.

DEFINITION OF WIDENING OPERATOR 10-A

THE STANDARD WIDENING ∇s ON CPn

Ü Initially proposed in Cousot and Halbwachs, POPL’78.

Ü Intuitively, P1 ∇s P2 is defined by all the non-redundant constraints of P1

that are also satisfied by P2.

O

P2

P1

THE STANDARD WIDENING ∇s ON CPn 11

THE STANDARD WIDENING ∇s ON CPn

Ü Initially proposed in Cousot and Halbwachs, POPL’78.

Ü Intuitively, P1 ∇s P2 is defined by all the non-redundant constraints of P1

that are also satisfied by P2.

O

P2

P1

THE STANDARD WIDENING ∇s ON CPn 11-A

THE STANDARD WIDENING ∇s ON CPn

Ü Initially proposed in Cousot and Halbwachs, POPL’78.

Ü Intuitively, P1 ∇s P2 is defined by all the non-redundant constraints of P1

that are also satisfied by P2.

O

P2

P1

THE STANDARD WIDENING ∇s ON CPn 12

THE STANDARD WIDENING ∇s ON CPn

Ü Initially proposed in Cousot and Halbwachs, POPL’78.

Ü Intuitively, P1 ∇s P2 is defined by all the non-redundant constraints of P1

that are also satisfied by P2.

O

P2

P1

P1 ∇s P2

THE STANDARD WIDENING ∇s ON CPn 13

THE STANDARD WIDENING ∇s ON CPn (II)
Ü Improved in Halbwachs’79 (the PhD thesis), so that it does not depend

on the chosen constraint representations.

O

P2

P1

THE STANDARD WIDENING ∇s ON CPn (II) 14

THE STANDARD WIDENING ∇s ON CPn (II)
Ü Improved in Halbwachs’79 (the PhD thesis), so that it does not depend

on the chosen constraint representations.

O

P2

P1

THE STANDARD WIDENING ∇s ON CPn (II) 14-A

THE STANDARD WIDENING ∇s ON CPn (II)
Ü Improved in Halbwachs’79 (the PhD thesis), so that it does not depend

on the chosen constraint representations.

O

P2

P1

THE STANDARD WIDENING ∇s ON CPn (II) 15

THE STANDARD WIDENING ∇s ON CPn (II)
Ü Improved in Halbwachs’79 (the PhD thesis), so that it does not depend

on the chosen constraint representations.

O

P2

P1

P1 ∇s P2

THE STANDARD WIDENING ∇s ON CPn (II) 16

THE STANDARD WIDENING ∇s ON CPn (III)
Ü The resulting operator is both precise and efficient: this “tentative”

definition has been the one and only available approach for 25 years.

Ü Its precision can be improved (while keeping the convergence
guarantee) by applying
À the widening delay technique: delay the application of the widening

for a fixed number of iteration steps;
Á the widening ‘up to’ technique: partially recover from rough

approximations that go beyond a fixed set of constraints that are
known to hold for the considered application.

Ü For an increasing number of applications, this precision level is not
sufficient. Can we further improve upon the precision of the standard
widening? (Perhaps, trading some efficiency.)

THE STANDARD WIDENING ∇s ON CPn (III) 17

THE STANDARD WIDENING ∇s ON CPn (III)
Ü The resulting operator is both precise and efficient: this “tentative”

definition has been the one and only available approach for 25 years.

Ü Its precision can be improved (while keeping the convergence
guarantee) by applying
À the widening delay technique: delay the application of the widening

for a fixed number of iteration steps;

Á the widening ‘up to’ technique: partially recover from rough
approximations that go beyond a fixed set of constraints that are
known to hold for the considered application.

Ü For an increasing number of applications, this precision level is not
sufficient. Can we further improve upon the precision of the standard
widening? (Perhaps, trading some efficiency.)

THE STANDARD WIDENING ∇s ON CPn (III) 17-A

THE STANDARD WIDENING ∇s ON CPn (III)
Ü The resulting operator is both precise and efficient: this “tentative”

definition has been the one and only available approach for 25 years.

Ü Its precision can be improved (while keeping the convergence
guarantee) by applying
À the widening delay technique: delay the application of the widening

for a fixed number of iteration steps;
Á the widening ‘up to’ technique: partially recover from rough

approximations that go beyond a fixed set of constraints that are
known to hold for the considered application.

Ü For an increasing number of applications, this precision level is not
sufficient. Can we further improve upon the precision of the standard
widening? (Perhaps, trading some efficiency.)

THE STANDARD WIDENING ∇s ON CPn (III) 17-B

THE STANDARD WIDENING ∇s ON CPn (III)
Ü The resulting operator is both precise and efficient: this “tentative”

definition has been the one and only available approach for 25 years.

Ü Its precision can be improved (while keeping the convergence
guarantee) by applying
À the widening delay technique: delay the application of the widening

for a fixed number of iteration steps;
Á the widening ‘up to’ technique: partially recover from rough

approximations that go beyond a fixed set of constraints that are
known to hold for the considered application.

Ü For an increasing number of applications, this precision level is not
sufficient. Can we further improve upon the precision of the standard
widening? (Perhaps, trading some efficiency.)

THE STANDARD WIDENING ∇s ON CPn (III) 17-C

∇-COMPATIBLE LIMITED GROWTH ORDERING

Ü Let 〈L,v,⊥,t〉 be a join-semi-lattice.

Ü A limited growth ordering (lgo) is the strict version of a finitely
computable preorder relation that satisfies the ascending chain
condition on L.
À preorder: reflexive and transitive;
Á ascending chain condition ∼ well-founded;
Â computable: we will use it in the implementation.

Ü Let ∇ be a widening on L. An lgo y is ∇-compatible if

∀x, y ∈ L : x @ y =⇒ x y x ∇ y.

Ü A ∇-compatible lgo formalizes the notion of computable convergence
guarantee for the widening ∇.

∇-COMPATIBLE LIMITED GROWTH ORDERING 18

∇-COMPATIBLE LIMITED GROWTH ORDERING

Ü Let 〈L,v,⊥,t〉 be a join-semi-lattice.

Ü A limited growth ordering (lgo) is the strict version of a finitely
computable preorder relation that satisfies the ascending chain
condition on L.
À preorder: reflexive and transitive;
Á ascending chain condition ∼ well-founded;
Â computable: we will use it in the implementation.

Ü Let ∇ be a widening on L. An lgo y is ∇-compatible if

∀x, y ∈ L : x @ y =⇒ x y x ∇ y.

Ü A ∇-compatible lgo formalizes the notion of computable convergence
guarantee for the widening ∇.

∇-COMPATIBLE LIMITED GROWTH ORDERING 18-A

∇-COMPATIBLE LIMITED GROWTH ORDERING

Ü Let 〈L,v,⊥,t〉 be a join-semi-lattice.

Ü A limited growth ordering (lgo) is the strict version of a finitely
computable preorder relation that satisfies the ascending chain
condition on L.
À preorder: reflexive and transitive;
Á ascending chain condition ∼ well-founded;
Â computable: we will use it in the implementation.

Ü Let ∇ be a widening on L. An lgo y is ∇-compatible if

∀x, y ∈ L : x @ y =⇒ x y x ∇ y.

Ü A ∇-compatible lgo formalizes the notion of computable convergence
guarantee for the widening ∇.

∇-COMPATIBLE LIMITED GROWTH ORDERING 18-B

A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING

Suppose that
Ü ∇ : L × L � L is a widening on the join-semi-lattice 〈L,v,⊥,t〉;

Ü y ⊆ L × L is a ∇-compatible lgo;

Ü h : L × L → L is an upper bound operator.

For all x, y ∈ L such that x v y, define

x ∇̃ y
def
=







h(x, y), if x y h(x, y) @ x ∇ y;

x ∇ y, otherwise.

Ü Then ∇̃ is a widening operator at least as precise as ∇.

A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING 19

A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING

Suppose that
Ü ∇ : L × L � L is a widening on the join-semi-lattice 〈L,v,⊥,t〉;

Ü y ⊆ L × L is a ∇-compatible lgo;

Ü h : L × L → L is an upper bound operator.

For all x, y ∈ L such that x v y, define

x ∇̃ y
def
=







h(x, y), if x y h(x, y) @ x ∇ y;

x ∇ y, otherwise.

Ü Then ∇̃ is a widening operator at least as precise as ∇.

A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING 19-A

A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING

Suppose that
Ü ∇ : L × L � L is a widening on the join-semi-lattice 〈L,v,⊥,t〉;

Ü y ⊆ L × L is a ∇-compatible lgo;

Ü h : L × L → L is an upper bound operator.

For all x, y ∈ L such that x v y, define

x ∇̃ y
def
=







h(x, y), if x y h(x, y) @ x ∇ y;

x ∇ y, otherwise.

Ü Then ∇̃ is a widening operator at least as precise as ∇.

A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING 19-B

A FINE-GRAINED LGO ON CPn

Ü Variant of a well-founded preorder defined in Besson et al., SAS’99. It is
obtained as the lexicographic product of five lgo’s.

Ü For i = 1, 2, let Pi = con(Ci) = gen(Gi) 6= ∅,
where Ci is in minimal form and Gi = (Li, Ri, Pi) is in orthogonal form.
À P1 �d P2

def
⇐⇒ # eq(C1) ≥ # eq(C2);

Á P1 �` P2
def
⇐⇒ # L1 ≤ #L2;

Â P1 �c P2
def
⇐⇒ # C1 ≥ # C2;

Ã P1 �p P2
def
⇐⇒ # P1 ≥ # P2;

Ä P1 �r P2
def
⇐⇒ κ(R1) vms κ(R2).

Ü We denote by yn the strict version of the lexicographic product

P1 �n P2
def
⇐⇒ P1 �d`cpr P2.

A FINE-GRAINED LGO ON CPn 20

A FINE-GRAINED LGO ON CPn

Ü Variant of a well-founded preorder defined in Besson et al., SAS’99. It is
obtained as the lexicographic product of five lgo’s.

Ü For i = 1, 2, let Pi = con(Ci) = gen(Gi) 6= ∅,
where Ci is in minimal form and Gi = (Li, Ri, Pi) is in orthogonal form.

À P1 �d P2
def
⇐⇒ # eq(C1) ≥ # eq(C2);

Á P1 �` P2
def
⇐⇒ # L1 ≤ #L2;

Â P1 �c P2
def
⇐⇒ # C1 ≥ # C2;

Ã P1 �p P2
def
⇐⇒ # P1 ≥ # P2;

Ä P1 �r P2
def
⇐⇒ κ(R1) vms κ(R2).

Ü We denote by yn the strict version of the lexicographic product

P1 �n P2
def
⇐⇒ P1 �d`cpr P2.

A FINE-GRAINED LGO ON CPn 20-A

A FINE-GRAINED LGO ON CPn

Ü Variant of a well-founded preorder defined in Besson et al., SAS’99. It is
obtained as the lexicographic product of five lgo’s.

Ü For i = 1, 2, let Pi = con(Ci) = gen(Gi) 6= ∅,
where Ci is in minimal form and Gi = (Li, Ri, Pi) is in orthogonal form.
À P1 �d P2

def
⇐⇒ # eq(C1) ≥ # eq(C2);

Á P1 �` P2
def
⇐⇒ # L1 ≤ #L2;

Â P1 �c P2
def
⇐⇒ # C1 ≥ # C2;

Ã P1 �p P2
def
⇐⇒ # P1 ≥ # P2;

Ä P1 �r P2
def
⇐⇒ κ(R1) vms κ(R2).

Ü We denote by yn the strict version of the lexicographic product

P1 �n P2
def
⇐⇒ P1 �d`cpr P2.

A FINE-GRAINED LGO ON CPn 20-B

A FINE-GRAINED LGO ON CPn

Ü Variant of a well-founded preorder defined in Besson et al., SAS’99. It is
obtained as the lexicographic product of five lgo’s.

Ü For i = 1, 2, let Pi = con(Ci) = gen(Gi) 6= ∅,
where Ci is in minimal form and Gi = (Li, Ri, Pi) is in orthogonal form.
À P1 �d P2

def
⇐⇒ # eq(C1) ≥ # eq(C2);

Á P1 �` P2
def
⇐⇒ # L1 ≤ #L2;

Â P1 �c P2
def
⇐⇒ # C1 ≥ # C2;

Ã P1 �p P2
def
⇐⇒ # P1 ≥ # P2;

Ä P1 �r P2
def
⇐⇒ κ(R1) vms κ(R2).

Ü We denote by yn the strict version of the lexicographic product

P1 �n P2
def
⇐⇒ P1 �d`cpr P2.

A FINE-GRAINED LGO ON CPn 20-C

EXAMPLES FOR P1 yn P2: CASE 1

O

P2

P1

P1 ≺d P2

EXAMPLES FOR P1 yn P2 : CASE 1 21

EXAMPLES FOR P1 yn P2: CASE 2

O

P1 P2

P1 ≡d P2 ∧ P1 ≺` P2

EXAMPLES FOR P1 yn P2 : CASE 2 22

EXAMPLES FOR P1 yn P2: CASE 3

O

P2

P1

P1 ≡d P2 ∧ P1 ≡` P2 ∧ P1 ≺c P2

EXAMPLES FOR P1 yn P2 : CASE 3 23

EXAMPLES FOR P1 yn P2: CASE 4

O

P1 P2

P1 ≡d P2 ∧ P1 ≡` P2

∧P1 ≡c P2 ∧ P1 ≺p P2

EXAMPLES FOR P1 yn P2 : CASE 4 24

EXAMPLES FOR P1 yn P2: CASE 5

O

P2

P1

P1 ≡d P2 ∧ P1 ≡` P2 ∧ P1 ≡c P2

∧P1 ≡p P2 ∧ P1 ≺r P2

EXAMPLES FOR P1 yn P2 : CASE 5 25

INSTANTIATING THE FRAMEWORK

The key result.
Ü yn is a ∇s-compatible lgo on CPn.

(This is not the case for the ordering defined in Besson et al., SAS’99.)

Ü For any upper bound operator h : CPn × CPn → CPn, the framework will
return a proper widening operator on CPn improving on the standard
widening.

Ü In our attempt to improve precision, we can consider any finite set of
such heuristic techniques: our new widening will use four upper bounds.

INSTANTIATING THE FRAMEWORK 26

INSTANTIATING THE FRAMEWORK

The key result.
Ü yn is a ∇s-compatible lgo on CPn.

(This is not the case for the ordering defined in Besson et al., SAS’99.)

Ü For any upper bound operator h : CPn × CPn → CPn, the framework will
return a proper widening operator on CPn improving on the standard
widening.

Ü In our attempt to improve precision, we can consider any finite set of
such heuristic techniques: our new widening will use four upper bounds.

INSTANTIATING THE FRAMEWORK 26-A

INSTANTIATING THE FRAMEWORK

The key result.
Ü yn is a ∇s-compatible lgo on CPn.

(This is not the case for the ordering defined in Besson et al., SAS’99.)

Ü For any upper bound operator h : CPn × CPn → CPn, the framework will
return a proper widening operator on CPn improving on the standard
widening.

Ü In our attempt to improve precision, we can consider any finite set of
such heuristic techniques: our new widening will use four upper bounds.

INSTANTIATING THE FRAMEWORK 26-B

1ST HEURISTICS: DO NOT WIDEN

Let h be the least upper bound, so that h(P1,P2) = P2.

Ü Applicable whenever P1 y P2.

Ü No precision loss: to be tried before all other techniques.

Ü Already suggested by Cousot and Cousot, PLILP’92.

1ST HEURISTICS: DO NOT WIDEN 27

1ST HEURISTICS: DO NOT WIDEN

Let h be the least upper bound, so that h(P1,P2) = P2.
Ü Applicable whenever P1 y P2.

Ü No precision loss: to be tried before all other techniques.

Ü Already suggested by Cousot and Cousot, PLILP’92.

1ST HEURISTICS: DO NOT WIDEN 27-A

STANDARD WIDENING VS. DO NOT WIDEN (I)

O

P2

P1

STANDARD WIDENING VS. DO NOT WIDEN (I) 28

STANDARD WIDENING VS. DO NOT WIDEN (II)

O

P2

P1

P1 ∇s P2

STANDARD WIDENING VS. DO NOT WIDEN (II) 29

STANDARD WIDENING VS. DO NOT WIDEN (III)

O

P2

P1

P1 ∇s P2

STANDARD WIDENING VS. DO NOT WIDEN (III) 30

1ST HEURISTICS: DO NOT WIDEN

Let h be the least upper bound, so that h(P1,P2) = P2.
Ü Applicable whenever P1 y P2.

Ü No precision loss: to be tried before all other techniques.

Ü Already suggested by Cousot and Cousot, PLILP’92.

Ü All the other techniques may safely assume P1 6y P2.

Ü Since by hypothesis P1 ⊆ P2, we can also assume

aff.hull(P1) = aff.hull(P2),

lin.space(P1) = lin.space(P2).

1ST HEURISTICS: DO NOT WIDEN 31

2ND HEURISTICS: COMBINING CONSTRAINTS

Let hc(P1,P2)
def
= con(C⊕) ∩ (P1 ∇s P2), where

Ü C∇ are the constraints of the standard widening;

Ü C⊕
def
=







⊕(Cp)

∣

∣

∣

∣

∣

∣

p ∈ P1, sat_con
(

p, ineq(C∇)
)

= ∅,

Cp = sat_con
(

p, ineq(C2)
)

6= ∅







.

Ü ⊕ is a (deliberately left unspecified) convex combination.

Informally, we ensure that each non-redundant point p ∈ P1 that was
lying on a facet of P2 will still lie on a facet of hc(P1,P2).

Ü Besson et al., SAS’99 suggest to average the constraints in Cp.

Ü Afterall, the choice of ⊕ is arbitrary: we opted for a simpler combination.

Ü A similar heuristics, with no convergence guarantee, was proposed by
Henzinger et al., CDC’01.

2ND HEURISTICS: COMBINING CONSTRAINTS 32

2ND HEURISTICS: COMBINING CONSTRAINTS

Let hc(P1,P2)
def
= con(C⊕) ∩ (P1 ∇s P2), where

Ü C∇ are the constraints of the standard widening;

Ü C⊕
def
=







⊕(Cp)

∣

∣

∣

∣

∣

∣

p ∈ P1, sat_con
(

p, ineq(C∇)
)

= ∅,

Cp = sat_con
(

p, ineq(C2)
)

6= ∅







.

Ü ⊕ is a (deliberately left unspecified) convex combination.

Informally, we ensure that each non-redundant point p ∈ P1 that was
lying on a facet of P2 will still lie on a facet of hc(P1,P2).
Ü Besson et al., SAS’99 suggest to average the constraints in Cp.

Ü Afterall, the choice of ⊕ is arbitrary: we opted for a simpler combination.

Ü A similar heuristics, with no convergence guarantee, was proposed by
Henzinger et al., CDC’01.

2ND HEURISTICS: COMBINING CONSTRAINTS 32-A

STANDARD WIDENING VS. COMBINING CONSTRAINTS (I)

O

P2

P1

STANDARD WIDENING VS. COMBINING CONSTRAINTS (I) 33

STANDARD WIDENING VS. COMBINING CONSTRAINTS (II)

O

P2

P1

STANDARD WIDENING VS. COMBINING CONSTRAINTS (II) 34

STANDARD WIDENING VS. COMBINING CONSTRAINTS (III)

P1 ∇s P2

O

P2

P1

STANDARD WIDENING VS. COMBINING CONSTRAINTS (III) 35

STANDARD WIDENING VS. COMBINING CONSTRAINTS (IV)

O

P1

P2p q

P1 ∇s P2

STANDARD WIDENING VS. COMBINING CONSTRAINTS (IV) 36

STANDARD WIDENING VS. COMBINING CONSTRAINTS (V)

O

P1

P2p q

P1 ∇s P2

STANDARD WIDENING VS. COMBINING CONSTRAINTS (V) 37

STANDARD WIDENING VS. COMBINING CONSTRAINTS (VI)

O

hc(P1,P2)

P1

P2

P1 ∇s P2

p q

STANDARD WIDENING VS. COMBINING CONSTRAINTS (VI) 38

3RD HEURISTICS: EVOLVING POINTS

Ü A (slightly simpler) variant of the extrapolation operator ‘∝’ defined in
Henzinger and Ho, Hibrid Systems II, 95.

Ü Also similar to another operator sketched in Besson et al., SAS’99.

Ü Consider the set of rays

R
def
=

{

p2 − p1

∣

∣ p1 ∈ P1, p2 ∈ P2 \ P1

}

.

Ü Informally, each point p2 ∈ P2 \ P1 is seen as an evolution of point
p1 ∈ P1. By generating the ray p2 − p1, we extrapolate this evolution
towards infinity.

Ü Thus, let hp(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇s P2).

3RD HEURISTICS: EVOLVING POINTS 39

3RD HEURISTICS: EVOLVING POINTS

Ü A (slightly simpler) variant of the extrapolation operator ‘∝’ defined in
Henzinger and Ho, Hibrid Systems II, 95.

Ü Also similar to another operator sketched in Besson et al., SAS’99.

Ü Consider the set of rays

R
def
=

{

p2 − p1

∣

∣ p1 ∈ P1, p2 ∈ P2 \ P1

}

.

Ü Informally, each point p2 ∈ P2 \ P1 is seen as an evolution of point
p1 ∈ P1. By generating the ray p2 − p1, we extrapolate this evolution
towards infinity.

Ü Thus, let hp(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇s P2).

3RD HEURISTICS: EVOLVING POINTS 39-A

3RD HEURISTICS: EVOLVING POINTS

Ü A (slightly simpler) variant of the extrapolation operator ‘∝’ defined in
Henzinger and Ho, Hibrid Systems II, 95.

Ü Also similar to another operator sketched in Besson et al., SAS’99.

Ü Consider the set of rays

R
def
=

{

p2 − p1

∣

∣ p1 ∈ P1, p2 ∈ P2 \ P1

}

.

Ü Informally, each point p2 ∈ P2 \ P1 is seen as an evolution of point
p1 ∈ P1. By generating the ray p2 − p1, we extrapolate this evolution
towards infinity.

Ü Thus, let hp(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇s P2).

3RD HEURISTICS: EVOLVING POINTS 39-B

STANDARD WIDENING VS. EVOLVING POINTS (I)

O
P1

P2

STANDARD WIDENING VS. EVOLVING POINTS (I) 40

STANDARD WIDENING VS. EVOLVING POINTS (II)

O
P1

P2

STANDARD WIDENING VS. EVOLVING POINTS (II) 41

STANDARD WIDENING VS. EVOLVING POINTS (III)

O

P1 ∇s P2

P1

P2

STANDARD WIDENING VS. EVOLVING POINTS (III) 42

STANDARD WIDENING VS. EVOLVING POINTS (IV)

O
P1

P2

p2

P1 ∇s P2

STANDARD WIDENING VS. EVOLVING POINTS (IV) 43

STANDARD WIDENING VS. EVOLVING POINTS (V)

O
P1

P2

p2

P1 ∇s P2

STANDARD WIDENING VS. EVOLVING POINTS (V) 44

STANDARD WIDENING VS. EVOLVING POINTS (VI)

O
P1

P2

P1 ∇s P2

hp(P1,P2)

STANDARD WIDENING VS. EVOLVING POINTS (VI) 45

4TH HEURISTICS: EVOLVING RAYS

Ü A brand new widening heuristics.

Ü Define the set of rays

R
def
=

{

evolve(r2, r1)
∣

∣ r1 ∈ R1, r2 ∈ R2 \ R1

}

.

Ü Informally, each ray r2 ∈ R2 \ R1 is seen as an evolution of ray r1 ∈ R1.
We extrapolate this evolution by rotating ray r2, stopping as soon as it
touches the boundary of the Cartesian orthant.

Ü Thus, let hr(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇s P2).

Ü The extrapolation will decrease the total number of non-zero
coordinates of the ray =⇒ hopefully satisfying the last case in the
definition of the lgo yn:

P1 ≺r hr(P1,P2).

4TH HEURISTICS: EVOLVING RAYS 46

4TH HEURISTICS: EVOLVING RAYS

Ü A brand new widening heuristics.

Ü Define the set of rays

R
def
=

{

evolve(r2, r1)
∣

∣ r1 ∈ R1, r2 ∈ R2 \ R1

}

.

Ü Informally, each ray r2 ∈ R2 \ R1 is seen as an evolution of ray r1 ∈ R1.
We extrapolate this evolution by rotating ray r2, stopping as soon as it
touches the boundary of the Cartesian orthant.

Ü Thus, let hr(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇s P2).

Ü The extrapolation will decrease the total number of non-zero
coordinates of the ray =⇒ hopefully satisfying the last case in the
definition of the lgo yn:

P1 ≺r hr(P1,P2).

4TH HEURISTICS: EVOLVING RAYS 46-A

4TH HEURISTICS: EVOLVING RAYS

Ü A brand new widening heuristics.

Ü Define the set of rays

R
def
=

{

evolve(r2, r1)
∣

∣ r1 ∈ R1, r2 ∈ R2 \ R1

}

.

Ü Informally, each ray r2 ∈ R2 \ R1 is seen as an evolution of ray r1 ∈ R1.
We extrapolate this evolution by rotating ray r2, stopping as soon as it
touches the boundary of the Cartesian orthant.

Ü Thus, let hr(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇s P2).

Ü The extrapolation will decrease the total number of non-zero
coordinates of the ray =⇒ hopefully satisfying the last case in the
definition of the lgo yn:

P1 ≺r hr(P1,P2).

4TH HEURISTICS: EVOLVING RAYS 46-B

4TH HEURISTICS: EVOLVING RAYS

Ü A brand new widening heuristics.

Ü Define the set of rays

R
def
=

{

evolve(r2, r1)
∣

∣ r1 ∈ R1, r2 ∈ R2 \ R1

}

.

Ü Informally, each ray r2 ∈ R2 \ R1 is seen as an evolution of ray r1 ∈ R1.
We extrapolate this evolution by rotating ray r2, stopping as soon as it
touches the boundary of the Cartesian orthant.

Ü Thus, let hr(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇s P2).

Ü The extrapolation will decrease the total number of non-zero
coordinates of the ray =⇒ hopefully satisfying the last case in the
definition of the lgo yn:

P1 ≺r hr(P1,P2).

4TH HEURISTICS: EVOLVING RAYS 46-C

STANDARD WIDENING VS. EVOLVING RAYS (I)

O
P1

P2

STANDARD WIDENING VS. EVOLVING RAYS (I) 47

STANDARD WIDENING VS. EVOLVING RAYS (II)

O
P1

P2

STANDARD WIDENING VS. EVOLVING RAYS (II) 48

STANDARD WIDENING VS. EVOLVING RAYS (III)

O

P1 ∇s P2

P1

P2

STANDARD WIDENING VS. EVOLVING RAYS (III) 49

STANDARD WIDENING VS. EVOLVING RAYS (IV)

O
P1

P2

P1 ∇s P2

STANDARD WIDENING VS. EVOLVING RAYS (IV) 50

STANDARD WIDENING VS. EVOLVING RAYS (V)

O
P1

P2

P1 ∇s P2

STANDARD WIDENING VS. EVOLVING RAYS (V) 51

STANDARD WIDENING VS. EVOLVING RAYS (VI)

O

hr(P1,P2)

P1

P2

P1 ∇s P2

STANDARD WIDENING VS. EVOLVING RAYS (VI) 52

THE NEW WIDENING ∇n

Ü An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

P1 ∇n P2
def
=







































P2, if P1 y P2;

hc(P1,P2), if P1 y hc(P1,P2) ⊂ P1 ∇s P2;

hp(P1,P2), if P1 y hp(P1,P2) ⊂ P1 ∇s P2;

hr(P1,P2), if P1 y hr(P1,P2) ⊂ P1 ∇s P2;

P1 ∇s P2, otherwise.

Ü Uniformly more precise than the standard widening.

Ü In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.

THE NEW WIDENING ∇n 53

THE NEW WIDENING ∇n

Ü An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

P1 ∇n P2
def
=







































P2, if P1 y P2;

hc(P1,P2), if P1 y hc(P1,P2) ⊂ P1 ∇s P2;

hp(P1,P2), if P1 y hp(P1,P2) ⊂ P1 ∇s P2;

hr(P1,P2), if P1 y hr(P1,P2) ⊂ P1 ∇s P2;

P1 ∇s P2, otherwise.

Ü Uniformly more precise than the standard widening.

Ü In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.

THE NEW WIDENING ∇n 53-A

THE NEW WIDENING ∇n

Ü An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

P1 ∇n P2
def
=







































P2, if P1 y P2;

hc(P1,P2), if P1 y hc(P1,P2) ⊂ P1 ∇s P2;

hp(P1,P2), if P1 y hp(P1,P2) ⊂ P1 ∇s P2;

hr(P1,P2), if P1 y hr(P1,P2) ⊂ P1 ∇s P2;

P1 ∇s P2, otherwise.

Ü Uniformly more precise than the standard widening.

Ü In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.

THE NEW WIDENING ∇n 53-B

PRECISION COMPARISON

Argument size relations for Prolog programs using China + PPL.

Note: carefully chosen widening strategy (Bourdoncle, FMPTA’93)
+ widening delay + widening ‘up to’.

programs (361) # predicates (23279)

k (delay) improve degr incomp improve degr incomp

0 121 - 2 1340 3 2

1 34 - - 273 - -

2 29 - - 222 - -

3 28 - - 160 - -

4 25 - 2 126 2 -

10 25 - - 124 - -

PRECISION COMPARISON 54

PRECISION COMPARISON

Argument size relations for Prolog programs using China + PPL.

Note: carefully chosen widening strategy (Bourdoncle, FMPTA’93)
+ widening delay + widening ‘up to’.

programs (361) # predicates (23279)

k (delay) improve degr incomp improve degr incomp

0 121 - 2 1340 3 2

1 34 - - 273 - -

2 29 - - 222 - -

3 28 - - 160 - -

4 25 - 2 126 2 -

10 25 - - 124 - -

PRECISION COMPARISON 54-A

EFFICIENCY COMPARISON

Argument size relations for Prolog programs using China + PPL.

Total analysis time

k∇s k∇n

k (delay) all top 20 all top 20

0 1.00 0.72 1.05 0.77

1 1.09 0.79 1.11 0.80

2 1.16 0.83 1.18 0.84

3 1.23 0.88 1.25 0.89

4 1.32 0.95 1.34 0.95

10 1.82 1.23 1.85 1.24

EFFICIENCY COMPARISON 55

CONCLUSION

Ü We have defined a domain independent framework for improving upon
the precision of a fixed widening operator;

Ü We have instantiated the framework on the domain of convex polyhedra
improving on the precision of the standard widening;

Ü The new widening has been implemented in the PPL and a first
experimental evaluation has yielded promising results.

CURRENT AND FUTURE WORK

Ü Widening operators are the corner stone for both the feasibility and
precision of static analyses adopting accurate abstract domains:
À We have defined (generic) widenings for disjunctive domains, such

as finite sets of polyhedra (see the last planned seminar);
Á Many interesting domains are still missing (non-trivial) widening

operators (e.g., Z-polyhedra).

CURRENT AND FUTURE WORK 56

CONCLUSION

Ü We have defined a domain independent framework for improving upon
the precision of a fixed widening operator;

Ü We have instantiated the framework on the domain of convex polyhedra
improving on the precision of the standard widening;

Ü The new widening has been implemented in the PPL and a first
experimental evaluation has yielded promising results.

CURRENT AND FUTURE WORK

Ü Widening operators are the corner stone for both the feasibility and
precision of static analyses adopting accurate abstract domains:
À We have defined (generic) widenings for disjunctive domains, such

as finite sets of polyhedra (see the last planned seminar);
Á Many interesting domains are still missing (non-trivial) widening

operators (e.g., Z-polyhedra).

CURRENT AND FUTURE WORK 56-A

