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MOTIVATIONS

Linear Relation Analysis is a key component of many static analysis and
(semi-) automatic verification tools.

Since it has infinite chains, the domain of convex polyhedra has to be
provided with widening operators.

The standard widening (Cousot and Halowachs, POPL78) is the one
and only champion: since then, no challanger has been proposed.
But some applications need more precision. Solutions include:

@ the widening delay technique (Cousot, '81);

@ the widening ‘up to’ technique (Halbwachs, CAV’'93);

@ various extrapolation operators (no convergence guarantee).

Our goal: provide a framework for the definition of new widening
operators on convex polyhedra improving upon the precision of the
standard widening.
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COMPUTING THE CONCRETE SEMANTICS

x := 0; b := true;

while (b) do

X := xt+2;

read(b) ;

endwhile
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COMPUTING THE CONCRETE SEMANTICS

x := 0; b := true;
while (b) do
re S e pR)
X := xt+2;

read(b) ;

endwhile

Let 7: p(R) — p(R) be such that

FX)E{0lu{n+2|ne X}
The concrete semantics S is computed
as the least fixpoint of 7 on the com-
plete lattice (p(R), C, o, R, U, N).
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COMPUTING THE CONCRETE SEMANTICS

x := 0; b := true;
while (b) do
re S =2N
X = X+2;

read(b) ;

endwhile

FX) L {0 u{n+2|neX)}
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THE DOMAIN CP,, oOF CLOSED CONVEX POLYHEDRA
A lattice (CP,,, C, @, R", 1, N), with infinite chains.

Constraint Representation: P = con(C)

=» Cis afinite set of linear non-strict inequality (resp., equality) constraints.
=» No redundant constraint + max number of equalities = minimal form.
=» Inequalities orthogonal wrt equalities — orthogonal form.

Generator Representation: P = gen(G)
- G=(L,R,P),where
=» P is a finite set of points of P;
=> R is afinite set of rays (directions of infinity) of P;
=» L is a finite set of lines (bidirectional rays) of P.
=» No redundant generator + max number of lines — minimal form.

=» Points and rays orthogonal wrt lines — orthogonal form.

'HE DOMAIN CP,, OF CLOSED CONVEX POLYHEDRA



APPROXIMATING THE SEMANTICS ON CP,

x := 0; b := true;
while (b) do
ZEEQE(C]P)l
X = x+2;

read(b) ;

endwhile
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APPROXIMATING THE SEMANTICS ON Cpl
Let F!: CPP; — CIP, be such that

x := 0; b := true;
while (b) do
ZE‘EQE(C]P)l
X = x+2;

read(b) ;

endwhile

FHP)

L0y w{n+2|neP}
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APPROXIMATING THE SEMANTICS ON CP,

x := 0; b := true;
while (b) do
$EQE(C]P)1
X = x+2;

read(b) ;

endwhile

Let F!: CPP; — CIP, be such that

L0y w{n+2|neP}

FHP)
Correctness of F? wrt F:

X CP = F(X)CFP).

\PPROXIMATING THE SEMANTICS ON CPP,

7-B



APPROXIMATING THE SEMANTICS ON CP,

x := 0; b := true;
while (b) do
ZEEQECPl
X = x+2;

read(b) ;

endwhile

Let F!: CPP; — CIP, be such that

def

FHP)=E{0w{n+2|neP}

Correctness of F? wrt F:
X CP = F(X)CFP).

The concrete semantics S € R is
approximated by computing a post-
fixpoint Q@ € CP; of the abstract se-
mantic function F*.

\PPROXIMATING THE SEMANTICS ON CPP,
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APPROXIMATING THE SEMANTICS ON CP,

FX)E {0 u{n+2|neXx)}

FP)Ew{n+t2|neP)

X():@; POZQ;

X1 = F(2) ={0}; P = F (@) ={0};

Xy = F(F(@)) = {0, 2}; Py = FHFH(2)) = [0,2];
S = 2N. Q = [0,+00).

\PPROXIMATING THE SEMANTICS ON CPP,



PROBLEMS IN THE APPROXIMATED COMPUTATION

@ The “limit” of the approximated computation may not be representable in
the abstract domain (e.g., a circle is not a polyhedron);
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@ The “limit” of the approximated computation may not be representable in
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@ Reaching a post-fixpoint may still require an infinite number of
computation steps, as was the case in the example we have seen;
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PROBLEMS IN THE APPROXIMATED COMPUTATION

@ The “limit” of the approximated computation may not be representable in
the abstract domain (e.g., a circle is not a polyhedron);

@ Reaching a post-fixpoint may still require an infinite number of
computation steps, as was the case in the example we have seen;

® Even when the computation is intrinsically finite, it may be practically
unfeasible if it requires too many approximated iterations; for instance,

x := 0;
while (x < 1000000) do
x := x+1; y := £(x);

endwhile
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PROBLEMS IN THE APPROXIMATED COMPUTATION

@ The “limit” of the approximated computation may not be representable in
the abstract domain (e.g., a circle is not a polyhedron);

@ Reaching a post-fixpoint may still require an infinite number of
computation steps, as was the case in the example we have seen;

® Even when the computation is intrinsically finite, it may be practically
unfeasible if it requires too many approximated iterations; for instance,

x := 0;
while (x < 1000000) do
x := x+1; y := £(x);

endwhile

Widening operators try to solve all of these problems at once.
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DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP'92):

= Let (L,C, 1,U) be a join-semi-lattice. Then, the operator
V:L x L — Lisawidening on L if
O Ve,yeL:z2Ly — yLxVy;

@ for all increasing chains yo C y; C - - -, the chain defined by

def def . . . .
To = Yo, ..., Tis1 = x; V (i Uyiv1), ... is not strictly increasing.
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DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP'92):

= Let (L,C, 1,U) be a join-semi-lattice. Then, the operator
V:L x L — Lisawidening on L if
O Ve,yeL:z2Ly — yLxVy;
@ for all increasing chains yo C y; C - - -, the chain defined by
def def . . . .
To = Yo, -, Tit1 = i V (i Uyitr1), ... IS not strictly increasing.

=» The upward iteration sequence with widenings (starting from zo = L)

LTi+1 = _
z; V (z; U F*(z;)), otherwise;

converges (to a post-fixpoint of F*) after a finite number of iterations.

JEFINITION OF WIDENING OPERATOR 10-A



THE STANDARD WIDENING V, ON CP,

=>» Initially proposed in Cousot and Halbwachs, POPL78.

=>» Intuitively, P1 Vs P2 is defined by all the non-redundant constraints of P
that are also satisfied by P-.
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THE STANDARD WIDENING V, ON CP,, (Il)

=» Improved in Halbwachs'79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.

'HE STANDARD WIDENING Vs ON CP,, (II)
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THE STANDARD WIDENING V, ON CP,, (Il)

=» Improved in Halbwachs'79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.

P1 Vs P2

P1

Y
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THE STANDARD WIDENING V, ON CP,, (111)

=» The resulting operator is both precise and efficient: this “tentative”
definition has been the one and only available approach for 25 years.
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=» The resulting operator is both precise and efficient: this “tentative”
definition has been the one and only available approach for 25 years.

=» lts precision can be improved (while keeping the convergence
guarantee) by applying
@ the widening delay technique: delay the application of the widening
for a fixed number of iteration steps;
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=» lts precision can be improved (while keeping the convergence
guarantee) by applying
@ the widening delay technique: delay the application of the widening
for a fixed number of iteration steps;
@ the widening ‘up to’ technique: partially recover from rough
approximations that go beyond a fixed set of constraints that are
known to hold for the considered application.
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THE STANDARD WIDENING V, ON CP,, (111)

=» The resulting operator is both precise and efficient: this “tentative”
definition has been the one and only available approach for 25 years.

=» lts precision can be improved (while keeping the convergence
guarantee) by applying

@ the widening delay technique: delay the application of the widening
for a fixed number of iteration steps;

@ the widening ‘up to’ technique: partially recover from rough
approximations that go beyond a fixed set of constraints that are
known to hold for the considered application.

=» For an increasing number of applications, this precision level is not
sufficient. Can we further improve upon the precision of the standard
widening? (Perhaps, trading some efficiency.)

'HE STANDARD WIDENING Vs ON CP,, (Il) 17-C



V-COMPATIBLE LIMITED GROWTH ORDERING

= Let (L,C, 1,U) be ajoin-semi-lattice.
=» A limited growth ordering (Igo) is the strict version of a finitely
computable preorder relation that satisfies the ascending chain

condition on L.
@ preorder: reflexive and transitive;

@ ascending chain condition ~ well-founded;
® computable: we will use it in the implementation.

/-COMPATIBLE LIMITED GROWTH ORDERING
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= Let (L,C, 1,U) be ajoin-semi-lattice.
=» A limited growth ordering (Igo) is the strict version of a finitely
computable preorder relation that satisfies the ascending chain

condition on L.
@ preorder: reflexive and transitive;

@ ascending chain condition ~ well-founded;
® computable: we will use it in the implementation.

=» Let V be a widening on L. AnIgo ~ is V-compatible if

Ve,yeL:xCy — z~xVy.
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V-COMPATIBLE LIMITED GROWTH ORDERING

Let (L,C, L, L) be a join-semi-lattice.
A limited growth ordering (lgo) is the strict version of a finitely
computable preorder relation that satisfies the ascending chain

condition on L.
@ preorder: reflexive and transitive;

@ ascending chain condition ~ well-founded;
® computable: we will use it in the implementation.

=» Let V be a widening on L. AnIgo ~ is V-compatible if

¢ J

Ve,yeL:xCy — z~xVy.

=» A V-compatible Igo formalizes the notion of computable convergence
guarantee for the widening V.

/-COMPATIBLE LIMITED GROWTH ORDERING
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A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING

Suppose that
= V: L x L — L is awidening on the join-semi-lattice (L,C, 1, Ll);
=* ~ C L x Lis a V-compatible Igo;
=*> h: L x L — L is an upper bound operator.

\ FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING
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A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING

Suppose that
= V: L x L — L is awidening on the join-semi-lattice (L,C, 1, Ll);
=* ~ C L x Lis a V-compatible Igo;
=*> h: L x L — L is an upper bound operator.

For all z,y € L such that x C vy, define

= def h(i,y), Ifa;mh(x,y) L :UVy,
xVy, otherwise.
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A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING

Suppose that
= V: L x L — L is awidening on the join-semi-lattice (L,C, 1, Ll);
=* ~ C L x Lis a V-compatible Igo;
=*> h: L x L — L is an upper bound operator.

For all z,y € L such that x C vy, define

= def h(zay)v Ifa;mh(x,y) L a:Vy,
xVy, otherwise.

-» Then V is a widening operator at least as precise as V.

\ FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING 19-B



A FINE-GRAINED LGO ON CP,,

=» Variant of a well-founded preorder defined in Besson et al., SAS99. ltis
obtained as the lexicographic product of five Igo’s.
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A FINE-GRAINED LGO ON CP,,

=» Variant of a well-founded preorder defined in Besson et al., SAS99. ltis
obtained as the lexicographic product of five Igo’s.

= Fori=1,2,letP; =con(C;) = gen(G;) # 2,
where C; is in minimal form and G; = (Li, R;, P;) is in orthogonal form.
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A FINE-GRAINED LGO ON CP,,

=» Variant of a well-founded preorder defined in Besson et al., SAS99. ltis
obtained as the lexicographic product of five Igo’s.
= Fori=1,2,letP; =con(C;) = gen(G;) # 2,

where C; is in minimal form and G; = (Li, R;, P;) is in orthogonal form.
def

® P1 =<a Po #eq(C1) > #eq(Ca);
@ PL =Py £5 #Li <#Lo;

@ Pr=Pr E5  #C1>#Co;

@ Pr=p P2 E5  # P> # P

® P1 =P £ K(R1) Cons h(Ra2).
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A FINE-GRAINED LGO ON CP,,

=» Variant of a well-founded preorder defined in Besson et al., SAS99. ltis

obtained as the lexicographic product of five Igo’s.
= Fori=1,2,letP; =con(C;) = gen(G;) # 2,
where C; is in minimal form and G; = (Li, R;, P;) is in orthogonal form.

® P1 =2q P
@ P1 =2¢ P
® P1 = P
@ P =p P2
® P1 = Po

def

def

def

def
<

def
<

#eq(C1) > #eq(C2);
# L1 < # Lo;

#C1 > #Co;

# P > # Po;

K(R1) Eps k(R2).

-» We denote by ~.,, the strict version of the lexicographic product

P1 =n Po

def

131 :idﬁcpr 732-

\ FINE-GRAINED LGO ON CP,,
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EXAMPLES FOR P; ~,, Py: CASE 1

P1 <a P2

Y

- XAMPLES FOR P1 ., P2: CASE 1
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EXAMPLES FOR P; n,, Py: CASE 2

P1 =g P2 NP1 <p Po

Y

-XAMPLES FOR P1 m,, P2: CASE 2
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EXAMPLES FOR P; ~,, Po: CASE 3

P1 =g Pa AP1 =y Pa NP1 < Po

P2

P1

Y

-XAMPLES FOR P1 ~,, P>: CASE 3



EXAMPLES FOR P; ~,, Py: CASE 4

P1r =g Pa NP1 =¢ Po
NP1 =c P2 NP1 <p P2

Y

-XAMPLES FOR P1 ~,, P2: CASE 4
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EXAMPLES FOR P; ~,, Po: CASE 5

P2

P1

P1 =g Pa ANP1 =y Pa NP1 = Po
NP1 =p P2 NP1 < Po

Y

-XAMPLES FOR P1 ~,, P2: CASE 5



INSTANTIATING THE FRAMEWORK

The key result.

-* ~, Is a Vs-compatible Igo on CP,.
(This is not the case for the ordering defined in Besson et al., SAS99.)
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The key result.
-?* ~., Is a Vs-compatible Igo on CP,,.
(This is not the case for the ordering defined in Besson et al., SAS99.)
=» For any upper bound operator p: CP,, x CP,, — CP,, the framework will

return a proper widening operator on CP,, improving on the standard
widening.
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INSTANTIATING THE FRAMEWORK

The key result.

-?* ~., Is a Vs-compatible Igo on CP,,.

(This is not the case for the ordering defined in Besson et al., SAS99.)
=» For any upper bound operator p: CP,, x CP,, — CP,, the framework will
return a proper widening operator on CP,, improving on the standard

widening.
=*» In our attempt to improve precision, we can consider any finite set of
such heuristic techniques: our new widening will use four upper bounds.

NSTANTIATING THE FRAMEWORK 26-B



1ST HEURISTICS: DO NoT WIDEN

Let 1, be the least upper bound, so that ,,(P;, Ps) = Ps.
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1ST HEURISTICS: DO NoT WIDEN

Let 1, be the least upper bound, so that ,,(P;, Ps) = Ps.
=» Applicable whenever Py ~ Ps.
=» No precision loss: to be tried before all other techniques.
=» Already suggested by Cousot and Cousot, PLILP'92.
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STANDARD WIDENING VS. DO NOT WIDEN (I)

Y

> TANDARD WIDENING VS. DO NOT WIDEN (I)
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STANDARD WIDENING VS. DO NOT WIDEN (II)

P1 Vs P2

Y

> TANDARD WIDENING VS. DO NOT WIDEN (l1)
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STANDARD WIDENING VS. DO NOT WIDEN (I11)

P1 Vs P2

Y

> TANDARD WIDENING VS. DO NOT WIDEN (I11)
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1ST HEURISTICS: DO NoT WIDEN

Let 1, be the least upper bound, so that ;(P1, P2) = Ps.

=» Applicable whenever P; ~ Ps.

=» No precision loss: to be tried before all other techniques.
=>» Already suggested by Cousot and Cousot, PLILP’92.

=>» All the other techniques may safely assume P; /A Ps.
=» Since by hypothesis P; C P2, we can also assume

aff . hull(P1) = aff.hull(P2),
lin.space(P;) = lin.space(Pz).

ST HEURISTICS: Do NoT WIDEN
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2ND HEURISTICS: COMBINING CONSTRAINTS

Let he(P1, P2) & con(Cs) N (P1 Vs P2), where

=» Cvy are the constraints of the standard widening;
. € P;,sat_con(p,ineq(C = J,
Cp = sat_con(p,ineq(Cz)) # &
=» @ is a (deliberately left unspecified) convex combination.

Informally, we ensure that each non-redundant point p € P, that was
lying on a facet of Py will still lie on a facet of h.(P1,Ps).

ND HEURISTICS: COMBINING CONSTRAINTS
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2ND HEURISTICS: COMBINING CONSTRAINTS

Let he(P1, P2) & con(Cs) N (P1 Vs P2), where

=» Cvy are the constraints of the standard widening;
. € P;,sat_con(p,ineq(C = J,
Cp = sat_con(p,ineq(Cz)) # &
=» @ is a (deliberately left unspecified) convex combination.

Informally, we ensure that each non-redundant point p € P, that was
lying on a facet of Py will still lie on a facet of h.(P1,Ps).

=» Besson et al., SAS'99 suggest to average the constraints in C,.

=» Afterall, the choice of & is arbitrary: we opted for a simpler combination.

=» A similar heuristics, with no convergence guarantee, was proposed by
Henzinger et al., CDC’01.

ND HEURISTICS: COMBINING CONSTRAINTS 32-A



STANDARD WIDENING VS. COMBINING CONSTRAINTS (1)

P1

Y
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (l11)

P1 Vs P2

P2

P1

Y

> TANDARD WIDENING VS. COMBINING CONSTRAINTS (l11)



STANDARD WIDENING VS. COMBINING CONSTRAINTS (1V)

P1 Vs Pao

P1

Y
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (V)

P1 Vs Pao

P1

Y
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (VI)

P1 Vs Pao

p P2 q
hc (Pl ) PQ)

> TANDARD WIDENING VS. COMBINING CONSTRAINTS (VI)
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3RD HEURISTICS: EVOLVING POINTS

=> A (slightly simpler) variant of the extrapolation operator ‘<’ defined in
Henzinger and Ho, Hibrid Systems Il, 95.

=>» Also similar to another operator sketched in Besson et al., SAS99.

RD HEURISTICS: EVOLVING POINTS
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3RD HEURISTICS: EVOLVING POINTS

=> A (slightly simpler) variant of the extrapolation operator ‘<’ defined in
Henzinger and Ho, Hibrid Systems Il, 95.

=>» Also similar to another operator sketched in Besson et al., SAS’99.

=» Consider the set of rays

RE {ps—p: | pr€Pi,pre P2\ P}

=» Informally, each point ps € P> \ P1 is seen as an evolution of point

p1 € Pi. By generating the ray p> — p1, we extrapolate this evolution
towards infinity.
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3RD HEURISTICS: EVOLVING POINTS

=> A (slightly simpler) variant of the extrapolation operator ‘<’ defined in
Henzinger and Ho, Hibrid Systems Il, 95.

J

Also similar to another operator sketched in Besson et al., SAS'99.

J

Consider the set of rays

R {p:—p | pr€Pi,pre P2\ P}
=» Informally, each point ps € P> \ P1 is seen as an evolution of point
p1 € Pi. By generating the ray p> — p1, we extrapolate this evolution
towards infinity.
def

=» Thus, let hp('P1,732) = geII((LQ,RQ U R, P2)> M (731 Vs 732).

RD HEURISTICS: EVOLVING POINTS 39-B



STANDARD WIDENING VS. EVOLVING POINTS (1)

Y

5 \7’1/
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STANDARD WIDENING VS. EVOLVING POINTS (ll)

Y

5 \7’1/

> TANDARD WIDENING VS. EVOLVING POINTS (I1)
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STANDARD WIDENING VS. EVOLVING POINTS (111)

\ P1 Vs Pa

Y

P1
0O \/

> TANDARD WIDENING VS. EVOLVING POINTS (111) 42



STANDARD WIDENING VS. EVOLVING POINTS (1V)

D2 7/

> TANDARD WIDENING VS. EVOLVING POINTS (1V)

43



STANDARD WIDENING VS. EVOLVING POINTS (V)

D2 7/

> TANDARD WIDENING VS. EVOLVING POINTS (V)
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STANDARD WIDENING VS. EVOLVING POINTS (VI)

> TANDARD WIDENING VS. EVOLVING POINTS (Vi)
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4TH HEURISTICS: EVOLVING RAYS

=» A brand new widening heuristics.

TH HEURISTICS: EVOLVING RAYS
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4TH HEURISTICS: EVOLVING RAYS

=» A brand new widening heuristics.
=» Define the set of rays

R { evolve(ra,r1) ‘ r1 € Ri,r2 € Ry \ Ry }.

=>» Informally, each ray ro» € R2 \ R1 is seen as an evolution of ray r1 € R;.
We extrapolate this evolution by rotating ray r., stopping as soon as it
touches the boundary of the Cartesian orthant.
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4TH HEURISTICS: EVOLVING RAYS

=» A brand new widening heuristics.
=» Define the set of rays

R { evolve(ra,71) | 71 € R1,72 € Ro \ Ry }.

=>» Informally, each ray ro» € R2 \ R1 is seen as an evolution of ray r1 € R;.
We extrapolate this evolution by rotating ray r., stopping as soon as it

touches the boundary of the Cartesian orthant.
def

=» Thus, let hr<7)1,7)2) = gen(<L2, R>U R, PQ)) M (771 Vs 772).
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4TH HEURISTICS: EVOLVING RAYS

J

A brand new widening heuristics.

J

Define the set of rays
R { evolve(ra,71) | 71 € R1,72 € Ro \ Ry }.

=>» Informally, each ray ro» € R2 \ R1 is seen as an evolution of ray r1 € R;.
We extrapolate this evolution by rotating ray r., stopping as soon as it

touches the boundary of the Cartesian orthant.
def

Thus, let k. (P1,P2) = gen((Lz, R2 U R, P2)) N (P1 Vs P2).

The extrapolation will decrease the total number of non-zero
coordinates of the ray — hopefully satisfying the last case in the
definition of the Igo ~,:

¢ d

P11 < hr(Ph 732).
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STANDARD WIDENING VS. EVOLVING RAYS (1)

P2

SN P —

> TANDARD WIDENING VS. EVOLVING RAYS (1)
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STANDARD WIDENING VS. EVOLVING RAYS (i)

P2

SN P —

> TANDARD WIDENING VS. EVOLVING RAYS (II)
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STANDARD WIDENING VS. EVOLVING RAYS (l11)

P1 Vs P2

P2

0 \ = —

> TANDARD WIDENING VS. EVOLVING RAYS (I11)
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STANDARD WIDENING VS. EVOLVING RAYS (1V)

\ Py

> TANDARD WIDENING VS. EVOLVING RAYS (IV)
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STANDARD WIDENING VS. EVOLVING RAYS (V)

> TANDARD WIDENING VS. EVOLVING RAYS (V)
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STANDARD WIDENING VS. EVOLVING RAYS (Vi)

> TANDARD WIDENING VS. EVOLVING RAYS (V1)
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THE NEwW WIDENING V,,

=» Aninstance of the framework: try the four heuristics in the given order,

eventually falling back to the standard widening.

def

P11V, Py = <

if P1 ~ Po;

if Pr ~ he(P1,P2) C P1 Vs Po;
if P1 ~ hyp(P1,P2) C P1 Vs Po;
if Pr ~ hr(P1,P2) CP1 Vs P2,

otherwise.

'HE NEW WIDENING V,,
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THE NEwW WIDENING V,,

=» An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

Po, it Py~ Pa;
he(P1,P2), P A he(P1,P2) C Pr Vs Pa;
PL Vi Pa L b (P, P), i Pr A hy(Pr, Po) C Pr Vs P
he(P1,Pa), Py A he(Pr,Pa) C Py Vs Pa:
| P1 Vs P2,  otherwise.

=» Uniformly more precise than the standard widening.
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THE NEwW WIDENING V,,

=» An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

(

Pa, if P1 ~ Po;
he(P1,P2), if PL~ he(P1,P2) C P1L Vs Pa;
P1L Vo Pe S { hy(Pr, Pa), i PL A hy(Pr, Pa) C Pi Vs Pos
he(P1,P2), it PL~ he(Pr,P2) C P1 Vs Pa;
| P1 Vs P2,  otherwise.

=» Uniformly more precise than the standard widening.

=» In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.
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PRECISION COMPARISON

Argument size relations for Prolog programs using China + PPL.

Note: carefully chosen widening strategy (Bourdoncle, FMPTA93)
+ widening delay + widening ‘up to'.

’RECISION COMPARISON
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PRECISION COMPARISON

Argument size relations for Prolog programs using China + PPL.

Note: carefully chosen widening strategy (Bourdoncle, FMPTA93)
+ widening delay + widening ‘up to'.

# programs (361) # predicates (23279)

k (delay) || improve | degr | incomp || improve | degr | incomp
0 121 2 1340 3 2

1 34 273 - -

2 29 222 - -

3 28 160 - -

4 25 2 126 2 -

10 25 124 - -
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Argument size relations for Prolog programs using China + PPL.

Total analysis time

Vs KV,

k (delay) all | top 20 all | top 20
0 (| 1.00 0.72 || 1.05 0.77

1] 1.09 0.79 || 1.11 0.80

2 || 1.16 0.83 || 1.18 0.84

3] 1.23 0.88 || 1.25 0.89

4 || 1.32 0.95 || 1.34 0.95

10 || 1.82 1.23 || 1.85 1.24

"FFICIENCY COMPARISON
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-» We have defined a domain independent framework for improving upon
the precision of a fixed widening operator;

=» We have instantiated the framework on the domain of convex polyhedra
improving on the precision of the standard widening;

=» The new widening has been implemented in the PPL and a first
experimental evaluation has yielded promising results.

JURRENT AND FUTURE WORK
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-» We have defined a domain independent framework for improving upon
the precision of a fixed widening operator;

=» We have instantiated the framework on the domain of convex polyhedra
improving on the precision of the standard widening;

=» The new widening has been implemented in the PPL and a first
experimental evaluation has yielded promising results.

=» Widening operators are the corner stone for both the feasibility and

precision of static analyses adopting accurate abstract domains:
@® We have defined (generic) widenings for disjunctive domains, such

as finite sets of polyhedra (see the last planned seminar);
@ Many interesting domains are still missing (non-trivial) widening
operators (e.g., Z-polyhedra).
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