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THE PROBLEM
Ü Hardware is millions of times more powerful than it was 25 years ago;
Ü program sizes have exploded in similar proportions;
Ü large and very large programs (up to tens of millions of lines of code)

are and will be in widespread use;
Ü they need to be designed, developed and maintained over their entire

lifespan (up to 20 and more years) at reasonable costs;
Ü unassisted development and maintenance teams do not stand a chance

to follow such an explosion in size and complexity;
Ü many pieces of software exhibit a number of bugs that is sometimes

hardly bearable even in office applications. . .
Ü . . . no safety critical application can tolerate this failure rate;

Ü the problem of software reliability is one of the most important problems
computer science has to face;

Ü this justifies the growing interest in mechanical tools to help the
programmer reasoning about programs.
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AN EXAMPLE: IS � � � ��� ��� WELL-DEFINED?
Many things may go wrong
Ü � and/or � may be uninitialized;
Ü ��� � may overflow;
Ü � and � may be equal (or ��� � may underflow): division by 0;
Ü � � � ��� ��� may overflow (or underflow).

What can we do about it?
Ü full verification is undecidable;
Ü code review: complex, expensive and with volatile results;
Ü dynamic testing plus debugging: complex, expensive, does not scale

(the cost of testing goes as the square of the program size), but it is
repeatable;

Ü formal methods: complex and expensive but reusable, can be very
thorough, repeatable, scale up to a certain program size then become
unapplicable (we are working to extend that limit).
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FORMAL PROGRAM VERIFICATION METHODS

Purpose
Ü To mechanically prove that all possible program executions are correct

in all specified execution environments. . .
Ü . . . for some definition of correct:

Ü absence of some kinds of run-time errors;
Ü adherence to some partial specification. . .

Several methods
Ü deductive methods;
Ü model checking;
Ü program typing;
Ü static analysis.

Because of the undecidability of program verification
Ü all methods are partial or incomplete;
Ü all resort to some form of approximation.
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ABSTRACT INTERPRETATION
Ü The right framework to work with the concept of sound approximation;
Ü a theory for approximating sets and set operations as considered in set

(or category) theory, including inductive definitions;
Ü a theory of approximation of the behavior of dynamic discrete systems;
Ü Computation takes place on a domain of abstract properties: the

abstract domain. . .
Ü . . . using abstract operations which are sound approximations of the

concrete operations.
Ü Correctness follows by design!
Ü The abstraction (approximation) can be coarse enough to be finitely

computable, yet be precise enough to be practically useful.
Ü Examples: casting out of nines and rule of signs.
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EXAMPLE: THE CONCRETE SEMANTICS

$ %'& ( ) * %'& ( )

+, -. / $ 0 & 1 ( ( 23

(x, y) ∈ S ∈ ℘(R2)

4 /5 2 67 8 )

-9 7 :, /; $ %'& $< =

/ . > / $ %'& $< 1 ) * %'& * < 1 )

/; 2 -9

/; 2 +, -. /

Concrete domain:

〈℘(R2),⊆, ∅, R2,∪,∩〉.

Concrete Semantics:

S
def
= lfpF = Fω(∅).
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EXAMPLE: THE ABSTRACT SEMANTICS

$ %'& ( ) * %'& ( )

+, -. / $ 0 & 1 ( ( 23
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〈CP2,⊆, ∅, R2,],∩〉.
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Abstract Semantics:
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THE (WELL-KNOWN) MORAL OF THE STORY

Semantic construction: language dependent, but (almost)
independent from the specific application and, in particular, from the
considered abstract domain.

Abstract Domain: semantic construction dependent, as far as the set
of supported abstract operators is concerned. For some important
cases (e.g., numerical abstractions) it is almost language and
application independent.

For a better understanding of both theoretical and practical research
issues, the above separation of concerns should be pursued as
much as possible.

This talk is about abstract domains.
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THE DOMAIN CPn OF CLOSED CONVEX POLYHEDRA

A lattice 〈CPn,⊆, ∅, Rn,],∩〉, with infinite chains.

Constraint Representation: P = con(C)

Ü C is a finite set of linear non-strict inequality (resp., equality) constraints.
Ü No redundant constraint + max number of equalities =⇒ minimal form.
Ü Weak notions of canonical form (e.g., by orthogonality).
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THE DOMAIN CPn OF CLOSED CONVEX POLYHEDRA

Generator Representation: P = gen(G)

Ü G = (L, R, P ), where
Ü P is a finite set of points of P ;
Ü R is a finite set of rays (directions of infinity) of P ;
Ü L is a finite set of lines (bidirectional rays) of P .

Ü No redundant generator + max number of lines =⇒ minimal form.
Ü Weak notions of canonical form (e.g., by orthogonality).

gen(G)
def
=







Lλ + Rρ + Pπ ∈ R
n

∣

∣

∣

∣

∣

∣

λ ∈ R`, ρ ∈ Rr
+
,

π ∈ R
p
+,

∑p
i=1

πi = 1






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COMBINATIONS: LINEAR
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q

∃λ1, λ2 ∈ R . x = λ1p + λ2q
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COMBINATIONS: CONIC
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COMBINATIONS: AFFINE
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y
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q

∃λ1, λ2 ∈ R . λ1 + λ2 = 1

∧x = λ1p + λ2q
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COMBINATIONS: CONVEX (CONIC AND AFFINE)
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∃λ1, λ2 ∈ R+ . λ1 + λ2 = 1

∧x = λ1p + λ2q
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EXAMPLE: DOUBLE DESCRIPTION
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2

O x

y















lines: ∅

points: ∅

rays: ∅
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2

O x

y















lines: ∅

points:
{

(4, 1)
}

rays: ∅
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2

O x

y















lines: ∅

points:
{

(4, 1), (1, 4)
}

rays: ∅
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2

O x

y















lines: ∅

points:
{

(4, 1), (1, 4)
}

rays: {(1, 2)}
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EXAMPLE: DOUBLE DESCRIPTION

O x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2

O x

y















lines: ∅

points:
{

(4, 1), (1, 4)
}

rays: {(1, 2), (2, 1)}
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THE DD METHOD BY MOTZKIN ET AL.
The Principle of Duality
Ü Systems of constraints and generators enjoy a duality property.
Ü Very roughly speaking:

Ü the constraints of a polyhedron are (almost) the generators of the
polar of the polyhedron;

Ü the generators of a polyhedron are (almost) the constraints of the
polar of the polyhedron;

=⇒ Computing constraints from generators is the same problem as
computing generators from constraints.

The Algorithm of Motzkin-Chernikova-Le Verge
Ü Solves both problems yielding a minimized DD pair.

But, wait a minute. . .

. . . why keeping two representations for the same object?

THE DD METHOD BY MOTZKIN ET AL. 58



ADVANTAGES OF THE DUAL DESCRIPTION METHOD

Some operations are more efficiently performed on constraints
Ü Intersection is implemented as the union of constraint systems.
Ü Adding constraints (of course).
Ü Relation polyhedron-generator (subsumes or not).

Some operations are more efficiently performed on generators
Ü Convex polyhedral hull (poly-hull): union of generator systems.
Ü Adding generators (of course).
Ü Projection (i.e., removing dimensions).
Ü Relation polyhedron-constraint (disjoint, intersects, includes . . . ).
Ü Finiteness (boundedness) check.
Ü Time-elapse.

Some operations are more efficiently performed with both
Ü Inclusion and equality tests.
Ü Widening.

ADVANTAGES OF THE DUAL DESCRIPTION METHOD 59



EXAMPLE: THE INCLUSION TEST
Ü Let P1 = gen(G1) ∈ CPn and P2 = con(C2) ∈ CPn.
Ü P1 ⊆ P2 iff each generator in G1 satisfies each constraint in C2;

Ü generator g ∈ R
n satisfies constraint 〈a, x〉 ./ b if and only if the

scalar product s
def
= 〈a, g〉 satisfies the following condition:

Constraint type

Generator type = ≥

line s = 0 s = 0

ray s = 0 s ≥ 0

point s = b s ≥ b

EXAMPLE: THE INCLUSION TEST 60



THE PARMA POLYHEDRA LIBRARY
Ü A collaborative project started in January 2001 at the Department of

Mathematics of the University of Parma.
Ü The University of Leeds (UK) is now a major contributor to the library.

Ü It aims at becoming a truly professional library for the handling of a wide
range of numerical abstractions targeted at abstract interpretation and
computer-aided verification.
Ü Currently provides support for (not necessarily closed) convex

polyhedra and finite sets of (NNC) polyhedra.
Ü Free software released under the GNU General Public License.
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PPL FEATURES

Portability across different computing platforms
Ü written in standard C++;
Ü but the the client application needs not be written in C++.

Absence of arbitrary limits
Ü arbitrary precision integer arithmetic for coefficients and coordinates;
Ü all data structures can expand automatically (in amortized constant

time) to any dimension allowed by the available virtual memory.

Complete information hiding
Ü the internal representation of constraints, generators and systems

thereof need not concern the client application;
Ü implementation devices such as the positivity constraint or ε-polyhedra

are invisible from outside.

PPL FEATURES 62



PPL FEATURES: HIDING PAYS

Expressivity
Ü ‘ ? @ AB C @ D EGF H B I ’ and ‘ J K � �L B ? @ C � ’ is valid syntax both for the

C++ and the Prolog interfaces;
Ü we expect the planned Objective Caml, Java and Mercury interfaces to

be as friendly as these;
Ü even the C interface refers to concepts like linear expression, constraint

and constraint system
Ü (not to their possible implementations such as vectors and matrices).

Failure avoidance and detection
Ü illegal objects cannot be created easily;
Ü the interface invariants are systematically checked.

Efficiency
Ü can systematically apply incremental and lazy computation techniques.
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PPL FEATURES: LAZINESS AND INCREMENTALITY

Dual description
Ü we may have a constraint system, a generator system, or both;
Ü in case only one is available, the other is recomputed only when it is

convenient to do so.

Minimization
Ü the constraint (generator) system may or may not be minimized;
Ü it is minimized only when convenient.

Saturation matrices
Ü when both constraints and generators are available, some computations

record here the relation between them for future use.

Sorting matrices
Ü for certain operations, it is advantageous to sort (lazily and

incrementally) the matrices representing constraints and generators.
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PPL FEATURES: SUPPORT FOR ROBUSTNESS
MN O P QN R SUT V � WX YZ Q[ ON Z �\ ] ^ SU_ ` a QN Z b[ \ ] ^ SU_ A c c c� d

[ J � d
b[ K J [ W [ O R V J � R K � W [ O R V WX N J W QN R SUT V � WX YZ Q [ ON Z � e

QN R S T V � WX YZ Q[ ON Z WN Z W S N T �_ V P J K � S _ ` a SU_ A c c c� e

b[ N S W [ O R V J �� e

f
Q K [ Q_ �g � Q V S [ ON Z ^ V� d � � h Y [ N X R V R N J � N J [ O R VN Y [ c c c

i N YZ P OZ j i N � k k ` a k k A e

SU_ ` c b_ J OZ l W k N Y Z P OZ j W k N � � k k `� e

SU_ A c b_ J OZ l W k N Y Z P OZ j W k N � � k k A� e

QN R S T V � WX YZ Q[ ON Z WN Z W k N YZ P OZ j W k N � V b � k k ` a k k A c c c� e

SU_ ` F \ N T �_ V P JN Z � k k `� e

f
f
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(KNOWN) USERS OF THE LIBRARY
Ü VERIMAG, FR (D. Merchat et al., Cartesian factoring)
Ü U. of Réunion, FR (F. Menard et al., cTI)
Ü Carnegie Mellon U., USA (K. Mixter et al., Action Language Verifier and

G. Frehse, Linear Hybrid Automata)
Ü Delft U. of Technology, DK (M. Rhode)
Ü U. of Kent at Canterbury, UK (A. Simon, floating-point computations)
Ü ENS Cachan, FR (E. Fersman, model checking of hybrid systems)
Ü U. of Michigan, USA (H. Song, extending Spin to hybrid contexts)
Ü U. of Wisconsin, USA (D. Gopan et al., extending TVLA)
Ü Standford U., USA (S. Sankaranarayanan et al., StInG)
Ü U. of Cambridge, UK (E. Upton et al., gated data dependence graphs)
Ü U. of Tel Aviv, IL (M. Sagiv et al., string cleanness for C programs)
Ü . . .
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FROM PRACTICE BACK TO THEORY 1: WIDENINGS
À The “limit” of the approximated computation may not be representable in

the abstract domain (e.g., a circle is not a polyhedron);
Á Reaching a post-fixpoint may still require an infinite number of

computation steps;
Â Even when the computation is intrinsically finite, as was the case in the

example we have seen, it may be practically unfeasible if it requires too
many approximated iterations.

Widening operators try to solve all of these problems at once.
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DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP’92):
Ü Let 〈L,v,⊥,t〉 be a join-semi-lattice. Then, the operator

∇ : L × L � L is a widening on L if
À ∀x, y ∈ L : x v y =⇒ y v x ∇ y;
Á for all increasing chains y0 v y1 v · · · , the chain defined by

x0
def
= y0, . . . , xi+1

def
= xi ∇ (xi t yi+1), . . . is not strictly increasing.

Ü The upward iteration sequence with widenings (starting from x0 = ⊥)

xi+1 =

8

<

:

xi, if F](xi) v xi;
xi ∇

`

xi t F](xi)
´

, otherwise;

converges (to a post-fixpoint of F]) after a finite number of iterations.
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∇-COMPATIBLE LIMITED GROWTH ORDERING
Ü Any widening ∇ induces on L a partial order relation v∇ satisfying the

ascending chain condition (ACC); this is the reflexive and transitive
closure of

˘

(x, z) ∈ L × L
˛

˛ ∃y ∈ L . x @ y ∧ z = x ∇ y
¯

.

Ü A limited growth ordering (lgo) is the strict version of a finitely
computable preorder relation that satisfies the ACC on L.

Ü Let ∇ be a widening on L. An lgo y is ∇-compatible if

∀x, y ∈ L : x @ y =⇒ x y x ∇ y.

Ü A ∇-compatible lgo is a finite convergence certificate for ∇.
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∇-COMPATIBLE LIMITED GROWTH ORDERING
Ü Any widening ∇ induces on L a partial order relation v∇ satisfying the

ascending chain condition (ACC); this is the reflexive and transitive
closure of

˘

(x, z) ∈ L × L
˛

˛ ∃y ∈ L . x @ y ∧ z = x ∇ y
¯

.

Ü A limited growth ordering (lgo) is the strict version of a finitely
computable preorder relation that satisfies the ACC on L.

Ü Let ∇ be a widening on L. An lgo y is ∇-compatible if

∀x, y ∈ L : x @ y =⇒ x y x ∇ y.

Ü A ∇-compatible lgo is a finite convergence certificate for ∇.
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A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING

Suppose that
À ∇ : L × L � L is a widening on the join-semi-lattice 〈L,v,⊥,t〉;
Á y ⊆ L × L is a ∇-compatible lgo;
Â h : L × L → L is an upper bound operator.

For all x, y ∈ L such that x v y, define

x ∇̃ y
def
=







h(x, y), if x y h(x, y) @ x ∇ y;
x ∇ y, otherwise.

Ü Then ∇̃ is a widening operator at least as precise as ∇.
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A FRAMEWORK FOR IMPROVING UPON A FIXED WIDENING

Suppose that
À ∇ : L × L � L is a widening on the join-semi-lattice 〈L,v,⊥,t〉;
Á y ⊆ L × L is a ∇-compatible lgo;
Â h : L × L → L is an upper bound operator.

For all x, y ∈ L such that x v y, define

x ∇̃ y
def
=







h(x, y), if x y h(x, y) @ x ∇ y;
x ∇ y, otherwise.

Ü Then ∇̃ is a widening operator at least as precise as ∇.
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A NEW WIDENING FOR CONVEX POLYHEDRA
Ü In [Bagnara et al., SAS’03] we have instantiated the framework on the

domain CPn, improving upon the standard widening.
Ü We have defined a fine-grained, standard widening-compatible lgo and

used four different heuristics: do not widen, combining constraints,
evolving points, evolving rays.

Ü Experiments have shown that the new widening significantly improves
upon the precision of the standard widening.

Ü In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.

Ü Depending on the considered application, efficiency can be degraded.
Several trade-off’s are possible.

A NEW WIDENING FOR CONVEX POLYHEDRA 71



FROM PRACTICE BACK TO THEORY 2: POWERSET DOMAINS
Ü For the purposes of several applications, any convex set approximation

is going to be too coarse. In these cases, the abstract domain should be
enhanced to manipulate irregular geometric shapes.

Ü Often, the disjunction of a small number of convex approximations is
enough to provide the required level of precision.

Ü The finite powerset domain is a generic construction that upgrades an
abstract domain by allowing for the exact representation of finite
disjunctions of its elements.

Ü The PPL offers a generic implementation that can be applied to
polyhedra, bounding boxes, octagons, grids, . . .

Ü . . . together with a specific instance of the construction on the domain of
convex polyhedra.
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Ü For the purposes of several applications, any convex set approximation
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enhanced to manipulate irregular geometric shapes.

Ü Often, the disjunction of a small number of convex approximations is
enough to provide the required level of precision.

Ü The finite powerset domain is a generic construction that upgrades an
abstract domain by allowing for the exact representation of finite
disjunctions of its elements.

Ü The PPL offers a generic implementation that can be applied to
polyhedra, bounding boxes, octagons, grids, . . .

Ü . . . together with a specific instance of the construction on the domain of
convex polyhedra.
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POWERSET DOMAINS
Ü The theory underlying the powerset construction is (more or less)

standard: disjunctive completion was defined in [Cousot and Cousot,
POPL’79].

Ü However, for both theory and practice, really few works have considered
the definition of widening operators on these enhanced domains.

Ü Thus, practical experiences have been confined to more or less
selected contexts (e.g., model checking), where the finite convergence
guarantee may be given up.
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WIDENING POWERSET DOMAINS
Ü In [Bagnara et al., VMCAI’04] we have studied the problem of specifying

a proper widening operator on the powerset domain by lifting a widening
operator defined on the base-level domain.

Ü We have proposed three different approaches:
À one is based on the cardinality of the set of abstract elements;
Á one is based on a connector operator, that has to match each

element in the new set with (at least) one element of the old set;
Â one requires that the base-level widening comes with a finite

convergence certificate.
Ü The PPL offers an implementation of the third, certificate-based

widening for the powerset of convex polyhedra. This is the first widening
operator defined on this domain.
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FROM PRACTICE BACK TO THEORY 3: NNC POLYHEDRA

Strict Inequalities and NNC Polyhedra
Ü If a ∈ R

n, a 6= 0, and b ∈ R, the linear strict inequality constraint
〈a, x〉 > b defines an open affine half-space;

Ü when strict inequalities are allowed in the system of constraints we have
polyhedra that are not necessarily closed: NNC polyhedra.

Encoding NNC Polyhedra as C Polyhedra
Ü call Pn and CPn the sets of all NNC and closed polyhedra, respectively;
Ü each NNC polyhedron P ∈ Pn can be embedded into a closed

polyhedron R ∈ CPn+1:
Ü the additional dimension of the vector space, usually labeled by the

letter ε, encodes the topological closedness of each affine half-space in
the constraint description for P .
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WHAT ARE THE GENERATORS OF NNC POLYHEDRA?
Ü A fundamental feature of the DD method: the ability to represent

polyhedra both by constraints and generators.
Ü Previous works/implementations did not offer a satisfactory answer.
Ü An intuitive generalization was provided in [Bagnara et al., SAS’02],

based on the introduction of a new kind of generators: closure points.
Ü Extended generator systems: G = (L, R, P, C).

gen(G)
def
=







Lλ + Rρ + Pπ + Cγ

∣

∣

∣

∣

∣

∣

λ ∈ R
`, ρ ∈ R

r
+
, π ∈ R

p
+, γ ∈ R

c
+
,

∑p
i=1

πi +
∑c

i=1
γi = 1, π 6= 0






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COMBINATIONS: NNC CONVEX

O x

y

p

c

∃λ1, λ2 ∈ R+ . λ1 + λ2 = 1 ∧ λ1 > 0

∧x = λ1p + λ2c
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EXAMPLE: NNC DOUBLE DESCRIPTION

O x

y















2 ≤ x ≤ 10

2 ≤ y ≤ 10
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EXAMPLE: NNC DOUBLE DESCRIPTION

O x

y















2 ≤ x < 10

2 ≤ y ≤ 10
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EXAMPLE: NNC DOUBLE DESCRIPTION

O x

y















2 ≤ x < 10

2 ≤ y ≤ 10

x + y > 4
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EXAMPLE: NNC DOUBLE DESCRIPTION

O x

y















2 ≤ x < 10

2 ≤ y ≤ 10

x + y > 4

O x

y















lines: ∅ rays: ∅

points:
{

(2, 10)
}

c.p.: ∅
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EXAMPLE: NNC DOUBLE DESCRIPTION

O x

y















2 ≤ x < 10

2 ≤ y ≤ 10

x + y > 4

O x

y















lines: ∅ rays: ∅

points:
{

(2, 10)
}

c.p.:
{

(2, 2)
}
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EXAMPLE: NNC DOUBLE DESCRIPTION

O x

y















2 ≤ x < 10

2 ≤ y ≤ 10

x + y > 4

O x

y















lines: ∅ rays: ∅

points:
{

(2, 10)
}

c.p.:
{

(2, 2), (10, 2)
}
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EXAMPLE: NNC DOUBLE DESCRIPTION

O x

y















2 ≤ x < 10

2 ≤ y ≤ 10

x + y > 4

O x

y















lines: ∅ rays: ∅

points:
{

(2, 10)
}

c.p.:
{

(2, 2), (10, 2), (10, 10)
}
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EXAMPLE: NNC DOUBLE DESCRIPTION

O x

y















2 ≤ x < 10

2 ≤ y ≤ 10

x + y > 4

O x

y















lines: ∅ rays: ∅

points:
{

(2, 10), (6, 2)
}

c.p.:
{

(2, 2), (10, 2), (10, 10)
}
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EXAMPLE: THE INCLUSION TEST FOR NNC POLYHEDRA
Ü Let P1 = gen(G1) ∈ Pn and P2 = con(C2) ∈ Pn.
Ü P1 ⊆ P2 iff each generator in G1 satisfies each constraint in C2.
Ü Generator g ∈ R

n satisfies constraint 〈a, x〉 ./ b if and only if the scalar
product s

def
= 〈a, g〉 satisfies the following condition:

Constraint type

Generator type = ≥ >

line s = 0 s = 0 s = 0

ray s = 0 s ≥ 0 s ≥ 0

point s = b s ≥ b s > b

closure point s = b s ≥ b s ≥ b

EXAMPLE: THE INCLUSION TEST FOR NNC POLYHEDRA 86



NNC IMPLEMENTATION: ε-POLYHEDRA

O x

ε

R1

R2 R3

R4

R5

O x
P2 P3 P4

NNC IMPLEMENTATION: ε-POLYHEDRA 87



NNC IMPLEMENTATION: A MINIMIZATION ISSUE

R1 encodes P1 = con
(

{0 < x < 2}
)

,

R2 encodes P2 = con
(

{2 < x < 3}
)

.

ε ≤ 1

O x

ε

(2,0)

(1,1)

(3,0)

(2.5,0.5)

R1 R2
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NNC IMPLEMENTATION: A MINIMIZATION ISSUE

R1 ]R2 encodes the poly-hull P1 ] P2 = con
(

{0 < x < 3}
)

, but it
also encodes the redundant constraint x < 4.

ε ≤ 1

O x

ε

(2,0)

(1,1)

(3,0)

(2.5,0.5)
R1 ]R2
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NNC IMPLEMENTATION: ε-MINIMAL FORMS!

ε ≤ 1

O x

ε

(2,0)

(1,1)

(3,0)

(2.5,0.5)

NNC IMPLEMENTATION: ε-MINIMAL FORMS! 90



FUTURE PPL FEATURES

Support for special classes of polyhedra
Ü An implementation of bounded differences and octagons.
Ü Work is in progress on a careful implementation of bounding boxes.
Ü Distinctive features are the tight and smooth integration of all the

polyhedra classes and refined widening operators.

Grids and Z-Polyhedra
Ü A new domain of grids is under development; including support for

Ü rational as well as integer values,
Ü directions where values will be unrestrained.

Ü A Z-Polyhedron, which is the intersection of a polyhedron and a grid, will
be added once we have the grid domain in the PPL.

Finite Powersets of the above domains
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CONCLUSION
Ü Convex polyhedra are the basis for several abstractions used in static

analysis and computer-aided verification of complex and sometimes
mission critical systems.

Ü For that purposes an implementation of convex polyhedra must be firmly
based on a clear theoretical framework and written in accordance with
sound software engineering principles.

Ü In this talk we have presented some of the most important ideas that are
behind the Parma Polyhedra Library.

Ü The Parma Polyhedra Library is free software released under the GPL:
code and documentation can be downloaded and its development can
be followed at_ [ [ SUm � �n n n c Q b c YZ O S J c O [ � S SUT � .
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