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@ the widening ‘up to’ technique (Halbwachs, CAV’93);
@ various extrapolation operators (no convergence guarantee).

MOTIVATIONS

2-C



MOTIVATIONS

Linear Relation Analysis is a key component of many static analysis and
(semi-) automatic verification tools.

Since it has infinite chains, the domain of convex polyhedra has to be
provided with precise widening operators.

The standard widening (Cousot and Halbwachs, POPL78) is the one
and only champion: since then, no challanger has been proposed.
But some applications need more precision. Solutions include:

@ the widening delay technique (Cousot, '81);

@ the widening ‘up to’ technique (Halbwachs, CAV’93);

@ various extrapolation operators (no convergence guarantee).

Our goal: provide a framework for the definition of new widening
operators on convex polyhedra improving upon the precision of the
standard widening.

MOTIVATIONS
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As stated in Cousot and Cousot, J. of Logic and Computation, '92:

@ Upper bound selection for abstract domains that are algebraically weak.
@ Provide the convergence guarantee for upward iteration sequences, i.e.,
ensuring convergence in a finite number of steps.

® For both infinite as well as finite abstract domains, speed up the
convergence of upward iteration sequences.
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DIFFERENT GOALS FOR WIDENING OPERATORS

As stated in Cousot and Cousot, J. of Logic and Computation, '92:

@ Upper bound selection for abstract domains that are algebraically weak.
@ Provide the convergence guarantee for upward iteration sequences, i.e.,
ensuring convergence in a finite number of steps.

® For both infinite as well as finite abstract domains, speed up the
convergence of upward iteration sequences.

2

Real widenings do provide a convergence guarantee.
Operators not doing so are better called extrapolation operators.

J
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DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP'92):

=» The operator V: L x L — L is a widening if
O Ve,yeL:xCy —= yCxzVy;

@ for all increasing chains yo C y1 C - - -, the increasing chain defined

def def . . . .
by 20 = vo, ..., Tit1 = =i V yir1, ... IS not strictly increasing.
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=» The operator V: L x L — L is a widening if
OVe,yeL:x Ly —yLaVy;
@ for all increasing chains yo C y1 C - - -, the increasing chain defined
def def . . . .
by zo = wo, ..., Tit1 = x; V yit1, ... IS NoOt strictly increasing.

=» The upward iteration sequence with widenings (starting from zo € L)

LTi+1 = .
x; V (QUZ-I_I]-"(:I:Z-)), otherwise;

converges after a finite number of iterations.
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DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP'92):

=» The operator V: L x L — L is a widening if
OVe,yeL:x Ly —yLaVy;
@ for all increasing chains yo C y; C - - -, the increasing chain defined
def def . . . .
by zo = wo, ..., Tit1 = x; V yit1, ... IS NoOt strictly increasing.

=» The upward iteration sequence with widenings (starting from zo € L)

LTi+1 = .
x; V (QUZ-I_I]-"(:I:Z-)), otherwise;

converges after a finite number of iterations.
=» Note: V always applied to arguments x = x; and y = x; U F(x;)
satisfying z C y and x # .

DEFINITION OF WIDENING OPERATOR
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THE DomAIN CP,, OF CLOSED CONVEX POLYHEDRA

A lattice with respect to subset inclusion, with infinite chains.
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A lattice with respect to subset inclusion, with infinite chains.

Constraint Representation: P = con(C)

=» Cis a finite set of linear non-strict inequality (resp., equality) constraints.
=» No redundant constraint + max number of equalities = minimal form.

=» Inequalities orthogonal wrt equalities — orthogonal form.
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A lattice with respect to subset inclusion, with infinite chains.

Constraint Representation: P = con(C)

=» Cis a finite set of linear non-strict inequality (resp., equality) constraints.
=» No redundant constraint + max number of equalities = minimal form.

=» Inequalities orthogonal wrt equalities — orthogonal form.

Generator Representation: P = gen(G)
= G=(L,R,P), where
=» P is afinite set of points of P;
=> R is afinite set of rays (directions of infinity) of P;
=» L is a finite set of lines (bidirectional rays) of P.
=» No redundant generator + max number of lines — minimal form.

=» Points and rays orthogonal wrt lines = orthogonal form.

THE DOMAIN CP,, OF CLOSED CONVEX POLYHEDRA
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THE STANDARD WIDENING V

=» Initially proposed in Cousot and Halbwachs, POPL78.

=> Intuitively, P1 V P2 is defined by all the constraints of P1 = con(C;) that
are also satisfied by P-.
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=» Improved in Halbwachs’79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.
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Intuitively, P1 V P is defined by all the constraints of P1 = con(C1) that
are also satisfied by P-.

=» Improved in Halbwachs’79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.

=» The resulting operator is both precise and efficient: this “fentative”
definition has been the one and only available approach for 25 years.
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THE STANDARD WIDENING V

Initially proposed in Cousot and Halbwachs, POPL78.

Intuitively, P1 V P is defined by all the constraints of P1 = con(C1) that

are also satisfied by P-.

=» Improved in Halbwachs’79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.

=» The resulting operator is both precise and efficient: this “fentative”
definition has been the one and only available approach for 25 years.

=» Can we improve its precision? (Perhaps, trading some efficiency.)

¢ J
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=» Variant of a well-founded ordering defined in Besson et al., SAS99.
= Fori=1, 2, let P; = con(C;) = gen(G;),

where C; is in minimal form and G; = (L;, R;, P;) is in orthogonal form;
=» the relation P; ~ P2 holds if and only if P; C P> and

at least one of the following conditions holds:
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=» Variant of a well-founded ordering defined in Besson et al., SAS99.
= Fori=1, 2, let P; = con(C;) = gen(G;),

where C; is in minimal form and G; = (L;, R;, P;) is in orthogonal form;
=» the relation P; ~ P2 holds if and only if P; C P> and

at least one of the following conditions holds:

® dim(P;) < dim(P2);

@ dim(lin.space(P1)) < dim(lin.space(Ps2));

® #C1 > #Co;

@ #C1 = #CoNF#H P > # P,

® #Ci=H#HCoNANH#H P =#P, Nk(R1) > k(R2).
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THE LIMITED GROWTH ORDERING RELATION

=» Variant of a well-founded ordering defined in Besson et al., SAS99.
= Fori=1,2,let P; = con(C;) = gen(G;),

where C; is in minimal form and G; = (L;, R;, P;) is in orthogonal form;
=» the relation P; ~ P2 holds if and only if P; C P> and

at least one of the following conditions holds:

® dim(P;) < dim(P2);

@ dim(lin.space(P1)) < dim(lin.space(Ps2));

® #C1 > #Co;

@ #C1 = #CoNF#H P > # P,

® #Ci=H#HCoNANH#H P =#P, Nk(R1) > k(R2).
=» Relation ~ satisfies the ascending chain condition on CP,,.

THE LIMITED GROWTH ORDERING RELATION
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EXAMPLES FOR P; ~ Py: CASE 1

dim(P1) < dim(P2)

P1

P2
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EXAMPLES FOR P; ~ Py: CASE 2

dim (lin.space(P1)) < dim(lin.space(P2))
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EXAMPLES FOR P; ~ P,: CASE 3

#C1 > #Co

Y

EXAMPLES FOR P1 ~ Po: CASE 3
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EXAMPLES FOR P; ~ P,: CASE 4

#Cr=#CoN#P1 > # P>

P1 P2

Y

EXAMPLES FOR P1 ~ Ps: CASE 4
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EXAMPLES FOR P; ~ P,: CASE 5

P1

H#Ci|l=#HC2oANH# P1 =# Po ANk(R1) > k(R2)

>
o

EXAMPLES FOR P1 ~ Po: CASE 5
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A FRAMEWORK FOR DEFINING NEwW WIDENINGS

The key results.

=» The standard widening satisfies P1 ~ P1 V Po.
(This is not the case for the ordering defined in Besson et al., SAS99.)
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=» The standard widening satisfies P1 ~ P1 V Po.
(This is not the case for the ordering defined in Besson et al., SAS99.)

=» For any upper bound operator j: CP,, x CP,, — CP,,, define
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P11V Py, otherwise.
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A FRAMEWORK FOR DEFINING NEwW WIDENINGS

The key results.

=» The standard widening satisfies P1 ~ P1 V Po.
(This is not the case for the ordering defined in Besson et al., SAS99.)

=» For any upper bound operator j: CP,, x CP,, — CP,,, define

P, @7% def h(P1,P2), if Pr~ h(P1,P2) CP1V Poj
P11V Py, otherwise.

Then:
® V is a widening operator;
@ V is at least as precise as the standard widening.
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1ST HEURISTICS: DO NoT WIDEN

Let 4 be the least upper bound, so that 1(P1,Ps) = Ps.

1ST HEURISTICS: DO NOoT WIDEN

14



1ST HEURISTICS: DO NoT WIDEN

Let 4 be the least upper bound, so that 1(P1,Ps) = Ps.
=» Applicable whenever P; ~ Ps.
=» No precision loss: to be tried before all other techniques.
=» Already suggested by Cousot and Cousot, PLILP'92.
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1ST HEURISTICS: DO NoT WIDEN

Let 4 be the least upper bound, so that 1(P1,Ps) = Ps.
=» Applicable whenever P; ~ Ps.
=» No precision loss: to be tried before all other techniques.
=» Already suggested by Cousot and Cousot, PLILP'92.
=>» All the other techniques may safely assume P; A Ps.
=» Since by hypothesis P; C P2, we can also assume

aff . hull(P1) = aff.hull(P2),
lin.space(P;) = lin.space(P2).
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2ND HEURISTICS: COMBINING CONSTRAINTS

Let he(P1, Po) 2 con(Cy) N (P1 V Ps), where

=» Cv are the constraints of the standard widening;
. € P1,sat_con(p,ineq(C =0,
50 ) aey |PE T (p, ineq(Cv)) |
Cp = sat_con(p, ineq(Cg)) + O
=» @ is a (deliberately left unspecified) convex combination.

Informally, we ensure that each non-redundant point p € P, that was
lying on a facet of Py will still lie on a facet of h.(P1,P>).
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2ND HEURISTICS: COMBINING CONSTRAINTS

Let he(P1, Po) 2 con(Cy) N (P1 V Ps), where

=» Cv are the constraints of the standard widening;
. € P;,sat_con(p,ineq(C =0,
50 ) aey |PE T (p, ineq(Cv)) |
Cp = sat_con(p, ineq(Cg)) + O
=» @ is a (deliberately left unspecified) convex combination.

Informally, we ensure that each non-redundant point p € P, that was
lying on a facet of Py will still lie on a facet of h.(P1,P>).
=» Besson et al., SAS'99 suggest to average the constraints in C,.
=» Afterall, the choice of ¢ is arbitrary: we opted for a simpler combination.
=» A similar heuristics, with no convergence guarantee, was proposed by
Henzinger et al., CDC’01.

2ND HEURISTICS: COMBINING CONSTRAINTS 15-A



STANDARD WIDENING VS. COMBINING CONSTRAINTS (1)

Y
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (llI)

P11V P2

Y

STANDARD WIDENING VS. COMBINING CONSTRAINTS (I11)
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (1V)

P11V Pa

Y

STANDARD WIDENING VS. COMBINING CONSTRAINTS (1V)
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (V)

P11V Pa

Y

STANDARD WIDENING VS. COMBINING CONSTRAINTS (V)
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (VI)

P11V Pa

hc (Pl ) P2)
P1

STANDARD WIDENING VS. COMBINING CONSTRAINTS (VI)



3RD HEURISTICS: EVOLVING POINTS

=> A (slightly simpler) variant of the extrapolation operator ‘o<’ defined in
Henzinger and Ho, Hibrid Systems I, 95.

=» Also similar to another operator sketched in Besson et al., SAS99.
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3RD HEURISTICS: EVOLVING POINTS

=>» A (slightly simpler) variant of the extrapolation operator ‘o’ defined in
Henzinger and Ho, Hibrid Systems I, 95.

=» Also similar to another operator sketched in Besson et al., SAS99.
=» Consider the set of rays

RE {ps—p: |prePi,p2e P2\ P

=>» Informally, each point p» € P> \ P: is seen as an evolution of point
p1 € P1. By generating the ray p> — p1, we extrapolate this evolution
towards infinity.
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3RD HEURISTICS: EVOLVING POINTS

=>» A (slightly simpler) variant of the extrapolation operator ‘o’ defined in
Henzinger and Ho, Hibrid Systems I, 95.

2

Also similar to another operator sketched in Besson et al., SAS'99.

J

Consider the set of rays

RE {ps—p: |prePi,p2e P2\ P
=>» Informally, each point p» € P> \ P: is seen as an evolution of point
p1 € P1. By generating the ray p> — p1, we extrapolate this evolution
towards infinity.
def

=» Thus, let hp(Pth) = gen((LQ,RQ U R, PQ)) M (7)1 V Pz).

3RD HEURISTICS: EVOLVING POINTS 22-B



STANDARD WIDENING VS. EVOLVING POINTS (1)

Y

0 \731/

STANDARD WIDENING VS. EVOLVING POINTS (1)
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STANDARD WIDENING VS. EVOLVING POINTS (i)

Y

0 \731/

STANDARD WIDENING VS. EVOLVING POINTS (I1)
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STANDARD WIDENING VS. EVOLVING POINTS (l11)

N PiVP

Y

0 \731/

STANDARD WIDENING VS. EVOLVING POINTS (I11)
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STANDARD WIDENING VS. EVOLVING POINTS (1V)

D2 /7
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STANDARD WIDENING VS. EVOLVING POINTS (V)

D2 /7

STANDARD WIDENING VS. EVOLVING POINTS (V)
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STANDARD WIDENING VS. EVOLVING POINTS (V1)

STANDARD WIDENING VS. EVOLVING POINTS (VI)
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4TH HEURISTICS: EVOLVING RAYS

=» A brand new widening heuristics.
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4TH HEURISTICS: EVOLVING RAYS

=» A brand new widening heuristics.
=» Define the set of rays

def

R = {evolve(frg,frl) ’ r1 € Rl,’rz - RQ\Rl }

=» Informally, each ray ro» € R2 \ R: is seen as an evolution of ray r1 € R;.
We extrapolate this evolution by rotating ray r -, stopping as soon as it
fouches the boundary of the Cartesian orthant.
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4TH HEURISTICS: EVOLVING RAYS

=» A brand new widening heuristics.
=» Define the set of rays

R {evolve(ra,71) | 71 € Ri,72 € Ro \ Ry }.
=» Informally, each ray ro» € R2 \ R: is seen as an evolution of ray r1 € R;.

We extrapolate this evolution by rotating ray r -, stopping as soon as it

fouches the boundary of the Cartesian orthant.
def

=»> Thus, let hr(Pl,PQ) = gen((Lg, R UR, P2>) M (731 V PQ).
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4TH HEURISTICS: EVOLVING RAYS

J

A brand new widening heuristics.

2

Define the set of rays

R {evolve(ra,71) | 71 € Ri,72 € Ro \ Ry }.
=» Informally, each ray ro» € R2 \ R: is seen as an evolution of ray r1 € R;.
We extrapolate this evolution by rotating ray r -, stopping as soon as it

fouches the boundary of the Cartesian orthant.
def

Thus, let h,.(P1, P2) = gen((Lz2, R2 U R, P2)) N (P1 V P2).

The extrapolation will decrease the total number of non-zero
coordinates of the ray — hopefully satisfying the last case in the
definition of the limited growth ordering ~:

¢ J

HC1=HCoNHPL =4 P> N\ K(Rl) > KL(RQ).
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STANDARD WIDENING VS. EVOLVING RAYS (I)

P2

0 \ F —

STANDARD WIDENING VS. EVOLVING RAYS (1)
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STANDARD WIDENING VS. EVOLVING RAYS (II)

P2

ol \L F _)

STANDARD WIDENING VS. EVOLVING RAYS (11)
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STANDARD WIDENING VS. EVOLVING RAYS (II)

P11V Pa

P2

o\ m _)

STANDARD WIDENING VS. EVOLVING RAYS (111)
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STANDARD WIDENING VS. EVOLVING RAYS (1V)

AN P-

STANDARD WIDENING VS. EVOLVING RAYS (1V)

33



STANDARD WIDENING VS. EVOLVING RAYS (V)

STANDARD WIDENING VS. EVOLVING RAYS (V)
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STANDARD WIDENING VS. EVOLVING RAYS (Vi)

STANDARD WIDENING VS. EVOLVING RAYS (VI)
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THE NEW WIDENING V

=» An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

Pa, if P1 ~ Po;

he(P1,P2), if PL~ he(P1,P2) C PLV Po;
PV P2 E L hy(Pr, Pa), P~ hy(Pi,P2) C Py V P
hr(P1,P2), it Pt~ he(P1,P2) CP1V Po
| P11V Ps, otherwise.

THE NEW WIDENING V



THE NEW WIDENING V

=» An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

Pa, if P1 ~ Po;

he(P1,P2), if PL~ he(P1,P2) C PLV Po;
PV P2 E L hy(Pr, Pa), P~ hy(Pi,P2) C Py V P
hr(P1,P2), it Pt~ he(P1,P2) CP1V Po
| P11V Ps, otherwise.

=*» Uniformly more precise than the standard widening.
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THE NEW WIDENING V

=» An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

p

Pa, if P1 ~ Pa;
he(P1,P2), it P1 A he(Pr,Pa) CPLV Po:
PV P2 E L hy(Pr, Pa), P~ hy(Pi,P2) C Py V P
he(P1,Ps), ifP1 A he(Pr,P2) CPLYV Po;

| P11V Ps, otherwise.

=» Uniformly more precise than the standard widening.

=» In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.

THE NEW WIDENING V 36-B



PRECISION COMPARISON

Argument size relations for Prolog programs using China + PPL.

Note: carefully chosen widening strategy (Bourdoncle, FMPTA'93)
+ widening delay + widening ‘up to'.
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PRECISION COMPARISON

Argument size relations for Prolog programs using China + PPL.

Note: carefully chosen widening strategy (Bourdoncle, FMPTA'93)
+ widening delay + widening ‘up to'.

# programs (361) # predicates (23279)

k (delay) || improve | degr | incomp || improve | degr | incomp
0 121 . 2 1340 3 2

1 34 - - 273 - -

2 29 - - 222 - -

3 28 - - 160 - i}

4 25 - 2 126 2 -

10 25 - - 124 - -
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Argument size relations for Prolog programs using China + PPL.

Total analysis time

std Vs new Vi

k (delay) all top 20 all | top 20
0 (| 1.00 0.72 || 1.05 0.77

1 1.09 0.79 || 1.11 0.80

2 || 1.16 0.83 || 1.18 0.84

3 || 1.23 0.88 || 1.25 0.89

4 || 1.32 0.95 || 1.34 0.95

10 || 1.82 1.23 || 1.85 1.24

EFFICIENCY COMPARISON
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CONCLUSION

=» We have defined a framework for the systematic specification of new
widening operators:

CONCLUSION
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=» the framework allows any extrapolation operator on the domain of
convex polyhedra to be transformed to a widening operator;
-» the framework ensures that these new widenings improve on the
precision of the standard widening.

=» We have instantiated the framework with extrapolation operators:
=» do nothing, combining constraints, evolving points, evolving rays.
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CONCLUSION

=» We have defined a framework for the systematic specification of new
widening operators:
=» the framework allows any extrapolation operator on the domain of
convex polyhedra to be transformed to a widening operator;
=» the framework ensures that these new widenings improve on the
precision of the standard widening.
=» We have instantiated the framework with extrapolation operators:
=» do nothing, combining constraints, evolving points, evolving rays.
=» This instantiated framework has been implemented in the Parma
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widening operators:
=» the framework allows any extrapolation operator on the domain of
convex polyhedra to be transformed to a widening operator;
=» the framework ensures that these new widenings improve on the
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The PPL is free software: everything is available at

http://www.cs.unipr.it/ppl/
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