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MOTIVATIONS

Ü Linear Relation Analysis is a key component of many static analysis and
(semi-) automatic verification tools.

Ü Since it has infinite chains, the domain of convex polyhedra has to be
provided with precise widening operators.

Ü The standard widening (Cousot and Halbwachs, POPL’78) is the one
and only champion: since then, no challanger has been proposed.

Ü But some applications need more precision. Solutions include:
À the widening delay technique (Cousot, ’81);
Á the widening ‘up to’ technique (Halbwachs, CAV’93);
Â various extrapolation operators (no convergence guarantee).

Ü Our goal: provide a framework for the definition of new widening
operators on convex polyhedra improving upon the precision of the
standard widening.
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DIFFERENT GOALS FOR WIDENING OPERATORS

As stated in Cousot and Cousot, J. of Logic and Computation, ’92:

À Upper bound selection for abstract domains that are algebraically weak.

Á Provide the convergence guarantee for upward iteration sequences, i.e.,
ensuring convergence in a finite number of steps.

Â For both infinite as well as finite abstract domains, speed up the
convergence of upward iteration sequences.

Ü Real widenings do provide a convergence guarantee.

Ü Operators not doing so are better called extrapolation operators.
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DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP’92):
Ü The operator ∇ : L × L � L is a widening if

À ∀x, y ∈ L : x v y =⇒ y v x ∇ y;
Á for all increasing chains y0 v y1 v · · · , the increasing chain defined

by x0
def
= y0, . . . , xi+1

def
= xi ∇ yi+1, . . . is not strictly increasing.

Ü The upward iteration sequence with widenings (starting from x0 ∈ L)

xi+1 =







xi, if F(xi) v xi;

xi ∇
(

xitF(xi)
)

, otherwise;

converges after a finite number of iterations.

Ü Note: ∇ always applied to arguments x = xi and y = xi t F(xi)

satisfying x v y and x 6= y.

DEFINITION OF WIDENING OPERATOR 4



DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP’92):
Ü The operator ∇ : L × L � L is a widening if

À ∀x, y ∈ L : x v y =⇒ y v x ∇ y;
Á for all increasing chains y0 v y1 v · · · , the increasing chain defined

by x0
def
= y0, . . . , xi+1

def
= xi ∇ yi+1, . . . is not strictly increasing.

Ü The upward iteration sequence with widenings (starting from x0 ∈ L)

xi+1 =







xi, if F(xi) v xi;

xi ∇
(

xitF(xi)
)

, otherwise;

converges after a finite number of iterations.

Ü Note: ∇ always applied to arguments x = xi and y = xi t F(xi)

satisfying x v y and x 6= y.

DEFINITION OF WIDENING OPERATOR 4-A



DEFINITION OF WIDENING OPERATOR

A variant of the classical one (see Cousot and Cousot, PLILP’92):
Ü The operator ∇ : L × L � L is a widening if

À ∀x, y ∈ L : x v y =⇒ y v x ∇ y;
Á for all increasing chains y0 v y1 v · · · , the increasing chain defined

by x0
def
= y0, . . . , xi+1

def
= xi ∇ yi+1, . . . is not strictly increasing.

Ü The upward iteration sequence with widenings (starting from x0 ∈ L)

xi+1 =







xi, if F(xi) v xi;

xi ∇
(

xitF(xi)
)

, otherwise;

converges after a finite number of iterations.

Ü Note: ∇ always applied to arguments x = xi and y = xi t F(xi)

satisfying x v y and x 6= y.

DEFINITION OF WIDENING OPERATOR 4-B



THE DOMAIN CPn OF CLOSED CONVEX POLYHEDRA

A lattice with respect to subset inclusion, with infinite chains.

Constraint Representation: P = con(C)

Ü C is a finite set of linear non-strict inequality (resp., equality) constraints.

Ü No redundant constraint + max number of equalities =⇒ minimal form.

Ü Inequalities orthogonal wrt equalities =⇒ orthogonal form.

Generator Representation: P = gen(G)

Ü G = (L, R, P ), where
Ü P is a finite set of points of P ;
Ü R is a finite set of rays (directions of infinity) of P ;
Ü L is a finite set of lines (bidirectional rays) of P .

Ü No redundant generator + max number of lines =⇒ minimal form.

Ü Points and rays orthogonal wrt lines =⇒ orthogonal form.
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THE STANDARD WIDENING ∇

Ü Initially proposed in Cousot and Halbwachs, POPL’78.

Ü Intuitively, P1 ∇P2 is defined by all the constraints of P1 = con(C1) that
are also satisfied by P2.

Ü Improved in Halbwachs’79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.

Ü The resulting operator is both precise and efficient: this “tentative”
definition has been the one and only available approach for 25 years.

Ü Can we improve its precision? (Perhaps, trading some efficiency.)

THE STANDARD WIDENING ∇ 6



THE STANDARD WIDENING ∇

Ü Initially proposed in Cousot and Halbwachs, POPL’78.

Ü Intuitively, P1 ∇P2 is defined by all the constraints of P1 = con(C1) that
are also satisfied by P2.

Ü Improved in Halbwachs’79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.

Ü The resulting operator is both precise and efficient: this “tentative”
definition has been the one and only available approach for 25 years.

Ü Can we improve its precision? (Perhaps, trading some efficiency.)

THE STANDARD WIDENING ∇ 6-A



THE STANDARD WIDENING ∇

Ü Initially proposed in Cousot and Halbwachs, POPL’78.

Ü Intuitively, P1 ∇P2 is defined by all the constraints of P1 = con(C1) that
are also satisfied by P2.

Ü Improved in Halbwachs’79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.

Ü The resulting operator is both precise and efficient: this “tentative”
definition has been the one and only available approach for 25 years.

Ü Can we improve its precision? (Perhaps, trading some efficiency.)

THE STANDARD WIDENING ∇ 6-B



THE STANDARD WIDENING ∇

Ü Initially proposed in Cousot and Halbwachs, POPL’78.

Ü Intuitively, P1 ∇P2 is defined by all the constraints of P1 = con(C1) that
are also satisfied by P2.

Ü Improved in Halbwachs’79 (the PhD thesis), so that it does not depend
on the chosen constraint representations.

Ü The resulting operator is both precise and efficient: this “tentative”
definition has been the one and only available approach for 25 years.

Ü Can we improve its precision? (Perhaps, trading some efficiency.)

THE STANDARD WIDENING ∇ 6-C



THE LIMITED GROWTH ORDERING RELATION

Ü Variant of a well-founded ordering defined in Besson et al., SAS’99.

Ü For i = 1, 2, let Pi = con(Ci) = gen(Gi),
where Ci is in minimal form and Gi = (Li, Ri, Pi) is in orthogonal form;

Ü the relation P1 y P2 holds if and only if P1 ⊂ P2 and
at least one of the following conditions holds:
À dim(P1) < dim(P2);
Á dim

(

lin.space(P1)
)

< dim
(

lin.space(P2)
)

;
Â # C1 > # C2;
Ã # C1 = # C2∧#P1 > #P2;
Ä # C1 = # C2 ∧ # P1 = # P2 ∧ κ(R1) � κ(R2).

Ü Relation y satisfies the ascending chain condition on CPn.
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EXAMPLES FOR P1 y P2: CASE 1

O

P2

P1

dim(P1) < dim(P2)
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EXAMPLES FOR P1 y P2: CASE 2
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EXAMPLES FOR P1 y P2: CASE 3

O

P2

P1

# C1 > # C2
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EXAMPLES FOR P1 y P2: CASE 4

O

P1 P2

# C1 = # C2 ∧ # P1 > # P2
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EXAMPLES FOR P1 y P2: CASE 5

O

P2

P1

# C1 = # C2 ∧ # P1 = # P2 ∧ κ(R1) � κ(R2)

EXAMPLES FOR P1 y P2 : CASE 5 12



A FRAMEWORK FOR DEFINING NEW WIDENINGS

The key results.
Ü The standard widening satisfies P1 y P1 ∇P2.

(This is not the case for the ordering defined in Besson et al., SAS’99.)

Ü For any upper bound operator h : CPn × CPn → CPn, define

P1 ∇̃ P2
def
=







h(P1,P2), if P1 y h(P1,P2) ⊂ P1 ∇P2;

P1 ∇P2, otherwise.

Then:
À ∇̃ is a widening operator;
Á ∇̃ is at least as precise as the standard widening.
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1ST HEURISTICS: DO NOT WIDEN

Let h be the least upper bound, so that h(P1,P2) = P2.

Ü Applicable whenever P1 y P2.

Ü No precision loss: to be tried before all other techniques.

Ü Already suggested by Cousot and Cousot, PLILP’92.

Ü All the other techniques may safely assume P1 6y P2.

Ü Since by hypothesis P1 ⊂ P2, we can also assume

aff.hull(P1) = aff.hull(P2),

lin.space(P1) = lin.space(P2).
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2ND HEURISTICS: COMBINING CONSTRAINTS

Let hc(P1,P2)
def
= con(C⊕) ∩ (P1 ∇P2), where

Ü C∇ are the constraints of the standard widening;

Ü C⊕
def
=







⊕(Cp)

∣

∣

∣

∣

∣

∣

p ∈ P1, sat_con
(

p, ineq(C∇)
)

= ∅,

Cp = sat_con
(

p, ineq(C2)
)

6= ∅







.

Ü ⊕ is a (deliberately left unspecified) convex combination.

Informally, we ensure that each non-redundant point p ∈ P1 that was
lying on a facet of P2 will still lie on a facet of hc(P1,P2).

Ü Besson et al., SAS’99 suggest to average the constraints in Cp.

Ü Afterall, the choice of ⊕ is arbitrary: we opted for a simpler combination.

Ü A similar heuristics, with no convergence guarantee, was proposed by
Henzinger et al., CDC’01.
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (I)

O

P2

P1
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (II)

O
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (III)

P1 ∇ P2

O

P2

P1

STANDARD WIDENING VS. COMBINING CONSTRAINTS (III) 18



STANDARD WIDENING VS. COMBINING CONSTRAINTS (IV)

O

P1

P2p q

P1 ∇ P2
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STANDARD WIDENING VS. COMBINING CONSTRAINTS (V)

O

P1

P2p q

P1 ∇ P2

STANDARD WIDENING VS. COMBINING CONSTRAINTS (V) 20



STANDARD WIDENING VS. COMBINING CONSTRAINTS (VI)

O

hc(P1,P2)

P1

P2

P1 ∇ P2

p q
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3RD HEURISTICS: EVOLVING POINTS

Ü A (slightly simpler) variant of the extrapolation operator ‘∝’ defined in
Henzinger and Ho, Hibrid Systems II, 95.

Ü Also similar to another operator sketched in Besson et al., SAS’99.

Ü Consider the set of rays

R
def
=

{

p2 − p1

∣

∣ p1 ∈ P1, p2 ∈ P2 \ P1

}

.

Ü Informally, each point p2 ∈ P2 \ P1 is seen as an evolution of point
p1 ∈ P1. By generating the ray p2 − p1, we extrapolate this evolution
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4TH HEURISTICS: EVOLVING RAYS

Ü A brand new widening heuristics.

Ü Define the set of rays

R
def
=

{

evolve(r2, r1)
∣

∣ r1 ∈ R1, r2 ∈ R2 \ R1

}

.

Ü Informally, each ray r2 ∈ R2 \ R1 is seen as an evolution of ray r1 ∈ R1.
We extrapolate this evolution by rotating ray r2, stopping as soon as it
touches the boundary of the Cartesian orthant.

Ü Thus, let hr(P1,P2)
def
= gen

(

(L2, R2 ∪ R, P2)
)

∩ (P1 ∇P2).

Ü The extrapolation will decrease the total number of non-zero
coordinates of the ray =⇒ hopefully satisfying the last case in the
definition of the limited growth ordering y:

# C1 = # C2 ∧ #P1 = #P2 ∧ κ(R1) � κ(R2).
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STANDARD WIDENING VS. EVOLVING RAYS (V)
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STANDARD WIDENING VS. EVOLVING RAYS (VI)
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THE NEW WIDENING ∇̂

Ü An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

P1 ∇̂ P2
def
=







































P2, if P1 y P2;

hc(P1,P2), if P1 y hc(P1,P2) ⊂ P1 ∇P2;

hp(P1,P2), if P1 y hp(P1,P2) ⊂ P1 ∇P2;

hr(P1,P2), if P1 y hr(P1,P2) ⊂ P1 ∇P2;

P1 ∇P2, otherwise.

Ü Uniformly more precise than the standard widening.

Ü In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.

THE NEW WIDENING ∇̂ 36



THE NEW WIDENING ∇̂

Ü An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

P1 ∇̂ P2
def
=







































P2, if P1 y P2;

hc(P1,P2), if P1 y hc(P1,P2) ⊂ P1 ∇P2;

hp(P1,P2), if P1 y hp(P1,P2) ⊂ P1 ∇P2;

hr(P1,P2), if P1 y hr(P1,P2) ⊂ P1 ∇P2;

P1 ∇P2, otherwise.

Ü Uniformly more precise than the standard widening.

Ü In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.

THE NEW WIDENING ∇̂ 36-A



THE NEW WIDENING ∇̂

Ü An instance of the framework: try the four heuristics in the given order,
eventually falling back to the standard widening.

P1 ∇̂ P2
def
=







































P2, if P1 y P2;

hc(P1,P2), if P1 y hc(P1,P2) ⊂ P1 ∇P2;

hp(P1,P2), if P1 y hp(P1,P2) ⊂ P1 ∇P2;

hr(P1,P2), if P1 y hr(P1,P2) ⊂ P1 ∇P2;

P1 ∇P2, otherwise.

Ü Uniformly more precise than the standard widening.

Ü In general, this does not hold for the final result of upward iteration
sequences, because neither the standard widening nor the new one are
monotonic operators.

THE NEW WIDENING ∇̂ 36-B



PRECISION COMPARISON

Argument size relations for Prolog programs using China + PPL.

Note: carefully chosen widening strategy (Bourdoncle, FMPTA’93)
+ widening delay + widening ‘up to’.

# programs (361) # predicates (23279)

k (delay) improve degr incomp improve degr incomp

0 121 - 2 1340 3 2

1 34 - - 273 - -

2 29 - - 222 - -

3 28 - - 160 - -

4 25 - 2 126 2 -

10 25 - - 124 - -
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EFFICIENCY COMPARISON

Argument size relations for Prolog programs using China + PPL.

Total analysis time

std ∇k new ∇̂k

k (delay) all top 20 all top 20

0 1.00 0.72 1.05 0.77

1 1.09 0.79 1.11 0.80

2 1.16 0.83 1.18 0.84

3 1.23 0.88 1.25 0.89

4 1.32 0.95 1.34 0.95

10 1.82 1.23 1.85 1.24
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CONCLUSION

Ü We have defined a framework for the systematic specification of new
widening operators:

Ü the framework allows any extrapolation operator on the domain of
convex polyhedra to be transformed to a widening operator;

Ü the framework ensures that these new widenings improve on the
precision of the standard widening.

Ü We have instantiated the framework with extrapolation operators:
Ü do nothing, combining constraints, evolving points, evolving rays.

Ü This instantiated framework has been implemented in the Parma
Polyhedra Library.

Ü A first experimental evaluation has yielded promising results.

The PPL is free software: everything is available at
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