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WIDENINGS OPERATORS FOR What?
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INTERVALS, POLYHEDRA, AND THINGS IN BETWEEN (I)

Interval

A non-relational domain.

Very efficient.

May be imprecise.
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INTERVALS, POLYHEDRA, AND THINGS IN BETWEEN (II)

Interval Polyhedron

A fully-relational domain.

Very precise.

May be inefficient.

INTERVALS, POLYHEDRA, AND THINGS IN BETWEEN (II) 4



INTERVALS, POLYHEDRA, AND THINGS IN BETWEEN (III)

Interval Bounded differences Polyhedron

A weakly-relational domain.

More precise than intervals.

More efficient than polyhedra.
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INTERVALS, POLYHEDRA, AND THINGS IN BETWEEN (IV)

Interval Octagon Polyhedron

A weakly-relational domain.

More precise than intervals.

More efficient than polyhedra.
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OUR GOAL

➜ Weakly-relational numeric domains are useful for tuning the
efficiency/precision trade-off of static analyses.

➜ Many examples in the literature: bounded differences (Bagnara, PhD
th., ’97; Shaham et al., CC’00; Miné, PADO’01); octagons (Miné,
WCRE’01); two variables per inequality (Simon et al., LOPSTR’02);
octahedra (Clarisó and Cortadella, SAS’04); template constraints
(Sankaranarayanan et al., VMCAI’05).

➜ Other domains not formally related to intervals/polyhedra: zone
congruences (Miné, SAS’02); bounded quotients (Bagnara, PhD’97).

➜ These domains have been typically defined to have a syntactic nature:
different domain elements may encode the same concrete object.
➜ Why? In order to avoid a convergence issue.

➜ We will provide a more natural solution to the convergence issue,
arguing for the adoption of more abstract, semantic domains.
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PLAN OF THE TALK

➀ The problem on the simplest domain: Bounded Differences

➁ The (syntactic) solution adopted up to now

➂ Argue for and propose an alternative (semantic) solution:
➜ Technical results already available from the literature

➃ Instantiate the same approach on the Octagon domain:
➜ An efficient algorithm removing redundancies
➜ A simpler and more efficient strong closure algorithm
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BOUNDED DIFFERENCES A.K.A. ZONES

A.K.A. POTENTIAL CONSTRAINT NETWORKS

A.K.A. DIFFERENCE-BOUND MATRICES

⇒ BOUNDED DIFFERENCE GRAPHS (BDGS)

➜ They encode systems of constraints of the form x − y ≤ c and ±x ≤ c.

➜ For n variables, a weighted graph G with n + 1 nodes is used:

xi − xj ≤ c ⇐⇒ w(xi, xj) = c ⇐⇒ M [i, j] = c

xi − 0 ≤ c ⇐⇒ w(xi,0) = c ⇐⇒ M [i, 0] = c

0 − xj ≤ c ⇐⇒ w(0, xj) = c ⇐⇒ M [0, j] = c

➜ The shortest-path closure of the graph can be seen to implement
closure by transitivity: it provides a canonical form for domain elements.
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SHORTEST-PATH CLOSURE ALGORITHM

➜ Transitivity.

x − y ≤ c y − z ≤ d

x − z ≤ c + d

➜ The Floyd-Warshall algorithm for dense graphs: complexity is O(n3).
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➜ For sparse graphs, Johnson’s algorithm is (theoretically) better,
achieving O(nm + n2 log n).
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BDGS AND ABSTRACT INTERPRETATION

➜ The first application of BDGs in the field of Abstract Interpretation is in
(Shaham et al., CC’00). A domain of (shortest-path) closed BDGs is
considered and all the required abstract operators are specified.

➜ The proposed widening for BDGs, which is reminiscent of the widenings
defined on intervals and polyhedra, is defined by:

(xi − xj ≤ c1) ∈ G1 (xi − xj ≤ c2) ∈ G2 c1 ≥ c2

(xi − xj ≤ c1) ∈ G1 ∇ G2

➜ Unfortunately, the operator above cannot ensure convergence, due to
its interaction with closure.
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AN EXAMPLE OF DIVERGENCE (I)

O x

y
A shape defined by 4 potential constraints . . .
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AN EXAMPLE OF DIVERGENCE (II)

O x

y

. . . closure adds redundant constraints . . .
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AN EXAMPLE OF DIVERGENCE (III)

O x

y
. . . which are stable wrt widening . . .
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AN EXAMPLE OF DIVERGENCE (IV)

O x

y
. . . resulting in a shape defined by 4 constraints . . .
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AN EXAMPLE OF DIVERGENCE (V)

O x

y

. . . closure adds other constraints . . .
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AN EXAMPLE OF DIVERGENCE (VI)

O x

y

. . . and so on . . .
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AN EXAMPLE OF DIVERGENCE (VII)

O x

y
No finite convergence.

AN EXAMPLE OF DIVERGENCE (VII) 19



PLAN OF THE TALK

➀ The problem on the simplest domain: Bounded Differences

➁ The (syntactic) solution adopted up to now

➂ Argue for and propose an alternative (semantic) solution:
➜ Technical results already available from the literature

➃ Instantiate the same approach on the Octagon domain:
➜ An efficient algorithm removing redundancies
➜ A simpler and more efficient strong closure algorithm
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A SYNTACTIC SOLUTION

➜ The domain of (not necessarily shortest-path closed) BDGs is
considered in (Miné, PADO’01). On this syntactic domain, different
elements may encode the same geometric shape.

➜ Closure is applied only when needed (typically, to improve precision).

➜ It is a kernel operator, mapping a BDG into the most precise BDG
encoding the same geometric shape.

➜ To solve the convergence problem faced in (Shaham et al., CC’00), the
first argument of the widening is not closed.

➜ The discussions in (Miné, PADO’01, WCRE’01) make clear that the
solution of the convergence problem was the one and only motivation
for the adoption of this more concrete, syntactic domain.
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DIVERGENCE IS NOW AVOIDED (I)

O x

y
By no longer closing the first argument . . .

DIVERGENCE IS NOW AVOIDED (I) 22



DIVERGENCE IS NOW AVOIDED (II)

O x

y
. . . it converges in one step.

DIVERGENCE IS NOW AVOIDED (II) 23



PLAN OF THE TALK
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TOWARDS A SEMANTIC SOLUTION:
BOUNDED DIFFERENCE SHAPES

➜ Resorting to syntactic domains has negative sides:
➀ less elegant formalization of operators and meaning functions;
➁ more complex user interfaces (need to explain implementation

details, such as closure operators);
➂ more complex application of domain refinement operators; e.g., the

finite powerset refinement of (Bagnara et al., VMCAI’04).

➜ An element of the abstract domain should be a geometric shape, rather
than (any) one of its graph representations: we will call it a Bounded
Difference Shape (BDS).

➜ A BDS can also be seen as the equivalence class of all BDGs
representing it. At the implementation level, one can freely switch
between equivalent representations.

➜ On the semantic abstract domain of BDSs, shortest-path closure is the
identity function.

BOUNDED DIFFERENCE SHAPES 25
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NO CONVERGENCE PROBLEMS FOR BDSS (I)

A result based on two simple observations:

➀ A BDS is a polyhedron.

➁ The set of BDSs (interpreted as polyhedra) is closed under the
application of the standard widening of (Cousot and Halbwachs,
POPL’78).

Therefore, no convergence problems can be incurred when applying
the standard widening to an increasing sequence of BDSs.
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NO CONVERGENCE PROBLEMS FOR BDSS (II)
➜ The operator in (Shaham et al., CC’00) is not the standard widening.

➜ The implementation of the standard widening requires that the first
argument polyhedron is described by a non-redundant constraint
system: in contrast, shortest-path closure typically adds a lot of
redundant constraints.

➜ What is needed is a procedure for eliminating redundancies in a BDG:
shortest-path reduction (Larsen et al., RTSS’97).

➜ Reduction is just an implementation detail: on the domain of BDSs, it is
the identity function.
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SHORTEST-PATH REDUCTION FOR BDGS

➜ A (very sketchy) description of the algorithm in (Larsen et al., RTSS’97):
➀ Compute the shortest-path closure of the graph;
➁ Partition the nodes into equivalence classes based on equality

constraints;
➂ Split the graph into two subgraphs E and I:

➜ subgraph E containing the arcs inside the equivalence classes
(equalities);

➜ subgraph I containing the arcs linking leaders of different
equivalence classes (inequalities);

➃ Reduce subgraph E exploiting transitivity;
➄ Reduce subgraph I exploiting transitivity;
➅ Merge the results of steps ➃ and ➄.

SHORTEST-PATH REDUCTION FOR BDGS 28



EQUIVALENCE CLASSES FOR BDGS

➜ Equivalence classes encode equality constraints.

➜ xi ≡ xj if they lie on the same cycle of weight 0.

Singular class:

➜ Equivalence class E0 containing the special variable 0 is singular: it
encodes all the unary equality constraints (e.g., x = c).

Non-singular classes:

➜ Other equivalence classes can only encode binary equality constraints
(e.g., x − y = d).
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SHORTEST-PATH REDUCTION

OF EQUIVALENCE CLASSES FOR BDGS

➜ Let E = {z1, . . . , zk} be (any) class, where z1 < · · · < zk.

➜ Remove all arcs but the 0-cycle following the ordering between nodes.

E z1 · · · zi · · · zk

OF EQUIVALENCE CLASSES FOR BDGS 30



SHORTEST-PATH REDUCTION RULE

FOR THE INEQUALITY SUBGRAPH

➀ Reduction by transitivity.

x − y ≤ c y − z ≤ d x − z ≤ e c + d ≤ e

x − z ≤ e is redundant

FOR THE INEQUALITY SUBGRAPH 31



ON THE PRECISION OF THE WIDENING

➜ If used without any precaution, the standard widening on BDSs could
provide imprecise results.

➜ For improving precision, (Miné, PADO’01, WCRE’01) suggest:
➀ to close the second argument;
➁ to close the first BDG G0 of the upward iteration sequence.

➜ Both improvements can be also obtained on the domain of BDSs:
➀ the first one can be applied as is;
➁ the second one can be subsumed by the ‘widening up to’ technique

(Halbwachs et al., SAS’94) or its variation called ‘staged widening
with thresholds’ (Blanchet et al., PLDI’03): one simply adds to the
set of thresholds the constraints of the closure of G0.

➜ Further improvements can be achieved by applying any delay strategy
or the widening framework of (Bagnara et al., SAS’03).
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WHAT WE HAVE ACHIEVED

➜ A proper widening operator on the semantic abstract domain of BDSs.
This can be made as precise as the widening on (syntactic) BDGs.

➜ Both the syntactic and the semantic abstract domains are well-defined.
The adoption of the semantic abstract domain solves all the issues
highlighted before.

➜ Most of the other weakly-relational domains have a syntactic nature. For
many of them, the semantic version can be defined.

➜ The key requirement is a reasonably efficient procedure that removes
redundancies from the considered constraint description.
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OCTAGONS AS OCTAGONAL GRAPHS

➜ Octagons are defined by constraints of the form ±x± y ≤ c and ±x ≤ c.

➜ Octagons can be implemented using BDGs. Each variable x is split into
two forms: x+ ≡ x and x− ≡ −x.

Difference constraint x − y ≤ c becomes x+ − y+ ≤ c;

Sum constraint x + y ≤ c becomes x+ − y− ≤ c;

Unary constraint x ≤ c becomes x+ − x− ≤ 2c;

Unary constraint −x ≤ c becomes x− − x+ ≤ 2c.

➜ An octagon is thus encoded into a BDG having 2n nodes.

➜ Octagonal Graphs are coherent BDGs:

x
+ − y

+ ≤ c

y
− − x

− ≤ c

x
+ − y

− ≤ c

y
+ − x

− ≤ c

x
− − y

+ ≤ c

y
− − x

+ ≤ c

x
− − y

− ≤ c

y
+ − x

+ ≤ c
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STRONG CLOSURE

➜ A strong closure procedure is defined (Miné, WCRE’01) that takes into
account, besides transitivity and coherence, also the following inference
rule:
➜ Strong coherence.

x ≤ c y ≤ d

x + y ≤ c + d

x
+ − x

− ≤ 2c y
+ − y

− ≤ 2d

x
+ − y

− ≤ c + d
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MINÉ’S STRONG CLOSURE ALGORITHM
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STRONG CLOSURE AND WIDENING

➜ Again, widening and strong closure interact negatively.

➜ (Miné, WCRE’01) adopts the syntactic domain of octagonal graphs.

➜ The first argument of the widening should not be strongly closed.

STRONG REDUCTION =⇒ OCTAGONAL SHAPES

➜ The semantic domain of Octagonal Shapes can be adopted (together
with the standard widening) provided we define a strong reduction
procedure for octagonal graphs.
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PLAN OF THE TALK

➀ The problem on the simplest domain: Bounded Differences

➁ The (syntactic) solution adopted up to now

➂ Argue for and propose an alternative (semantic) solution:
➜ Technical results already available from the literature

➃ Instantiate the same approach on the Octagon domain:
➜ An efficient algorithm removing redundancies
➜ A simpler and more efficient strong closure algorithm
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STRONG REDUCTION FOR OCTAGONAL GRAPHS

➜ A (very sketchy) description of the new algorithm:
➀ Compute the strong closure of the graph;
➁ Partition the nodes into equivalence classes based on equality

constraints;
➂ Split the graph into two subgraphs E and I:

➜ subgraph E containing the arcs inside the equivalence classes
(equalities);

➜ subgraph I containing the arcs linking leaders of different
equivalence classes (inequalities);

➃ Reduce subgraph E exploiting transitivity;
➄ Reduce subgraph I exploiting transitivity, strong coherence and

singularity;
➅ Merge the results of steps ➃ and ➄.
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EQUIVALENCE CLASSES FOR OCTAGONAL GRAPHS

Singular class:

➜ There no longer is the special variable 0.

➜ There may still be a singular equivalence class E0: the only class
containing both the positive x+ and the negative x− form of a variable.

➜ The singular class still encodes the set of unary equality constraints.

Non-singular classes:

➜ Non-singular classes still encode binary equality constraints.

Strong Reduction of Equivalence Classes:

➜ Computed (almost) as before.
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STRONG REDUCTION RULES

FOR THE INEQUALITY SUBGRAPH

➀ Reduction by transitivity.

x − y ≤ c y − z ≤ d x − z ≤ e c + d ≤ e

x − z ≤ e is redundant

➁ Reduction by strong coherence.

x ≤ c y ≤ d x + y ≤ e c + d ≤ e

x + y ≤ e is redundant

➂ Reduction by singularity.

±x ± y ≤ c x ∈ E0

±x ± y ≤ c is redundant
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PLAN OF THE TALK

➀ The problem on the simplest domain: Bounded Differences

➁ The (syntactic) solution adopted up to now

➂ Argue for and propose an alternative (semantic) solution:
➜ Technical results already available from the literature

➃ Instantiate the same approach on the Octagon domain:
➜ An efficient algorithm removing redundancies
➜ A simpler and more efficient strong closure algorithm
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MINÉ’S STRONG CLOSURE ALGORITHM

➜ Transitivity and strong coherence are interleaved 	 times.
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AN IMPROVED STRONG CLOSURE ALGORITHM

➜ A shortest-path closed octagonal graph can be strongly closed by
means of a single strong coherence step.

��� �	 
 � � 
 � 
 	 � 	 � 
 � � �
 � �� 
 	 	 � � 	 � �� � � � �

� �� � ��� � � � � � 	

� �� 
 ��� � � � � � 	

� � � � ��� � � � � � 	

� 
 
 � ��� ��� � 
 	 � � 
 
 � � � � � 
 
 � � � � � 
 � � � � �

��� � � � � 	 � � � � � � � 	 � � � � � �� � � �

� �� 
 ��� � � � � � 	

� �� � ��� � � � � � 	

� 
 
 � ��� ��� � 
 	 � � 
 
 � � � � � � 
 
 � � � 
 �� � � 
� � � � � � � � � � �
AN IMPROVED STRONG CLOSURE ALGORITHM 45



EFFICIENCY COMPARISON (I)
➜ On the theoretical side, for sparse octagonal graphs, the complexity can

be reduced from O(n3) to O(nm + n2 log n) by computing shortest-path
closure using Johnson’s algorithm.

➜ On the more practical side, even for dense octagonal graphs, we obtain
a sensible improvement in the number of additions and comparisons
between coefficients.

➜ When strongly closing a consistent octagonal graph:

Full closure Incremental closure

oct-lib-0.9.6 20n3 + 24n2 68n2 + 24n

New algo 16n3 + 4n2 + 4n 52n2 − 44n
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EFFICIENCY COMPARISON (II)
➜ Speed-up:

oct-lib-0.9.6 / New algo

Dim. n Full closure Incremental closure

2 1.68 2.35

4 1.51 1.76

10 1.36 1.47

25 1.30 1.37

50 1.27 1.34

n → ∞ 1.25 1.31

➜ Measuring the number of additions and comparisons. Timing
experiments confirm the theoretical speed-up.
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WORK IN PROGRESS:
TIGHT CLOSURE ALGORITHM FOR OCTAGONS ON Z

➜ A shortest-path closed octagonal graph can be tightly closed by means
of a single tight coherence step. From O(n4) to O(n3).
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CONCLUSION

➜ Several syntactic weakly-relational numeric domains can be further
abstracted into their semantic counterparts.

➜ All the rest being equal, semantic domains should be preferred to their
syntactic counterparts.

➜ We have provided a new strong reduction procedure, as well as an
improved strong closure procedure, for the Octagon domain. Formal
proofs are available at� � � � � � �� � � �� � � � 	 
 � � � 
 � � � � 	 � .

➜ Implementation work is in progress. The domains of Bounded
Difference Shapes and Octagonal Shapes will be made available in
future releases of the Parma Polyhedra Library (GPL).

➜ Code, documentation and useful links about the Parma Polyhedra
Library are available at .
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ON FLOATING-POINT COMPUTATIONS

➜ The stated results are valid if the implementation uses unbounded
precision rationals as coefficients.

➜ If bounded precision floating-point coefficients are used, the
shortest-path/strong closure procedure will not provide a normal form.
Neither shortest-path/strong reduction will provide a true (i.e., semantic)
minimization procedure.

➜ Hence, a semantic abstract domain is difficult to obtain when using
floating-point computations only.

➜ Shortest-path/strong reduction will still be able to remove most, even
though not all, of the redundancies in the syntactic domain, therefore
mitigating most of its negative sides.

➜ The standard widening using shortest-path/strong reduction is still a
proper widening operator.
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