
The Parma Polyhedra Library
User’s Manual∗

(version 0.1)

Roberto Bagnara†

Sara Bonini
Patricia M. Hill‡

Andrea Pescetti
Elisa Ricci§

Angela Stazzone
Enea Zaffanella¶

Tatiana Zolo‖

October 23, 2001

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”.
†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‡hill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§ericci@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
¶zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‖zolo@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS 1

Copyright c© 2001 Roberto Bagnara (bagnara@cs.unipr.it).

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by theFree Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theFree Software Foundation; either version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 Convex Polyhedra and the PPL 1

2 PPL Namespace Index 5

3 PPL Hierarchical Index 5

4 PPL Compound Index 6

5 PPL Page Index 6

6 PPL Namespace Documentation 6

7 PPL Class Documentation 8

8 PPL Page Documentation 26

1 Convex Polyhedra and the PPL

1.1 An Introduction to Convex Polyhedra

The following definitions and results are taken from:

• G. L. Nemhauser and L. A. Wolsey - Integer and Combinatorial Optimization - Wiley Interscience
Series in Discrete Mathematics and Optimization, 1988.
• D. K. Wilde - A library for doing polyhedral operations - IRISA Publication interne n. 785, Decem-

ber 1993.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.1 An Introduction to Convex Polyhedra 2

• K. Fukuda - Polyhedral Computation FAQ - Swiss Federal Institute of Technology, Lausanne and
Zurich, Switzerland, October 2000.

Combination

Let λ1, . . . , λk ∈ R andx1, . . . ,xk ∈ Rn. The linear combination
∑k
j=1 λjxj is said to be

• apositive combination, if ∀j ∈ {1, . . . , k} : λj ≥ 0;

• anaffine combination, if
∑k
j=1 λj = 1;

• aconvex combination, if both the previous conditions hold.

Note that whenk = 0,
∑k
j=1 λjxj = 0 and

∑k
j=1 λj = 0. This means that

∑0
j=1 λjxj may be regarded

as a positive but not an affine combination.

Scalar product

Let x = (x0, . . . , xn−1)T, y = (y0, . . . , yn−1)T ∈ Rn. Thescalar productof x andy is defined as

〈x,y〉 =
n−1∑
i=0

xiyi.

The vectorsx andy areorthogonalif 〈x,y〉 = 0.

Convex hull

Theconvex hullof a setK ⊆ Rn is the set of all the convex combinations of the points inK. The setK is
convex if it is its own convex hull.

Affine transformation

An affine transformationis a function mapping a pointx ∈ Rn to a pointx′ ∈ Rm such that

x′ = Ax + b

whereA ∈ Rm × Rn andb ∈ Rm.

Linear independence

A set of pointsx1, . . . ,xk ∈ Rn is linearly independentif, for all λ1, . . . , λk ∈ R, the set of equations

k∑
i=1

λixi = 0

implies that, for eachi = 1, . . . , k, λi = 0.

Note that the maximum number of linearly independent points inR
n is n.

Proposition

If A is anm × n matrix, the maximum number of linearly independent rows ofA, viewed as vectors of
R
n, equals the maximum number of linearly independent columns ofA, viewed as vectors ofRm.

Rank

The maximum number of linearly independent rows (columns) of a matrixA is therankofA and is denoted
by rank(A).

Affine independence

A set of pointsx1, . . . ,xk ∈ Rn is affinely independentif, for all λ1, . . . , λk ∈ R, the set of equations

k∑
i=1

λixi = 0,
k∑
i=1

λi = 0

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 An Introduction to Convex Polyhedra 3

implies that, for eachi = 1, . . . , k, λi = 0.

Note that linear independence implies affine independence, but the converse is not true. Moreover the
maximum number of affinely independent points inRn is n + 1 (e.g.,n linearly independent points and
the origin0).

Polyhedron

A setP ⊆ Rn is called apolyhedronif it is the set of solutions to a finite number of linear equalities and
inequalities:

P = {x ∈ Rn | Ax = b, Cx ≥ d },

where, ifm1 is the number of linear equalities andm2 the number of linear inequalities,A ∈ Rm1 × Rn,
b ∈ Rm1 , C ∈ Rm2 × Rn andd ∈ Rm2 .

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as aconstraint.

Constraints representation

It follows that a polyhedronP ⊆ Rn can be always represented by asystem of constraints:

P = {x ∈ Rn | Ax ≥ b }

for some matrixA ∈ Rm × Rn and vectorb ∈ Rm.

Note that, ifc,x ∈ Rn andλ ∈ R and the system of constraints contains the two inequalities〈c,x〉 ≥ λ and
〈c,x〉 ≤ λ (i.e., 〈−c,x〉 ≥ −λ), then they can be replaced by the equivalent uniqueequality〈c,x〉 = λ.
Conversely, if we have an equality, then it can be replaced by two inequalities (as above).

Rational polyhedron

A polyhedronP ⊆ Rn is said to berational if there exists a matrixA ∈ Rm′ × Rn and a vectorb ∈ Rm′

with rational coefficients such that

P = {x ∈ Rn | Ax ≥ b }.

In the sequel, we will consider only rational polyhedra and assume that, if{x ∈ Rn | Ax ≥ b } is a system
of constraints representing a polyhedron, thenA andb have rational coefficients.

Universe polyhedron

A polyhedronP ⊆ Rn is calleduniverse polyhedronif it is the whole space (i.e.P = R
n).

Polytope

A polyhedronP ⊂ Rn is boundedif there exists aλ ∈ R, λ > 0 such that

P ⊆
{

(x0, . . . , xn−1)T ∈ Rn
∣∣ −λ ≤ xj ≤ λ for j = 0, . . . , n− 1

}
.

A bounded polyhedron is called apolytope.

Proposition

A polyhedron is a closed convex set.

Dimension

A polyhedronP ⊆ Rn is of dimensionk, denoted bydim(P) = k, if the maximum number of affinely
independent points inP is k + 1.

Vertex

A vertexof a polyhedronP is any point inP which cannot be expressed as a convex combination of any
other distinct points inP .

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 An Introduction to Convex Polyhedra 4

Ray

Let P, P0 be the polyhedra

P = {x ∈ Rn | Ax ≥ b } 6= ∅ andP0 = { r ∈ Rn | Ar ≥ 0 }

whereA ∈ Rm × Rn, b ∈ Rm. Then any pointr ∈ P0 \ {0} is called aray of P .

A ray indicates a direction in which the polyhedronP is infinite (i.e., unbounded).

Proposition

A point r ∈ Rn \ {0} is a ray of a non-empty polyhedronP ⊆ Rn if and only if, for any pointx ∈ P ,
(x + µr) ∈ P for all µ ∈ R, µ > 0.

Extreme ray

A ray r of a polyhedronP is anextreme rayif there do not exist two raysr1 andr2 of P , wherer1 6= λr2

for anyλ ∈ R, λ > 0, such that
r = µ1r1 + µ2r2,

whereµ1, µ2 ∈ R, µ1 > 0 andµ2 > 0.

Line

A line (or bidirectional ray) of a polyhedronP ⊆ Rn is a rayl of P such that−l is another ray ofP .

Cone

A setC ⊆ Rn is aconeif
x ∈ C ⇒ λx ∈ C for all λ ∈ R, λ ≥ 0.

Polyhedral cone

The polyhedronP = {x ∈ Rn | Ax ≥ 0 } is a convex cone and is calledpolyhedral cone.

Thus, a polyhedral cone is eitherpointed, having the origin as its only vertex, or has no vertices at all.

Lineality space

Given a polyhedronP = {x ∈ Rn | Ax ≥ b }, thelineality spaceof P is the set

{x ∈ P | Ax = 0 }

and it is denoted bylin.space(P).

Minkowski’s sum

LetR, S ⊆ Rn be two sets of vectors. Then theMinkowski’s sumof R andS is:

R+ S = { r + s | r ∈ R, s ∈ S }.

Generators representation

A polyhedronP ⊆ Rn can also be represented by a finite setV of points ofP , a finite setR of rays ofP
and a finite setL of lines ofP . The elements of these three sets are thegeneratorsof P , in the sense that

P = V +R+ L,

where the symbol ’+’ denotes the Minkowski’s sum and

• V is the set of all the convex combinations of the points inV ;
• R is the set of all the non-negative combinations of the rays inR; and
• L is the set of all the linear combinations of the lines inL.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 PPL Namespace Index 5

Note that:V is a polytope,R is a pointed cone, andL is lin.space(P).

Note also thatV must contain all vertices ofP . However,V can contain other points, particularly ifP is a
non-empty polyhedron having no vertices (e.g., a half-space).

In the case thatP contains at least one vertex, (in which case,L = ∅) the following two theorems justify
this terminology.

Minkowski’s theorem

Let P = {x ∈ Rn | Ax ≥ b } be a non-empty polyhedron whererank(A) = n. Let V be the set of
vertices andR the set of extreme rays ofP . Let alsoV be the set of convex combinations ofV andR the
set of positive combinations ofR. Then

P = V +R.

The conditions thatP is not empty andrank(A) = n required by this theorem are equivalent to the
condition thatP has a vertex. This condition is needed since, if the set of verticesV = ∅, thenV = ∅ and
henceV +R is also empty even thoughP may contain a line. (See also Nemhauser and Wolsey - Integer
and Combinatorial Optimization - propositions 4.1 and 4.2 on pages 92 and 93).

The second theorem, called Weil’s theorem, states that, starting from a system of generators (having rational
coefficients), we can build a rational polyhedron:

Weil’s theorem

If A is a rationalm× n matrix,B is a rationalm′ × n matrix and

Q =

x ∈ Rn

∣∣∣∣∣∣∣
xT = yTA+ zTB,

y = (y0, . . . , ym−1)T ∈ Rm+ ,
∑m−1
k=0 yk = 1,

z ∈ Rm′+

.
thenQ is a rational polyhedron.

In fact, sinceQ consists of the sum of convex combinations of the rows ofA with positive combinations of
the rows ofB, we can think ofA as the matrix of vertices andB as the matrix of rays.

Dual representation

Thus a rational polyhedronP has adual representation. That is,P can be represented by a system of
constraints or a system of generators. Moreover, given one of the representations, there is an algorithm for
computing the other.

(The following spurious string of characters in the user manual is due to a bug in Doxygen.)

\section\f\in\Rset\f\f\vect\in\Rset\f\f\vect\xi\vect\xi\transpose\in\Rset\f\f\xi\geq\f\f\f\f\f\f\f\f\f\f\vect\mid\vect\geq\vect\vect\mid\vect\vect\geq\vect\f\f\xi\vect\xi\transpose\mid\xi\vect\xi\vect\geq\vect\xi\geq\vect\mid\vect\geq\vect\f\f\vect\xi\vect\xi\in\Rset\f\f\f\f\times\f\f\f\f\in\Rset\times\Rset\f\f\f\f\ldots\in\Rset\f\f\f\f\f\f\geq\f\f\f\f\f\f\f\f\xi\f\ldots\f\f\f\f\f\f\f\f\f\f\f\f\f\f\Rset\f\f\f\f\vect\f\f\f\f\langle\vect\vect\rangle\geq\f\f\vect\f\f\f\f\vect\in\f\f\f\f\f\f\f\f\f\f\f\f\f\f\vect\in\f\f\vect\in\f\f\lambda\in\Rset\lambda\f\f\vect\lambda\vect\f\f\f\f\f\f\vect\f\f\f\f\vect\in\mid\langle\vect\vect\rangle\f\f\f\f\f\f\f\f\f\f\neq\emptyset\f\f\neq\f\f\f\f\vect\f\f\f\f\f\f\f\f\f\f\pdim\pdim\f\f\vect\mid\vect\geq\vect\f\f\vect\in\f\f\f\f\f\f\textit\vect\textit\f\f\f\f\vect\f\f\f\f\f\f\f\f\mathcal\mathcal\mathcal\f\f\f\f\mathit\mathit\f\f\f\f\mathop\mathrm\f\f\f\f\linspace\f\f\mathop\mathrm\f\f\linspace\f\f\mathop\mathrm\f\f\Rset\f\f\linspace\f\f\mathop\mathrm\f\f\linspace\f\f\mathop\mathrm\f\f\f\f\vect\in\Rset\f\f\vect\f\f\vect\in\Rset\f\f\f\f\langle\vect\vect\rangle\f\f\f\f\langle\vect\vect\rangle\f\f\f\f\langle\vect\vect\rangle\f\f\langle\vect\vect\rangle\f\f\vect\f\f\langle\vect\vect\rangle\f\f\vect\f\f\langle\vect\vect\rangle\neq\f\f\begin\text\text\text\text\end\f\f\f\f\mathop\mathrm\f\f\f\f\f\f\f\f\vect\mid\vect\geq\vect\f\f\f\f\f\f\vect\mid\vect\langle\vect\vect\rangle\geq\f\f\f\f\f\f\vect\f\f\f\f\f\f\vect\f\f\f\f\dim\bigl\linspace\bigr\f\f\f\f\vect\f\f\linspace\f\f\vect\f\f\f\f\f\f\f\f\f\f\f\f\vect\f\f\f\f\f\f\vect\f\f\f\f\f\f\f\f\f\f\f\f\vect\f\f\vect\f\f\f\f\vect\f\f\vect\f\f\f\f\vect\f\f\vect\f\f\vect\f\f\vect\f\f\vect\transpose\ldots\f\f\vect\ldots\transpose\f\f\vect\ldots\transpose\f\f\neq\f\f\langle\vect\vect\rangle\f\f\vect\f\f\langle\vect\vect\rangle\neq\f\f\vect\f\f\geq\f\f\f\f\f\f\f\f\f

2 PPL Namespace Index

2.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:

Parma Polyhedra Library (The entire library is confined into this namespace) 6

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 PPL Hierarchical Index 6

3 PPL Hierarchical Index

3.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

•Parma Polyhedra Library::Constraint 8

•Parma Polyhedra Library::ConSys 10

•Parma Polyhedra Library::ConSys::const iterator 11

•Parma Polyhedra Library::Generator 12

•Parma Polyhedra Library::GenSys 14

•Parma Polyhedra Library::GenSys::const iterator 16

•Parma Polyhedra Library::LinExpression 17

•Parma Polyhedra Library::Polyhedron 19

•Parma Polyhedra Library::Variable 25

4 PPL Compound Index

4.1 PPL Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma Polyhedra Library::Constraint (A linear equality or inequality) 8

Parma Polyhedra Library::ConSys (A system of constraints) 10

Parma Polyhedra Library::ConSys::const iterator () 11

Parma Polyhedra Library::Generator (A line, ray or vertex) 12

Parma Polyhedra Library::GenSys (A system of generators) 14

Parma Polyhedra Library::GenSys::const iterator () 16

Parma Polyhedra Library::LinExpression (A linear expression) 17

Parma Polyhedra Library::Polyhedron (A convex polyhedron) 19

Parma Polyhedra Library::Variable (A dimension of the space) 25

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

5 PPL Page Index 7

5 PPL Page Index

5.1 PPL Related Pages

Here is a list of all related documentation pages:

•GNU GENERAL PUBLIC LICENSE 26

•GNU Free Documentation License 31

6 PPL Namespace Documentation

6.1 Parma Polyhedra Library Namespace Reference

The entire library is confined into this namespace.

Compounds

• classParmaPolyhedraLibrary::Variable

A dimension of the space.

• classParmaPolyhedraLibrary::LinExpression

A linear expression.

• classParmaPolyhedraLibrary::Constraint

A linear equality or inequality.

• classParmaPolyhedraLibrary::ConSys

A system of constraints.

• classParmaPolyhedraLibrary::ConSys::constiterator
• classParmaPolyhedraLibrary::Generator

A line, ray or vertex.

• classParmaPolyhedraLibrary::GenSys

A system of generators.

• classParmaPolyhedraLibrary::GenSys::constiterator
• classParmaPolyhedraLibrary::Polyhedron

A convex polyhedron.

Non-friend operators on objects of the class Variable.

• std::ostream &operator<< (std::ostream &s, constParmaPolyhedraLibrary::Variable&v)

Output operator.

• booloperator< (constVariable&v, constVariable&w)

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.1 Parma Polyhedra Library Namespace Reference 8

Defines a total ordering on variables.

Non-friend operators on objects of the class Constraint.

• std::ostream &operator<< (std::ostream &s, constConstraint&c)

Output operator.

Non-friend operators on objects of the class Generator.

• std::ostream &operator<< (std::ostream &s, constGenerator&g)

Output operator.

Non-friend operators on objects of the class Polyhedron.

• booloperator==(constPolyhedron&x, constPolyhedron&y)

Returnstrue if and only ifx andy are the same polyhedron.

• booloperator!=(constPolyhedron&x, constPolyhedron&y)

Returnstrue if and only ifx andy are different polyhedra.

• booloperator< (constPolyhedron&x, constPolyhedron&y)

Returnstrue if and only ifx is strictly contained iny .

• booloperator> (constPolyhedron&x, constPolyhedron&y)

Returnstrue if and only ifx strictly containsy .

• booloperator>= (constPolyhedron&x, constPolyhedron&y)

Returnstrue if and only ifx containsy .

Enumerations

• enum GenSysCon Rel { NONE SATISFIES, ALL SATISFY, ALL SATURATE, SOME -
SATISFY}

Describes possible relations between a system of generators and a given constraint.

6.1.1 Enumeration Type Documentation

6.1.1.1 enum ParmaPolyhedra Library::GenSys Con Rel

Enumeration values:
NONE SATISFIES No generator satisfies the given constraint.

ALL SATISFY All generators satisfy the given constraint, but there exists a generator not saturating
it (i.e., a generator does not belong to the hyper-plane defined by the constraint.).

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 PPL Class Documentation 9

ALL SATURATE All generators saturate the given constraint (i.e., they all belong to the hyper-
plane defined by the constraint.).

SOME SATISFY Some generators satisfy the given constraint (i.e., there exists both a generator
satisfying the constraint and another generator which does not satisfy it.).

7 PPL Class Documentation

7.1 Parma Polyhedra Library::Constraint Class Reference

A linear equality or inequality.

#include <ppl.hh >

Inherits Row.

Public Methods

• Constraint()

Default constructor.

• Constraint(const Constraint &c)

Ordinary copy-constructor.

• ∼Constraint()

Destructor.

• bool is equality() const

Returnstrue if and only if∗this is an equality constraint.

• bool is inequality() const

Returnstrue if and only if∗this is an inequality constraint.

Friends

• ConstraintParmaPolyhedraLibrary::operator==(constLinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 = e2 .

• ConstraintParmaPolyhedraLibrary::operator==(constLinExpression&e, const Integer &n)

Returns the constrainte = n.

• ConstraintParmaPolyhedraLibrary::operator==(const Integer &n, constLinExpression&e)

Returns the constraintn = e.

• ConstraintParmaPolyhedraLibrary::operator>= (constLinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 >= e2 .

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 Parma Polyhedra Library::ConSys Class Reference 10

• ConstraintParmaPolyhedraLibrary::operator>= (constLinExpression&e, const Integer &n)

Returns the constrainte >= n.

• ConstraintParmaPolyhedraLibrary::operator>= (const Integer &n, constLinExpression&e)

Returns the constraintn >= e.

• ConstraintParmaPolyhedraLibrary::operator<= (constLinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 <= e2 .

• ConstraintParmaPolyhedraLibrary::operator<= (constLinExpression&e, const Integer &n)

Returns the constrainte <= n.

• ConstraintParmaPolyhedraLibrary::operator<= (const Integer &n, constLinExpression&e)

Returns the constraintn <= e.

• ConstraintParmaPolyhedraLibrary::operator>> (const Constraint &c, unsigned int offset)

Returns the constraintc with variables renamed by addingoffset to their Cartesian axis identifier.

7.1.1 Detailed Description

An object of the classConstraintis either:

• an equality:
∑n−1
i=0 aixi + b = 0; or

• an inequality:
∑n−1
i=0 aixi + b ≥ 0;

wheren is the dimension of the space.

How to build a constraint
Constraints are typically built by applying a relational operator to a pair of linear expressions. Avail-
able relational operators include equality (==) and non-strict inequalities (>= and<=). Strict inequal-
ities (< and>) are not supported.
In the following example it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example
The following code builds the equality3x+ 5y − z = 0:

Constraint equal(3*x + 5*y - z == 0);

The following code builds the constraint4x− 2y ≥ z − 13:

Constraint inequal(4*x - 2*y >= z - 13);

7.2 Parma Polyhedra Library::ConSys Class Reference

A system of constraints.

#include <ppl.hh >

Inherits Matrix.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 Parma Polyhedra Library::ConSys Class Reference 11

Public Methods

• ConSys()

Default constructor: builds an empty system of constraints.

• ConSys(const ConSys &cs)

Ordinary copy-constructor.

• virtual∼ConSys()

Destructor.

• void insert(constConstraint&c)

Inserts a copy of the constraintc into ∗this , increasing the number of dimensions if needed.

• void swap(ConSys &y)

Swaps∗this with the system of constraintsy .

• constiteratorbegin() const

Returns theconstiterator pointing to the first constraint, if∗this is not empty; otherwise, returns the
past-the-endconstiterator.

• constiteratorend() const

Returns the past-the-endconstiterator.

7.2.1 Detailed Description

An object of the classConSysis a system of constraints, i.e. a multiset of objects of the classConstraint.
When inserting constraints in a system, dimensions are automatically adjusted so that all the constraints in
the system are defined on the same vector space.

In all the examples it is assumed that variablesx andy are defined as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a system of constraints corresponding to a square inR

2:

ConSys cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);

Example 2
The following code builds a system of constraints corresponding to a half-strip inR

2:

ConSys cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 Parma Polyhedra Library::ConSys::const iterator Class Reference 12

7.3 Parma Polyhedra Library::ConSys::const iterator Class Reference

#include <ppl.hh >

Inherits std::iterator.

Public Methods

• constiterator()

Default constructor.

• constiterator(const constiterator &y)

Ordinary copy-constructor.

• virtual∼constiterator()

Destructor.

• constiterator &operator=(const constiterator &y)

Assignment operator.

• constConstraint& operator∗ () const

Dereference operator.

• constConstraint∗ operator→ () const

Indirect member selector.

• constiterator &operator++()

Prefix increment operator.

• constiteratoroperator++(int)

Postfix increment operator.

• booloperator==(const constiterator &y) const

Returnstrue if and only if∗this andy are identical.

• booloperator!=(const constiterator &y) const

Returnstrue if and only if∗this andy are different.

7.3.1 Detailed Description

A constiteratoris used to provide read-only access to each constraint contained in an object ofConSys.

Example
The following code prints the system of constraints defining the polyhedronph :

const ConSys cs = ph.constraints();
ConSys::const_iterator iend = cs.end();
for (ConSys::const_iterator i = cs.begin(); i != iend; ++i)

cout << *i << endl;

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Parma Polyhedra Library::Generator Class Reference 13

7.4 Parma Polyhedra Library::Generator Class Reference

A line, ray or vertex.

#include <ppl.hh >

Inherits Row.

Public Types

• enumType

The generator type.

Public Methods

• Generator()

Default constructor.

• Generator(const Generator &g)

Ordinary copy-constructor.

• ∼Generator()

Destructor.

• Typetype() const

Returns the generator type of∗this .

Friends

• GeneratorParmaPolyhedraLibrary::line (constLinExpression&e)

Returns the (bidirectional) line of directione.

• GeneratorParmaPolyhedraLibrary::ray(constLinExpression&e)

Returns the (unidirectional) ray of directione.

• GeneratorParmaPolyhedraLibrary::vertex(constLinExpression&e, const Integer &d=1)

Returns the vertex ate / d (note thatd is an optional argument with default value 1).
Exceptions:

std::invalid argument thrown ifd is zero.

7.4.1 Detailed Description

An object of the classGeneratoris one of the following:

• a linel = (a0, . . . , an−1)T;

• a rayr = (a0, . . . , an−1)T;

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Parma Polyhedra Library::Generator Class Reference 14

• a vertexv = (a0
d , . . . ,

an−1
d)T;

wheren is the dimension of the space.

How to build a generator.
Each type of generator is built by applying the corresponding function (line , ray or vertex) to
a linear expression, representing a direction in the space. This means that a linear expression used
to define a generator should be homogeneous and any constant term will be ignored. When defining
a vertex, an optional Integer argument can be used as a commondenominatorfor all the coefficients
occurring in the provided linear expression; the default value for this argument is 1.
In all the following examples it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds a line with directionx− y − z:

Generator l = line(x - y - z);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator l = line(x - y - z + 15);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant.

Example 3
The following code builds the vertexv = (1, 0, 2)T ∈ R3:

Generator v = vertex(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

Generator v = vertex(x + 2*z);

Similarly, the origin0 ∈ R3 can be defined using either one of the following lines of code:

Generator origin1 = vertex(0*x + 0*y + 0*z);
Generator origin2 = vertex(0*z);

Note however that the following line would have defined a different vertex, namely0 ∈ R2:

Generator origin3 = vertex(0*y);

Example 4
The vertexv specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the denominator argument:

Generator v = vertex(2*x + 0*y + 4*z, 2);

Obviously, the denominator can be usefully exploited to specify vertices having some non-integer (but
rational) coordinates. For instance, the vertexw = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the
following code:

Generator w = vertex(-15*x + 32*y + 21*z, 10);

If a zero denominator is provided, an exception is thrown.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.5 Parma Polyhedra Library::GenSys Class Reference 15

7.5 Parma Polyhedra Library::GenSys Class Reference

A system of generators.

#include <ppl.hh >

Inherits Matrix.

Public Methods

• GenSys()

Default constructor: builds an empty system of generators.

• GenSys(const GenSys &gs)

Ordinary copy-constructor.

• virtual∼GenSys()

Destructor.

• void insert(constGenerator&g)

Inserts a copy of the generatorg into ∗this , increasing the number of dimensions if needed.

• void swap(GenSys &y)

Swaps∗this with the system of generatorsy .

• constiteratorbegin() const

Returns theconstiterator pointing to the first generator, if∗this is not empty; otherwise, returns the
past-the-endconstiterator.

• constiteratorend() const

Returns the past-the-endconstiterator.

7.5.1 Detailed Description

An object of the classGenSysis a system of generators, i.e. a multiset of objects of the classGenerator
(lines, rays and vertices). When inserting generators in a system, dimensions are automatically adjusted so
that all the generators in the system are defined on the same vector space. A system of generators which
is meant to define a non-empty polyhedron must include at least one vertex, even if the polyhedron has no
“proper” vertices: the reason is that lines and rays need a supporting point (they only specify directions).

In all the examples it is assumed that variablesx andy are defined as follows:

Variable x(0);
Variable y(1);

Example 1
The following code defines the line having the same direction as thex axis (i.e., the first Cartesian
axis) inR2:

GenSys gs;
gs.insert(line(x + 0*y));

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.6 Parma Polyhedra Library::GenSys::const iterator Class Reference 16

As said above, this system of generators corresponds to an empty polyhedron, because the line has no
supporting point. To define a system of generators indeed corresponding to thex axis, one can add the
following code which inserts the origin of the space as a vertex:

gs.insert(vertex(0*x + 0*y));

Since dimensions are automatically adjusted, the following code obtains the same effect:

gs.insert(vertex(0*x));

In contrast, if we had added the following code, we would have defined a line parallel to thex axis and
including the point(0, 1)T ∈ R2.

gs.insert(vertex(0*x + 1*y));

Example 2
The following code builds a ray having the same direction as the positive part of thex axis inR2:

GenSys gs;
gs.insert(ray(x + 0*y));

To define a system of generators indeed corresponding to the set{
(x, 0)T ∈ R2

∣∣ x ≥ 0
}
,

one just has to add the origin:

gs.insert(vertex(0*x + 0*y));

Example 3
The following code builds a system of generators having four vertices and corresponding to a square
in R2 (the same as Example 1 for the system of constraints):

GenSys gs;
gs.insert(vertex(0*x + 0*y));
gs.insert(vertex(0*x + 3*y));
gs.insert(vertex(3*x + 0*y));
gs.insert(vertex(3*x + 3*y));

Example 4
The following code builds a system of generators having two vertices and a ray, corresponding to a
half-strip inR2 (the same as Example 2 for the system of constraints):

GenSys gs;
gs.insert(vertex(0*x + 0*y));
gs.insert(vertex(0*x + 1*y));
gs.insert(ray(x - y));

7.6 Parma Polyhedra Library::GenSys::const iterator Class Reference

#include <ppl.hh >

Inherits std::iterator.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.7 Parma Polyhedra Library::LinExpression Class Reference 17

Public Methods

• constiterator()

Default constructor.

• constiterator(const constiterator &y)

Ordinary copy-constructor.

• virtual∼constiterator()

Destructor.

• constiterator &operator=(const constiterator &y)

Assignment operator.

• constGenerator& operator∗ () const

Dereference operator.

• constGenerator∗ operator→ () const

Indirect member selector.

• constiterator &operator++()

Prefix increment operator.

• constiteratoroperator++(int)

Postfix increment operator.

• booloperator==(const constiterator &y) const

Returnstrue if and only if∗this andy are identical.

• booloperator!=(const constiterator &y) const

Returnstrue if and only if∗this andy are different.

7.6.1 Detailed Description

A constiteratoris used to provide read-only access to each generator contained in an object ofGenSys.

Example
The following code prints the system of generators of the polyhedronph :

const GenSys gs = ph.generators();
GenSys::const_iterator iend = gs.end();
for (GenSys::const_iterator i = gs.begin(); i != iend; ++i)

cout << *i << endl;

7.7 Parma Polyhedra Library::LinExpression Class Reference

A linear expression.

#include <ppl.hh >

Inherits Row.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.7 Parma Polyhedra Library::LinExpression Class Reference 18

Public Methods

• LinExpression()

Default constructor.

• LinExpression(const LinExpression &e)

Ordinary copy-constructor.

• virtual∼LinExpression()

Destructor.

• LinExpression(const Integer &n)

Constructor: builds the linear expression corresponding to the inhomogeneous termn.

• LinExpression(constVariable&v)

Constructor: builds the linear expression corresponding to the variablev .

Friends

• LinExpression ParmaPolyhedraLibrary::operator+ (const LinExpression &e1, const Lin-
Expression &e2)

Returns the linear expressione1 + e2 .

• LinExpressionParmaPolyhedraLibrary::operator+(const Integer &n, const LinExpression &e)

Returns the linear expressionn + e.

• LinExpressionParmaPolyhedraLibrary::operator+(const LinExpression &e, const Integer &n)

Returns the linear expressione + n.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e)

Returns the linear expression -e.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e1, const LinExpression
&e2)

Returns the linear expressione1 - e2 .

• LinExpressionParmaPolyhedraLibrary::operator-(const Integer &n, const LinExpression &e)

Returns the linear expressionn - e.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e, const Integer &n)

Returns the linear expressione - n.

• LinExpressionParmaPolyhedraLibrary::operator∗ (const Integer &n, const LinExpression &e)

Returns the linear expressionn ∗ e.

• LinExpressionParmaPolyhedraLibrary::operator∗ (const LinExpression &e, const Integer &n)

Returns the linear expressione ∗ n.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 Parma Polyhedra Library::Polyhedron Class Reference 19

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e1, const LinExpression
&e2)

Returns the linear expressione1 + e2 and assigns it toe1 .

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e, constVariable&v)

Returns the linear expressione + v and assigns it toe.

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e, const Integer &n)

Returns the linear expressione + n and assigns it toe.

7.7.1 Detailed Description

An object of the classLinExpressionrepresents the linear expression

n−1∑
i=0

aixi + b

wheren is the dimension of the space, eachai is the integer coefficient of thei -th variablexi andb is the
integer for the inhomogeneous term.

How to build a linear expression.
Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequal-
ities) and generators (i.e., lines, rays and vertices). The following functions provide a convenient
interface for building a complex linear expression starting from simpler ones (or even from objects
of the classesVariableand Integer). Available operators include unary negation, binary addition and
subtraction, as well as multiplication by an Integer.

Example
The following code builds the linear expression4x− 2y − z + 14:

LinExpression e = 4*x - 2*y - z + 14;

Another way to build the same linear expression is:

LinExpression e1 = 4*x;
LinExpression e2 = 2*y;
LinExpression e3 = z;
LinExpression e = LinExpression(14);
e += e1 - e2 - e3;

7.8 Parma Polyhedra Library::Polyhedron Class Reference

A convex polyhedron.

#include <ppl.hh >

Public Types

• enumDegenerateKind { ZERO DIMENSIONAL, EMPTY }
Kinds of degenerate polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 Parma Polyhedra Library::Polyhedron Class Reference 20

Public Methods

• Polyhedron(DegenerateKind kind=ZERODIMENSIONAL)

Builds the zero-dimensional, universe polyhedron, ifkind is ZERODIMENSIONAL(the default); other-
wise (i.e., ifkind is EMPTY) builds an empty polyhedron.

• Polyhedron(const Polyhedron &y)

Ordinary copy-constructor.

• Polyhedron(size t num dimensions)

Builds the universe polyhedron of dimensionnum dimensions .

• Polyhedron(ConSys&cs)

Builds a polyhedron from a system of constraints.
Parameters:

cs The system of constraints defining the polyhedron. It is not declaredconst because it can be
modified.

• Polyhedron(GenSys&gs)

Builds a polyhedron from a system of generators.
Parameters:

gs The system of generators defining the polyhedron. It is not declaredconst because it can be
modified.

Exceptions:
std::invalid argument thrown if the system of generators has no vertex.

• Polyhedron &operator=(const Polyhedron &y)

The assignment operator.

• size t num dimensions() const

Returns the dimension of the polyhedron.

• void intersectionassign(const Polyhedron &y)

Intersects∗this with polyhedrony and assigns the result to∗this .
Exceptions:

std::invalid argument thrown if∗this andy have different dimension.

• void convexhull assign(const Polyhedron &y)

Assigns the convex hull of∗this ∪ y to ∗this .
Exceptions:

std::invalid argument thrown if∗this andy have different dimension.

• void convexhull assignlazy (const Polyhedron &y)

Assigns the convex hull of∗this ∪ y to ∗this , without minimizing the result.
Exceptions:

std::invalid argument thrown if∗this andy have different dimension.

• GenSysCon Rel satisfies(constConstraint&c)

Returns the relation between the generators of∗this and the constraintc .
Exceptions:

std::invalid argument thrown if∗this and constraintc have different dimension.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 Parma Polyhedra Library::Polyhedron Class Reference 21

• bool includes(constGenerator&g)

Tests the inclusion of the generatorg in the polyhedron∗this .
Exceptions:

std::invalid argument thrown if∗this and constraintg have different dimension.

• void wideningassign(const Polyhedron &y)

Computes the widening between∗this andy and assigns the result to∗this .
Parameters:

y The polyhedron thatmustbe contained in∗this .
Exceptions:

std::invalid argument thrown if∗this andy have different dimension.

• bool limited wideningassign(const Polyhedron &y,ConSys&cs)

Limits the widening between∗this andy bycs and assigns the result to∗this .
Parameters:

y The polyhedron thatmustbe contained in∗this .
cs The system of constraints that limits the widened polyhedron. It is not declaredconst because it

can be modified.
Returns:

true if the resulting polyhedron is not emptyfalse otherwise.
Exceptions:

std::invalid argument thrown if∗this , y andcs have different dimension.

• constConSys& constraints() const

Returns the system of constraints.
Exceptions:

std::invalid argument thrown if∗this is empty.

• constGenSys& generators() const

Returns the system of generators.
Exceptions:

std::invalid argument thrown if∗this is zero-dimensional.

• void insert(constConstraint&c)

Inserts a new constraintc into the system of constraints of∗this .

• void insert(constGenerator&g)

Inserts a new generatorg into the system of generators of∗this .

• void assignvariable(constVariable&v, constLinExpression&expr, const Integer &denominator=1)

Assigns an affine expression to the specified variable.
Parameters:

v The variable to which the affine expression is assigned.
expr The numerator of the affine expression.
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid argument thrown ifdenominator is zero or ifexpr and∗this have different dimen-

sion or ifv is not a variable of the polyhedron.

• void substitutevariable(constVariable&v, constLinExpression&expr, const Integer &denomina-
tor=1)

Substitutes an affine expression for the specified variable.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 Parma Polyhedra Library::Polyhedron Class Reference 22

Parameters:
v The variable to which the affine expression is substituted.
expr The numerator of the affine expression.
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid argument thrown ifdenominator is zero or ifexpr and∗this have different dimen-

sion or ifv is not a variable of the polyhedron.

• boolOK (bool checknot empty=true) const

Checks if all the invariants are satisfied.
Parameters:

checknot empty true if it must be checked whether the system of constraint is satisfiable.
Returns:

true if the polyhedron satisfies all the invariants stated in the PPL,false otherwise.

• void adddimensionsandembed(size t dim)

Adds new dimensions and embeds the old polyhedron in the new space.
Parameters:

dim The number of dimensions to add.

• void adddimensionsandproject(size t dim)

Adds new dimensions to the polyhedron and does not embed it in the new space.
Parameters:

dim The number of dimensions to add.

• void removedimensions(const std::set< Variable> &to be removed)

Removes the specified dimensions.
Parameters:

to be removed The set of variables to remove.

• booladdconstraints(ConSys&cs)

Adds the specified constraints and computes a new polyhedron.
Parameters:

cs The constraints that will be added to the current system of constraints. This parameter is not de-
claredconst because it can be modified.

Returns:
false if the resulting polyhedron is empty.

Exceptions:
std::invalid argument thrown if∗this andcs have different dimension.

• void addconstraintslazy (ConSys&cs)

Adds the specified constraints without minimizing.
Parameters:

cs The constraints that will be added to the current system of constraints. This parameter is not de-
claredconst because it can be modified.

Exceptions:
std::invalid argument thrown if∗this andcs have different dimension.

• void addgenerators(GenSys&gs)

Adds the specified generators.
Parameters:

gs The generators that will be added to the current system of generators. The parameter is not declared
const because it can be modified.

Exceptions:
std::invalid argument thrown if∗this andgs have different dimension.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 Parma Polyhedra Library::Polyhedron Class Reference 23

• bool checkempty() const

Returnstrue if and only if the polyhedron is empty.

• bool checkuniverse() const

Returnstrue if ∗this is a universe polyhedron.

• void swap(Polyhedron &y)

Swaps∗this with polyhedrony .

• bool is empty() const

Returnstrue if and only if∗this is an empty polyhedron.

• bool is zerodim () const

Returnstrue if and only if∗this is a zero-dimensional polyhedron.

Friends

• boolParmaPolyhedraLibrary::operator<= (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only if polyhedronx is contained in polyhedrony .

• std::ostream &ParmaPolyhedraLibrary::operator<< (std::ostream &s, const Polyhedron &p)

Output operator.

• std::istream &ParmaPolyhedraLibrary::operator>> (std::istream &s, Polyhedron &p)

Input operator.

7.8.1 Detailed Description

An object of the classPolyhedronrepresents a convex polyhedron in the spaceR
n.

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
Minkowski’s theorem in the Introduction). So, it is possible to obtain one system from the other. That is, if
we know the system of constraints, we can obtain from this the system of generators that define the same
polyhedron and vice versa. These systems can contain some redundant members: in this case we say that
they are not in the minimal form.

In all the examples it is assumed that variablesx andy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a square inR

2, given as a system of con-
straints:

ConSys cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
Polyhedron ph(cs);

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 Parma Polyhedra Library::Polyhedron Class Reference 24

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

GenSys gs;
gs.insert(vertex(0*x + 0*y));
gs.insert(vertex(0*x + 3*y));
gs.insert(vertex(3*x + 0*y));
gs.insert(vertex(3*x + 3*y));
Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-strip inR

2, given as a
system of constraints:

ConSys cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);
Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

GenSys gs;
gs.insert(vertex(0*x + 0*y));
gs.insert(vertex(0*x + y));
gs.insert(ray(x - y));
Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to an half-plane inR

2, by adding a single
constraint to the universe polyhedron:

Polyhedron ph;
ph.insert(y >= 0);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying a vertex, a ray and a line.

Polyhedron ph;
ph.insert(vertex(0*x + 0*y));
ph.insert(ray(0*x + y));
ph.insert(line(x + 0*y));

In this last case, it is important to note that: even if this polyhedron has no real vertex, we must add
one, because otherwise the polyhedron is considered empty.

Example 4
The following code shows the use of the functionadd dimensions and embed:

Polyhedron ph;
ph.insert(x == 2);
ph.add_dimensions_and_embed(1);

We start with the universe polyhedron in the 0-dimensional space. Then we add a single equality
constraint, thus obtaining the polyhedron corresponding to the singleton set{2} ⊆ R. After the last
line of code, the resulting polyhedron is{

(2, x1)T ∈ R2
∣∣ x1 ∈ R

}
.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 Parma Polyhedra Library::Polyhedron Class Reference 25

Example 5
The following code shows the use of the functionadd dimensions and project :

Polyhedron ph;
ph.insert(x == 2);
ph.add_dimensions_and_poject(1);

The first two lines of code are the same as in Example 4 foradd dimensions and embed. After
the last line of code, the resulting polyhedron is the singleton set

{
(2, 0)T

}
⊆ R2.

Example 6
The following code shows the use of the functionassign variable :

Polyhedron ph;
ph.insert(vertex(0*x + 0*y));
ph.insert(vertex(0*x + 3*y));
ph.insert(vertex(3*x + 0*y));
ph.insert(vertex(3*x + 3*y));
LinExpression coeff = x + 0*y + 4;
ph.assign_variable(x, coeff);

In this example the starting polyhedron is a square inR
2, the considered variable isx and the affine

expression isx + 4. The resulting polyhedron is the same square translated towards right. Moreover,
if the affine transformation for the same variablex is x+ y:

LinExpression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex − y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expressiony:

LinExpression coeff = 0*x + y;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functionsubstitute variable :

Polyhedron ph;
ph.insert(x >= 0);
ph.insert(x <= 3);
ph.insert(y >= 0);
ph.insert(y <= 3);
LinExpression coeff = x + 0*y + 4;
ph.substitute_variable(x, coeff);

In this example the starting polyhedron,var and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square but translated towards
left. Moreover, if the affine transformation forx is x+ y

LinExpression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex + y. Instead, if we do not use an invertible transformation for the
same variablex , for example, the affine expressiony:

LinExpression coeff = 0*x + y;

the resulting polyhedron is a line that corresponds to they axis.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.9 Parma Polyhedra Library::Variable Class Reference 26

7.8.2 Member Enumeration Documentation

7.8.2.1 enum ParmaPolyhedra Library::Polyhedron::Degenerate Kind

Enumeration values:
ZERO DIMENSIONAL The full polyhedron inR0, i.e., a singleton.

EMPTY The empty polyhedron, i.e., the empty set.

7.9 Parma Polyhedra Library::Variable Class Reference

A dimension of the space.

#include <ppl.hh >

Public Methods

• Variable(unsigned int id)

Constructor:id is the index of the Cartesian axis.

• unsigned intid () const

Returns the index of the Cartesian axis.

7.9.1 Detailed Description

An object of the classVariable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as base blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0).

Note that the “meaning” of an object of the classVariable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressionse1 ande2 are equivalent, since the two variablesx andz
denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
LinExpression e1 = x + y;
LinExpression e2 = y + z;

8 PPL Page Documentation

8.1 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 GNU GENERAL PUBLIC LICENSE 27

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFI-
CATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a ”work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 GNU GENERAL PUBLIC LICENSE 28

protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.
• b) You must cause any work that you distribute or publish, that in whole or in part contains or is

derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
• c) If the modified program normally reads commands interactively when run, you must cause it, when

started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,
• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge

no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,
• c) Accompany it with the information you received as to the offer to distribute corresponding source

code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 GNU GENERAL PUBLIC LICENSE 29

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and ”any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 GNU GENERAL PUBLIC LICENSE 30

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 GNU Free Documentation License 31

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands<SAMP>‘show w’</SAMP> and<SAMP>‘show c’</SAMP> should
show the appropriate parts of the General Public License. Of course, the commands you use may be called
something other than<SAMP>‘show w’</SAMP> and<SAMP>‘show c’</SAMP>; they could even
be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copy-
right disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

8.2 GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document ”free” in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher
a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 GNU Free Documentation License 32

regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The ”Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as ”you”.

A ”Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (For ex-
ample, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, ”Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 GNU Free Documentation License 33

must also clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a complete Transparent copy of the Doc-
ument, free of added material, which the general network-using public has access to download anony-
mously at no charge using public-standard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.
• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of

the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).
• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the public permission to

use the Modified Version under the terms of this License, in the form shown in the Addendum below.
• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given

in the Document’s license notice.
• H. Include an unaltered copy of this License.
• I. Preserve the section entitled ”History”, and its title, and add to it an item stating at least the title,

year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled ”History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.
• J. Preserve the network location, if any, given in the Document for public access to a Transpar-

ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.
• K. In any section entitled ”Acknowledgements” or ”Dedications”, preserve the section’s title, and

preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 GNU Free Documentation License 34

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.
• M. Delete any section entitled ”Endorsements”. Such a section may not be included in the Modified

Version.
• N. Do not retitle any existing section as ”Endorsements” or to conflict in title with any Invariant

Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section entitled ”Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ”History” in the various original documents,
forming one section entitled ”History”; likewise combine any sections entitled ”Acknowledgements”, and
any sections entitled ”Dedications”. You must delete all sections entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation
is called an ”aggregate”, and this License does not apply to the other self-contained works thus compiled

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 GNU Free Documentation License 35

with the Document, on account of their being thus compiled, if they are not themselves derivative works of
the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License provided
that you also include the original English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. Seehttp://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write ”with no Invariant Sections” instead of saying which ones are
invariant. If you have no Front-Cover Texts, write ”no Front-Cover Texts” instead of ”Front-Cover Texts
being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/.
http://www.cs.unipr.it/ppl/

8.2 GNU Free Documentation License 36

their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index
∼ConSys

ParmaPolyhedraLibrary::ConSys,10
∼Constraint

ParmaPolyhedraLibrary::Constraint,8
∼GenSys

ParmaPolyhedraLibrary::GenSys,14
∼Generator

ParmaPolyhedraLibrary::Generator,12
∼LinExpression

ParmaPolyhedraLibrary::LinExpression,
17

∼constiterator
ParmaPolyhedraLibrary::ConSys::const-

iterator,11
ParmaPolyhedraLibrary::GenSys::const-

iterator,16

addconstraints
ParmaPolyhedraLibrary::Polyhedron,22

addconstraintslazy
ParmaPolyhedraLibrary::Polyhedron,22

adddimensionsandembed
ParmaPolyhedraLibrary::Polyhedron,21

adddimensionsandproject
ParmaPolyhedraLibrary::Polyhedron,21

addgenerators
ParmaPolyhedraLibrary::Polyhedron,22

ALL SATISFY
ParmaPolyhedraLibrary, 8

ALL SATURATE
ParmaPolyhedraLibrary, 8

assignvariable
ParmaPolyhedraLibrary::Polyhedron,21

begin
ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::GenSys,15

checkempty
ParmaPolyhedraLibrary::Polyhedron,22

checkuniverse
ParmaPolyhedraLibrary::Polyhedron,22

constiterator
ParmaPolyhedraLibrary::ConSys::const-

iterator,11
ParmaPolyhedraLibrary::GenSys::const-

iterator,16
Constraint

ParmaPolyhedraLibrary::Constraint,8
constraints

ParmaPolyhedraLibrary::Polyhedron,20

ConSys
ParmaPolyhedraLibrary::ConSys,10

convexhull assign
ParmaPolyhedraLibrary::Polyhedron,20

convexhull assignlazy
ParmaPolyhedraLibrary::Polyhedron,20

DegenerateKind
ParmaPolyhedraLibrary::Polyhedron,25

EMPTY
ParmaPolyhedraLibrary::Polyhedron,25

end
ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::GenSys,15

Generator
ParmaPolyhedraLibrary::Generator,12

generators
ParmaPolyhedraLibrary::Polyhedron,21

GenSys
ParmaPolyhedraLibrary::GenSys,14

GenSysCon Rel
ParmaPolyhedraLibrary, 8

id
ParmaPolyhedraLibrary::Variable,25

includes
ParmaPolyhedraLibrary::Polyhedron,20

insert
ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::GenSys,14
ParmaPolyhedraLibrary::Polyhedron,21

intersectionassign
ParmaPolyhedraLibrary::Polyhedron,20

is empty
ParmaPolyhedraLibrary::Polyhedron,22

is equality
ParmaPolyhedraLibrary::Constraint,9

is inequality
ParmaPolyhedraLibrary::Constraint,9

is zerodim
ParmaPolyhedraLibrary::Polyhedron,22

limited wideningassign
ParmaPolyhedraLibrary::Polyhedron,20

LinExpression
ParmaPolyhedraLibrary::LinExpression,

17

NONE SATISFIES
ParmaPolyhedraLibrary, 8

INDEX 38

num dimensions
ParmaPolyhedraLibrary::Polyhedron,20

OK
ParmaPolyhedraLibrary::Polyhedron,21

operator∗
ParmaPolyhedraLibrary::ConSys::const-

iterator,11
ParmaPolyhedraLibrary::GenSys::const-

iterator,16
operator!=

ParmaPolyhedraLibrary, 7
ParmaPolyhedraLibrary::ConSys::const-

iterator,12
ParmaPolyhedraLibrary::GenSys::const-

iterator,17
operator++

ParmaPolyhedraLibrary::ConSys::const-
iterator,12

ParmaPolyhedraLibrary::GenSys::const-
iterator,16

operator->
ParmaPolyhedraLibrary::ConSys::const-

iterator,11
ParmaPolyhedraLibrary::GenSys::const-

iterator,16
operator<

ParmaPolyhedraLibrary, 7, 8
operator<<

ParmaPolyhedraLibrary, 7
operator=

ParmaPolyhedraLibrary::ConSys::const-
iterator,11

ParmaPolyhedraLibrary::GenSys::const-
iterator,16

ParmaPolyhedraLibrary::Polyhedron,19
operator==

ParmaPolyhedraLibrary, 7
ParmaPolyhedraLibrary::ConSys::const-

iterator,12
ParmaPolyhedraLibrary::GenSys::const-

iterator,16
operator>

ParmaPolyhedraLibrary, 8
operator>=

ParmaPolyhedraLibrary, 8

ParmaPolyhedraLibrary
ALL SATISFY,8
ALL SATURATE,8
NONE SATISFIES,8
SOME SATISFY,8

ParmaPolyhedraLibrary, 6
GenSysCon Rel,8

operator<, 7, 8
operator<<, 7
operator==,7
operator>, 8
operator>=, 8

ParmaPolyhedraLibrary::Constraint,8
∼Constraint,8
Constraint,8
is equality,9
is inequality,9
ParmaPolyhedraLibrary::operator<=, 9
ParmaPolyhedraLibrary::operator==,9
ParmaPolyhedraLibrary::operator>=, 9
ParmaPolyhedraLibrary::operator>>, 9

ParmaPolyhedraLibrary::ConSys
∼ConSys,10
begin,10
ConSys,10
end,10
insert,10
swap,10

ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::ConSys::const-

iterator
∼constiterator,11
constiterator,11
operator∗, 11
operator++,12
operator→ , 11
operator=,11
operator==,12

ParmaPolyhedraLibrary::ConSys::const-
iterator,11

ParmaPolyhedraLibrary::Generator,12
∼Generator,12
Generator,12
ParmaPolyhedraLibrary::line,13
ParmaPolyhedraLibrary::ray,13
ParmaPolyhedraLibrary::vertex,13
type,12

ParmaPolyhedraLibrary::GenSys
∼GenSys,14
begin,15
end,15
GenSys,14
insert,14
swap,14

ParmaPolyhedraLibrary::GenSys,14
ParmaPolyhedraLibrary::GenSys::const-

iterator
∼constiterator,16
constiterator,16
operator∗, 16
operator++,16

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 39

operator→ , 16
operator=,16
operator==,16

ParmaPolyhedraLibrary::GenSys::const-
iterator,16

ParmaPolyhedraLibrary::line
ParmaPolyhedraLibrary::Generator,13

ParmaPolyhedraLibrary::LinExpression
∼LinExpression,17
LinExpression,17
ParmaPolyhedraLibrary::operator∗, 18
ParmaPolyhedraLibrary::operator+, 17,

18
ParmaPolyhedraLibrary::operator+=,18
ParmaPolyhedraLibrary::operator-,18

ParmaPolyhedraLibrary::LinExpression,17
ParmaPolyhedraLibrary::operator∗

ParmaPolyhedraLibrary::LinExpression,
18

ParmaPolyhedraLibrary::operator+
ParmaPolyhedraLibrary::LinExpression,

17, 18
ParmaPolyhedraLibrary::operator+=

ParmaPolyhedraLibrary::LinExpression,
18

ParmaPolyhedraLibrary::operator-
ParmaPolyhedraLibrary::LinExpression,

18
ParmaPolyhedraLibrary::operator<<

ParmaPolyhedraLibrary::Polyhedron,22
ParmaPolyhedraLibrary::operator<=

ParmaPolyhedraLibrary::Constraint,9
ParmaPolyhedraLibrary::Polyhedron,22

ParmaPolyhedraLibrary::operator==
ParmaPolyhedraLibrary::Constraint,9

ParmaPolyhedraLibrary::operator>=
ParmaPolyhedraLibrary::Constraint,9

ParmaPolyhedraLibrary::operator>>
ParmaPolyhedraLibrary::Constraint,9
ParmaPolyhedraLibrary::Polyhedron,22

ParmaPolyhedraLibrary::Polyhedron
EMPTY, 25
ZERO DIMENSIONAL, 25

ParmaPolyhedraLibrary::Polyhedron,19
addconstraints,22
addconstraintslazy,22
adddimensionsandembed,21
adddimensionsandproject,21
addgenerators,22
assignvariable,21
checkempty,22
checkuniverse,22
constraints,20
convexhull assign,20

convexhull assignlazy,20
DegenerateKind, 25
generators,21
includes,20
insert,21
intersectionassign,20
is empty,22
is zerodim, 22
limited wideningassign,20
num dimensions,20
OK, 21
operator=,19
ParmaPolyhedraLibrary::operator<<, 22
ParmaPolyhedraLibrary::operator<=, 22
ParmaPolyhedraLibrary::operator>>, 22
Polyhedron,19
removedimensions,21
satisfies,20
substitutevariable,21
swap,22
wideningassign,20

ParmaPolyhedraLibrary::ray
ParmaPolyhedraLibrary::Generator,13

ParmaPolyhedraLibrary::Variable,25
id, 25
Variable,25

ParmaPolyhedraLibrary::vertex
ParmaPolyhedraLibrary::Generator,13

Polyhedron
ParmaPolyhedraLibrary::Polyhedron,19

removedimensions
ParmaPolyhedraLibrary::Polyhedron,21

satisfies
ParmaPolyhedraLibrary::Polyhedron,20

SOME SATISFY
ParmaPolyhedraLibrary, 8

substitutevariable
ParmaPolyhedraLibrary::Polyhedron,21

swap
ParmaPolyhedraLibrary::ConSys,10
ParmaPolyhedraLibrary::GenSys,14
ParmaPolyhedraLibrary::Polyhedron,22

type
ParmaPolyhedraLibrary::Generator,12

Variable
ParmaPolyhedraLibrary::Variable,25

wideningassign
ParmaPolyhedraLibrary::Polyhedron,20

ZERO DIMENSIONAL
ParmaPolyhedraLibrary::Polyhedron,25

The Parma Polyhedra Library User’s Manual (version 0.1). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	Convex Polyhedra and the PPL
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Compound Index
	PPL Page Index
	PPL Namespace Documentation
	PPL Class Documentation
	PPL Page Documentation

