The Parma Polyhedra Library
Java Language Interface
User’s Manual*
(version 0.10.2)

Roberto Bagnaraf
Patricia M. Hill¥
Enea Zaffanella’

October 24, 2009

*This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) ‘“Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification
of Reactive Systems”; MURST project “Abstract Interpretation: Design and Applications”; EPSRC project “Numerical Domains for
Software Analysis”; EPSRC project “Geometric Abstractions for Scalable Program Analyzers”.

Thagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

thill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.

8 zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS i

Copyright © 2001-2009 Roberto Bagnara (bagnara@cs.unipr.it).
This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library site:

http://www.cs.unipr.it/ppl/

Contents
1 Main Page 1
2 GNU General Public License 2
3 GNU Free Documentation License 12
4 Module Index 17
4.1 Modules e e e 17
S Namespace Index 17
5.1 Namespace List o e e e 17
6 Class Index 17
6.1 ClassHierarchy 17
7 Class Index 19
7.1 Class List o e e e e e 19
8 Module Documentation 21
8.1 JavaLanguage Interface 21
9 Namespace Documentation 27
9.1 parma_polyhedra_library Namespace Reference 27
10 Class Documentation 31

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

CONTENTS

ii

10.1 parma_polyhedra_library::

10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.10parma_polyhedra_library::
10.11parma_polyhedra_library::
10.12parma_polyhedra_library::
10.13parma_polyhedra_library::
10.14parma_polyhedra_library::
10.15parma_polyhedra_library::
10.16parma_polyhedra_library::
10.17parma_polyhedra_library::
10.18parma_polyhedra_library::
10.19parma_polyhedra_library::
10.20parma_polyhedra_library::
10.21parma_polyhedra_library::
10.22parma_polyhedra_library::
10.23parma_polyhedra_library::
10.24parma_polyhedra_library::
10.25parma_polyhedra_library::
10.26parma_polyhedra_library::
10.27parma_polyhedra_library::
10.28 parma_polyhedra_library::
10.29parma_polyhedra_library::
10.30parma_polyhedra_library::
10.31parma_polyhedra_library::
10.32parma_polyhedra_library::
10.33parma_polyhedra_library::
10.34parma_polyhedra_library::
10.35parma_polyhedra_library::
10.36parma_polyhedra_library::

parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library::

BD_Shape_double Class Reference
BD_Shape_mpq_class Class Reference

BD_Shape_mpz_class Class Reference

By_Reference< T > Class Reference

C_Polyhedron Class Reference

Coefficient Class Reference

Congruence Class Reference

Congruence_System Class Reference

Constraint Class Reference
Constraint_System Class Reference
Constraints_Product_C_Polyhedron_Grid Class Reference . . .
Domain_Error_Exception Class Reference

Double_Box Class Reference

Generator Class Reference

Generator_System Class Reference

Grid Class Reference

Grid_Generator Class Reference

Grid_Generator_System Class Reference

Invalid_Argument_Exception Class Reference

10 Class Reference

Length_Error_Exception Class Reference

Linear_Expression Class Reference

Linear_Expression_Coefficient Class Reference

Linear_Expression_Difference Class Reference

Linear_Expression_Sum Class Reference

Linear_Expression_Times Class Reference

Linear_Expression_Unary_Minus Class Reference

Linear_Expression_Variable Class Reference
Logic_FError_Exception Class Reference
MIP_Problem Class Reference
NNC_Polyhedron Class Reference
Octagonal_Shape_double Class Reference
Octagonal_Shape_mpq_class Class Reference
Octagonal_Shape_mpz_class Class Reference
Overflow_Error_Exception Class Reference

Pair< K, V > Class Reference

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

1 Main Page 1
10.37parma_polyhedra_library::Parma_Polyhedra_Library Class Reference 59
10.38parma_polyhedra_library::Partial_Function Interface Reference 61
10.39parma_polyhedra_library::Pointset_Powerset_C_Polyhedron Class Reference 62
10.40parma_polyhedra_library::Pointset_Powerset_C_Polyhedron_Iterator Class Reference 63
10.41parma_polyhedra_library::Pointset_Powerset. NNC_Polyhedron Class Reference 64
10.42parma_polyhedra_library::Pointset_Powerset_ NNC_Polyhedron_Iterator Class Reference 65
10.43parma_polyhedra_library::Poly_Con_Relation Class Reference 65
10.44parma_polyhedra_library::Poly_Gen_Relation Class Reference 66
10.45parma_polyhedra_library::Polyhedron Class Reference 66
10.46parma_polyhedra_library::Rational Box Class Reference 89
10.47parma_polyhedra_library::Variable Class Reference 89
10.48parma_polyhedra_library::Variables_Set Class Reference 90

1 Main Page

The Parma Polyhedra Library comes equipped with an interface for the Java language. The Java interface
provides access to the numerical abstractions (convex polyhedra, BD shapes, octagonal shapes, etc.) im-
plemented by the PPL library. A general introduction to the numerical abstractions, their representation
in the PPL and the operations provided by the PPL is given in the main PPL user manual. Here we just
describe those aspects that are specific to the Java interface. In the sequel, prefix is the path prefix under
which the library has been installed (typically /usr or /usr/local).

Overview

Here is a list of notes with general information and advice on the use of the Java interface.

* The numerical abstract domains available to the Java user as Java classes consist of the simple do-
mains, powersets of a simple domain and products of simple domains. Note that the default con-
figuration will only enable a subset of these domains (if you need a different set of domains, see
configuration option ——enable-instantiations).

— The simple domains are:

* convex polyhedra, which consist of C_Polyhedron and NNC_Polyhedron;

« weakly relational, which consist of BD_Shape_N and Octagonal_Shape_N where N is one
of the numeric types signed_char, short, int, long, long_long, mpz_class, mpq_class;

% boxes which consist of Int8 Box, Intl6_Box, Int32 Box, Int64 Box, Uint8 Box,
Uint16_Box, Uint32_Box, Uint64_Box, Float_Box, Double_Box, Long_Double_Box,
7. Box, Rational_Box; and

% the Grid domain.
— The powerset domains are Pointset_Powerset_S where S is a simple domain.

— The product domains consist of Direct_Product_S_T, Smash_Product_S_T and Constraints_-
Product_S_T where S and T are simple domains.

* In the following, any of the above numerical abstract domains is called a PPL domain and any
element of a PPL domain is called a PPL object.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 2

* The Java interface files are all installed in the directory prefix/1lib/ppl. Since this includes
shared and dynamically loaded libraries, you must make your dynamic linker/loader aware of this
fact. If you use a GNU/Linux system, try the commands man 1d.so and man ldconfig for
more information.

e A Java program can create a new object for a PPL domain by using the constructors for the class
corresponding to the domain.

* For a PPL object with space dimension k, the identifiers used for the PPL variables must lie between
0 and k — 1 and correspond to the indices of the associated Cartesian axes. For example, when using
methods that combine PPL polyhedra or add constraints or generators to a representation of a PPL
polyhedron, the polyhedra referenced and any constraints or generators in the call should follow all
the (space) dimension-compatibility rules stated in Section Representations of Convex Polyhedra of
the main PPL user manual.

* As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in Section Representations of Convex Polyhedra of the main PPL user
manual.

* Any application using the PPL should make sure that only the intended version(s) of the library are
ever used.

* When the Parma Polyhedra Library is configured, it will automatically test for the existence of the
Java system (unless configuration options are passed to disable the build of the Java interface; see
configuration option ——enable-interfaces). If Java is correctly installed in a standard loca-
tion, things will be arranged so that the Java interface is built and installed (see configuration option
—-—with-java if you need to specify a non-standard location for the Java system).

2 GNU General Public License

Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program--to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://fsf.org/
http://www.cs.unipr.it/ppl/

2 GNU General Public License 3

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to
the recipients the same freedoms that you received. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed,
so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work™ means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 4

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized stan-
dards body, or, in the case of interfaces specified for a particular programming language, one that is widely
used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which
are not part of the work. For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevo-
cable provided the stated conditions are met. This License explicitly affirms your unlimited permission to
run the unmodified Program. The output from running a covered work is covered by this License only if
the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works for you must do so exclusively on
your behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicens-
ing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 5

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

* a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

* b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to “keep
intact all notices”.

* ¢) You must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission
if you have separately received it.

* d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

* a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customar-
ily used for software interchange.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 6

* b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

* ¢) Convey individual copies of the object code with a copy of the written offer to provide the Cor-
responding Source. This alternative is allowed only occasionally and noncommercially, and only if
you received the object code with such an offer, in accord with subsection 6b.

 d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may
be on a different server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the Corresponding
Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

* e) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as
a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for incor-
poration into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modifica-
tion has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 7

Corresponding Source conveyed, and Installation Information provided, in accord with this section must
be in a format that is publicly documented (and with an implementation available to the public in source
code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

* a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

* b) Requiring preservation of specified reasonable legal notices or author attributions in that material
or in the Appropriate Legal Notices displayed by works containing it; or

¢ ¢) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or

* d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

* ¢) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

* f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of sec-
tion 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by
this License along with a term that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that the further restriction
does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply either way.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 8

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets
of one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 9

this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent li-
cense for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowl-
edge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party based
on the extent of your activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms
that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely from conveying
the Program.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 10

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this License will continue to apply to the part
which is the covered work, but the special requirements of the GNU Affero General Public License, section
13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 11

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive
mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public
License. Of course, your program’s commands might be different; for a GUI interface, you would use an
“about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU Lesser General Public License instead of
this License. But first, please read http://www.gnu.org/philosophy/why-not-1gpl.html.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 12

3 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 13

widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates X YZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 14

material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

» B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

* C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
* D. Preserve all the copyright notices of the Document.
* E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

¢ F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

* G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

* H. Include an unaltered copy of this License.

* 1. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

 J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

» K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

e L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

* M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 15

* N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

¢ O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 16

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with... Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.gnu.org/copyleft/
http://www.cs.unipr.it/ppl/

4 Module Index

17

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those

two alternatives to suit the situati

on.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit

their use in free software.

4 Module Index

4.1 Modules

Here is a list of all modules:

Java Language Interface

5 Namespace Index

5.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

parma_polyhedra_library (The PPL Java interface package)

6 Class Index

6.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

parma_polyhedra_library::
parma_polyhedra_library:
parma_polyhedra_library:
parma_polyhedra_library:
parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library::
parma_polyhedra_library:
parma_polyhedra_library::

parma_polyhedra_library:

BD_Shape_double

:BD_Shape_mpq_class
:BD_Shape_mpz_class

:By_Reference< T >

Coefficient
Congruence
Congruence_System

Constraint

:Constraint_System

Constraints_Product_C_Polyhedron_Grid

:Domain_Error_Exception

21

27

31

31

31

32

35

36

37

37

38

39

39

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more

information.

http://www.cs.unipr.it/ppl/

6.1 Class Hierarchy 18
parma_polyhedra_library::Double_Box 39
parma_polyhedra_library::Generator 39
parma_polyhedra_library::Generator_System 41
parma_polyhedra_library::Grid 42
parma_polyhedra_library::Grid_Generator 42
parma_polyhedra_library::Grid_Generator_System 44
parma_polyhedra_library::Invalid_Argument_Exception 44
parma_polyhedra_library::10 45
parma_polyhedra_library::Length_Error_Exception 45
parma_polyhedra_library::Linear_Expression 46

parma_polyhedra_library::Linear_Expression_Coefficient 47
parma_polyhedra_library::Linear_Expression_Difference 47
parma_polyhedra_library::Linear_Expression_Sum 48
parma_polyhedra_library::Linear_Expression_Times 49
parma_polyhedra_library::Linear_Expression_Unary_Minus 50
parma_polyhedra_library::Linear_Expression_Variable 50
parma_polyhedra_library::Logic_Error_Exception 51
parma_polyhedra_library::MIP_Problem 51
parma_polyhedra_library::Octagonal_Shape_double 58
parma_polyhedra_library::Octagonal_Shape_mpq_class 58
parma_polyhedra_library::Octagonal_Shape_mpz_class 58
parma_polyhedra_library::Overflow_Error_Exception 59
parma_polyhedra_library::Pair< K, V > 59
parma_polyhedra_library::Parma_Polyhedra_Library 59
parma_polyhedra_library::Partial_Function 61
parma_polyhedra_library::Pointset_Powerset_C_Polyhedron 62
parma_polyhedra_library::Pointset_Powerset_C_Polyhedron_Iterator 63
parma_polyhedra_library::Pointset_Powerset_ NNC_Polyhedron 64
parma_polyhedra_library::Pointset_Powerset_ NNC_Polyhedron_Iterator 65

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

7 Class Index 19
parma_polyhedra_library::Poly_Con_Relation 65
parma_polyhedra_library::Poly_Gen_Relation 66
parma_polyhedra_library::Polyhedron 66

parma_polyhedra_library::C_Polyhedron 32
parma_polyhedra_library::C_Polyhedron 32
parma_polyhedra_library::NNC_Polyhedron 58
parma_polyhedra_library::Rational_Box 89
parma_polyhedra_library::Variable 89
parma_polyhedra_library::Variables_Set 90

7 Class Index

7.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:
parma_polyhedra_library::BD_Shape_double (Java class interfacing C++ Parma_-

Polyhedra_Library::BD_Shape<double>) 31
parma_polyhedra_library::BD_Shape_mpq_class (Java class interfacing C++ Parma_-
Polyhedra_Library::BD_Shape<mpq_class>) 31
parma_polyhedra_library::BD_Shape_mpz_class (Java class interfacing C++ Parma_-
Polyhedra_Library::BD_Shape<mpz_class>) 31
parma_polyhedra_library::By_Reference< T > (An utility class implementing mutable and
non-mutable call-by-reference) 32
parma_polyhedra_library::C_Polyhedron (Java class interfacing C++ Parma_Polyhedra_-
Library::C_Polyhedron) 32
parma_polyhedra_library::Coefficient (A PPL coefficient) 35
parma_polyhedra_library::Congruence (A linear congruence) 36
parma_polyhedra_library::Congruence_System (A system of congruences) 37
parma_polyhedra_library::Constraint (A linear equality or inequality) 37
parma_polyhedra_library::Constraint_System (A system of constraints) 38
parma_polyhedra_library::Constraints_Product_C_Polyhedron_Grid (Java class interfacing
C++ Parma_Polyhedra_Library::Constraints_Product<C_Polyhedron,Grid>) 39
parma_polyhedra_library::Domain_Error_Exception (Exceptions caused by domain errors) 39

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

parma_polyhedra_library::Octagonal_Shape_mpq_class (Java class interfacing C++
Parma_Polyhedra_Library::Octagonal_Shape<mpq_class>)
parma_polyhedra_library::Octagonal_Shape_mpz_class (Java class interfacing C++

Parma_Polyhedra_Library::Octagonal_Shape<mpz_class>)

7.1 Class List 20
parma_polyhedra_library::Double_Box (Java class interfacing C++ Parma_Polyhedra_-
Library::Double_Box) 39
parma_polyhedra_library::Generator (A line, ray, point or closure point) 39
parma_polyhedra_library::Generator_System (A system of generators) 41
parma_polyhedra_library::Grid (Java class interfacing C++ Parma_Polyhedra_-
Library::Grid) 42
parma_polyhedra_library::Grid_Generator (A grid line, parameter or grid point) 42
parma_polyhedra_library::Grid_Generator_System (A system of grid generators) 44
parma_polyhedra_library::Invalid_Argument_Exception (Exceptions caused by invalid ar-
guments) 44
parma_polyhedra_library::10 (A class collecting I/O functions) 45
parma_polyhedra_library::Length_Error_Exception (Exceptions caused by too big
length/size values) 45
parma_polyhedra_library::Linear_Expression (A linear expression) 46
parma_polyhedra_library::Linear_Expression_Coefficient (A linear expression built from a
coefficient) 47
parma_polyhedra_library::Linear_Expression_Difference (The difference of two linear ex-
pressions) 47
parma_polyhedra_library::Linear_Expression_Sum (The sum of two linear expressions) 48
parma_polyhedra_library::Linear_Expression_Times (The product of a linear expression
and a coefficient) 49
parma_polyhedra_library::Linear_Expression_Unary_Minus (The negation of a linear ex-
pression) 50
parma_polyhedra_library::Linear_Expression_Variable (A linear expression built from a
variable) 50
parma_polyhedra_library::Logic_Error_Exception (Exceptions due to errors in low-level
routines) 51
parma_polyhedra_library::MIP_Problem (A Mixed Integer (linear) Programming problem) 51
parma_polyhedra_library::NNC_Polyhedron (Java class interfacing C++ Parma_-
Polyhedra_Library::NNC_Polyhedron) 58
parma_polyhedra_library::Octagonal_Shape_double (Java class interfacing C++ Parma_-
Polyhedra_Library::Octagonal_Shape<double>) 58

58

58

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

8 Module Documentation 21
parma_polyhedra_library::Overflow_Error_Exception (Exceptions due to overflow errors) 59
parma_polyhedra_library::Pair< K, V > (A pair of values of type K and V) 59
parma_polyhedra_library::Parma_Polyhedra_Library (A class collecting library-level func-

tions) 59

parma_polyhedra_library::Partial_Function (A partial function on space dimension indices)

parma_polyhedra_library::Pointset_Powerset_C_Polyhedron (A powerset of C_Polyhedron
objects)

parma_polyhedra_library::Pointset_Powerset_C_Polyhedron_Iterator (An iterator class for
the disjuncts of a Pointset_Powerset_C_Polyhedron)

parma_polyhedra_library::Pointset_Powerset_ NNC_Polyhedron (Java class interfacing C++

Parma_Polyhedra_Library::Pointset_Powerset<NNC_Polyhedron>)

parma_polyhedra_library::Pointset_Powerset_ NNC_Polyhedron_Iterator (Java
class interfacing C++ Parma_Polyhedra_Library::Pointset_Powerset<NNC_-
Polyhedron>::iterator)

parma_polyhedra_library::Poly_Con_Relation (The relation between a polyhedron and a
constraint)

parma_polyhedra_library::Poly_Gen_Relation (The relation between a polyhedron and a
generator)

parma_polyhedra_library::Polyhedron (The Java base class for (C and NNC) convex polyhe-
dra)

parma_polyhedra_library::Rational_Box (Java class interfacing C++ Parma_Polyhedra_-
Library::Rational_Box)

parma_polyhedra_library::Variable (A dimension of the vector space)

parma_polyhedra_library::Variables_Set (A java.util.TreeSet of variables’ indexes)

61

62

63

64

65

65

66

66

89

89

90

8 Module Documentation

8.1 Java Language Interface

Classes

* class parma_polyhedra_library::By_Reference< T >

An utility class implementing mutable and non-mutable call-by-reference.

* class parma_polyhedra_library::Coefficient
A PPL coefficient.

* class parma_polyhedra_library::Congruence

A linear congruence.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

8.1 Java Language Interface

22

e class parma_polyhedra_library::Congruence_System

A system of congruences.

e class parma_polyhedra_library::Constraint

A linear equality or inequality.

¢ class parma_polyhedra_library::Constraint_System

A system of constraints.

* class parma_polyhedra_library::Domain_Error_Exception

Exceptions caused by domain errors.

* class parma_polyhedra_library::Polyhedron
The Java base class for (C and NNC) convex polyhedra.

* class parma_polyhedra_library::C_Polyhedron
Java class interfacing C++ Parma_Polyhedra_Library::C_Polyhedron.

e class parma_polyhedra_library::Pointset_Powerset_C_Polyhedron

A powerset of C_Polyhedron objects.

* class parma_polyhedra_library::Pointset_Powerset_C_Polyhedron_Iterator

An iterator class for the disjuncts of a Pointset_Powerset_C_Polyhedron.

e class parma_polyhedra_library::Generator

A line, ray, point or closure point.

e class parma_polyhedra_library::Generator_System

A system of generators.

* class parma_polyhedra_library::Grid_Generator

A grid line, parameter or grid point.

* class parma_polyhedra_library::Grid_Generator_System

A system of grid generators.

¢ class parma_polyhedra_library::Invalid_Argument_Exception

Exceptions caused by invalid arguments.

* class parma_polyhedra_library::1O

A class collecting I/O functions.

* class parma_polyhedra_library::Length_Error_Exception

Exceptions caused by too big length/size values.

e class parma_polyhedra_library::Linear_Expression

A linear expression.

e class parma_polyhedra_library::Linear_Expression_Coefficient

A linear expression built from a coefficient.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

8.1 Java Language Interface

23

e class parma_polyhedra_library::Linear_Expression_Difference

The difference of two linear expressions.

* class parma_polyhedra_library::Linear_Expression_Sum

The sum of two linear expressions.

e class parma_polyhedra_library::Linear_Expression_Times

The product of a linear expression and a coefficient.

e class parma_polyhedra_library::Linear_Expression_Unary_Minus

The negation of a linear expression.

¢ class parma_polyhedra_library::Linear_Expression_Variable

A linear expression built from a variable.

* class parma_polyhedra_library::Logic_Error_Exception

Exceptions due to errors in low-level routines.

¢ class parma_polyhedra_library::MIP_Problem

A Mixed Integer (linear) Programming problem.

¢ class parma_polyhedra_library::Overflow_Error_Exception

Exceptions due to overflow errors.

e class parma_polyhedra_library::Pair< K, V >
A pair of values of type K and V.

e class parma_polyhedra_library::Parma_Polyhedra_Library

A class collecting library-level functions.

* interface parma_polyhedra_library::Partial_Function

A partial function on space dimension indices.

e class parma_polyhedra_library::Poly_Con_Relation

The relation between a polyhedron and a constraint.

* class parma_polyhedra_library:: Variable

A dimension of the vector space.

Namespaces

* namespace parma_polyhedra_library

The PPL Java interface package.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

8.1 Java Language Interface 24

Enumerations

e enum parma_polyhedra_library::Complexity_Class { parma_polyhedra_library::POLYNOMIAL_-
COMPLEXITY, parma_polyhedra_library::SIMPLEX_COMPLEXITY, parma_polyhedra_-
library:: ANY_COMPLEXITY }

Possible Complexities.

* enum parma_polyhedra_library::Control_Parameter_Name { parma_polyhedra_library::PRICING
}

Names of MIP problems’ control parameters.

e enum parma_polyhedra_library::Control_Parameter_Value { parma_polyhedra_library::PRICING_-
STEEPEST _EDGE_FLOAT, parma_polyhedra_library::PRICING_STEEPEST EDGE_EXACT,
parma_polyhedra_library::PRICING_TEXTBOOK }

Possible values for MIP problem’s control parameters.

e enum parma_polyhedra_library::Degenerate_Element { parma_polyhedra_library::UNIVERSE,
parma_polyhedra_library::EMPTY }

Kinds of degenerate abstract elements.

* enum parma_polyhedra_library::Generator_Type { parma_polyhedra_library::LINE,
parma_polyhedra_library::RAY, parma_polyhedra_library::POINT, parma_polyhedra_-
library:: CLOSURE_POINT }

The generator type.

e enum parma_polyhedra_library::Grid_Generator_Type { parma_polyhedra_library::LINE, parma_-
polyhedra_library::PARAMETER, parma_polyhedra_library::POINT }

The grid generator type.
* enum parma_polyhedra_library::MIP_Problem_Status { parma_polyhedra_-
library::UNFEASIBLE_MIP_PROBLEM, parma_polyhedra_library:: UNBOUNDED_MIP_-

PROBLEM, parma_polyhedra_library::OPTIMIZED_MIP_PROBLEM }

Possible outcomes of the MIP_Problem solver.

e enum parma_polyhedra_library::Optimization_Mode { parma_polyhedra_-
library:: MINIMIZATION, parma_polyhedra_library::MAXIMIZATION }

Possible optimization modes.

* enum parma_polyhedra_library::Relation_Symbol {

parma_polyhedra_library::LESS_THAN, parma_polyhedra_library::LESS_OR_EQUAL, parma_-
polyhedra_library::EQUAL, parma_polyhedra_library:: GREATER_OR_EQUAL,

parma_polyhedra_library:: GREATER_THAN }

Relation symbols.

8.1.1 Detailed Description

The Parma Polyhedra Library comes equipped with an interface for the Java language.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

8.1 Java Language Interface 25

8.1.2 Enumeration Type Documentation

8.1.2.1 enum parma_polyhedra_library::Complexity_Class

Possible Complexities.

Enumerator:

POLYNOMIAL_COMPLEXITY Worst-case polynomial complexity.
SIMPLEX_COMPLEXITY Worst-case exponential complexity but typically polynomial behavior.
ANY_COMPLEXITY Any complexity.

8.1.2.2 enum parma_polyhedra_library::Control_Parameter_Name

Names of MIP problems’ control parameters.

Enumerator:

PRICING The pricing rule.

8.1.2.3 enum parma_polyhedra_library::Control_Parameter_Value

Possible values for MIP problem’s control parameters.

Enumerator:

PRICING_STEEPEST_EDGE_FLOAT Steepest edge pricing method, using floating points (de-
fault).

PRICING_STEEPEST_EDGE_EXACT Steepest edge pricing method, using Coefficient.
PRICING _TEXTBOOK Textbook pricing method.

8.1.2.4 enum parma_polyhedra_library::Degenerate_Element

Kinds of degenerate abstract elements.

Enumerator:

UNIVERSE The universe element, i.e., the whole vector space.
EMPTY The empty element, i.e., the empty set.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

8.1 Java Language Interface

26

8.1.2.5 enum parma_polyhedra_library::Generator_Type

The generator type.

Enumerator:

LINE The generator is a line.

RAY The generator is a ray.

POINT The generator is a point.
CLOSURE_POINT The generator is a closure point.

8.1.2.6 enum parma_polyhedra_library::Grid_Generator_Type

The grid generator type.

Enumerator:

LINE The generator is a line.
PARAMETER The generator is a parameter.
POINT The generator is a point.

8.1.2.7 enum parma_polyhedra_library::MIP_Problem_Status

Possible outcomes of the MIP_Problem solver.

Enumerator:

UNFEASIBLE_MIP_PROBLEM The problem is unfeasible.
UNBOUNDED_MIP_PROBLEM The problem is unbounded.

OPTIMIZED_MIP_PROBLEM The problem has an optimal solution.

8.1.2.8 enum parma_polyhedra_library::Optimization_Mode

Possible optimization modes.

Enumerator:

MINIMIZATION Minimization is requested.
MAXIMIZATION Maximization is requested.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more

information.

http://www.cs.unipr.it/ppl/

9 Namespace Documentation

27

8.1.2.9 enum parma_polyhedra_library::Relation_Symbol

Relation symbols.

Enumerator:

LESS_THAN Less than.

LESS_OR_EQUAL Less than or equal to.
EQUAL Equal to.

GREATER_OR_EQUAL Greater than or equal to.
GREATER THAN Greater than.

9 Namespace Documentation

9.1 parma_polyhedra_library Namespace Reference

The PPL Java interface package.

Classes

¢ class BD_Shape_double
Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<double>.

* class BD_Shape_mpq_class
Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<mpq_class>.

e class BD_Shape_mpz_class
Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<mpz_class>.

* class By_Reference< T >

An utility class implementing mutable and non-mutable call-by-reference.

¢ class C_Polyhedron
Java class interfacing C++ Parma_Polyhedra_Library::C_Polyhedron.

e class Coefficient
A PPL coefficient.

* class Congruence

A linear congruence.

* class Congruence_System

A system of congruences.

¢ class Constraint

A linear equality or inequality.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

9.1 parma_polyhedra_library Namespace Reference

* class Constraint_System

A system of constraints.

¢ class Constraints_Product_C_Polyhedron_Grid
Java class interfacing C++ Parma_Polyhedra_Library::Constraints_Product< C_Polyhedron,Grid>.

¢ class Domain_Error_Exception

Exceptions caused by domain errors.

¢ class Double_Box

Java class interfacing C++ Parma_Polyhedra_Library::Double_Box.

¢ class Polyhedron
The Java base class for (C and NNC) convex polyhedra.

* class Pointset_Powerset_C_Polyhedron

A powerset of C_Polyhedron objects.

* class Pointset_Powerset_C_Polyhedron_Iterator

An iterator class for the disjuncts of a Pointset_Powerset_C_Polyhedron.

¢ class Generator

A line, ray, point or closure point.

* class Generator_System

A system of generators.

e class Grid

Java class interfacing C++ Parma_Polyhedra_Library::Grid.

¢ class Grid_Generator

A grid line, parameter or grid point.

¢ class Grid_Generator_System

A system of grid generators.

¢ class Invalid_Argument_Exception

Exceptions caused by invalid arguments.

e class IO

A class collecting I/O functions.

* class Length_Error_Exception

Exceptions caused by too big length/size values.

* class Linear_Expression

A linear expression.

e class Linear_Expression_Coefficient

A linear expression built from a coefficient.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

9.1 parma_polyhedra_library Namespace Reference

* class Linear_Expression_Difference

The difference of two linear expressions.

¢ class Linear_Expression_Sum

The sum of two linear expressions.

* class Linear_Expression_Times

The product of a linear expression and a coefficient.

e class Linear_Expression_Unary_Minus

The negation of a linear expression.

e class Linear_Expression_Variable

A linear expression built from a variable.

* class Logic_Error_Exception

Exceptions due to errors in low-level routines.

e class MIP_Problem

A Mixed Integer (linear) Programming problem.

¢ class NNC_Polyhedron
Java class interfacing C++ Parma_Polyhedra_Library::NNC_Polyhedron.

* class Octagonal_Shape_double
Java class interfacing C++ Parma_Polyhedra_Library::Octagonal_Shape<double>.

¢ class Octagonal_Shape_mpq_class

Java class interfacing C++ Parma_Polyhedra_Library::Octagonal_Shape<mpq_class>.

e class Octagonal_Shape_mpz_class

Java class interfacing C++ Parma_Polyhedra_Library::Octagonal_Shape<mpz_class>.

¢ class Overflow_Error_Exception

Exceptions due to overflow errors.

e class Pair< K, V >
A pair of values of type K and V.

* class Parma_Polyhedra_Library

A class collecting library-level functions.

¢ interface Partial Function

A partial function on space dimension indices.

* class Pointset_Powerset_ NNC_Polyhedron
Java class interfacing C++ Parma_Polyhedra_Library::Pointset_Powerset<INNC_Polyhedron>.

¢ class Pointset_Powerset_NNC_Polyhedron_Iterator

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

9.1 parma_polyhedra_library Namespace Reference 30

Java class interfacing C++ Parma_Polyhedra_Library::Pointset_Powerset<NNC_Polyhedron>: :iterator.

¢ class Poly_Con_Relation

The relation between a polyhedron and a constraint.

* class Poly_Gen_Relation

The relation between a polyhedron and a generator.

¢ class Rational Box

Java class interfacing C++ Parma_Polyhedra_Library::Rational_Box.

e class Variable

A dimension of the vector space.

e class Variables_Set

A java.util. TreeSet of variables’ indexes.

Enumerations

* enum Complexity_Class { POLYNOMIAL_COMPLEXITY, SIMPLEX_COMPLEXITY, ANY_-
COMPLEXITY }

Possible Complexities.

¢ enum Control_Parameter_Name { PRICING }

Names of MIP problems’ control parameters.

e enum Control_Parameter_Value @ { PRICING_STEEPEST_EDGE_FLOAT, PRICING.-
STEEPEST_EDGE_EXACT, PRICING_TEXTBOOK }

Possible values for MIP problem’s control parameters.

e enum Degenerate_Element { UNIVERSE, EMPTY }

Kinds of degenerate abstract elements.

* enum Generator_Type { LINE, RAY, POINT, CLOSURE_POINT }
The generator type.

e enum Grid_Generator_Type { LINE, PARAMETER, POINT }
The grid generator type.

* enum MIP_Problem_Status { UNFEASIBLE_MIP_PROBLEM, UNBOUNDED_MIP_PROBLEM,
OPTIMIZED_MIP_PROBLEM }

Possible outcomes of the MIP_Problem solver.

e enum Optimization_Mode { MINIMIZATION, MAXIMIZATION }

Possible optimization modes.

e enum Relation_Symbol {
LESS_THAN, LESS_OR_EQUAL, EQUAL, GREATER_OR_EQUAL,
GREATER_THAN }

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10 Class Documentation 31

Relation symbols.

9.1.1 Detailed Description

The PPL Java interface package. All classes, interfaces and enums related to the Parma Polyhedra Library
Java interface are included in this package.

10 Class Documentation

10.1 parma_polyhedra_library::BD_Shape_double Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<double>.

Inherits parma_polyhedra_library::PPL_Object.

10.1.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<double>.

The documentation for this class was generated from the following file:

e BD_Shape_double.java

10.2 parma_polyhedra_library::BD_Shape_mpq_class Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<mpq_class>.

Inherits parma_polyhedra_library::PPL_Object.

10.2.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<mpq_class>.

The documentation for this class was generated from the following file:

* BD_Shape_mpq_class.java

10.3 parma_polyhedra_library::BD_Shape_mpz_class Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<mpz_class>.

Inherits parma_polyhedra_library::PPL_Object.

10.3.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::BD_Shape<mpz_class>.

The documentation for this class was generated from the following file:

e BD_Shape_mpz_class.java

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.4 parma_polyhedra_library::By_Reference< T > Class Reference 32

10.4 parma_polyhedra_library::By_Reference< T > Class Reference

An utility class implementing mutable and non-mutable call-by-reference.

Public Member Functions

* By_Reference (T object_value)

Builds an object encapsulating object_value.

* void set (T y)

Set an object to value object_value.

* Tget()
Returns the value held by this.

Package Attributes

e T obj
Stores the object.

10.4.1 Detailed Description

An utility class implementing mutable and non-mutable call-by-reference.

The documentation for this class was generated from the following file:

* By_Reference.java

10.5 parma_polyhedra_library::C_Polyhedron Class Reference

Java class interfacing C++ Parma_Polyhedra_Library::C_Polyhedron.
Inherits parma_polyhedra_library::Polyhedron, and parma_polyhedra_library::Polyhedron.

Public Member Functions
Standard Constructors and Destructor

e C_Polyhedron (long d, Degenerate_Element kind)
Builds a new C polyhedron of dimension d.

» C_Polyhedron (C_Polyhedron y)
Builds a new C polyhedron that is copy of y.

e C_Polyhedron (C_Polyhedron y, Complexity_Class complexity)
Builds a new C polyhedron that is a copy of ph.

* C_Polyhedron (Constraint_System cs)

Builds a new C polyhedron from the system of constraints cs.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.5 parma_polyhedra_library::C_Polyhedron Class Reference 33

e C_Polyhedron (Congruence_System cgs)

Builds a new C polyhedron from the system of congruences cgs.

* native void free ()

Releases all resources managed by this, also resetting it to a null reference.

Constructors Behaving as Conversion Operators

Besides the conversions listed here below, the library also provides conversion operators that build a se-
mantic geometric description starting from any other semantic geometric description (e.g., Grid (C_—
Polyhedron y), C_Polyhedron (BD_Shape _mpq _class y), etc.). Clearly, the conversion
operators are only available if both the source and the target semantic geometric descriptions have
been enabled when configuring the library. The conversions also taking as argument a complexity class
sometimes provide non-trivial precision/efficiency trade-offs.

* C_Polyhedron (NNC_Polyhedron y)

Builds a C polyhedron that is a copy of the topological closure of the NNC polyhedron y.

* C_Polyhedron (NNC_Polyhedron y, Complexity_Class complexity)
Builds a C polyhedron that is a copy of the topological closure of the NNC polyhedron y.

» C_Polyhedron (Generator_System gs)
Builds a new C polyhedron from the system of generators gs.

Other Methods
* native boolean upper_bound_assign_if_exact (C_Polyhedron y)

If the upper bound of this and y is exact it is assigned to this and true is returned; otherwise
false is returned.

Static Public Member Functions

* static native Pair< C_Polyhedron, Pointset_Powerset. NNC_Polyhedron > linear_partition (C_-
Polyhedron p, C_Polyhedron q)

Partitions g with respect to p.

Protected Member Functions

¢ native void finalize ()

Releases all resources managed by this.

10.5.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::C_Polyhedron. A topologically closed convex poly-
hedron.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.5 parma_polyhedra_library::C_Polyhedron Class Reference 34

10.5.2 Constructor & Destructor Documentation

10.5.2.1 parma_polyhedra_library::C_Polyhedron::C_Polyhedron (long d, Degenerate_Element
kind)

Builds a new C polyhedron of dimension d. If kind is EMPTY, the newly created polyhedron will be
empty; otherwise, it will be a universe polyhedron.

10.5.2.2 parma_polyhedra_library::C_Polyhedron::C_Polyhedron (C_Polyhedron y,
Complexity_Class complexity)

Builds a new C polyhedron that is a copy of ph. The complexity argument is ignored.

10.5.2.3 parma_polyhedra_library::C_Polyhedron::C_Polyhedron (Constraint_System cs)

Builds a new C polyhedron from the system of constraints c¢s. The new polyhedron will inherit the space
dimension of cs.

10.5.2.4 parma_polyhedra_library::C_Polyhedron::C_Polyhedron (Congruence_System cgs)

Builds a new C polyhedron from the system of congruences cgs. The new polyhedron will inherit the
space dimension of cgs.

10.5.2.5 parma_polyhedra_library::C_Polyhedron::C_Polyhedron (NNC_Polyhedron y,
Complexity_Class complexity)

Builds a C polyhedron that is a copy of the topological closure of the NNC polyhedron y. The complexity
argument is ignored, since the exact constructor has polynomial complexity.

10.5.2.6 parma_polyhedra_library::C_Polyhedron::C_Polyhedron (Generator_System gs)

Builds a new C polyhedron from the system of generators gs. The new polyhedron will inherit the space
dimension of gs.

10.5.3 Member Function Documentation

10.5.3.1 native boolean parma_polyhedra_library::C_Polyhedron::upper_bound_assign_if exact
(C_Polyhedron y)

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.6 parma_polyhedra_library::Coefficient Class Reference 35

If the upper bound of this and y is exact it is assigned to this and t rue is returned; otherwise false
is returned.

Exceptions:

Invalid_Argument_Exception Thrown if this and y are dimension-incompatible.

10.5.3.2 static native Pair<C_Polyhedron, Pointset_Powerset NNC_Polyhedron>
parma_polyhedra_library::C_Polyhedron::linear_partition (C_Polyhedron p,
C_Polyhedron g) [static]

Partitions g with respect to p. Let p and g be two polyhedra. The function returns a pair object r such that

e r.first is the intersection of p and q;
* r.second has the property that all its elements are pairwise disjoint and disjoint from p;

* the set-theoretical union of r.first with all the elements of r.second gives g (i.e., r is the
representation of a partition of g).

The documentation for this class was generated from the following files:

* C_Polyhedron.java
» Fake_Class_for_Doxygen.java

10.6 parma_polyhedra_library::Coefficient Class Reference

A PPL coefficient.

Public Member Functions

» Coefficient (int i)

Builds a coefficient values 1.

* Coefficient (long 1)

Builds a coefficient valued 1.

* Coefficient (BigInteger bi)

Builds a coefficient valued bi.

* Coefficient (String s)

Builds a coefficient from the decimal representation in s.

¢ Coefficient (Coefficient c¢)
Builds a copy of c.

* Biglnteger getBigInteger ()
Returns the value held by this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.7 parma_polyhedra_library::Congruence Class Reference 36

10.6.1 Detailed Description

A PPL coefficient. Objects of type Coefficient are used to implement the integral valued coefficients
occurring in linear expressions, constraints, generators and so on.

10.6.2 Constructor & Destructor Documentation

10.6.2.1 parma_polyhedra_library::Coefficient::Coefficient (String s) [inline]

Builds a coefficient from the decimal representation in s.

Exceptions:

Jjava.lang. NumberFormatException Thrown if s does not contain a valid decimal representation.
The documentation for this class was generated from the following file:

* Coefficient.java

10.7 parma_polyhedra_library::Congruence Class Reference

A linear congruence.

Public Member Functions

* Congruence (Linear_Expression el, Linear_Expression e2, Coefficient m)

Returns the congruence el = e2 (mod m).

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

Protected Attributes

¢ Coefficient modulus

The modulus of the congruence.

Package Attributes

* Linear_Expression lhs
The value of the left hand side of this.

* Linear_Expression rhs
The value of the right hand side of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.8 parma_polyhedra_library::Congruence_System Class Reference 37

10.7.1 Detailed Description
A linear congruence. An object of the class Congruence is an object represeting a congruence:
°cg= Z?;OI a;z; +b =0 (mod m)
where n is the dimension of the space, a; is the integer coefficient of variable z;, b is the integer inho-

mogeneous term and m is the integer modulus; if m = 0, then cg represents the equality congruence
n—1 . . .
Zi:o a;x; + b = 0and, if m # 0, then the congruence cg is said to be a proper congruence.

The documentation for this class was generated from the following file:

» Congruence.java

10.8 parma_polyhedra_library::Congruence_System Class Reference

A system of congruences.

Public Member Functions

» Congruence_System ()

Default constructor: builds an empty system of congruences.

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

10.8.1 Detailed Description

A system of congruences. An object of the class Congruence_System is a system of congruences, i.e., a
multiset of objects of the class Congruence.

The documentation for this class was generated from the following file:

» Congruence_System.java

10.9 parma_polyhedra_library::Constraint Class Reference

A linear equality or inequality.

Public Member Functions

* Constraint (Linear_Expression lel, Relation_Symbol rel_sym, Linear_Expression le2)

Builds a constraint from two linear expressions with a specified relation symbol.

 Linear_Expression left_hand_side ()
Returns the left hand side of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.10 parma_polyhedra_library::Constraint_System Class Reference 38

* Linear_Expression right_hand_side ()
Returns the right hand side of this.

* Relation_Symbol kind ()

Returns the relation symbol of this.

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

10.9.1 Detailed Description
A linear equality or inequality. An object of the class Constraint is either:

* alinear equality;
* anon-strict linear inequality;

* astrict linear inequality.
The documentation for this class was generated from the following file:

» Constraint.java

10.10 parma_polyhedra_library::Constraint_System Class Reference

A system of constraints.

Public Member Functions

* Constraint_System ()

Default constructor: builds an empty system of constraints.

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

10.10.1 Detailed Description

A system of constraints. An object of the class Constraint_System is a system of constraints, i.e., a multiset
of objects of the class Constraint.

The documentation for this class was generated from the following file:

* Constraint_System.java

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.11 parma_polyhedra_library::Constraints_Product_C_Polyhedron_Grid Class Reference

39

10.11 parma_polyhedra_library::Constraints_Product_C_Polyhedron_Grid
Class Reference

Java class interfacing C++ Parma_Polyhedra_Library::Constraints_Product<C_Polyhedron,Grid>.

Inherits parma_polyhedra_library::PPL_Object.

10.11.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Constraints_Product<C_Polyhedron,Grid>.

The documentation for this class was generated from the following file:

¢ Constraints_Product_C_Polyhedron_Grid.java

10.12 parma_polyhedra_library::Domain_Error_Exception Class Reference

Exceptions caused by domain errors.

Public Member Functions

e Domain_Error_Exception (String s)

Constructor.

10.12.1 Detailed Description

Exceptions caused by domain errors.

The documentation for this class was generated from the following file:

* Domain_Error_Exception.java

10.13 parma_polyhedra_library::Double_Box Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::Double_Box.

Inherits parma_polyhedra_library::PPL_Object.

10.13.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Double_Box.

The documentation for this class was generated from the following file:

* Double_Box.java

10.14 parma_polyhedra_library::Generator Class Reference

A line, ray, point or closure point.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.14 parma_polyhedra_library::Generator Class Reference 40

Public Member Functions

¢ Coefficient divisor ()

If this is either a point or a closure point, returns its divisor.

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

Static Public Member Functions

* static Generator closure_point (Linear_Expression e, Coefficient c)

Returns the closure point at e / d.

* static Generator line (Linear_Expression le)

Returns the line of direction e.

* static Generator point (Linear_Expression le, Coefficient d)

Returns the point at e / d.

* static Generator ray (Linear_Expression le)

Returns the ray of direction e.

10.14.1 Detailed Description
A line, ray, point or closure point. An object of the class Generator is one of the following:
¢ aline;
* aray;
* apoint;
* aclosure point.
10.14.2 Member Function Documentation

10.14.2.1 static Generator parma_polyhedra_library::Generator::closure_point
(Linear_Expression e, Coefficientc¢) [inline, static]

Returns the closure point at e / d.

Exceptions:

RuntimeErrorException Thrown if d is zero.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.15 parma_polyhedra_library::Generator_System Class Reference 41

10.14.2.2 static Generator parma_polyhedra_library::Generator::line (Linear_Expression le)
[inline, static]

Returns the line of direction e.

Exceptions:

RuntimeErrorException Thrown if the homogeneous part of e represents the origin of the vector
space.

10.14.2.3 static Generator parma_polyhedra_library::Generator::point (Linear_Expression le,
Coefficientd) [inline, static]

Returns the point at e / d.

Exceptions:

RuntimeErrorException Thrown if d is zero.

10.14.2.4 static Generator parma_polyhedra_library::Generator::ray (Linear_Expression le)
[inline, static]

Returns the ray of direction e.

Exceptions:

RuntimeErrorException Thrown if the homogeneous part of e represents the origin of the vector
space.

10.14.2.5 Coefficient parma_polyhedra_library::Generator::divisor () [inline]

If this is either a point or a closure point, returns its divisor.

Exceptions:

RuntimeErrorException Thrown if this is neither a point nor a closure point.
The documentation for this class was generated from the following file:

* Generator.java

10.15 parma_polyhedra_library::Generator_System Class Reference

A system of generators.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.16 parma_polyhedra_library::Grid Class Reference 42

Public Member Functions

* Generator_System ()

Default constructor: builds an empty system of generators.

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

10.15.1 Detailed Description

A system of generators. An object of the class Generator_System is a system of generators, i.e., a multiset
of objects of the class Generator (lines, rays, points and closure points).

The documentation for this class was generated from the following file:

¢ Generator_System.java

10.16 parma_polyhedra_library::Grid Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::Grid.

Inherits parma_polyhedra_library::PPL._Object.

10.16.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Grid.

The documentation for this class was generated from the following file:

* Grid.java

10.17 parma_polyhedra_library::Grid_Generator Class Reference

A grid line, parameter or grid point.

Public Member Functions

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.17 parma_polyhedra_library::Grid_Generator Class Reference 43

Static Public Member Functions

* static Grid_Generator grid_line (Linear_Expression e)

Returns the line of direction e.

« static Grid_Generator parameter (Linear_Expression e, Coefficient c)

Returns the parameter of direction e and size e/d.

* static Grid_Generator grid_point (Linear_Expression e, Coefficient c)

Returns the point at e / d.

10.17.1 Detailed Description

A grid line, parameter or grid point. An object of the class Grid_Generator is one of the following:

* agrid_line;
* a parameter;

* a grid_point.

10.17.2 Member Function Documentation

10.17.2.1 static Grid_Generator parma_polyhedra_library::Grid_Generator::grid_line
(Linear_Expressione) [inline, static]

Returns the line of direction e.

Exceptions:

RuntimeErrorException Thrown if the homogeneous part of e represents the origin of the vector
space.

10.17.2.2 static Grid_Generator parma_polyhedra_library::Grid_Generator::parameter
(Linear_Expression e, Coefficientc¢) [inline, static]

Returns the parameter of direction e and size e/d. Both e and d are optional arguments, with default
values Linear_Expression::zero() and Coefficient_one(), respectively.

Exceptions:

RuntimeErrorException Thrown if d is zero.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.18 parma_polyhedra_library::Grid_Generator_System Class Reference 44

10.17.2.3 static Grid_Generator parma_polyhedra_library::Grid_Generator::grid_point
(Linear_Expression e, Coefficientc) [inline, static]

Returns the point at e / d. Both e and d are optional arguments, with default values Linear -
Expression::zero() and Coefficient_one(), respectively.

Exceptions:

RuntimeErrorException Thrown if d is zero.

The documentation for this class was generated from the following file:

* Grid_Generator.java

10.18 parma_polyhedra_library::Grid_Generator_System Class Reference

A system of grid generators.

Public Member Functions

* Grid_Generator_System ()

Default constructor: builds an empty system of grid generators.

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

10.18.1 Detailed Description

A system of grid generators. An object of the class Grid_Generator_System is a system of grid generators,
i.e., a multiset of objects of the class Grid_Generator.

The documentation for this class was generated from the following file:

* Grid_Generator_System.java

10.19 parma_polyhedra_library::Invalid_Argument_Exception Class Reference

Exceptions caused by invalid arguments.

Public Member Functions

¢ Invalid_Argument_Exception (String s)

Constructor.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.20 parma_polyhedra_library::I0 Class Reference 45

10.19.1 Detailed Description

Exceptions caused by invalid arguments.

The documentation for this class was generated from the following file:

¢ Invalid_Argument_Exception.java

10.20 parma_polyhedra_library::10 Class Reference

A class collecting I/O functions.

Static Public Member Functions

e static native String wrap_string (String str, int indent_depth, int preferred_first_line_length, int
preferred_line_length)

Utility function for the wrapping of lines of text.

10.20.1 Detailed Description

A class collecting I/O functions.

10.20.2 Member Function Documentation

10.20.2.1 static native String parma_polyhedra_library::10::wrap_string (String str, int
indent_depth, int preferred_first_line_length, int preferred_line_length) [static]

Utility function for the wrapping of lines of text.

Parameters:

str The source string holding the lines to wrap.

indent_depth The indentation depth.

preferred_first_line_length The preferred length for the first line of text.
preferred_line_length The preferred length for all the lines but the first one.

Returns:

The wrapped string.

The documentation for this class was generated from the following file:

* I0.java

10.21 parma_polyhedra_library::Length_Error_Exception Class Reference

Exceptions caused by too big length/size values.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.22 parma_polyhedra_library::Linear_Expression Class Reference 46

Public Member Functions

* Length_Error_Exception (String s)

Constructor.

10.21.1 Detailed Description

Exceptions caused by too big length/size values.

The documentation for this class was generated from the following file:

* Length_Error_Exception.java

10.22 parma_polyhedra_library::Linear_Expression Class Reference

A linear expression.

Inherited by parma_polyhedra_library::Linear_Expression_Coefficient, parma_polyhedra_-
library::Linear_Expression_Difference, parma_polyhedra_library::Linear_Expression_Sum, parma_-
polyhedra_library::Linear_Expression_Times, parma_polyhedra_library::Linear_Expression_Unary_-
Minus, and parma_polyhedra_library::Linear_Expression_Variable.

Public Member Functions

* Linear_Expression sum (Linear_Expression y)

Returns the sum of this and y.

» Linear_Expression subtract (Linear_Expression y)

Returns the difference of this and y.

» Linear_Expression times (Coefficient c)

Returns the product of this times c.

e Linear_Expression unary_minus ()

Returns the negation of this.

e abstract Linear_Expression clone ()

Returns a copy of the linear expression.

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.23 parma_polyhedra_library::Linear_Expression_Coefficient Class Reference 47

10.22.1 Detailed Description
A linear expression. An object of the class Linear_Expression represents a linear expression that can

be built from a Linear_Expression_Variable, Linear_Expression_Coefficient, Linear_Expression_Sum,
Linear_Expression_Difference, Linear_Expression_Unary_Minus.

The documentation for this class was generated from the following file:

* Linear_Expression.java

10.23 parma_polyhedra_library::Linear_Expression_Coefficient Class Reference

A linear expression built from a coefficient.

Inherits parma_polyhedra_library::Linear_Expression.

Public Member Functions

» Linear_Expression_Coefficient (Coefficient c)

Builds the object corresponding to a copy of the coefficient c.

* Coefficient argument ()

Returns coefficient representing the linear expression.

* Linear_Expression_Coefficient clone ()

Builds a copy of this.

Protected Attributes

¢ Coefficient coeff

The coefficient representing the linear expression.

10.23.1 Detailed Description

A linear expression built from a coefficient.

The documentation for this class was generated from the following file:

» Linear_Expression_Coefficient.java

10.24 parma_polyhedra_library::Linear_Expression_Difference Class Reference

The difference of two linear expressions.

Inherits parma_polyhedra_library::Linear_Expression.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.25 parma_polyhedra_library::Linear_Expression_Sum Class Reference

48

Public Member Functions

* Linear_Expression_Difference (Linear_Expression x, Linear_Expression y)

Builds an object that represents the difference of the copy x and y.

» Linear_Expression left_hand_side ()
Returns the left hand side of this.

* Linear_Expression right_hand_side ()
Returns the left hand side of this.

* Linear_Expression_Difference clone ()
Builds a copy of this.

Protected Attributes

* Linear_Expression lhs
The value of the left hand side of this.

* Linear_Expression rhs
The value of the right hand side of this.

10.24.1 Detailed Description

The difference of two linear expressions.

The documentation for this class was generated from the following file:

 Linear_Expression_Difference.java

10.25 parma_polyhedra_library::Linear_Expression_Sum Class Reference

The sum of two linear expressions.

Inherits parma_polyhedra_library::Linear_Expression.

Public Member Functions

 Linear_Expression_Sum (Linear_Expression X, Linear_Expression y)
Builds an object that represents the sum of the copy of x and y.

» Linear_Expression left_hand_side ()
Returns the left hand side of this.

¢ Linear_Expression right_hand_side ()
Returns the right hand side of this.

* Linear_Expression_Sum clone ()

Builds a copy of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.26 parma_polyhedra_library::Linear_Expression_Times Class Reference

49

Protected Attributes

* Linear_Expression lhs
The value of the left hand side of this.

* Linear_Expression rhs
The value of the right hand side of this.

10.25.1 Detailed Description

The sum of two linear expressions.

The documentation for this class was generated from the following file:

* Linear_Expression_Sum.java

10.26 parma_polyhedra_library::Linear_Expression_Times Class Reference

The product of a linear expression and a coefficient.

Inherits parma_polyhedra_library::Linear_Expression.

Public Member Functions

* Linear_Expression_Times (Linear_Expression 1, Coefficient c)

Builds an object cloning the input arguments.

» Linear_Expression left_hand_side ()

Returns the left hand side of this.

 Linear_Expression right_hand_side ()

Returns the right hand side of this.

 Linear_Expression_Times clone ()

Builds a copy of this.

Protected Attributes

» Linear_Expression_Coefficient lhs
The value of the left hand side of this.

* Linear_Expression rhs
The value of the left hand side of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.27 parma_polyhedra_library::Linear_Expression_Unary_Minus Class Reference 50

10.26.1 Detailed Description

The product of a linear expression and a coefficient.

The documentation for this class was generated from the following file:

 Linear_Expression_Times.java
10.27 parma_polyhedra_library::Linear_Expression_Unary_Minus Class Refer-
ence
The negation of a linear expression.

Inherits parma_polyhedra_library::Linear_Expression.

Public Member Functions

 Linear_Expression_Unary_Minus (Linear_Expression x)

Builds an object that represents the negation of the copy x.

* Linear_Expression argument ()

Returns the value that t his negates.

¢ Linear_Expression_Unary_Minus clone ()

Builds a copy of this.

Protected Attributes

* Linear_Expression arg

The value that t his negates.

10.27.1 Detailed Description

The negation of a linear expression.

The documentation for this class was generated from the following file:

 Linear_Expression_Unary_Minus.java

10.28 parma_polyhedra_library::Linear_Expression_Variable Class Reference

A linear expression built from a variable.

Inherits parma_polyhedra_library::Linear_Expression.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.29 parma_polyhedra_library::Logic_Error_Exception Class Reference 51

Public Member Functions

¢ Linear_Expression_Variable (Variable v)

Builds the object associated to the copy of v.

 Variable argument ()

Returns the variable representing the linear expression.

» Linear_Expression_Variable clone ()

Builds a copy of this.

10.28.1 Detailed Description

A linear expression built from a variable.

The documentation for this class was generated from the following file:

* Linear_Expression_Variable.java

10.29 parma_polyhedra_library::Logic_Error_Exception Class Reference

Exceptions due to errors in low-level routines.

Public Member Functions

* Logic_Error_Exception (String s)

Constructor.

10.29.1 Detailed Description

Exceptions due to errors in low-level routines. These exceptions may be generated, for instance, by the
inability of querying/controlling the FPU behavior with respect to rounding modes.

The documentation for this class was generated from the following file:

¢ Logic_FError_Exception.java

10.30 parma_polyhedra_library::MIP_Problem Class Reference
A Mixed Integer (linear) Programming problem.

Inherits parma_polyhedra_library::PPL_Object.

Public Member Functions
Functions that Do Not Modify the MIP_Problem

* native long max_space_dimension ()

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.30 parma_polyhedra_library::MIP_Problem Class Reference 52

Returns the maximum space dimension an MIP_Problem can handle.

* native long space_dimension ()
Returns the space dimension of the MIP problem.

* native Variables_Set integer_space_dimensions ()

Returns a set containing all the variables’ indexes constrained to be integral.

* native Constraint_System constraints ()

Returns the constraints .

* native Linear_Expression objective_function ()

Returns the objective function.

* native Optimization_Mode optimization_mode ()

Returns the optimization mode.

* native String ascii_dump ()

Returns an ascii formatted internal representation of this.

* native String toString ()

Returns a string representation of this.

* native long total_memory_in_bytes ()

Returns the total size in bytes of the memory occupied by the underlying C++ object.

* native boolean OK ()

Checks if all the invariants are satisfied.

Functions that May Modify the MIP_Problem

* native void clear ()
Resets this to be equal to the trivial MIP problem.

* native void add_space_dimensions_and_embed (long m)

Adds m new space dimensions and embeds the old MIP problem in the new vector space.

* native void add_to_integer_space_dimensions (Variables_Set i_vars)

Sets the variables whose indexes are in set i_vars to be integer space dimensions.

* native void add_constraint (Constraint c)
Adds a copy of constraint c to the MIP problem.

* native void add_constraints (Constraint_System cs)
Adds a copy of the constraints in cs to the MIP problem.

* native void set_objective_function (Linear_Expression obj)

Sets the objective function to ob j.

* native void set_optimization_mode (Optimization_Mode mode)

Sets the optimization mode to mode.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.30 parma_polyhedra_library::MIP_Problem Class Reference 53

Computing the Solution of the MIP_Problem

* native boolean is_satisfiable ()
Checks satisfiability of xt his.

¢ native MIP_Problem_Status solve ()
Optimizes the MIP problem.

* native void evaluate_objective_function (Generator evaluating_point, Coefficient num, Coeffi-
cient den)

num

Sets num and den so that
en

point.

is the result of evaluating the objective function on evaluating -

* native Generator feasible_point ()

Returns a feasible point for xt his, if it exists.

* native Generator optimizing_point ()

Returns an optimal point for this, if it exists.

* native void optimal_value (Coefficient num, Coefficient den)

num
den

Sets num and den so that is the solution of the optimization problem.

Querying/Setting Control Parameters

* native Control_Parameter_Value get_control_parameter (Control_Parameter_Name name)

Returns the value of control parameter name.

* native void set_control_parameter (Control_Parameter_Value value)

Sets control parameter value.

Constructors and Destructor

MIP_Problem (long dim)
Builds a trivial MIP problem.

MIP_Problem (long dim, Constraint_System cs, Linear_Expression obj, Optimization_Mode
mode)

Builds an MIP problem having space dimension dim from the constraint system cs, the objective function
ob j and optimization mode mode.

MIP_Problem (MIP_Problem y)
Builds a copy of y.

¢ native void free ()

Releases all resources managed by this, also resetting it to a null reference.

¢ native void finalize ()

Releases all resources managed by this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.30 parma_polyhedra_library::MIP_Problem Class Reference 54

10.30.1 Detailed Description

A Mixed Integer (linear) Programming problem. An object of this class encodes a mixed integer (linear)
programming problem. The MIP problem is specified by providing:

* the dimension of the vector space;

the feasible region, by means of a finite set of linear equality and non-strict inequality constraints;

* the subset of the unknown variables that range over the integers (the other variables implicitly ranging
over the reals);

* the objective function, described by a Linear_Expression;

* the optimization mode (either maximization or minimization).
The class provides support for the (incremental) solution of the MIP problem based on variations of the
revised simplex method and on branch-and-bound techniques. The result of the resolution process is ex-
pressed in terms of an enumeration, encoding the feasibility and the unboundedness of the optimization

problem. The class supports simple feasibility tests (i.e., no optimization), as well as the extraction of an
optimal (resp., feasible) point, provided the MIP_Problem is optimizable (resp., feasible).

By exploiting the incremental nature of the solver, it is possible to reuse part of the computational work
already done when solving variants of a given MIP_Problem: currently, incremental resolution supports the
addition of space dimensions, the addition of constraints, the change of objective function and the change
of optimization mode.

10.30.2 Constructor & Destructor Documentation

10.30.2.1 parma_polyhedra_library::MIP_Problem::MIP_Problem (long dim) [inline]

Builds a trivial MIP problem. A trivial MIP problem requires to maximize the objective function 0 on a
vector space under no constraints at all: the origin of the vector space is an optimal solution.

Parameters:

dim The dimension of the vector space enclosing this.

Exceptions:

std::length_error Thrown if dim exceeds max_space_dimension ().

10.30.2.2 parma_polyhedra_library::MIP_Problem::MIP_Problem (long dim, Constraint_System
cs, Linear_Expression obj, Optimization_Mode mode) [inline]

Builds an MIP problem having space dimension dim from the constraint system cs, the objective function
ob j and optimization mode mode.

Parameters:

dim The dimension of the vector space enclosing this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.30 parma_polyhedra_library::MIP_Problem Class Reference 55

¢s The constraint system defining the feasible region.
obj The objective function.

mode The optimization mode.

Exceptions:

std::length_error Thrown if dim exceeds max_space_dimension ().

std::invalid_argument Thrown if the constraint system contains any strict inequality or if the space
dimension of the constraint system (resp., the objective function) is strictly greater than dim.

10.30.3 Member Function Documentation

10.30.3.1 native void parma_polyhedra_library::MIP_Problem::clear ()

Resets this to be equal to the trivial MIP problem. The space dimension is reset to 0.

10.30.3.2 native void parma_polyhedra_library::MIP_Problem::add_space_dimensions_and_-
embed (long m)

Adds m new space dimensions and embeds the old MIP problem in the new vector space.

Parameters:

m The number of dimensions to add.

Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

The new space dimensions will be those having the highest indexes in the new MIP problem; they are
initially unconstrained.

10.30.3.3 native void parma_polyhedra_library:: MIP_Problem::add_to_integer_space_-
dimensions (Variables_Set i_vars)

Sets the variables whose indexes are in set 1_vars to be integer space dimensions.

Exceptions:

std::invalid_argument Thrown if some index in i_vars does not correspond to a space dimension
inthis.

10.30.3.4 native void parma_polyhedra_library::MIP_Problem::add_constraint (Constraint c)

Adds a copy of constraint ¢ to the MIP problem.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.30 parma_polyhedra_library::MIP_Problem Class Reference 56

Exceptions:

std::invalid_argument Thrown if the constraint c is a strict inequality or if its space dimension is
strictly greater than the space dimension of this.

10.30.3.5 native void parma_polyhedra_library::MIP_Problem::add_constraints
(Constraint_System cs)

Adds a copy of the constraints in cs to the MIP problem.

Exceptions:

std::invalid_argument Thrown if the constraint system cs contains any strict inequality or if its space
dimension is strictly greater than the space dimension of xthis.

10.30.3.6 native void parma_polyhedra_library::MIP_Problem::set_objective_function
(Linear_Expression obj)

Sets the objective function to ob j.

Exceptions:

std::invalid_argument Thrown if the space dimension of ob j is strictly greater than the space dimen-
sion of this.

10.30.3.7 native boolean parma_polyhedra_library::MIP_Problem::is_satisfiable ()

Checks satisfiability of xthis.

Returns:

true if and only if the MIP problem is satisfiable.

10.30.3.8 native MIP_Problem_Status parma_polyhedra_library::MIP_Problem::solve ()

Optimizes the MIP problem.

Returns:

An MIP_Problem_Status flag indicating the outcome of the optimization attempt (unfeasible, un-
bounded or optimized problem).

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.30 parma_polyhedra_library::MIP_Problem Class Reference 57

10.30.3.9 native void parma_polyhedra_library::MIP_Problem::evaluate_objective_function
(Generator evaluating_point, Coefficient num, Coefficient den)

num

et is the result of evaluating the objective function on evaluating_point.

Sets num and den so that

Parameters:

evaluating_point The point on which the objective function will be evaluated.
num On exit will contain the numerator of the evaluated value.

den On exit will contain the denominator of the evaluated value.

Exceptions:

std::invalid_argument Thrown if this and evaluating_point are dimension-incompatible or
if the generator evaluating_point is not a point.

10.30.3.10 native Generator parma_polyhedra_library::MIP_Problem::feasible_point ()

Returns a feasible point for xthis, if it exists.

Exceptions:

std::domain_error Thrown if the MIP problem is not satisfiable.

10.30.3.11 native Generator parma_polyhedra_library::MIP_Problem::optimizing_point ()

Returns an optimal point for this, if it exists.

Exceptions:

std::domain_error Thrown if this doesn’t not have an optimizing point, i.e., if the MIP problem is
unbounded or not satisfiable.

10.30.3.12 native void parma_polyhedra_library::MIP_Problem::optimal_value (Coefficient num,
Coefficient den)

num
den

Sets num and den so that is the solution of the optimization problem.

Exceptions:

std::domain_error Thrown if xthis doesn’t not have an optimizing point, i.e., if the MIP problem is
unbounded or not satisfiable.

The documentation for this class was generated from the following file:

e MIP_Problem.java

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.31 parma_polyhedra_library::NNC_Polyhedron Class Reference 58

10.31 parma_polyhedra_library::NNC_Polyhedron Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::NNC_Polyhedron.

Inherits parma_polyhedra_library::Polyhedron.

10.31.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::NNC_Polyhedron.

The documentation for this class was generated from the following file:

e NNC_Polyhedron.java

10.32 parma_polyhedra_library::Octagonal_Shape_double Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::Octagonal _Shape<double>.

Inherits parma_polyhedra_library::PPL_Object.

10.32.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Octagonal_Shape<double>.

The documentation for this class was generated from the following file:

¢ Octagonal_Shape_double.java

10.33 parma_polyhedra_library::Octagonal_Shape_mpq_class Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::Octagonal_Shape<mpq_class>.

Inherits parma_polyhedra_library::PPL_Object.

10.33.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Octagonal_Shape<mpq_class>.

The documentation for this class was generated from the following file:

* Octagonal_Shape_mpq_class.java

10.34 parma_polyhedra_library::Octagonal_Shape_mpz_class Class Reference
Java class interfacing C++ Parma_Polyhedra_Library::Octagonal_Shape<mpz_class>.

Inherits parma_polyhedra_library::PPL_Object.

10.34.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Octagonal_Shape<mpz_class>.

The documentation for this class was generated from the following file:

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.35 parma_polyhedra_library::Overflow_Error_Exception Class Reference 59

* Qctagonal_Shape_mpz_class.java

10.35 parma_polyhedra_library::Overflow_Error_Exception Class Reference

Exceptions due to overflow errors.

Public Member Functions

* Overflow_Error_Exception (String s)

Constructor.

10.35.1 Detailed Description

Exceptions due to overflow errors. These exceptions can be obtained when the library has been configured
to use integer coefficients having bounded size.

The documentation for this class was generated from the following file:

* Overflow_Error_Exception.java

10.36 parma_polyhedra_library::Pair< K, V > Class Reference

A pair of values of type K and V.

Public Member Functions

o K getFirst ()
Returns the object of type K.

e V getSecond ()
Returns the object of type V.

10.36.1 Detailed Description

A pair of values of type K and V. An object of this class holds an ordered pair of values of type K and V.

The documentation for this class was generated from the following file:

* Pair.java

10.37 parma_polyhedra_library::Parma_Polyhedra_Library Class Reference

A class collecting library-level functions.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.37 parma_polyhedra_library::Parma_Polyhedra_Library Class Reference 60

Static Public Member Functions
Version Checking

* static native int version_major ()

Returns the major number of the PPL version.

* static native int version_minor ()

Returns the minor number of the PPL version.

e static native int version_revision ()

Returns the revision number of the PPL version.

e static native int version_beta ()

Returns the beta number of the PPL version.

* static native String version ()

Returns a string containing the PPL version.

* static native String banner ()
Returns a string containing the PPL banner.

(Re-) Setting floating-point rounding mode.

* static native void set_rounding_for_PPL ()

Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work cor-
rectly.

* static native void restore_pre_PPL_rounding ()
Sets the FPU rounding mode as it was before initialization of the PPL.

10.37.1 Detailed Description

A class collecting library-level functions.

10.37.2 Member Function Documentation

10.37.2.1 static native String parma_polyhedra_library::Parma_Polyhedra_Library::banner ()
[static]

Returns a string containing the PPL banner. The banner provides information about the PPL version, the
licensing, the lack of any warranty whatsoever, the C++ compiler used to build the library, where to report
bugs and where to look for further information.

10.37.2.2 static native void parma_polyhedra_library::Parma_Polyhedra_Library::set_-
rounding_for PPL () [static]

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.38 parma_polyhedra_library::Partial_Function Interface Reference 61

Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.
This is performed automatically at initialization-time. Calling this function is needed only if restore_pre_-
PPL_rounding() has been previously called.

10.37.2.3 static native void parma_polyhedra_library::Parma_Polyhedra_Library::restore_pre_-
PPL_rounding () [static]

Sets the FPU rounding mode as it was before initialization of the PPL. After calling this function it is
absolutely necessary to call set_rounding_for_PPL/() before using any PPL abstractions based on floating
point numbers. This is performed automatically at finalization-time.

The documentation for this class was generated from the following file:

e Parma_Polyhedra_Library.java

10.38 parma_polyhedra_library::Partial_Function Interface Reference

A partial function on space dimension indices.

Public Member Functions

* long max_in_codomain ()

Returns the maximum value that belongs to the codomain of the partial function.

* boolean maps (Long i, By_Reference< Long > j)
Sets j to the value (if any) of the partial function on index 1.

Package Functions

* boolean has_empty_codomain ()

Returns t rue if and only if the partial function has an empty codomain (i.e., it is always undefined).

10.38.1 Detailed Description

A partial function on space dimension indices. In order to specify how space dimensions should be mapped
by methods named map_space_dimensions, the user should implement this interface.

Note:

An example of implementation can be found in the PPL test file
interfaces/Java/tests/Test_Partial_ Function. java.

10.38.2 Member Function Documentation

10.38.2.1 boolean parma_polyhedra_library::Partial_Function::has_empty_codomain ()
[package]

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.39 parma_polyhedra_library::Pointset_Powerset_C_Polyhedron Class Reference 62

Returns t rue if and only if the partial function has an empty codomain (i.e., it is always undefined). This
method will always be called before the other methods of the interface. Moreover, if true is returned,
then none of the other interface methods will be called.

10.38.2.2 boolean parma_polyhedra_library::Partial_Function::maps (Long i, By_Reference<
Long > j)

Sets j to the value (if any) of the partial function on index i. The function returns t rue if and only if the
partial function is defined on domain value 1.

The documentation for this interface was generated from the following file:

* Partial_Function.java

10.39 parma_polyhedra_library::Pointset_Powerset_C_Polyhedron Class Refer-
ence

A powerset of C_Polyhedron objects.
Inherits parma_polyhedra_library::PPL_Object, and parma_polyhedra_library::PPL_Object.

Public Member Functions
Ad Hoc Functions for Pointset_Powerset domains

* native void omega_reduce ()

Drops from the sequence of disjuncts in this all the non-maximal elements, so that a non-redundant
powerset if obtained.

* native long size ()

Returns the number of disjuncts.

* native boolean geometrically_covers (Pointset_Powerset_C_Polyhedron y)

Returns true if and only if this geometrically covers y.

* native boolean geometrically_equals (Pointset_Powerset_C_Polyhedron y)

Returns true if and only if this is geometrically equal to y.

* native Pointset_Powerset_C_Polyhedron_Iterator begin_iterator ()

Returns an iterator referring to the beginning of the sequence of disjuncts of this.

* native Pointset_Powerset_C_Polyhedron_Iterator end_iterator ()

Returns an iterator referring to past the end of the sequence of disjuncts of this.

* native void add_disjunct (C_Polyhedron d)
Adds to this a copy of disjunct d.

* native void drop_disjunct (Pointset_Powerset_C_Polyhedron_Iterator iter)

Drops from this the disjunct referred by iter; returns an iterator referring to the disjunct following
the dropped one.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.40 parma_polyhedra_library::Pointset_Powerset_C_Polyhedron_Iterator Class Reference 63

* native void drop_disjuncts (Pointset_Powerset_C_Polyhedron_Iterator first, Pointset_Powerset_-
C_Polyhedron_Iterator last)

Drops from this all the disjuncts from £irst to 1ast (excluded).

* native void pairwise_reduce ()

Modifies this by (recursively) merging together the pairs of disjuncts whose upper-bound is the same
as their set-theoretical union.

10.39.1 Detailed Description
A powerset of C_Polyhedron objects. Java class interfacing C++ Parma_Polyhedra_Library::Pointset_-
Powerset<C_Polyhedron>.

The powerset domains can be instantiated by taking as a base domain any fixed semantic geometric de-
scription (C and NNC polyhedra, BD and octagonal shapes, boxes and grids). An element of the powerset
domain represents a disjunctive collection of base objects (its disjuncts), all having the same space dimen-
sion.

Besides the methods that are available in all semantic geometric descriptions (whose documentation is not
repeated here), the powerset domain also provides several ad hoc methods. In particular, the iterator types
allow for the examination and manipulation of the collection of disjuncts.

10.39.2 Member Function Documentation

10.39.2.1 native long parma_polyhedra_library::Pointset_Powerset_C_Polyhedron::size ()

Returns the number of disjuncts. If present, Omega-redundant elements will be counted too.

The documentation for this class was generated from the following files:

» Fake_Class_for_Doxygen.java
* Pointset_Powerset_C_Polyhedron.java

10.40 parma_polyhedra_library::Pointset_Powerset_C_Polyhedron_Iterator
Class Reference

An iterator class for the disjuncts of a Pointset_Powerset_C_Polyhedron.

Inherits parma_polyhedra_library::PPL_Object, and parma_polyhedra_library::PPL_Object.

Public Member Functions

* Pointset_Powerset_C_Polyhedron_Iterator (Pointset_Powerset_C_Polyhedron_Iterator y)

Builds a copy of iterator y.

* native boolean equals (Pointset_Powerset_C_Polyhedron_Iterator itr)

Returns true if and only if this and itr are equal.

¢ native void next ()

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.41 parma_polyhedra_library::Pointset_Powerset_ NNC_Polyhedron Class Reference 64

Modifies this so that it refers to the next disjunct.

* native void prev ()

Modifies this so that it refers to the previous disjunct.

* native C_Polyhedron get_disjunct ()

Returns the disjunct referenced by this.

e native void free ()

Releases resources and resets this to a null reference.

Protected Member Functions

¢ native void finalize ()

Releases the resources managed by this.

10.40.1 Detailed Description

An iterator class for the disjuncts of a Pointset_Powerset_C_Polyhedron. Java class interfacing C++
Parma_Polyhedra_Library::Pointset_Powerset<C_Polyhedron>::iterator.

10.40.2 Member Function Documentation

10.40.2.1 native C_Polyhedron parma_polyhedra_library::Pointset_Powerset_C_Polyhedron_-
Iterator::get_disjunct ()

Returns the disjunct referenced by this.

Warning:

On exit, the C_Polyhedron disjunct is still owned by the powerset object: any function call on the
owning powerset object may invalidate it. Moreover, the disjunct is meant to be immutable and should
not be modified in any way (its resources will be released when deleting the owning powerset). If
really needed, the disjunct may be copied into a new object, which will be under control of the user.

The documentation for this class was generated from the following files:

» Fake_Class_for_Doxygen.java
* Pointset_Powerset_C_Polyhedron_Iterator.java

10.41 parma_polyhedra_library::Pointset_Powerset_NNC_Polyhedron Class
Reference

Java class interfacing C++ Parma_Polyhedra_Library::Pointset_Powerset<NNC_Polyhedron>.

Inherits parma_polyhedra_library::PPL_Object.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.42 parma_polyhedra_library::Pointset_Powerset. NNC_Polyhedron_Iterator Class Referencé5

10.41.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Pointset_Powerset<NNC_Polyhedron>.

The documentation for this class was generated from the following file:

* Pointset_Powerset_ NNC_Polyhedron.java
10.42 parma_polyhedra_library::Pointset_Powerset_ NNC_Polyhedron_Iterator
Class Reference

Java class interfacing C++ Parma_Polyhedra_Library::Pointset_Powerset<NNC_Polyhedron>::iterator.

Inherits parma_polyhedra_library::PPL_Object.

10.42.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Pointset_Powerset<NNC_Polyhedron>::iterator.

The documentation for this class was generated from the following file:

¢ Pointset_Powerset_ NNC_Polyhedron_Iterator.java

10.43 parma_polyhedra_library::Poly_Con_Relation Class Reference

The relation between a polyhedron and a constraint.

Public Member Functions

* Poly_Con_Relation (int val)

Constructs from a integer value.

* boolean implies (Poly_Con_Relation y)

True if and only if xt his implies y.

Static Public Member Functions

* static Poly_Con_Relation nothing ()

The assertion that says nothing.

* static Poly_Con_Relation is_disjoint ()

The polyhedron and the set of points satisfying the constraint are disjoint.

« static Poly_Con_Relation strictly_intersects ()

The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

* static Poly_Con_Relation is_included ()

The polyhedron is included in the set of points satisfying the constraint.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.44 parma_polyhedra_library::Poly_Gen_Relation Class Reference 66

* static Poly_Con_Relation saturates ()

The polyhedron is included in the set of points saturating the constraint.

10.43.1 Detailed Description

The relation between a polyhedron and a constraint. This class implements conjunctions of assertions on
the relation between a polyhedron and a constraint.

The documentation for this class was generated from the following file:

* Poly_Con_Relation.java

10.44 parma_polyhedra_library::Poly_Gen_Relation Class Reference

The relation between a polyhedron and a generator.

Public Member Functions

* Poly_Gen_Relation (int val)

Constructs from a integer value.

* boolean implies (Poly_Gen_Relation y)
True if and only if xt his implies y.

Static Public Member Functions

* static Poly_Gen_Relation nothing ()

The assertion that says nothing.

* static Poly_Gen_Relation subsumes ()
Adding the generator would not change the polyhedron.

10.44.1 Detailed Description

The relation between a polyhedron and a generator. This class implements conjunctions of assertions on
the relation between a polyhedron and a generator.

The documentation for this class was generated from the following file:

* Poly_Gen_Relation.java

10.45 parma_polyhedra_library::Polyhedron Class Reference

The Java base class for (C and NNC) convex polyhedra.
Inherits parma_polyhedra_library::PPL_Object, and parma_polyhedra_library::PPL_Object.

Inherited by parma_polyhedra_library::C_Polyhedron, parma_polyhedra_library::C_Polyhedron, and
parma_polyhedra_library::NNC_Polyhedron.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 67

Public Member Functions
Member Functions that Do Not Modify the Polyhedron

* native long space_dimension ()

Returns the dimension of the vector space enclosing this.

* native long affine_dimension ()

Returns O, if this is empty; otherwise, returns the affine dimension of this.

* native Constraint_System constraints ()

Returns the system of constraints.

* native Congruence_System congruences ()

Returns a system of (equality) congruences satisfied by thi s.

* native Constraint_System minimized_constraints ()

Returns the system of constraints, with no redundant constraint.

* native Congruence_System minimized_congruences ()

Returns a system of (equality) congruences satisfied by t his, with no redundant congruences and hav-
ing the same dffine dimension as this.

* native boolean is_empty ()

Returns t rue if and only if this is an empty polyhedron.

* native boolean is_universe ()

Returns t rue if and only if t his is a universe polyhedron.

 native boolean is_bounded ()
Returns t rue if and only if this is a bounded polyhedron.

* native boolean is_discrete ()

Returns true if and only if this is discrete.

* native boolean is_topologically_closed ()

Returns t rue if and only if this is a topologically closed subset of the vector space.

* native boolean contains_integer_point ()

Returns t rue if and only if t his contains at least one integer point.

¢ native boolean constrains (Variable var)

Returns t rue if and only if var is constrained in this.

* native boolean bounds_from_above (Linear_Expression expr)

Returns t rue if and only if expr is bounded from above in this.

* native boolean bounds_from_below (Linear_Expression expr)
Returns t rue if and only if expr is bounded from below in this.

* native boolean maximize (Linear_Expression expr, Coefficient sup_n, Coefficient sup_d, By_-
Reference< Boolean > maximum)

Returns true if and only if this is not empty and expr is bounded from above in this, in which
case the supremum value is computed.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 68

native boolean minimize (Linear_Expression expr, Coefficient inf_n, Coefficient inf_d, By_-
Reference< Boolean > minimum)

Returns true if and only if this is not empty and expr is bounded from below in this, in which
case the infimum value is computed.

native boolean maximize (Linear_Expression expr, Coefficient sup_n, Coefficient sup_d, By_-
Reference< Boolean > maximum, Generator g)

Returns true if and only if this is not empty and expr is bounded from above in this, in which
case the supremum value and a point where expr reaches it are computed.

native boolean minimize (Linear_Expression expr, Coefficient inf_n, Coefficient inf_d, By_-
Reference< Boolean > minimum, Generator g)

Returns true if and only if this is not empty and expr is bounded from below in this, in which
case the infimum value and a point where expr reaches it are computed.

native Poly_Con_Relation relation_with (Constraint c¢)

Returns the relations holding between the polyhedron this and the constraint c.

native Poly_Gen_Relation relation_with (Generator c)
Returns the relations holding between the polyhedron this and the generator g.

native Poly_Con_Relation relation_with (Congruence c)

Returns the relations holding between the polyhedron this and the congruence c.

native boolean contains (Polyhedron y)

Returns t rue if and only if this contains y.

native boolean strictly_contains (Polyhedron y)

Returns t rue if and only if t his strictly contains y.

native boolean is_disjoint_from (Polyhedron y)
Returns t rue if and only if this and y are disjoint.

native boolean equals (Polyhedron y)

Returns true if and only if this and y are equal.

boolean equals (Object y)

Returns t rue if and only if this and y are equal.

native int hashCode ()

Returns a hash code for this.

native long external_memory_in_bytes ()

Returns the size in bytes of the memory managed by this.

native long total_memory_in_bytes ()

Returns the total size in bytes of the memory occupied by this.

native String toString ()

Returns a string representing this.

native String ascii_dump ()

Returns a string containing a low-level representation of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more

information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 69

* native boolean OK ()

Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Polyhedron

* native void add_constraint (Constraint c)

Adds a copy of constraint c to the system of constraints of t his (without minimizing the result).

* native void add_congruence (Congruence cg)
Adds a copy of congruence cgto this, if cg can be exactly represented by a polyhedron.

* native void add_constraints (Constraint_System cs)

Adds a copy of the constraints in cs to the system of constraints of t hi s (without minimizing the result).

* native void add_congruences (Congruence_System cgs)

Adds a copy of the congruences in cgs to this, if all the congruences can be exactly represented by a
polyhedron.

* native void refine_with_constraint (Constraint c)

Uses a copy of constraint c to refine this.

* native void refine_with_congruence (Congruence cg)

Uses a copy of congruence cg to refine this.

* native void refine_with_constraints (Constraint_System cs)

Uses a copy of the constraints in cs to refine this.

* native void refine_with_congruences (Congruence_System cgs)

Uses a copy of the congruences in cgs to refine this.

* native void intersection_assign (Polyhedron y)

Assigns to this the intersection of this and y. The result is not guaranteed to be minimized.

* native void upper_bound_assign (Polyhedron y)
Assigns to this the upper bound of this and y.

* native void difference_assign (Polyhedron y)

Assigns to this the poly-difference of this and y. The result is not guaranteed to be minimized.

* native void time_elapse_assign (Polyhedron y)

Assigns to this the result of computing the time-elapse between this and y.

* native void topological_closure_assign ()

Assigns to this its topological closure.

* native boolean simplify_using_context_assign (Polyhedron y)

Assigns to this a meet-preserving simplification of this with respect to y. If false is returned, then
the intersection is empty.

* native void affine_image (Variable var, Linear_Expression expr, Coefficient denominator)

Assigns to this the affine image of this under the function mapping variable var to the affine ex-
pression specified by expr and denominator.

* native void affine_preimage (Variable var, Linear_Expression expr, Coefficient denominator)

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 70

Assigns to this the affine preimage of this under the function mapping variable var to the affine
expression specified by expr and denominator.

* native void bounded_affine_image (Variable var, Linear_Expression Ib_expr, Linear_Expression
ub_expr, Coefficient denominator)

bexpr - ya)/ <

Assigns to this the image of this with respect to the bounded dffine relation 35 ==>"— <

ub_expr
denominator®

* native void bounded_affine_preimage (Variable var, Linear Expression lb_expr, Linear_-

Expression ub_expr, Coefficient denominator)

1b_expr < var' <

Assigns to this the preimage of t his with respect to the bounded affine relation 5 ==>-— <

ub_expr
denominator®
* native void generalized_affine_image (Variable var, Relation_Symbol relsym, Linear_Expression
expr, Coefficient denominator)
Assigns to this the image of t his with respect to the generalized affine relation var’ >
where X is the relation symbol encoded by relsym.

expr
denominator’

e native void generalized_affine_preimage (Variable var, Relation_Symbol relsym, Linear_-
Expression expr, Coefficient denominator)
Assigns to this the preimage of this with respect to the generalized affine relation var'

___expr i ;
Tornominaior» Where X is the relation symbol encoded by relsym.

* native void generalized_affine_image (Linear_Expression lhs, Relation_Symbol relsym, Linear_-
Expression rhs)

Assigns to this the image of this with respect to the generalized affine relation Ths' 1< ths, where 1<
is the relation symbol encoded by relsym.

* native void generalized_affine_preimage (Linear_Expression lhs, Relation_Symbol relsym,
Linear_Expression rhs)

Assigns to this the preimage of t his with respect to the generalized affine relation 1hs' < rhs, where
> is the relation symbol encoded by relsym.

* native void unconstrain_space_dimension (Variable var)

Computes the cylindrification of this with respect to space dimension var, assigning the result to
this.

* native void unconstrain_space_dimensions (Variables_Set to_be_unconstrained)

Computes the cylindrification of this with respect to the set of space dimensions to_be_—
unconstrained, assigning the result to this.

* native void widening_assign (Polyhedron y, By_Reference< Integer > tp)
Assigns to this the result of computing the H79-widening between this and y.

Member Functions that May Modify the Dimension of the Vector Space

* native void swap (Polyhedron y)

Swaps this with polyhedron y. (this and y can be dimension-incompatible.).

* native void add_space_dimensions_and_embed (long m)

Adds m new space dimensions and embeds the old polyhedron in the new vector space.

* native void add_space_dimensions_and_project (long m)

Adds m new space dimensions to the polyhedron and does not embed it in the new vector space.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 71

* native void concatenate_assign (Polyhedron y)

Assigns to this the concatenation of this and y, taken in this order.

* native void remove_space_dimensions (Variables_Set to_be_removed)

Removes all the specified dimensions from the vector space.

* native void remove_higher_space_dimensions (long new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension.

* native void expand_space_dimension (Variable var, long m)

Creates m copies of the space dimension corresponding to var.

* native void fold_space_dimensions (Variables_Set to_be_folded, Variable var)

Folds the space dimensions in t o_be_foldedinto var.

* native void map_space_dimensions (Partial_Function pfunc)

Remaps the dimensions of the vector space according to a partial function.

Ad Hoc Functions for (C or NNC) Polyhedra

The functions listed here below, being specific of the polyhedron domains, do not have a correspondence
in other semantic geometric descriptions.

* native Generator_System generators ()

Returns the system of generators.

* native Generator_System minimized_generators ()

Returns the system of generators, with no redundant generator.

* native void add_generator (Generator g)

Adds a copy of generator g to the system of generators of this (without minimizing the result).

* native void add_generators (Generator_System gs)

Adds a copy of the generators in gs to the system of generators of t his (without minimizing the result).

* native void poly_hull_assign (Polyhedron y)

Same as upper_bound_assign.

* native void poly_difference_assign (Polyhedron y)

Same as difference_assign.

* native void BHRZ03_widening_assign (Polyhedron y, By_Reference< Integer > tp)
Assigns to this the result of computing the BHRZ03-widening between this and y.

* native void H79_widening_assign (Polyhedron y, By_Reference< Integer > tp)
Assigns to this the result of computing the H79-widening between this and y.

* native void limited_ BHRZ03_extrapolation_assign (Polyhedron y, Constraint_System cs, By_-
Reference< Integer > tp)

Improves the result of the BHRZ03-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 72

* native void limited_H79_extrapolation_assign (Polyhedron y, Constraint_System cs, By_-
Reference< Integer > tp)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of this.

* native void bounded_BHRZ03_extrapolation_assign (Polyhedron y, Constraint_System cs, By_-
Reference< Integer > tp)

Improves the result of the BHRZ03-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of this, plus all the constraints of the form £z < r and +x < r, with
r € Q, that are satisfied by all the points of this.

* native void bounded_H79_extrapolation_assign (Polyhedron y, Constraint_System cs, By_-
Reference< Integer > tp)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of this, plus all the constraints of the form +x < r and +x < r, withr € Q,
that are satisfied by all the points of this.

10.45.1 Detailed Description

The Java base class for (C and NNC) convex polyhedra. Java class interfacing C++ Parma_Polyhedra_-
Library::Polyhedron.

The base class Polyhedron provides declarations for most of the methods common to classes C_Polyhedron
and NNC_Polyhedron. Note that the user should always use the derived classes. Moreover, C and NNC
polyhedra can not be freely interchanged: as specified in the main manual, most library functions require
their arguments to be topologically compatible.

10.45.2 Member Function Documentation

10.45.2.1 native boolean parma_polyhedra_library::Polyhedron::constrains (Variable var)

Returns t rue if and only if var is constrained in this.

Exceptions:

Invalid_Argument_Exception Thrown if var is not a space dimension of this.

10.45.2.2 native boolean parma_polyhedra_library::Polyhedron::bounds_from_above
(Linear_Expression expr)

Returns t rue if and only if expr is bounded from above in this.

Exceptions:

Invalid_Argument_Exception Thrown if expr and this are dimension-incompatible.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 73

10.45.2.3 native boolean parma_polyhedra_library::Polyhedron::bounds_from_below
(Linear_Expression expr)

Returns t rue if and only if expr is bounded from below in this.

Exceptions:

Invalid_Argument_Exception Thrown if expr and this are dimension-incompatible.

10.45.2.4 native boolean parma_polyhedra_library::Polyhedron::maximize (Linear_Expression
expr, Coefficient sup_n, Coefficient sup_d, By_Reference< Boolean > maximum)

Returns t rue if and only if this is not empty and expr is bounded from above in this, in which case
the supremum value is computed.

Parameters:

expr The linear expression to be maximized subject to this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions:

Invalid_Argument_Exception Thrown if expr and this are dimension-incompatible.

If this is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

10.45.2.5 native boolean parma_polyhedra_library::Polyhedron::minimize (Linear_Expression
expr, Coefficient inf_n, Coefficient inf_d, By_Reference< Boolean > minimum)

Returns t rue if and only if this is not empty and expr is bounded from below in this, in which case
the infimum value is computed.

Parameters:

expr The linear expression to be minimized subject to this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions:

Invalid_Argument_Exception Thrown if expr and this are dimension-incompatible.

If this is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 74

10.45.2.6 native boolean parma_polyhedra_library::Polyhedron::maximize (Linear_Expression
expr, Coefficient sup_n, Coefficient sup_d, By_Reference< Boolean > maximum,
Generator g)

Returns t rue if and only if this is not empty and expr is bounded from above in this, in which case
the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to this;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

Exceptions:

Invalid_Argument_Exception Thrown if expr and this are dimension-incompatible.

If this is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and g are left untouched.

10.45.2.7 native boolean parma_polyhedra_library::Polyhedron::minimize (Linear_Expression
expr, Coefficient inf _n, Coefficient inf_d, By_Reference< Boolean > minimum,
Generator g)

Returns t rue if and only if this is not empty and expr is bounded from below in this, in which case
the infimum value and a point where expr reaches it are computed.

Parameters:
expr The linear expression to be minimized subject to this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions:

Invalid_Argument_Exception Thrown if expr and this are dimension-incompatible.

If this is empty or expr is not bounded from below, false isreturned and inf_n, inf_d, minimum
and g are left untouched.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 75

10.45.2.8 native Poly_Con_Relation parma_polyhedra_library::Polyhedron::relation_with
(Constraint c¢)

Returns the relations holding between the polyhedron this and the constraint c.
Exceptions:

Invalid_Argument_Exception Thrown if this and constraint c are dimension-incompatible.

10.45.2.9 native Poly_Gen_Relation parma_polyhedra_library::Polyhedron::relation_with
(Generator c)

Returns the relations holding between the polyhedron this and the generator g.
Exceptions:

Invalid_Argument_Exception Thrown if this and generator g are dimension-incompatible.

10.45.2.10 native Poly_Con_Relation parma_polyhedra_library::Polyhedron::relation_with
(Congruence c)

Returns the relations holding between the polyhedron this and the congruence c.
Exceptions:

Invalid_Argument_Exception Thrown if this and congruence c are dimension-incompatible.

10.45.2.11 native boolean parma_polyhedra_library::Polyhedron::contains (Polyhedron y)

Returns t rue if and only if this contains y.
Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

10.45.2.12 native boolean parma_polyhedra_library::Polyhedron::strictly_contains (Polyhedron
y)

Returns t rue if and only if this strictly contains y.
Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 76

10.45.2.13 native boolean parma_polyhedra_library::Polyhedron::is_disjoint_from (Polyhedron
y)

Returns true if and only if this and y are disjoint.

Exceptions:

Invalid_Argument_Exception Thrown if x and y are topology-incompatible or dimension-
incompatible.

10.45.2.14 native int parma_polyhedra_library::Polyhedron::hashCode ()

Returns a hash code for this. If x and y are such that x == y, then x.hash_code ()
y.hash_code ().

10.45.2.15 native String parma_polyhedra_library::Polyhedron::ascii_dump ()

Returns a string containing a low-level representation of this. Useful for debugging purposes.

10.45.2.16 native void parma_polyhedra_library::Polyhedron::add_constraint (Constraint c¢)

Adds a copy of constraint c to the system of constraints of this (without minimizing the result).

Parameters:

¢ The constraint that will be added to the system of constraints of this.

Exceptions:

Invalid_Argument_Exception Thrown if this and constraint ¢ are topology-incompatible or
dimension-incompatible.

10.45.2.17 native void parma_polyhedra_library::Polyhedron::add_congruence (Congruence cg)

Adds a copy of congruence cg to this, if cg can be exactly represented by a polyhedron.

Exceptions:

Invalid_Argument_Exception Thrown if this and congruence cg are dimension-incompatible, of
if cg is a proper congruence which is neither a tautology, nor a contradiction.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 77

10.45.2.18 native void parma_polyhedra_library::Polyhedron::add_constraints
(Constraint_System cs)

Adds a copy of the constraints in cs to the system of constraints of this (without minimizing the result).

Parameters:
¢s Contains the constraints that will be added to the system of constraints of this.
Exceptions:

Invalid_Argument_Exception Thrown if this and cs are topology-incompatible or dimension-
incompatible.

10.45.2.19 native void parma_polyhedra_library::Polyhedron::add_congruences
(Congruence_System cgs)

Adds a copy of the congruences in cgs to this, if all the congruences can be exactly represented by a
polyhedron.

Parameters:

cgs The congruences to be added.

Exceptions:

Invalid_Argument_Exception Thrown if this and cgs are dimension-incompatible, of if there ex-
ists in cgs a proper congruence which is neither a tautology, nor a contradiction.

10.45.2.20 native void parma_polyhedra_library::Polyhedron::refine_with_constraint (Constraint

c)

Uses a copy of constraint ¢ to refine this.

Exceptions:

Invalid_Argument_Exception Thrown if this and constraint ¢ are dimension-incompatible.

10.45.2.21 native void parma_polyhedra_library::Polyhedron::refine_with_congruence
(Congruence cg)

Uses a copy of congruence cg to refine this.

Exceptions:

Invalid_Argument_Exception Thrown if this and congruence cg are dimension-incompatible.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 78

10.45.2.22 native void parma_polyhedra_library::Polyhedron::refine_with_constraints
(Constraint_System cs)

Uses a copy of the constraints in cs to refine this.

Parameters:

¢s Contains the constraints used to refine the system of constraints of this.

Exceptions:

Invalid_Argument_Exception Thrown if this and cs are dimension-incompatible.

10.45.2.23 native void parma_polyhedra_library::Polyhedron::refine_with_congruences
(Congruence_System cgs)

Uses a copy of the congruences in cgs to refine this.

Parameters:

cgs Contains the congruences used to refine the system of constraints of this.

Exceptions:

Invalid_Argument_Exception Thrown if this and cgs are dimension-incompatible.

10.45.2.24 native void parma_polyhedra_library::Polyhedron::intersection_assign (Polyhedron y)

Assigns to this the intersection of this and y. The result is not guaranteed to be minimized.

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

10.45.2.25 native void parma_polyhedra_library::Polyhedron::upper_bound_assign (Polyhedron
y)

Assigns to this the upper bound of this and y.

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 79

10.45.2.26 native void parma_polyhedra_library::Polyhedron::difference_assign (Polyhedron y)

Assigns to this the poly-difference of this and y. The result is not guaranteed to be minimized.

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

10.45.2.27 native void parma_polyhedra_library::Polyhedron::time_elapse_assign (Polyhedron y)

Assigns to this the result of computing the time-elapse between this and y.

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

10.45.2.28 native boolean parma_polyhedra_library::Polyhedron::simplify_using_context_assign
(Polyhedron y)

Assigns to this a meet-preserving simplification of this with respect to y. If false is returned, then
the intersection is empty.

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

10.45.2.29 native void parma_polyhedra_library::Polyhedron::affine_image (Variable var,
Linear_Expression expr, Coefficient denominator)

Assigns to this the affine image of this under the function mapping variable var to the affine expres-
sion specified by expr and denominator.
Parameters:

var The variable to which the affine expression is assigned;
expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

Invalid_Argument_Exception Thrown if denominator is zero or if expr and this are
dimension-incompatible or if var is not a space dimension of this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 80

10.45.2.30 native void parma_polyhedra_library::Polyhedron::affine_preimage (Variable var,
Linear_Expression expr, Coefficient denominator)

Assigns to this the affine preimage of this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:
var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

Invalid_Argument_Exception Thrown if denominator is zero or if expr and this are
dimension-incompatible or if var is not a space dimension of this.

10.45.2.31 native void parma_polyhedra_library::Polyhedron::bounded_affine_image (Variable
var, Linear_Expression Ib_expr, Linear_Expression ub_expr, Coefficient denominator)

Assigns to this the image of this with respect to the bounded affine relation delb—¢

ub_expr
denominator *

> < var’ <
nominator — —

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

Invalid_Argument_Exception Thrown if denominator is zero or if 1b_expr (resp., ub_expr)
and this are dimension-incompatible or if var is not a space dimension of this.

10.45.2.32 native void parma_polyhedra_library::Polyhedron::bounded_affine_preimage
(Variable var, Linear_Expression lb_expr, Linear_Expression ub_expr, Coefficient
denominator)

Assigns to this the preimage of this with respect to the bounded affine relation d“’-& < var’ <
enominator

ub_expr
denominator *

Parameters:

var The variable updated by the affine relation;

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 81

Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

Invalid_Argument_Exception Thrown if denominator is zero or if 1b_expr (resp., ub_expr)
and this are dimension-incompatible or if var is not a space dimension of this.

10.45.2.33 native void parma_polyhedra_library::Polyhedron::generalized_affine_image
(Variable var, Relation_Symbol relsym, Linear_Expression expr, Coefficient
denominator)

expr

Assigns to this the image of this with respect to the generalized affine relation var' < — > ——,

where > is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol,
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

Invalid_Argument_Exception Thrown if denominator is zero or if expr and this are
dimension-incompatible or if var is not a space dimension of this or if this is a C_-
Polyhedron and relsym is a strict relation symbol.

10.45.2.34 native void parma_polyhedra_library::Polyhedron::generalized_affine_preimage
(Variable var, Relation_Symbol relsym, Linear_Expression expr, Coefficient
denominator)

expr

Assigns to this the preimage of this with respect to the generalized affine relation var' < o— > ——,

where > is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol,
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 82

Exceptions:

Invalid_Argument_Exception Thrown if denominator is zero or if expr and this are
dimension-incompatible or if var is not a space dimension of this or if this is a C_-
Polyhedron and relsym is a strict relation symbol.

10.45.2.35 native void parma_polyhedra_library::Polyhedron::generalized_affine_image
(Linear_Expression lks, Relation_Symbol relsym, Linear_Expression rhs)

Assigns to this the image of this with respect to the generalized affine relation lhs' < rhs, where i is
the relation symbol encoded by relsym.
Parameters:

Ihs The left hand side affine expression;
relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions:

Invalid_Argument_Exception Thrown if this is dimension-incompatible with 1hs or rhs or if
this is a C_Polyhedron and relsym is a strict relation symbol.

10.45.2.36 native void parma_polyhedra_library::Polyhedron::generalized_affine_preimage
(Linear_Expression lhs, Relation_Symbol relsym, Linear_Expression rhs)

Assigns to this the preimage of this with respect to the generalized affine relation 1hs' > rhs, where
< is the relation symbol encoded by relsym.

Parameters:
Ihs The left hand side affine expression;
relsym The relation symbol;
rhs The right hand side affine expression.
Exceptions:

Invalid_Argument_Exception Thrown if this is dimension-incompatible with 1hs or rhs or if
this is a C_Polyhedron and relsym is a strict relation symbol.

10.45.2.37 native void parma_polyhedra_library::Polyhedron::unconstrain_space_dimension
(Variable var)

Computes the cylindrification of this with respect to space dimension var, assigning the resultto this.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 83

Parameters:

var The space dimension that will be unconstrained.

Exceptions:

Invalid_Argument_Exception Thrown if var is not a space dimension of this.

10.45.2.38 native void parma_polyhedra_library::Polyhedron::unconstrain_space_dimensions
(Variables_Set to_be_unconstrained)

Computes the cylindrification of this with respect to the set of space dimensions to_be_-
unconstrained, assigning the result to this.

Parameters:

to_be_unconstrained The set of space dimension that will be unconstrained.

Exceptions:

Invalid_Argument_Exception Thrown if this is dimension-incompatible with one of the Variable
objects contained in to_be_removed.

10.45.2.39 native void parma_polyhedra_library::Polyhedron::widening_assign (Polyhedron y,
By_Reference< Integer > tp)

Assigns to this the result of computing the H79-widening between this and y.

Parameters:

y A polyhedron that must be contained in this;

tp A reference to an unsigned variable storing the number of available tokens (to be used when apply-
ing the widening with tokens delay technique).

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

10.45.2.40 native void parma_polyhedra_library::Polyhedron::swap (Polyhedron y)

Swaps this with polyhedron y. (this and y can be dimension-incompatible.).

Exceptions:

Invalid_Argument_Exception Thrown if x and y are topology-incompatible.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 84

10.45.2.41 native void parma_polyhedra_library::Polyhedron::add_space_dimensions_and_-
embed (long m)

Adds m new space dimensions and embeds the old polyhedron in the new vector space.

Parameters:

m The number of dimensions to add.

Exceptions:

Length_Error_Exception Thrown if adding m new space dimensions would cause the vector space to
exceed dimension max_space_dimension ().

10.45.2.42 native void parma_polyhedra_library::Polyhedron::add_space_dimensions_and_-
project (long m)

Adds m new space dimensions to the polyhedron and does not embed it in the new vector space.

Parameters:

m The number of space dimensions to add.

Exceptions:

Length_Error_Exception Thrown if adding m new space dimensions would cause the vector space to
exceed dimension max_space_dimension ().

10.45.2.43 native void parma_polyhedra_library::Polyhedron::concatenate_assign (Polyhedron y)

Assigns to this the concatenation of this and y, taken in this order.

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible.

Length_Error_Exception Thrown if the concatenation would cause the vector space to exceed di-
mension max_space_dimension ().

10.45.2.44 native void parma_polyhedra_library::Polyhedron::remove_space_dimensions
(Variables_Set to_be_removed)

Removes all the specified dimensions from the vector space.

Parameters:

to_be_removed The set of Variable objects corresponding to the space dimensions to be removed.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 85

Exceptions:

Invalid_Argument_Exception Thrown if this is dimension-incompatible with one of the Variable
objects contained in to_be_removed.

10.45.2.45 native void parma_polyhedra_library::Polyhedron::remove_higher_space_dimensions
(long new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_ —
dimension.

Exceptions:

Invalid_Argument_Exception Thrown if new_dimensions is greater than the space dimension of
this.

10.45.2.46 native void parma_polyhedra_library::Polyhedron::expand_space_dimension
(Variable var, long m)

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated,;

m The number of replicas to be created.

Exceptions:

Invalid_Argument_Exception Thrown if var does not correspond to a dimension of the vector space.

Length_Error_Exception Thrown if adding m new space dimensions would cause the vector space to
exceed dimension max_space_dimension ().

10.45.2.47 native void parma_polyhedra_library::Polyhedron::fold_space_dimensions
(Variables_Set fo_be_folded, Variable var)

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:

Invalid_Argument_Exception Thrown if this is dimension-incompatible with var or with one of
the Variable objects contained in to_be_folded. Also thrown if var is contained in to_—
be_folded.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 86

10.45.2.48 native void parma_polyhedra_library::Polyhedron::map_space_dimensions
(Partial_Function pfunc)

Remaps the dimensions of the vector space according to a partial function.

Parameters:

pfunc The partial function specifying the destiny of each space dimension.

10.45.2.49 native void parma_polyhedra_library::Polyhedron::add_generator (Generator g)

Adds a copy of generator g to the system of generators of this (without minimizing the result).
Exceptions:

Invalid_Argument_Exception Thrown if this and generator g are topology-incompatible or
dimension-incompatible, or if this is an empty polyhedron and g is not a point.

10.45.2.50 native void parma_polyhedra_library::Polyhedron::add_generators
(Generator_System gs)

Adds a copy of the generators in gs to the system of generators of this (without minimizing the result).
Parameters:

gs Contains the generators that will be added to the system of generators of this.
Exceptions:

Invalid_Argument_Exception Thrown if this and gs are topology-incompatible or dimension-
incompatible, or if this is empty and the system of generators gs is not empty, but has no
points.

10.45.2.51 native void parma_polyhedra_library::Polyhedron::BHRZ(03_widening_assign
(Polyhedron y, By_Reference< Integer > fp)

Assigns to this the result of computing the BHRZ03-widening between this and y.

Parameters:

y A polyhedron that must be contained in this;

tp A reference to an unsigned variable storing the number of available tokens (to be used when apply-
ing the widening with tokens delay technique).

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 87

10.45.2.52 native void parma_polyhedra_library::Polyhedron::H79_widening_assign (Polyhedron
y, By_Reference< Integer > fp)

Assigns to this the result of computing the H79-widening between this and y.

Parameters:

y A polyhedron that must be contained in this;

tp A reference to an unsigned variable storing the number of available tokens (to be used when apply-
ing the widening with tokens delay technique).

Exceptions:

Invalid_Argument_Exception Thrown if this and y are topology-incompatible or dimension-
incompatible.

10.45.2.53 native void parma_polyhedra_library::Polyhedron::limited_ BHRZ(03_extrapolation_-
assign (Polyhedron y, Constraint_System cs, By_Reference< Integer >

tp)

Improves the result of the BHRZ03-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of this.

Parameters:

y A polyhedron that must be contained in this;
¢s The system of constraints used to improve the widened polyhedron;

tp A reference to an unsigned variable storing the number of available tokens (to be used when apply-
ing the widening with tokens delay technique).

Exceptions:

Invalid_Argument_Exception Thrown if this, y and cs are topology-incompatible or dimension-
incompatible.

10.45.2.54 native void parma_polyhedra_library::Polyhedron::limited_H79_extrapolation_assign
(Polyhedron y, Constraint_System cs, By_Reference< Integer > #p)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of this.

Parameters:

y A polyhedron that must be contained in this;
¢s The system of constraints used to improve the widened polyhedron;

tp A reference to an unsigned variable storing the number of available tokens (to be used when apply-
ing the widening with tokens delay technique).

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.45 parma_polyhedra_library::Polyhedron Class Reference 88

Exceptions:

Invalid_Argument_Exception Thrown if this, y and cs are topology-incompatible or dimension-
incompatible.

10.45.2.55 native void parma_polyhedra_library::Polyhedron::bounded_BHRZ03_-
extrapolation_assign (Polyhedron y, Constraint_System cs, By_Reference< Integer >

p)

Improves the result of the BHRZ03-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of this, plus all the constraints of the form +z < r and £z < r, with
r € Q, that are satisfied by all the points of this.

Parameters:

y A polyhedron that must be contained in this;
¢s The system of constraints used to improve the widened polyhedron;

tp A reference to an unsigned variable storing the number of available tokens (to be used when apply-
ing the widening with tokens delay technique).

Exceptions:

Invalid_Argument_Exception Thrown if this, y and cs are topology-incompatible or dimension-
incompatible.

10.45.2.56 native void parma_polyhedra_library::Polyhedron::bounded_H79_extrapolation_-
assign (Polyhedron y, Constraint_System cs, By_Reference< Integer >

p)

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of this, plus all the constraints of the form +z < r and £z < r, with r € Q,
that are satisfied by all the points of this.

Parameters:

y A polyhedron that must be contained in this;
¢s The system of constraints used to improve the widened polyhedron;

fp A reference to an unsigned variable storing the number of available tokens (to be used when apply-
ing the widening with tokens delay technique).

Exceptions:

Invalid_Argument_Exception Thrown if this, y and cs are topology-incompatible or dimension-
incompatible.

The documentation for this class was generated from the following files:

 Fake_Class_for_Doxygen.java
* Polyhedron.java

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.46 parma_polyhedra_library::Rational_Box Class Reference 89

10.46 parma_polyhedra_library::Rational_Box Class Reference

Java class interfacing C++ Parma_Polyhedra_Library::Rational_Box.

Inherits parma_polyhedra_library::PPL_Object.

10.46.1 Detailed Description

Java class interfacing C++ Parma_Polyhedra_Library::Rational_Box.

The documentation for this class was generated from the following file:

» Rational_Box.java

10.47 parma_polyhedra_library::Variable Class Reference

A dimension of the vector space.

Public Member Functions

e Variable (int i)

Builds the variable corresponding to the Cartesian axis of index 1.

« intid ()

Returns the index of the Cartesian axis associated to this.

* int compareTo (Variable v)

Returns a negative number if this comes first than v, a zero if this equals v, a positive number if if
this comes first than v.

10.47.1 Detailed Description

A dimension of the vector space. An object of the class Variable represents a dimension of the space,
that is one of the Cartesian axes. Variables are used as basic blocks in order to build more complex
linear expressions. Each variable is identified by a non-negative integer, representing the index of the
corresponding Cartesian axis (the first axis has index 0).

10.47.2 Constructor & Destructor Documentation

10.47.2.1 parma_polyhedra_library::Variable::Variable (inti) [inline]

Builds the variable corresponding to the Cartesian axis of index i.
Exceptions:

RuntimeErrorException Thrown if i is has negative value.
The documentation for this class was generated from the following file:

* Variable.java

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

10.48 parma_polyhedra_library::Variables_Set Class Reference

90

10.48 parma_polyhedra_library::Variables_Set Class Reference

A java.util. TreeSet of variables’ indexes.

Public Member Functions

¢ Variables_Set ()

Builds the empty set of variable indexes.

10.48.1 Detailed Description

A java.util. TreeSet of variables’ indexes.

The documentation for this class was generated from the following file:

* Variables_Set.java

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

Index

add_congruence

parma_polyhedra_library::

add_congruences

parma_polyhedra_library::

add_constraint

parma_polyhedra_library::
parma_polyhedra_library::

add_constraints

parma_polyhedra_library::
parma_polyhedra_library::

add_generator

parma_polyhedra_library::

add_generators

parma_polyhedra_library::

Polyhedron, 76
Polyhedron, 77

MIP_Problem, 55
Polyhedron, 76

MIP_Problem, 56
Polyhedron, 76

Polyhedron, 86

Polyhedron, 86

add_space_dimensions_and_embed

parma_polyhedra_library
parma_polyhedra_library

::MIP_Problem, 55
::Polyhedron, 83

add_space_dimensions_and_project

parma_polyhedra_library

::Polyhedron, 84

add_to_integer_space_dimensions

parma_polyhedra_library
affine_image
parma_polyhedra_library
affine_preimage
parma_polyhedra_library
ANY_COMPLEXITY
PPL_Java_interface, 25
ascii_dump
parma_polyhedra_library

banner
parma_polyhedra_library
Library, 60
BHRZ03_widening_assign
parma_polyhedra_library
bounded_affine_image
parma_polyhedra_library
bounded_affine_preimage
parma_polyhedra_library

::MIP_Problem, 55
::Polyhedron, 79

::Polyhedron, 79

::Polyhedron, 76

::Parma_Polyhedra_-

::Polyhedron, 86
::Polyhedron, 80

::Polyhedron, 80

bounded_BHRZ03_extrapolation_assign

parma_polyhedra_library

::Polyhedron, 88

bounded_H79_extrapolation_assign

parma_polyhedra_library
bounds_from_above

parma_polyhedra_library
bounds_from_below

parma_polyhedra_library

C_Polyhedron
parma_polyhedra_library
clear

::Polyhedron, 88
::Polyhedron, 72

::Polyhedron, 72

::C_Polyhedron, 34

parma_polyhedra_library::

CLOSURE_POINT
PPL_Java_interface, 26
closure_point

parma_polyhedra_library::

Coefficient

parma_polyhedra_library::

Complexity_Class
PPL_Java_interface, 25
concatenate_assign

parma_polyhedra_library::

constrains

parma_polyhedra_library::

contains

parma_polyhedra_library::

Control_Parameter_Name
PPL_Java_interface, 25

Control_Parameter_Value
PPL_Java_interface, 25

Degenerate_Element
PPL_Java_interface, 25
difference_assign

parma_polyhedra_library::

divisor

parma_polyhedra_library::

EMPTY
PPL_Java_interface, 25

EQUAL
PPL_Java_interface, 27

evaluate_objective_function

parma_polyhedra_library::

expand_space_dimension

parma_polyhedra_library::

feasible_point

parma_polyhedra_library::

fold_space_dimensions

parma_polyhedra_library::

generalized_affine_image

parma_polyhedra_library::

generalized_affine_preimage

parma_polyhedra_library::

Generator_Type
PPL_Java_interface, 25
get_disjunct

parma_polyhedra_library:

MIP_Problem, 55

Generator, 40

Coefficient, 36

Polyhedron, 84
Polyhedron, 72

Polyhedron, 75

Polyhedron, 78

Generator, 41

MIP_Problem, 56

Polyhedron, 85

MIP_Problem, 57

Polyhedron, 85

Polyhedron, 81, 82

Polyhedron, 81, 82

:Pointset_-

Powerset_C_Polyhedron_Iterator, 64

GREATER_OR_EQUAL

INDEX

92

PPL_Java_interface, 27
GREATER_THAN
PPL_Java_interface, 27
Grid_Generator_Type
PPL_Java_interface, 26
grid_line
parma_polyhedra_library::Grid_Generator, 43
grid_point
parma_polyhedra_library::Grid_Generator, 43

H79_widening_assign
parma_polyhedra_library::Polyhedron, 86
has_empty_codomain
parma_polyhedra_library::Partial_Function,
61
hashCode
parma_polyhedra_library::Polyhedron, 76

intersection_assign
parma_polyhedra_library::Polyhedron, 78

is_disjoint_from
parma_polyhedra_library::Polyhedron, 75

is_satisfiable
parma_polyhedra_library::MIP_Problem, 56

Java Language Interface, 21

LESS_OR_EQUAL
PPL_Java_interface, 27
LESS_THAN
PPL_Java_interface, 27
limited_ BHRZ03_extrapolation_assign
parma_polyhedra_library::Polyhedron, 87
limited_H79_extrapolation_assign
parma_polyhedra_library::Polyhedron, 87
LINE
PPL_Java_interface, 26
line
parma_polyhedra_library::Generator, 40
linear_partition
parma_polyhedra_library::C_Polyhedron, 35

map_space_dimensions
parma_polyhedra_library::Polyhedron, 85
maps
parma_polyhedra_library::Partial_Function,
62
MAXIMIZATION
PPL_Java_interface, 26
maximize
parma_polyhedra_library::Polyhedron, 73
MINIMIZATION
PPL_Java_interface, 26
minimize
parma_polyhedra_library::Polyhedron, 73, 74

MIP_Problem
parma_polyhedra_library::MIP_Problem, 54
MIP_Problem_Status
PPL_Java_interface, 26

optimal_value
parma_polyhedra_library::MIP_Problem, 57
Optimization_Mode
PPL_Java_interface, 26
OPTIMIZED_MIP_PROBLEM
PPL_Java_interface, 26
optimizing_point
parma_polyhedra_library::MIP_Problem, 57

PARAMETER
PPL_Java_interface, 26
parameter
parma_polyhedra_library::Grid_Generator, 43
parma_polyhedra_library, 27
parma_polyhedra_library::BD_Shape_double, 31
parma_polyhedra_library::BD_Shape_mpq_class,
31
parma_polyhedra_library::BD_Shape_mpz_class,
31
parma_polyhedra_library::By_Reference< T >, 32
parma_polyhedra_library::C_Polyhedron, 32
C_Polyhedron, 34
linear_partition, 35
upper_bound_assign_if_exact, 34
parma_polyhedra_library::Coefficient, 35
Coefficient, 36
parma_polyhedra_library::Congruence, 36
parma_polyhedra_library::Congruence_System, 37
parma_polyhedra_library::Constraint, 37
parma_polyhedra_library::Constraint_System, 38
parma_polyhedra_library::Constraints_Product_-
C_Polyhedron_Grid, 39
parma_polyhedra_library::Domain_Error_-
Exception, 39
parma_polyhedra_library::Double_Box, 39
parma_polyhedra_library::Generator, 39
closure_point, 40
divisor, 41
line, 40
point, 41
ray, 41
parma_polyhedra_library::Generator_System, 41
parma_polyhedra_library::Grid, 42
parma_polyhedra_library::Grid_Generator, 42
grid_line, 43
grid_point, 43
parameter, 43
parma_polyhedra_library::Grid_Generator_-
System, 44

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more

information.

http://www.cs.unipr.it/ppl/

INDEX

93

parma_polyhedra_library::
Exception, 44
parma_polyhedra_library::
wrap_string, 45
parma_polyhedra_library::
Exception, 45
parma_polyhedra_library::
parma_polyhedra_library::
Coefficient, 47
parma_polyhedra_library::
Difference, 47
parma_polyhedra_library::
Sum, 48
parma_polyhedra_library::
Times, 49
parma_polyhedra_library::

Invalid_Argument_-
10, 45
Length_Error_-

Linear_Expression, 46
Linear_Expression_-

Linear_Expression_-
Linear_Expression_-
Linear_Expression_-

Linear_Expression_-

Unary_Minus, 50

parma_polyhedra_library::
Variable, 50

parma_polyhedra_library::Logic_Error_Exception,

51
parma_polyhedra_library::
add_constraint, 55
add_constraints, 56

Linear_Expression_-

MIP_Problem, 51

add_space_dimensions_and_embed, 55

add_to_integer_space
clear, 55

_dimensions, 55

evaluate_objective_function, 56

feasible_point, 57
is_satisfiable, 56
MIP_Problem, 54
optimal_value, 57
optimizing_point, 57

set_objective_function, 56

solve, 56
parma_polyhedra_library::
parma_polyhedra_library::

double, 58
parma_polyhedra_library::
mpq_class, 58
parma_polyhedra_library::
mpz_class, 58
parma_polyhedra_library::
Exception, 59
parma_polyhedra_library::
parma_polyhedra_library::
Library, 59
banner, 60

NNC_Polyhedron, 58
Octagonal_Shape_-

Octagonal_Shape_-
Octagonal_Shape_-
Overflow_Error_-

Pair< K, V >, 59
Parma_Polyhedra_-

restore_pre_PPL_rounding, 61

set_rounding_for_PPL, 60
parma_polyhedra_library::Partial_Function, 61

has_empty_codomain, 61

maps, 62

parma_polyhedra_library::Pointset_Powerset_C_-
Polyhedron, 62
size, 63
parma_polyhedra_library::Pointset_Powerset_C_-
Polyhedron_Iterator, 63
get_disjunct, 64
parma_polyhedra_library::Pointset_Powerset_-
NNC_Polyhedron, 64
parma_polyhedra_library::Pointset_Powerset_-
NNC_Polyhedron_Iterator, 65
parma_polyhedra_library::Poly_Con_Relation, 65
parma_polyhedra_library::Poly_Gen_Relation, 66
parma_polyhedra_library::Polyhedron, 66
add_congruence, 76
add_congruences, 77
add_constraint, 76
add_constraints, 76
add_generator, 86
add_generators, 86
add_space_dimensions_and_embed, 83
add_space_dimensions_and_project, 84
affine_image, 79
affine_preimage, 79
ascii_dump, 76
BHRZ03_widening_assign, 86
bounded_affine_image, 80
bounded_affine_preimage, 80
bounded_BHRZ03_extrapolation_assign, 88
bounded_H79_extrapolation_assign, 88
bounds_from_above, 72
bounds_from_below, 72
concatenate_assign, 84
constrains, 72
contains, 75
difference_assign, 78
expand_space_dimension, 85
fold_space_dimensions, 85
generalized_affine_image, 81, 82
generalized_affine_preimage, 81, 82
H79_widening_assign, 86
hashCode, 76
intersection_assign, 78
is_disjoint_from, 75
limited_BHRZ03_extrapolation_assign, 87
limited_H79_extrapolation_assign, 87
map_space_dimensions, 85
maximize, 73
minimize, 73, 74
refine_with_congruence, 77
refine_with_congruences, 78
refine_with_constraint, 77
refine_with_constraints, 77
relation_with, 74, 75
remove_higher_space_dimensions, 85

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more

information.

http://www.cs.unipr.it/ppl/

INDEX

94

remove_space_dimensions, 84
simplify_using_context_assign, 79
strictly_contains, 75
swap, 83
time_elapse_assign, 79
unconstrain_space_dimension, 82
unconstrain_space_dimensions, 83
upper_bound_assign, 78
widening_assign, 83
parma_polyhedra_library::Rational_Box, 89
parma_polyhedra_library:: Variable, 89
Variable, 89
parma_polyhedra_library::Variables_Set, 90
POINT
PPL_Java_interface, 26
point
parma_polyhedra_library::Generator, 41
POLYNOMIAL_COMPLEXITY
PPL_Java_interface, 25
PPL_Java_interface
ANY_COMPLEXITY, 25
CLOSURE_POINT, 26
EMPTY, 25
EQUAL, 27
GREATER_OR_EQUAL, 27
GREATER_THAN, 27
LESS_OR_EQUAL, 27
LESS_THAN, 27
LINE, 26
MAXIMIZATION, 26
MINIMIZATION, 26
OPTIMIZED_MIP_PROBLEM, 26
PARAMETER, 26
POINT, 26
POLYNOMIAL_COMPLEXITY, 25
PRICING, 25
PRICING_STEEPEST_EDGE_EXACT, 25
PRICING_STEEPEST_EDGE_FLOAT, 25
PRICING_TEXTBOOK, 25
RAY, 26
SIMPLEX_COMPLEXITY, 25
UNBOUNDED_MIP_PROBLEM, 26
UNFEASIBLE_MIP_PROBLEM, 26
UNIVERSE, 25
PPL_Java_interface
Complexity_Class, 25
Control_Parameter_Name, 25
Control_Parameter_Value, 25
Degenerate_Element, 25
Generator_Type, 25
Grid_Generator_Type, 26
MIP_Problem_Status, 26
Optimization_Mode, 26
Relation_Symbol, 26

PRICING
PPL_Java_interface, 25
PRICING_STEEPEST_EDGE_EXACT
PPL_Java_interface, 25
PRICING_STEEPEST_EDGE_FLOAT
PPL_Java_interface, 25
PRICING_TEXTBOOK
PPL_Java_interface, 25

RAY
PPL_Java_interface, 26
ray
parma_polyhedra_library::Generator, 41
refine_with_congruence
parma_polyhedra_library::Polyhedron, 77
refine_with_congruences
parma_polyhedra_library::Polyhedron, 78
refine_with_constraint
parma_polyhedra_library::Polyhedron, 77
refine_with_constraints
parma_polyhedra_library::Polyhedron, 77
Relation_Symbol
PPL_Java_interface, 26
relation_with
parma_polyhedra_library::Polyhedron, 74, 75
remove_higher_space_dimensions
parma_polyhedra_library::Polyhedron, 85
remove_space_dimensions
parma_polyhedra_library::Polyhedron, 84
restore_pre_PPL_rounding
parma_polyhedra_library::Parma_Polyhedra_-
Library, 61

set_objective_function
parma_polyhedra_library::MIP_Problem, 56
set_rounding_for_PPL
parma_polyhedra_library::Parma_Polyhedra_-
Library, 60
SIMPLEX_COMPLEXITY
PPL_Java_interface, 25
simplify_using_context_assign
parma_polyhedra_library::Polyhedron, 79
size
parma_polyhedra_library::Pointset_-
Powerset_C_Polyhedron, 63
solve
parma_polyhedra_library::MIP_Problem, 56
strictly_contains
parma_polyhedra_library::Polyhedron, 75
swap
parma_polyhedra_library::Polyhedron, 83

time_elapse_assign
parma_polyhedra_library::Polyhedron, 79

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more

information.

http://www.cs.unipr.it/ppl/

INDEX

UNBOUNDED_MIP_PROBLEM
PPL_Java_interface, 26
unconstrain_space_dimension
parma_polyhedra_library::Polyhedron, 82
unconstrain_space_dimensions
parma_polyhedra_library::Polyhedron, 83
UNFEASIBLE_MIP_PROBLEM
PPL_Java_interface, 26
UNIVERSE
PPL_Java_interface, 25
upper_bound_assign
parma_polyhedra_library::Polyhedron, 78
upper_bound_assign_if_exact
parma_polyhedra_library::C_Polyhedron, 34

Variable
parma_polyhedra_library::Variable, 89

widening_assign
parma_polyhedra_library::Polyhedron, 83
wrap_string
parma_polyhedra_library::10, 45

The Parma Polyhedra Library Java Language Interface User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more
information.

http://www.cs.unipr.it/ppl/

	Main Page
	GNU General Public License
	GNU Free Documentation License
	Module Index
	Modules

	Namespace Index
	Namespace List

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Module Documentation
	Java Language Interface

	Namespace Documentation
	parma_polyhedra_library Namespace Reference

	Class Documentation
	parma_polyhedra_library::BD_Shape_double Class Reference
	parma_polyhedra_library::BD_Shape_mpq_class Class Reference
	parma_polyhedra_library::BD_Shape_mpz_class Class Reference
	parma_polyhedra_library::By_Reference< T > Class Reference
	parma_polyhedra_library::C_Polyhedron Class Reference
	parma_polyhedra_library::Coefficient Class Reference
	parma_polyhedra_library::Congruence Class Reference
	parma_polyhedra_library::Congruence_System Class Reference
	parma_polyhedra_library::Constraint Class Reference
	parma_polyhedra_library::Constraint_System Class Reference
	parma_polyhedra_library::Constraints_Product_C_Polyhedron_Grid Class Reference
	parma_polyhedra_library::Domain_Error_Exception Class Reference
	parma_polyhedra_library::Double_Box Class Reference
	parma_polyhedra_library::Generator Class Reference
	parma_polyhedra_library::Generator_System Class Reference
	parma_polyhedra_library::Grid Class Reference
	parma_polyhedra_library::Grid_Generator Class Reference
	parma_polyhedra_library::Grid_Generator_System Class Reference
	parma_polyhedra_library::Invalid_Argument_Exception Class Reference
	parma_polyhedra_library::IO Class Reference
	parma_polyhedra_library::Length_Error_Exception Class Reference
	parma_polyhedra_library::Linear_Expression Class Reference
	parma_polyhedra_library::Linear_Expression_Coefficient Class Reference
	parma_polyhedra_library::Linear_Expression_Difference Class Reference
	parma_polyhedra_library::Linear_Expression_Sum Class Reference
	parma_polyhedra_library::Linear_Expression_Times Class Reference
	parma_polyhedra_library::Linear_Expression_Unary_Minus Class Reference
	parma_polyhedra_library::Linear_Expression_Variable Class Reference
	parma_polyhedra_library::Logic_Error_Exception Class Reference
	parma_polyhedra_library::MIP_Problem Class Reference
	parma_polyhedra_library::NNC_Polyhedron Class Reference
	parma_polyhedra_library::Octagonal_Shape_double Class Reference
	parma_polyhedra_library::Octagonal_Shape_mpq_class Class Reference
	parma_polyhedra_library::Octagonal_Shape_mpz_class Class Reference
	parma_polyhedra_library::Overflow_Error_Exception Class Reference
	parma_polyhedra_library::Pair< K, V > Class Reference
	parma_polyhedra_library::Parma_Polyhedra_Library Class Reference
	parma_polyhedra_library::Partial_Function Interface Reference
	parma_polyhedra_library::Pointset_Powerset_C_Polyhedron Class Reference
	parma_polyhedra_library::Pointset_Powerset_C_Polyhedron_Iterator Class Reference
	parma_polyhedra_library::Pointset_Powerset_NNC_Polyhedron Class Reference
	parma_polyhedra_library::Pointset_Powerset_NNC_Polyhedron_Iterator Class Reference
	parma_polyhedra_library::Poly_Con_Relation Class Reference
	parma_polyhedra_library::Poly_Gen_Relation Class Reference
	parma_polyhedra_library::Polyhedron Class Reference
	parma_polyhedra_library::Rational_Box Class Reference
	parma_polyhedra_library::Variable Class Reference
	parma_polyhedra_library::Variables_Set Class Reference

