The Parma Polyhedra Library
User’s Manual*
(version 0.10.2)

Roberto Bagnara'
Patricia M. Hill*
Enea Zaffanella$

based on previous work also by
Elisa Ricci
and
Sara Bonini
Andrea Pescetti
Angela Stazzone

Tatiana Zolo

October 24, 2009

*This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) ‘“Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification
of Reactive Systems”; MURST project “Abstract Interpretation: Design and Applications”; EPSRC project “Numerical Domains for
Software Analysis”; EPSRC project “Geometric Abstractions for Scalable Program Analyzers”.

Tbagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

thill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.

8 zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS i

Copyright © 2001-2009 Roberto Bagnara (bagnara@cs.unipr.it).
This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library site:

http://www.cs.unipr.it/ppl/

Contents

1 General Information on the PPL 1
1.1 The Main Features e e e e e 1
1.2 Upward Approximation v v v v it e e e e e e e e e e 6
1.3 Convex Polyhedra 6
1.4 Representations of Convex Polyhedra 8
1.5 Operations on Convex Polyhedra 11
1.6 Intervalsand Boxes e 18
1.7 Weakly-Relational Shapes e 19
1.8 Rational Grids e e 20
1.9 Operationson Rational Grids 22
1.10 The Powerset Construction v v v v v it e et e e e e 27
1.11 Operations on the Powerset Construction 27
1.12 The Pointset Powerset Domain L o o 28
1.13 Usingthe Library 30
1.14 Bibliography e e e e e 31

2 GNU General Public License 38

3 GNU Free Documentation License 48

4 Deprecated List 53

5 Module Index 55

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

CONTENTS

ii

5.1 Modules

6 Namespace Index

6.1 Namespace List

7 Class Index
7.1 Class Hierarchy

8 Class Index
81 ClassList

9 Module Documentation

9.1 C++ Language Interface .

10 Namespace Documentation

10.1 Parma_Polyhedra_Library Namespace Reference

10.2 Parma_Polyhedra_Library::

10.3 std Namespace Reference .

11 Class Documentation
11.1 Parma_Polyhedra_Library:
11.2 Parma_Polyhedra_Library:
11.3 Parma_Polyhedra_Library:
11.4 Parma_Polyhedra_Library:
11.5 Parma_Polyhedra_Library:
11.6 Parma_Polyhedra_Library:
11.7 Parma_Polyhedra_Library:
11.8 Parma_Polyhedra_Library:
11.9 Parma_Polyhedra_Library:
11.10Parma_Polyhedra_Library:
11.11Parma_Polyhedra_Library:
11.12Parma_Polyhedra_Library:
11.13Parma_Polyhedra_Library:
11.14Parma_Polyhedra_Library:
11.15Parma_Polyhedra_Library:
11.16Parma_Polyhedra_Library:
11.17Parma_Polyhedra_Library:
11.18Parma_Polyhedra_Library:
11.19Parma_Polyhedra_Library:

10_Operators Namespace Reference

:BD_Shape< T > Class Template Reference
:BHRZ03_Certificate Class Reference
:Box< ITV > Class Template Reference
:C_Polyhedron Class Reference
:Checked_Number< T, Policy > Class Template Reference . .
:Variable::Compare Struct Reference
:BHRZ03_Certificate::Compare Struct Reference
:H79_Certificate::Compare Struct Reference
:Grid_Certificate::Compare Struct Reference
:Congruence Class Reference
:Congruence_System Class Reference
:Constraint_System::const_iterator Class Reference
:Generator_System::const_iterator Class Reference
:Congruence_System::const_iterator Class Reference
:Grid_Generator_System::const_iterator Class Reference
:Constraint Class Reference
:Constraint_System Class Reference
:Constraints_Reduction< D1, D2 > Class Template Reference

:Determinate<< PSET > Class Template Reference

55

56
56

56
56

58
58

60
60

69
69
76
77

78

78
110
111
139
145
162
162
162
163
163
170
174
175
177
178
179
188
191

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

CONTENTS 1
11.20Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template Reference 194
11.21Parma_Polyhedra_Library::From_Covering_Box Struct Reference 195
11.22Parma_Polyhedra_Library::Generator Class Reference 195
11.23Parma_Polyhedra_Library::Generator_System Class Reference 206
11.24Parma_Polyhedra_Library::GMP_Integer Class Reference 210
11.25Parma_Polyhedra_Library::Grid Class Reference 211
11.26Parma_Polyhedra_Library::Grid_Certificate Class Reference 250
11.27Parma_Polyhedra_Library::Grid_Generator Class Reference 251
11.28Parma_Polyhedra_Library::Grid_Generator_System Class Reference 258
11.29Parma_Polyhedra_Library::H79_Certificate Class Reference 262
11.30Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 264
11.31Parma_Polyhedra_Library::Is_Checked< T > Struct Template Reference 267
11.32Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > > Struct Template

Reference e 267
11.33Parma_Polyhedra_Library::Is_Native_Or_Checked< T > Struct Template Reference . . . 268
11.34Parma_Polyhedra_Library::Linear_Expression Class Reference 268
11.35Parma_Polyhedra_Library::MIP_Problem Class Reference 276
11.36Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 285
11.37Parma_Polyhedra_Library::No_Reduction< D1, D2 > Class Template Reference 290
11.38Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 291
11.39Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template

Reference e 319
11.40Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference 347
11.41Parma_Polyhedra_Library::Poly_Con_Relation Class Reference 376
11.42Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference 377
11.43Parma_Polyhedra_Library::Polyhedron Class Reference 378
11.44Parma_Polyhedra_Library::Powerset< D > Class Template Reference 414
11.45Parma_Polyhedra_Library::Recycle_Input Struct Reference 420
11.46Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > Class Template Reference . . . 420
11.47Parma_Polyhedra_Library::Throwable Class Reference 421
11.48Parma_Polyhedra_Library::Variable Class Reference 422
11.49Parma_Polyhedra_Library::Variables_Set Class Reference 424

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1 General Information on the PPL 2

1 General Information on the PPL

1.1 The Main Features

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of numerical information
that can be represented by points in some n-dimensional vector space. For instance, one of the key domains
the PPL supports is that of rational convex polyhedra (Section Convex Polyhedra). Such domains are
employed in several systems for the analysis and verification of hardware and software components, with
applications spanning imperative, functional and logic programming languages, synchronous languages
and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not meant
to target a particular problem, the design of its interface has been largely influenced by the needs of the
above class of applications. That is the reason why the library implements a few operators that are more or
less specific to static analysis applications, while lacking some other operators that might be useful when
working, e.g., in the field of computational geometry.

The main features of the library are the following:

e itis user friendly: you write x + 2%y + 5%z <= 7 when you mean it;

« it is fully dynamic: available virtual memory is the only limitation to the dimension of anything;

* it provides full support for the manipulation of convex polyhedra that are not topologically closed;
* it is written in standard C++: meant to be portable;

* it is exception-safe: never leaks resources or leaves invalid object fragments around;

* it is rather efficient: and we hope to make it even more so;

* it is thoroughly documented: perhaps not literate programming but close enough;

* it has interfaces to other programming languages: including C, Java, OCaml and a number of Prolog
systems;

* it is free software: distributed under the terms of the GNU General Public License.

In the following section we describe all the domains available to the PPL user. More detailed descriptions
of these domains andthe operations provided will be found in subsequent sections.

In the final section of this chapter (Section Using the Library), we provide some additional advice on the
use of the library.

1.1.1 Semantic Geometric Descriptors

A semantic geometric descriptor is a subset of R™. The PPL provides several classes of semantic GDs.
These are identified by their C++ class name, together with the class template parameters, if any. These
classes include the simple classes:

* C_Polyhedron,

* NNC_Polyhedron,

* BD_Shape<T>,

* Octagonal_Shape<T>,

e Box<ITV>,and

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 The Main Features 3

e Grid,
where:

e T is a numeric type chosen among mpz_class, mpg_class, signed char, short, int,
long, long long (or any of the C99 exact width integer equivalents int8_t, intl6_t, and so
forth); and

* ITVisaninstance of the Interval template class.

Other semantic GDs, the compound classes, can be constructed (also recursively) from all the GDs classes.
These include:

e Pointset_Powerset<PS>,

* Partially_Reduced_Product<Dl, D2, R>,

where PS, D1 and D2 can be any semantic GD classes and R is the reduction operation to be applied to the
component domains of the product class.

A uniform set of operations is provided for creating, testing and maintaining each of the semantic GDs.
However, as many of these depend on one or more syntactic GDs, we first describe the syntactic GDs.

1.1.2 Syntactic Geometric Descriptors

A syntactic geometric descriptor is for defining, modifying and inspecting a semantic GD. There are three
kinds of syntactic GDs: basic GDs, constraint GDs and generator GDs. Some of these are generic and
some specific. A generic syntactic GD can be used (in the appropriate context) with any semantic GD;
clearly, different semantic GDs will usually provide different levels of support for the different subclasses
of generic GDs. In contrast, the use of a specific GD may be restricted to apply to a given subset of the
semantic GDs (i.e., some semantic GDs provide no support at all for them).

1.1.2.1 Basic Geometric Descriptors
The following basic GDs currently supported by the PPL are:

* space dimension;

¢ variable and variable set;
¢ coefficient;

* linear expression;

* relation symbol,;

* vector point.

These classes, which are all generic syntactic GDs, are used to build the constraint and generator GDs as
well as support many generic operations on the semantic GDs.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 The Main Features 4

1.1.2.2 Constraint Geometric Descriptors
The PPL currently supports the following classes of generic constraint GDs:

¢ linear constraint;

* linear congruence.

Each linear constraint can be further classified to belong to one or more of the following syntactic sub-
classes:

* inconsistent constraints (e.g., 0 > 2);

* tautological constraints (e.g., 0 < 2);

* interval constraints (e.g., x < 2);

* bounded-difference constraints (e.g., x — y < 2);

* octagonal constraints (e.g., z + y < 2);

* linear equality constraints (e.g., z = 2);

* non-strict linear inequality constraints (e.g., x — 3y < 2);

* strict linear inequality constraints (e.g., z — 3y < 2).

Note that the subclasses are not disjoint.

Similarly, each linear congruence can be classified to belong to one or more of the following syntactic
subclasses:

* inconsistent congruences (e.g., 0 =2 1);
* tautological congruences (e.g., 0 =2 2);
* linear equality, i.e., non-proper congruences (e.g., = + 3y =¢ 0);

* proper congruences (e.g., + 3y =5 0).

The library also supports systems, i.e., finite collections, of either linear constraints or linear congruences
(but see the note below).

Each semantic GD provides optimal support for some of the subclasses of generic syntactic GDs listed
above: here, the word "optimal" means that the considered semantic GD computes the best upward ap-
proximation of the exact meaning of the linear constraint or congruence. When a semantic GD operation
is applied to a syntactic GD that is not optimally supported, it will either indicate its unsuitability (e.g., by
throwing an exception) or it will apply an upward approximation semantics (possibly not the best one).

For instance, the semantic GD of topologically closed convex polyhedra provides optimal support for
non-strict linear inequality and equality constraints, but it does not provide optimal support for strict in-
equalities. Some of its operations (e.g., add_constraint and add_congruence) will throw an
exception if supplied with a non-trivial strict inequality constraint or a proper congruence; some other
operations (e.g., refine_with_constraint or refine_with_congruence) will compute an
over-approximation.

Similarly, the semantic GD of rational boxes (i.e., multi-dimensional intervals) having integral values as
interval boundaries provides optimal support for all interval constraints: even though the interval constraint
2x < 5 cannot be represented exactly, it will be optimally approximated by the constraint z < 3.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 The Main Features 5

Note:

When providing an upward approximation for a constraint or congruence, we consider it in isolation:
in particular, the approximation of each element of a system of GDs is independent from the other
elements; also, the approximation is independent from the current value of the semantic GD.

1.1.2.3 Generator Geometric Descriptors
The PPL currently supports two classes of generator GDs:

e polyhedra generator: these are polyhedra points, rays and lines;

* grid generator: these are grid points, parameters and lines.

Rays, lines and parameters are specific of the mentioned semantic GDs and, therefore, they cannot be used
by other semantic GDs. In contrast, as already mentioned above, points are basic geometric descriptors
since they are also used in generic PPL operations.

1.1.3 Generic Operations on Semantic Geometric Descriptors

1. Constructors of a universe or empty semantic GD with the given space dimension.
2. Operations on a semantic GD that do not depend on the syntactic GDs.

e is_empty (), is_universe (), is_topologically_closed(), is_-
discrete (), is_bounded (), contains_integer_point ()
test for the named properties of the semantic GD.

e total_memory_in_bytes(),external_memory_in_bytes ()
return the total and external memory size in bytes.

* OK ()
checks that the semantic GD has a valid internal representation. (Some GDs provide this
method with an optional Boolean argument that, when true, requires to also check for non-
emptiness.)

* space_dimension(),affine_dimension ()
return, respectively, the space and affine dimensions of the GD.

* add_space_dimensions_and_embed(), add_space_dimensions_and_-
project (), expand_space_dimension(), remove_space_dimensions(),
fold_space_dimensions (), map_space_dimensions ()
modify the space dimensions of the semantic GD; where, depending on the operation, the
arguments can include the number of space dimensions to be added or removed a variable or
set of variables denoting the actual dimensions to be used and a partial function defining a
mapping between the dimensions.

e contains (), strictly_contains(),is_disjoint_from()
compare the semantic GD with an argument semantic GD of the same class.

e topological_closure_assign{(), intersection_assign(), upper_-—
bound_assign(), difference_assign(), time_elapse_assign(),
widening_assign (), concatenate_assign (), swap ()

modify the semantic GD, possibly with an argument semantic GD of the same class.

e constrains (), bounds_from_above (), bounds_from_below(),maximize (),
minimize ().
These find information about the bounds of the semantic GD where the argument variable or
linear expression define the direction of the bound.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.1 The Main Features 6

e affine_image (), affine_preimage (), generalized_affine_image(),

generalized_affine_preimage (), bounded_affine_image (), bounded_-
affine_preimage ().
These perform several variations of the affine image and preimage operations where, depending
on the operation, the arguments can include a variable representing the space dimension to
which the transformation will be applied and linear expressions with possibly a relation symbol
and denominator value that define the exact form of the transformation.

e ascii_load(),ascii_dump ()

are the ascii input and output operations.

3. Constructors of a semantic GD of one class from a semantic GD of any other class. These con-
structors obey an upward approximation semantics, meaning that the constructed semantic GD is
guaranteed to contain all the points of the source semantic GD, but possibly more. Some of these
constructors provide a complexity parameter with which the application can control the complex-
ity/precision trade-off for the construction operation: by using the complexity parameter, it is pos-
sible to keep the construction operation in the polynomial or the simplex worst-case complexity
class, possibly incurring into a further upward approximation if the precise constructor is based on
an algorithm having exponential complexity.

4. Constructors of a semantic GD from a constraint GD; either a linear constraint system or a linear
congruence system. These constructors assume that the given semantic GD provides optimal support
for the argument syntactic GD: if that is not the case, an invalid argument exception is thrown.

5. Other interaction between the semantic GDs and constraint GDs

e add_constraint (), add_constraints (), add_recycled_constraints{(),
add_congruence (), add_congruences (), add_recycled_congruences ().
These methods assume that the given semantic GD provides optimal support for the argument
syntactic GD: if that is not the case, an invalid argument exception is thrown.

For add_recycled_constraints () and add_recycled_congruences (), the
only assumption that can be made on the constraint GD after return (successful or exceptional)
is that it can be safely destroyed.

e refine_with_constraint (), refine_with_constraints(), refine_-—
with_congruence (), refine_with_congruences ()

If the argument constraint GD is optimally supported by the semantic GD, the the methods
behave the same as the corresponding add_* methods listed above. Otherwise the constraint
GD is used only to a limited extent to refine the semantic GD; possibly not at all. Notice that,
while repeating an add operation is pointless, this is not true for the refine operations. For
example, in those cases where

Semantic_GD.add_constraint (c)
raises an exception, a fragment of the form

Semantic_GD.refine_with_constraint (c)

// Other add_constraint (s) or refine_with_constraint (s) operations
// on Semantic_GD.

Semantic_GD.refine_with_constraint (c)

may give more precise results than a single

Semantic_GD.refine_with_constraint (c) .
// Other add_constraint (s) or refine_with_constraint (s) operations
// on Semantic_GD.

e constraints (), minimized_constraints (), congruences (), minimized_ -
congruences ()

returns the indicated system of constraint GDs satisfied by the semantic GD.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.2 Upward Approximation 7

* can_recycle_constraint_systems(), can_recycle_congruence_-—
systems ()
return true if and only if the semantic GD can recycle the indicated constraint GD.

e relation_with ()
This takes a constraint GD as an argument and returns the relations holding between the seman-
tic GD and the constraint GD. The possible relations are: IS_INCLUDED (), SATURATES (),
STRICTLY_INTERSECTS (), IS_DISJOINT () and NOTHING (). This operator also can
take a polyhedron generator GD as an argument and returns the relation SUBSUMES () or
NOTHING () that holds between the generator GD and the semantic GD.

1.2 Upward Approximation

The Parma Polyhedra Library, for those cases where an exact result cannot be computed within the specified
complexity limits, computes an upward approximation of the exact result. For semantic GDs this means
that the computed result is a possibly strict superset of the set of points of R™ that constitutes the exact
result. Notice that the PPL does not provide direct support to compute downward approximations (i.e.,
possibly strict subsets of the exact results). While downward approximations can often be computed from
upward ones, the required algorithms and the conditions upon which they are correct are outside the current
scope of the PPL. Beware, in particular, of the following possible pitfall: the library provides methods
to compute upward approximations of set-theoretic difference, which is antitone in its second argument.
Applying a difference method to a second argument that is not an exact representation or a downward
approximation of reality, would yield a result that, of course, is not an upward approximation of reality. It
is the responsibility of the library user to provide the PPL’s method with approximations of reality that are
consistent with respect to the desired results.

1.3 Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail. For more
information about the definitions and results stated here see [BRZHO02b], [Fuk98], [NW88], and [Wil93].

1.3.1 Vectors, Matrices and Scalar Products

We denote by R" the n-dimensional vector space on the field of real numbers R, endowed with the standard
topology. The set of all non-negative reals is denoted by R, . For each i € {0,...,n — 1}, v; denotes the
i-th component of the (column) vector v = (vg,...,v,_1)° € R™. We denote by 0 the vector of R,
called the origin, having all components equal to zero. A vector v € R"™ can be also interpreted as a matrix
in R"*! and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted by v™.

The scalar product of v,w € R", denoted (v, w), is the real number

n—1
’UT'LU: E Viw;.

=0

For any Sy, So C R", the Minkowski’s sum of Sy and Sy is: S1 + So = {vy + vo | v1 € S1,v2 € 52 }.

1.3.2 Affine Hyperplanes and Half-spaces

For each vector @ € R™ and scalar b € R, where a # 0, and for each relation symbol 1 € {=, >, >}, the
linear constraint (a,) < b defines:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Representations of Convex Polyhedra 8

* an affine hyperplane if it is an equality constraint, i.e., if >t € {=};

* atopologically closed affine half-space if it is a non-strict inequality constraint, i.e., if 1 € {>};

* atopologically open affine half-space if it is a strict inequality constraint, i.e., if b1 € {>}.
Note that each hyperplane (a, x) = b can be defined as the intersection of the two closed affine half-spaces
(a,x) > band (—a,x) > —b. Also note that, when a = 0, the constraint (0, x) < b is either a tautology

(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vector space R™ or
the empty set &.

1.3.3 Convex Polyhedra

The set P C R" is a not necessarily closed convex polyhedron (NNC polyhedron, for short) if and only if
either P can be expressed as the intersection of a finite number of (open or closed) affine half-spaces of R™
orn = 0 and P = @. The set of all NNC polyhedra on the vector space R™ is denoted IP,,.

The set P € P, is a closed convex polyhedron (closed polyhedron, for short) if and only if either P can be
expressed as the intersection of a finite number of closed affine half-spaces of R orn = 0 and P = @.
The set of all closed polyhedra on the vector space R"™ is denoted CP,,.

When ordering NNC polyhedra by the set inclusion relation, the empty set @ and the vector space R" are,
respectively, the smallest and the biggest elements of both IP,, and CPP,,. The vector space R" is also called
the universe polyhedron.

In theoretical terms, IP,, is a lattice under set inclusion and CIP,, is a sub-lattice of IP,,.

Note:

In the following, we will usually specify operators on the domain P,, of NNC polyhedra. Unless an
explicit distinction is made, these operators are provided with the same specification when applied to
the domain CPP,, of topologically closed polyhedra. The implementation maintains a clearer separation
between the two domains of polyhedra (see Topologies and Topological-compatibility): while com-
puting polyhedra in IP,, may provide more precise results, polyhedra in CP,, can be represented and
manipulated more efficiently. As a rule of thumb, if your application will only manipulate polyhedra
that are topologically closed, then it should use the simpler domain CP,,. Using NNC polyhedra is
only recommended if you are going to actually benefit from the increased accuracy.

1.3.4 Bounded Polyhedra

An NNC polyhedron P € P, is bounded if there exists a A € R, such that
P C {weR” -A < S)\forj:07...,n—1}.

A bounded polyhedron is also called a polytope.

1.4 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

1.4.1 Constraints Representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as a constraint.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Representations of Convex Polyhedra 9

By definition, each polyhedron P € PP, is the set of solutions to a constraint system, i.e., a finite number
of constraints. By using matrix notation, we have

PE (e eR" | Az =by, Az > by, Az > b },

where, for all ¢ € {1,2,3}, A; € R™ x R™ and b, € R™¢, and m;, m2, m3 € N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

1.4.2 Combinations and Hulls

Let S = {x1,...,xr} C R"™ be a finite set of vectors. For all scalars A\1,...,\; € R, the vector
v = 2521 Ajx; is said to be a linear combination of the vectors in .S. Such a combination is said to be

* apositive (or conic) combination, if Vj € {1,...,k} : \; e R;
* an affine combination, if Z?:l A =1,

* a convex combination, if it is both positive and affine.

We denote by linear.hull(S) (resp., conic.hull(.S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors in S.

Let P,C C R™, where P U C = S. We denote by nnc.hull(P, C) the set of all convex combinations of
the vectors in .S such that A; > 0 for some x; € P (informally, we say that there exists a vector of P that
plays an active role in the convex combination). Note that nnc.hull(P, C') = nnc.hull(P, P U C) so that,
if C C P,

convex.hull(P) = nnc.hull(P, @) = nnc.hull(P, P) = nnc.hull(P, C).

It can be observed that linear.hull(.S) is an affine space, conic.hull(S) is a topologically closed convex
cone, convex.hull(S) is a topologically closed polytope, and nnc.hull(P, C') is an NNC polytope.

1.4.3 Points, Closure Points, Rays and Lines

Let P € P,, be an NNC polyhedron. Then

* avector p € P is called a point of P;
* avector ¢ € R" is called a closure point of P if it is a point of the topological closure of P;

e avector r € R™, where r # 0, is called a ray (or direction of infinity) of P if P # & and p+Ar € P,
for all points p € Pandall A € R ;

» avector I € R™ is called a line of P if both I and —I are rays of P.

A point of an NNC polyhedron P € P, is a vertex if and only if it cannot be expressed as a convex
combination of any other pair of distinct points in P. A ray r of a polyhedron P is an extreme ray if and
only if it cannot be expressed as a positive combination of any other pair r; and 75 of rays of P, where
r # Ary, v # Arg and 71 # Arg for all A € R, (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Representations of Convex Polyhedra 10

1.44 Generators Representation

Each NNC polyhedron P € P, can be represented by finite sets of lines L, rays R, points P and closure
points C' of P. The 4-tuple G = (L, R, P, C) is said to be a generator system for P, in the sense that

P = linear.hull(L) + conic.hull(R) + nnc.hull(P, C),

where the symbol *+’ denotes the Minkowski’s sum.

When P € CP, is a closed polyhedron, then it can be represented by finite sets of lines L, rays R and
points P of P. In this case, the 3-tuple G = (L, R, P) is said to be a generator system for P since we have

P = linear.hull(L) + conic.hull(R) 4 convex.hull(P).

Thus, in this case, every closure point of P is a point of P.

For any P € P, and generator system G = (L, R, P, C') for P, we have P = & if and only if P = @. Also
P must contain all the vertices of P although P can be non-empty and have no vertices. In this case, as P is
necessarily non-empty, it must contain points of 7 that are not vertices. For instance, the half-space of R?
corresponding to the single constraint y > 0 can be represented by the generator system G = (L, R, P, C)
such that L = {(1,0)T}, R = {(0,1)T}, P = {(0,0)"}, and C = @. It is also worth noting that the
only ray in R is not an extreme ray of P.

1.4.5 Minimized Representations

A constraints system C for an NNC polyhedron P € P, is said to be minimized if no proper subset of C is
a constraint system for P.

Similarly, a generator system G = (L, R, P, C) for an NNC polyhedron P € P, is said to be minimized
if there does not exist a generator system G’ = (L', R', P’,C") # G for P such that L' C L, R’ C R,
P CPandC’' CC.

1.4.6 Double Description

Any NNC polyhedron P can be described by using a constraint system C, a generator system G, or both
by means of the double description pair (DD pair) (C,G). The double description method is a collection
of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

1.4.7 Topologies and Topological-compatibility

As indicated above, when an NNC polyhedron P is necessarily closed, we can ignore the closure points
contained in its generator system G = (L, R, P, C') (as every closure point is also a point) and represent P
by the triple (L, R, P). Similarly, P can be represented by a constraint system that has no strict inequali-
ties. Thus a necessarily closed polyhedron can have a smaller representation than one that is not necessarily
closed. Moreover, operators restricted to work on closed polyhedra only can be implemented more effi-
ciently. For this reason the library provides two alternative “topological kinds” for a polyhedron, NNC and
C. We shall abuse terminology by referring to the topological kind of a polyhedron as its topology.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Representations of Convex Polyhedra 11

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following topological-compatibility rules:
* polyhedra are topologically-compatible if and only if they have the same topology;

« all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

* strict inequality constraints and closure points are topologically-compatible with a polyhedron if and

only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

1.4.8 Space Dimensions and Dimension Compatibility

The space dimension of an NNC polyhedron P € P,, (resp., a C polyhedron P € CP,,) is the dimension
n € N of the corresponding vector space R™. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following (space) dimension-compatibility rules:
* polyhedra are dimension-compatible if and only if they have the same space dimension;

* the constraint (@,) > b where 1 € {=,>,>} and a,z € R™, is dimension-compatible with a
polyhedron having space dimension n if and only if m < n;

* the generator x € R™ is dimension-compatible with a polyhedron having space dimension 7 if and
only if m < n;

* asystem of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if

all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

1.4.9 Affine Independence and Affine Dimension

A finite set of points {x1,...,x} C R is affinely independent if, for all Ay, ..., \; € R, the system of

equations
k E
i=1 i=1

implies that, foreachi =1,...,k, A\; = 0.
The maximum number of affinely independent points in R™ is n + 1.

A non-empty NNC polyhedron P € P, has affine dimension k € N, denoted by dim(P) = k, if the
maximum number of affinely independent points in P is k + 1.

We remark that the above definition only applies to polyhedra that are not empty, so that 0 < dim(P) < n.
By convention, the affine dimension of an empty polyhedron is O (even though the “natural” generalization
of the definition above would imply that the affine dimension of an empty polyhedron is —1).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Operations on Convex Polyhedra 12

Note:

The affine dimension k£ < n of an NNC polyhedron P € P,, must not be confused with the space
dimension n of P, which is the dimension of the enclosing vector space R™. In particular, we can have
dim(P) # dim(Q) even though P and Q are dimension-compatible; and vice versa, P and Q may be
dimension-incompatible polyhedra even though dim(P) = dim(Q).

1.4.10 Rational Polyhedra

An NNC polyhedron is called rational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations.

1.5 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.

1.5.1 Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedra Py, Py € P, the intersection of P; and P,, defined as the set intersection
P1 N Pa, is the biggest NNC polyhedron included in both P; and Ps; similarly, the convex polyhedral hull
(or poly-hull) of P; and Ps, denoted by P; W Ps, is the smallest NNC polyhedron that includes both Py
and P,. The intersection and poly-hull of any pair of closed polyhedra in CPP,, is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the binary meet and the
binary join operators on the lattices P, and CP,,.

1.5.2 Convex Polyhedral Difference

For any pair of NNC polyhedra Py, P2 € P, the convex polyhedral difference (or poly-difference) of Py
and P is defined as the smallest convex polyhedron containing the set-theoretic difference of P; and Ps.

In general, even though P;, P, € CP,, are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

1.5.3 Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formally, the concatenation of the polyhedra
P € P, and Q € P, (taken in this order) is the polyhedron R € P,, ., such that

def
RE {(xo,...,mn_l,yo,...,ym_l)T e Rt (mo,...,xn_l)T eP, (yo,...,ym_l)T S Q}.

Another way of seeing it is as follows: first embed polyhedron P into a vector space of dimension n + m
and then add a suitably renamed-apart version of the constraints defining Q.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Operations on Convex Polyhedra 13

1.5.4 Adding New Dimensions to the Vector Space

The library provides two operators for adding a number ¢ of space dimensions to an NNC polyhedron
P € P,, therefore transforming it into a new NNC polyhedron @ € P, ;. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operator add_space_dimensions_and_embed embeds the polyhedron P into the new vector
space of dimension 7 + n and returns the polyhedron Q defined by all and only the constraints defining P
(the variables corresponding to the added dimensions are unconstrained). For instance, when starting from
a polyhedron P C R? and adding a third space dimension, the result will be the polyhedron

Q= { (.ro,xl,.%‘g)T eR3 ’ (l‘o,l’l)T S P}

In contrast, the operator add_space_dimensions_and_project projects the polyhedron P into
the new vector space of dimension i + n and returns the polyhedron Q whose constraint system, besides
the constraints defining P, will include additional constraints on the added dimensions. Namely, the cor-
responding variables are all constrained to be equal to 0. For instance, when starting from a polyhedron
P C R? and adding a third space dimension, the result will be the polyhedron

Q= {(20,21,0)" €R®| (wo,21)" €P}.

1.5.5 Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from an NNC polyhedron P € P,,
therefore transforming it into a new NNC polyhedron Q € P,,, where m < n.

Given a set of variables, the operator remove_space_dimensions removes all the space dimensions
specified by the variables in the set. For instance, letting P € P4 be the singleton set {(3, 1,0, 2)T} C R4,
then after invoking this operator with the set of variables {1, 22} the resulting polyhedron is

0={(3,2)"} CR%.

Given a space dimension m less than or equal to that of the polyhedron, the operator remove_higher -
space_dimensions removes the space dimensions having indices greater than or equal to m. For
instance, letting P € P4 defined as before, by invoking this operator with m = 2 the resulting polyhedron
will be

Q={(3,1)"} CR%

1.5.6 Mapping the Dimensions of the Vector Space

The operator map_space_dimensions provided by the library maps the dimensions of the vector
space R™ according to a partial injective function p: {0,...,n — 1} — N such that p({O, N 1}) =
{0,...,m — 1} with m < n. Dimensions corresponding to indices that are not mapped by p are removed.

If m = 0, i.e., if the function p is undefined everywhere, then the operator projects the argument polyhedron
P € P, onto the zero-dimension space R; otherwise the result is Q € P,,, given by

def

Q { ('Up—l(o), .. .,l}pfl(mfl))T ’ (’Uo, L. ,’Un_l)T epP }

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Operations on Convex Polyhedra 14

1.5.7 Expanding One Dimension of the Vector Space to Multiple Dimensions

The operator expand_space_dimension provided by the library adds m new space dimensions to a
polyhedron P € P,,, with n > 0, so that dimensions n, n + 1, ..., n + m — 1 of the result Q are exact
copies of the i-th space dimension of P. More formally,

Jv,weP . u; =v;
QX! yerrtm AVji=nn+1,....n+m-—1:u; =w,
AVE=0,....n—1:k#i = up =v = wy

This operation has been proposed in [GDDetal04].

1.5.8 Folding Multiple Dimensions of the Vector Space into One Dimension

The operator fold_space_dimensions provided by the library, given a polyhedron P € P,,, with
n > 0, folds a set of space dimensions J = {jo, ..., jm—1}, withm < n and j < n for each j € J, into
space dimension ¢ < n, where ¢ ¢ J. The result is given by

0« [H Q4
d=0
where
degf weR™™ FveP . uy=v; |
ANVE=0,....n—1:k#i = up =g

and, ford=0,...,m—1,

0,9) 4 e grm JveP . uy =vy,
/\Vk:(),...,nfl:k#iﬁuk/:vk ’

and, finally, fork =0, ...,n — 1,
K Ek—#{jed|k>j},

(# S denotes the cardinality of the finite set S).

This operation has been proposed in [GDDetal04].

1.5.9 Images and Preimages of Affine Transfer Relations

For each relation ¢ C R™ x R™, we denote by ¢(S) C R™ the image under ¢ of the set S C R™; formally,

#(5) L {weR™ |Iwes. (v,w)ed}.

Similarly, we denote by ¢=*(S’") C R™ the preimage under ¢ of S’ C R™, that is
NCOR

If n = m, then the relation ¢ is said to be space dimension preserving.

{veR"|Fwe s . (v,w)eg}.

The relation ¢ C R™ x R™ is said to be an affine relation if there exists £ € N such that

‘
Yo e R",w e R™: (v,w) € ¢ <= /\((cl-,w> > (@i, v) + b;),

i=1

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Operations on Convex Polyhedra 15

where a; € R", ¢; e R™, b; € Randx; € {<,<,=,>,>},foreachi=1,...,¢
As a special case, the relation ¢ C R™ x R™ is an affine function if and only if there exist a matrix
A € R™ x R™ and a vector b € R™ such that,

Vo e R, weR™: (v,w) € p < w=Av+b.

The set IP,, of NNC polyhedra is closed under the application of images and preimages of any space di-
mension preserving affine relation. The same property holds for the set CP,, of closed polyhedra, provided
the affine relation makes no use of the strict relation symbols < and >. Images and preimages of affine
relations can be used to model several kinds of transition relations, including deterministic assignments of
affine expressions, (affinely constrained) nondeterministic assignments and affine conditional guards.

A space dimension preserving relation ¢ C R™ x R™ can be specified by means of a shorthand notation:

* the vector & = (2, ...,7,_1)" of unprimed variables is used to represent the space dimensions of
the domain of ¢;

e the vector ¢’ = (), ...,z _;)T of primed variables is used to represent the space dimensions of

the range of ¢;

* any primed variable that “does not occur” in the shorthand specification is meant to be unaffected
by the relation; namely, for each index ¢ € {0,...,n — 1}, if in the syntactic specification of the
relation the primed variable x} only occurs (if ever) with coefficient 0, then it is assumed that the
specification also contains the constraint = = z;.

As an example, assuming ¢ C R3 x R3, the notation :r6 — xl, > 2xg — x1, where the primed variable
does not occur, is meant to specify the affine relation defined by

Vo € R® w e R?: (v,w) € ¢ <= (wo —wa > 2vg —v1) A (w1 = vy).

The same relation is specified by z(, + 0 -) — x4 > 2x¢ — x1, since 2} occurs with coefficient 0.

The library allows for the computation of images and preimages of polyhedra under restricted subclasses
of space dimension preserving affine relations, as described in the following.

1.5.10 Single-Update Affine Functions.

Given a primed variable z) and an unprimed affine expression (a,x) + b, the affine function
¢ = (=}, = (a,z) +b): R" — R" is defined by

Vv e R": ¢(v) = Av + b,

where
1 0 0 0 0
0 1 0 - 0 0
A=|ag ag—1 Qp Qpy1 an-1 |, b=1|0b
0 0 1 0 0
0 -+ -+ 0 0 1 0

and the a; (resp., b) occur in the (k 4 1)st row in A (resp., position in b). Thus function ¢ maps any vector
(Uo, - ,Un_l)T to

n—1 T
(Uo, ey (Zi:O a;v; + b), AP ,’Un_l) .

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Operations on Convex Polyhedra 16

The affine image operator computes the affine image of a polyhedron P under x}, = (a,x) + b. For
instance, suppose the polyhedron P to be transformed is the square in R? generated by the set of points
{(0,0)T,(0,3)T,(3,0)T,(3,3)T}. Then, if the primed variable is 2, and the affine expression is z +
2z +4 (sothat k = 0, a9 = 1,a1 = 2,b = 4), the affine image operator will translate P to the
parallelogram P; generated by the set of points {(4,0), (10,3)T, (7,0)T, (13,3)™} with height equal to
the side of the square and oblique sides parallel to the line zy — 2x;. If the primed variable is as before
(i.e., k = 0) but the affine expression is z; (so that ag = 0,a; = 1,b = 0), then the resulting polyhedron
Ps is the positive diagonal of the square.

The affine preimage operator computes the affine preimage of a polyhedron P under =}, = (a, x) + b. For
instance, suppose now that we apply the affine preimage operator as given in the first example using primed
variable xy and affine expression xg + 2z + 4 to the parallelogram P ; then we get the original square P
back. If, on the other hand, we apply the affine preimage operator as given in the second example using
primed variable x(and affine expression x; to Pa, then the resulting polyhedron is the stripe obtained by
adding the line (1,0)" to polyhedron Ps.

Observe that provided the coefficient a;, of the considered variable in the affine expression is non-zero, the
affine function is invertible.

1.5.11 Single-Update Bounded Affine Relations.

Given a primed variable x}, and two unprimed affine expressions b = (a,) + b and ub = (¢, x) + d, the
bounded affine relation ¢ = (Ib < zj < ub) is defined as

Yo e R"w e R": (v,w) € ¢ — ((a,v>+b§wk§<c,v>+d)/\< /\ wizvi).
0<i<n,i#k

1.5.12 Generalized Affine Relations.

Similarly, the generalized affine relation ¢ = (1hs’ < rhs), where lhs = (¢, x) + d and ths = (a, z) + b
are affine expressions and 1 € {<, <, =, >, >} is a relation symbol, is defined as

Yo e R"w e R": (v,w) € ¢ < ((c,w>+dm<a,v>+b)/\(/\ wi:vi)
0<i<n,c;=0

When lhs = z, and 1 € {=}, then the above affine relation becomes equivalent to the single-update affine
function zj, = rhs (hence the name given to this operator). It is worth stressing that the notation is not
symmetric, because the variables occurring in expression lhs are interpreted as primed variables, whereas
those occurring in rhs are unprimed; for instance, the transfer relations lhs” < rhs and rhs’ > 1hs are not
equivalent in general.

1.5.13 Cylindrification Operator

The operator unconstrain computes the cylindrification [HMT71] of a polyhedron with respect to one
of its variables. Formally, the cylindrification Q@ € P,, of an NNC polyhedron P € P,, with respect to
variable index i € {0,...,n — 1} is defined as follows:

Q:{weR"|3v€P.Vj6{O,...,n—1}:j7éi = wj:vj}.

Cylindrification is an idempotent operation; in particular, note that the computed result has the same space
dimension of the original polyhedron. A variant of the operator above allows for the cylindrification of a
polyhedron with respect to a finite set of variables.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Operations on Convex Polyhedra 17

1.5.14 Time-Elapse Operator

The time-elapse operator has been defined in [HPR97]. Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedra P, Q € P, the time-elapse between P and Q, denoted P Q, is the smallest NNC polyhedron
containing the set

{p+XMeR" |peP,qc QrER, }.

Note that, if P, Q € CP,, are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
@ is not topologically closed, the above set might not be an NNC polyhedron.

1.5.15 Meet-Preserving Enlargement and Simplification

Let P, Q,R € P, be NNC polyhedra. Then:
* R is meet-preserving with respect to P using context Qif RN Q =P N Q;
e R is an enlargement of P if R O P.

* R is a simplification with respect to P if » < p, where r and p are the cardinalities of minimized
constraint representations for R and P, respectively.

Notice that an enlargement need not be a simplification, and vice versa; moreover, the identity function is
(trivially) a meet-preserving enlargement and simplification.

The library provides a binary operator (simplify_using_context) for the domain of NNC polyhedra
that returns a polyhedron which is a meet-preserving enlargement simplification of its first argument using
the second argument as context.

The concept of meet-preserving enlargement and simplification also applies to the other basic domains
(boxes, grids, BD and octagonal shapes). See below for a definition of the concept of meet-preserving
simplification for powerset domains.

1.5.16 Relation-With Operators
The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

Suppose P is an NNC polyhedron and C an arbitrary constraint system representing P. Suppose also that
¢ = ((a,x) > b) is a constraint with 1 € {=, >, >} and Q the set of points that satisfy c. The possible
relations between P and c are as follows.

* P is disjoint from c if P N Q = &; that is, adding c to C gives us the empty polyhedron.

P strictly intersects cift PN Q # @ and P N Q C P; that is, adding c to C gives us a non-empty
polyhedron strictly smaller than P.

e Pisincluded in c if P C Q; that is, adding ¢ to C leaves P unchanged.

» P saturates c if P C 'H, where H is the hyperplane induced by constraint c, i.e., the set of points
satisfying the equality constraint (a,) = b; that is, adding the constraint (a,x) = b to C leaves P
unchanged.

The polyhedron P subsumes the generator g if adding g to any generator system representing P does not
change P.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Operations on Convex Polyhedra 18

1.5.17 Widening Operators

The library provides two widening operators for the domain of polyhedra. The first one, that we call
H79-widening, mainly follows the specification provided in the PhD thesis of N. Halbwachs [Hal79], also
described in [HPR97]. Note that in the computation of the H79-widening P V Q of two polyhedra
P,Q € CP, it is required as a precondition that P C Q (the same assumption was implicitly present in
the cited papers).

The second widening operator, that we call BHRZ03-widening, is an instance of the specification provided
in [BHRZ03a]. This operator also requires as a precondition that 7 C O and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to NNC polyhedra. The user is warned that, in such a case, the
results may not closely match the geometric intuition which is at the base of the specification of the two
widenings. The reason is that, in the current implementation, the widenings are not directly applied to the
NNC polyhedra, but rather to their internal representations. Implementation work is in progress and future
versions of the library may provide an even better integration of the two widenings with the domain of
NNC polyhedra.

Note:

As is the case for the other operators on polyhedra, the implementation overwrites one of the two
polyhedra arguments with the result of the widening application. To avoid trivial misunderstandings, it
is worth stressing that if polyhedra P and Q (where P C Q) are identified by program variables p and
g, respectively, then the call . H79_widening_assign (p) will assign the polyhedron P V Q to
variable g. Namely, it is the bigger polyhedron Q which is overwritten by the result of the widening.
The smaller polyhedron is not modified, so as to lead to an easier coding of the usual convergence
test (P O P V Q can be coded as p.contains (q)). Note that, in the above context, a call such
asp.H79_widening_assign (q) is likely to result in undefined behavior, since the precondition
Q C P will be missed (unless it happens that P = Q). The same observation holds for all flavors
of widenings and extrapolation operators that are implemented in the library and for all the language
interfaces.

1.5.18 Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parameter k and only apply widenings starting from the k-th iteration.

The library also supports an improved widening delay strategy, that we call widening with tokens
[BHRZ03a]. A token is a sort of wild card allowing for the replacement of the widening application by
the exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed to the potential precision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed number £ of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

1.5.19 Extrapolation Operators

Besides the two widening operators, the library also implements several extrapolation operators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponding limited extrapolation operator, which

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Intervals and Boxes 19

can be used to implement the widening “up to” technique as described in [HPR97]. Each limited extrapola-
tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97] this set is fixed once and for all before starting the computation of the upward iteration sequence.

The bounded extrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above by intersecting the result of the limited extrapolation operation with the box obtained as a
result of applying the CC76-widening to the smallest boxes enclosing the two argument polyhedra.

1.6 Intervals and Boxes

The PPL provides support for computations on non-relational domains, called boxes, and also the interval
domains used for their representation.

An interval in R is a pair of bounds, called lower and upper. Each bound can be either (1) closed and
bounded, (2) open and bounded, or (3) open and unbounded. If the bound is bounded, then it has a value
in R. For each vector @ € R™ and scalar b € R, and for each relation symbol 1 € {=,>,>}, the
constraint (a,) < b is said to be a interval constraint if there exist an index i € {0, ..., n — 1} such that,
forallk € {0,...,i—1,i+1,...,n— 1}, a = 0. Thus each interval constraint that is not a tautology or
inconsistent has the foomz =r,x <r,z >r,x <rorx > r, withr € R.

Letting 3 be a sequence of n intervals and e; = (0,...,1,...,0)" be the vector in R” with 1 in the ’th
position and zeroes in every other position; if the lower bound of the 7’th interval in B is bounded, the
corresponding interval constraint is defined as (e;,) > b, where b is the value of the bound and < is > if
it is a closed bound and > if it is an open bound. Similarly, if the upper bound of the 4’th interval in 5 is
bounded, the corresponding interval constraint is defined as (e;,) > b, where b is the value of the bound
and > is < if it is a closed bound and < if it is an open bound.

A convex polyhedron P € CP, is said to be a box if and only if either P is the set of solutions to a finite
set of interval constraints or n = 0 and P = &. Therefore any n-dimensional box P in R” where n > 0
can be represented by a sequence of n intervals 3 in R and P is a closed polyhedron if every bound in the
intervals in B is either closed and bounded or open and unbounded.

1.6.1 Widening and Extrapolation Operators on Boxes

The library provides a widening operator for boxes. Given two sequences of intervals defining two n-
dimensional boxes, the CC76-widening applies, for each corresponding interval and bound, the interval
constraint widening defined in [CC76]. For extra precision, this incorporates the widening with thresholds
as defined in [BCCetal02] with {—2, —1,0, 1,2} as the set of default threshold values.

1.7 Weakly-Relational Shapes

The PPL provides support for computations on numerical domains that, in selected contexts, can achieve
a better precision/efficiency ratio with respect to the corresponding computations on a “fully relational”
domain of convex polyhedra. This is achieved by restricting the syntactic form of the constraints that can
be used to describe the domain elements.

1.7.1 Bounded Difference Shapes

For each vector a € R™ and scalar b € R, and for each relation symbol xi € {=, >}, the linear constraint
{(a,x) > b is said to be a bounded difference if there exist two indices i, 7 € {0,...,n — 1} such that:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.7 Weakly-Relational Shapes 20

® a;,a5 € {—1,0, 1} and a; 75 aj;
e ap=0,forall k ¢ {i,j}.

A convex polyhedron P € CP, is said to be a bounded difference shape (BDS, for short) if and only if
either P can be expressed as the intersection of a finite number of bounded difference constraints or n = 0
and P = &.

1.7.2 Octagonal Shapes

For each vector a € R™ and scalar b € R, and for each relation symbol <t € {=, >}, the linear constraint
(a,x) < b is said to be an octagonal if there exist two indices i, j € {0,...,n — 1} such that:

* a;,a; € {—1,0,1};
e ap=0,forallk ¢ {i,5}.

A convex polyhedron P € CP, is said to be an octagonal shape (OS, for short) if and only if either P can
be expressed as the intersection of a finite number of octagonal constraints orn = 0 and P = &.

Note that, since any bounded difference is also an octagonal constraint, any BDS is also an OS. The name
“octagonal” comes from the fact that, in a vector space of dimension 2, a bounded OS can have eight sides
at most.

1.7.3 Weakly-Relational Shapes Interface

By construction, any BDS or OS is always topologically closed. Under the usual set inclusion ordering,
the set of all BDSs (resp., OSs) on the vector space R" is a lattice having the empty set & and the universe
R™ as the smallest and the biggest elements, respectively. In theoretical terms, it is a meet sub-lattice of
CP,; moreover, the lattice of BDSs is a meet sublattice of the lattice of OSs. The least upper bound of a
finite set of BDSs (resp., OSs) is said to be their bds-hull (resp., oct-hull).

As far as the representation of the rational inhomogeneous term of each bounded difference or octagonal
constraint is concerned, several rounding-aware implementation choices are available, including:

* bounded precision integer types;
* bounded precision floating point types;

* unbounded precision integer and rational types, as provided by GMP.

The user interface for BDSs and OSs is meant to be as similar as possible to the one developed for the
domain of closed polyhedra: in particular, all operators on polyhedra are also available for the domains
of BDSs and OSs, even though they are typically characterized by a lower degree of precision. For in-
stance, the bds-difference and oct-difference operators return (the smallest) over-approximations of the
set-theoretical difference operator on the corresponding domains. In the case of (generalized) images and
preimages of affine relations, suitable (possibly not-optimal) over-approximations are computed when the
considered relations cannot be precisely modeled by only using bounded differences or octagonal con-
straints.

1.7.4 Widening and Extrapolation Operators on Weakly-Relational Shapes

For the domains of BDSs and OSs, the library provides a variant of the widening operator for convex
polyhedra defined in [CH78]. The implementation follows the specification in [BHMZ05a,BHMZ05b],

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.8 Rational Grids 21

resulting in an operator which is well-defined on the corresponding domain (i.e., it does not depend on the
internal representation of BDSs or OSs), while still ensuring convergence in a finite number of steps.

The library also implements an extension of the widening operator for intervals as defined in [CC76]. The
reader is warned that such an extension, even though being well-defined on the domain of BDSs and OSs,
is not provided with a convergence guarantee and is therefore an extrapolation operator.

1.8 Rational Grids

In this section we introduce rational grids as provided by the library. See also [BDHetal05] for a detailed
description of this domain.

The library supports two representations for the grids domain; congruence systems and grid generator
systems. We first describe linear congruence relations which form the elements of a congruence system.

1.8.1 Congruences and Congruence Relations

For any a, b, f € R, a =¢ b denotes the congruence 3u € Z . a — b= puf.

Let S € {Q,R}. For each vector @ € S™ \ {0} and scalars b, f € S, the notation (a,x) =y b stands for
the linear congruence relation in S™ defined by the set of vectors

{veR"‘HueZ.(a,w:b—i-uf};

when f # 0, the relation is said to be proper; (a,z) =¢ b (i.e., when f = 0) denotes the equality
(a,x) = b. f is called the frequency or modulus and b the base value of the relation. Thus, provided
a # 0, the relation (a,) =; b defines the set of affine hyperplanes

{(la,2)=b+uf) |neZ};

ifb=; 0, (0,x) = ¢ b defines the universe R™ and the empty set, otherwise.

1.8.2 Rational Grids

The set £ C R™ is a rational grid if and only if either £ is the set of vectors in R" that satisfy a finite
system C of congruence relations in Q" orn = 0 and £ = @.

We also say that L is described by C and that C is a congruence system for L.

The grid domain G, is the set of all rational grids described by finite sets of congruence relations in Q.

If the congruence system C describes the &, the empty grid, then we say that C is inconsistent. For example,
the congruence systems {(0,x) =¢ 1} meaning that 0 = 1 and {(a,z) =, 0, (a,z) =, 1}, for any
a € R", meaning that the value of an expression must be both even and odd are both inconsistent since
both describe the empty grid.

When ordering grids by the set inclusion relation, the empty set & and the vector space R™ (which is
described by the empty set of congruence relations) are, respectively, the smallest and the biggest elements
of G,,. The vector space R" is also called the universe grid.

In set theoretical terms, G,, is a lattice under set inclusion.
1.8.3 Integer Combinations

Let S = {x1,...,x;} C R™ be a finite set of vectors. For all scalars pq,...,ur € Z, the vector
v = E?Zl 1 is said to be a integer combination of the vectors in S.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.8 Rational Grids 22

We denote by int.hull(S) (resp., int.affine.hull(S)) the set of all the integer (resp., integer and affine)
combinations of the vectors in S.

1.8.4 Points, Parameters and Lines
Let £ be a grid. Then

e avector p € L is called a grid point of L;

e avector g € R™, where g # 0, is called a parameter of L if L # & and p + pq € L, for all points
p € Landall 4 € Z;

e avector I € R" is called a grid line of L if L # @ and p + Al € L, for all points p € £ and all
AeR

1.8.5 The Grid Generator Representation

We can generate any rational grid in G,, from a finite subset of its points, parameters and lines; each point
in a grid is obtained by adding a linear combination of its generating lines to an integral combination of its
parameters and an integral affine combination of its generating points.

If L, Q, P are each finite subsets of Q™ and
L = linear.hull(L) + int.hull(®Q)) + int.affine.hull(P)

where the symbol °+’ denotes the Minkowski’s sum, then £ € (G,, is a rational grid (see Section 4.4 in
[Sch99] and also Proposition 8 in [BDHetal05]). The 3-tuple (L, @, P) is said to be a grid generator system
for £ and we write £ = ggen(L, Q, P).

Note that the grid £ = ggen(L, @, P) = & if and only if the set of grid points P = &. If P # &, then
L = ggen(L,d,Qp U P) where, forsomep € P,Qp ={p+q|qgcQ}

1.8.6 Minimized Grid Representations

A minimized congruence system C for £ is such that, if C’ is another congruence system for £, then
#C < #C'. Note that a minimized congruence system for a non-empty grid has at most n congruence
relations.

Similarly, a minimized grid generator system G = (L, Q, P) for L is such that, if g’ = (L', Q’, P') is
another grid generator system for £, then # L < # L' and #Q + # P < # Q' + # P’. Note that a
minimized grid generator system for a grid has no more than a total of n + 1 grid lines, parameters and
points.

1.8.7 Double Description for Grids

As for convex polyhedra, any grid £ can be described by using a congruence system C for £, a grid
generator system G for £, or both by means of the double description pair (DD pair) (C,G). The double
description method for grids is a collection of theoretical results very similar to those for convex polyhedra
showing that, given one kind of representation, there are algorithms for computing a representation of the
other kind and for minimizing both representations.

As for convex polyhedra, such changes of representation form a key step in the implementation of many
operators on grids such as, for example, intersection and grid join.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Operations on Rational Grids 23

1.8.8 Space Dimensions and Dimension-compatibility for Grids

The space dimension of a grid £ € G, is the dimension n € N of the corresponding vector space R".
The space dimension of congruence relations, grid generators and other objects of the library is defined
similarly.

1.8.9 Affine Independence and Affine Dimension for Grids

A non-empty grid L € G,, has affine dimension k € N, denoted by dim(G) = k, if the maximum number
of affinely independent points in G is k£ 4 1. The affine dimension of an empty grid is defined to be 0. Thus
we have 0 < dim(G) < n.

1.9 Operations on Rational Grids

In this section we briefly describe operations on rational grids that are provided by the library. These are
similar to those described in Section Operations on Convex Polyhedra.

1.9.1 Grid Intersection and Grid Join

For any pair of grids L1, Lo € G,,, the intersection of L1 and L5, defined as the set intersection £1 N Lo,
is the largest grid included in both £ and Lo; similarly, the grid join of £; and L5, denoted by £1 & Lo,
is the smallest grid that includes both £ and L.

In theoretical terms, the intersection and grid join operators defined above are the binary meet and the
binary join operators on the lattice G,,.

1.9.2 Grid Difference

For any pair of grids L1, Lo € Gy, the grid difference of £, and L5 is defined as the smallest grid contain-
ing the set-theoretic difference of £, and L.

1.9.3 Concatenating Grids

Viewing a grid as a set of tuples (its points), it is sometimes useful to consider the set of tuples obtained by
concatenating an ordered pair of grids. Formally, the concatenation of the grids £1 € G, and Ly € G,
(taken in this order) is the grid in G, ., defined as

{($07 T 1, Y0s -y Y1) E R (mg, . 2m1)T € L1, (Yoo Y1) T € Lo }

Another way of seeing it is as follows: first embed grid £; into a vector space of dimension n + m and
then add a suitably renamed-apart version of the congruence relations defining L.

1.94 Adding New Dimensions to the Vector Space

The library provides two operators for adding a number ¢ of space dimensions to a grid £ € G,,, therefore
transforming it into a new grid in G,,,. In both cases, the added dimensions of the vector space are those
having the highest indices.

The operator add_space_dimensions_and_embed embeds the grid L into the new vector space
of dimension ¢ + n and returns the grid defined by all and only the congruences defining £ (the variables

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Operations on Rational Grids 24

corresponding to the added dimensions are unconstrained). For instance, when starting from a grid £ C R?
and adding a third space dimension, the result will be the grid

{ (xO’xlva)T eR? ’ ($0ax1)T €L }

In contrast, the operator add_space_dimensions_and_project projects the grid L into the new
vector space of dimension ¢ + n and returns the grid whose congruence system, besides the congruence
relations defining £, will include additional equalities on the added dimensions. Namely, the corresponding
variables are all constrained to be equal to 0. For instance, when starting from a grid £ C R? and adding a
third space dimension, the result will be the grid

{(33071'1,0)T S RB | (l'o,xl)T € E}

1.9.5 Removing Dimensions from the Vector Space
The library provides two operators for removing space dimensions from a grid £ € G,,, therefore trans-
forming it into a new grid in G,,, where m < n.

Given a set of variables, the operator remove_space_dimensions removes all the space dimensions
specified by the variables in the set.

Given a space dimension m less than or equal to that of the grid, the operator remove_higher_ -
space_dimensions removes the space dimensions having indices greater than or equal to m.

1.9.6 Mapping the Dimensions of the Vector Space

The operator map_space_dimensions provided by the library maps the dimensions of the vector
space R™ according to a partial injective function p: {0,...,n — 1} — N such that

p({0,...,n—1}) ={0,...,m — 1}
with m < n. Dimensions corresponding to indices that are not mapped by p are removed.

If m = 0, i.e., if the function p is undefined everywhere, then the operator projects the argument grid
L € G, onto the zero-dimension space R”; otherwise the result is a grid in G,,, given by

T

{ (Up—l(o), R ,Up—l(m_]_)) ‘ (1107. .. ,’Unfl)T eL }

1.9.7 Expanding One Dimension of the Vector Space to Multiple Dimensions

The operator expand_space_dimension provided by the library adds m new space dimensions to a
grid £ € G, withn > 0, so that dimensions n, n+ 1, ..., n +m — 1 of the resulting grid are exact copies
of the i-th space dimension of £. More formally, the result is a grid in G,,, given by

Jv,w e L. u; =v;
u € Rvt™ AVj=nn+1,...,n+m—1:u; =w;
AVE=0,....n—1:k#i = up =v, = wg

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Operations on Rational Grids 25

1.9.8 Folding Multiple Dimensions of the Vector Space into One Dimension

The operator fold_space_dimensions provided by the library, given a grid £ € G,,, with n > 0,
folds a subset J of the set of space dimensions {0, ...,n — 1} into a space dimension ¢ < n, where i ¢ J.
Letting m = # J, the result is given by the grid join

LoW- WLy,

where

def _ Jv e Ll . uy=v;
Ly, =< ueR"™™) ,
AVE=0,....n—1:k#i = up = v

AVE=0,....,.n—1:k#i = up =

and, fork=0,...,n—1,
Y e—#{jed|k>j)

1.9.9 Affine Images and Preimages

As for convex polyhedra (see Single-Update Affine Functions), the library provides affine image and preim-
age operators for grids: given a variable xj, and linear expression expr = (a, x) + b, these determine the
affine transformation ¢ = (z, = (a, @) +b): R" — R" that transforms any point (v, ...,v,—1)" ina
grid £ to

n—1 T
(’U(), ey (Zi:() a;v; + b), e ,Unfl) .

The affine image operator computes the affine image of a grid £ under z), = (a,x) + b. For instance,
suppose the grid £ to be transformed is the non-relational grid in R? generated by the set of grid points
{(0,0)%,(0,3)T,(3,0)T}. Then, if the considered variable is 2o and the linear expression is 3z +2x1 + 1
(sothat k = 0, ag = 3,a; = 2,b = 1), the affine image operator will translate £ to the grid £, generated
by the set of grid points { (1,0)", (7,3)™, (10,0)™ } which is the grid generated by the grid point (1,0) and
parameters (3, —3), (0, 9); or, alternatively defined by the congruence system {x =35 1,2+ y =g 1}. If the
considered variable is as before (i.e., £ = 0) but the linear expression is x1 (so that ag = 0,a; = 1,b = 0),
then the resulting grid L5 is the grid containing all the points whose coordinates are integral multiples of 3
and lie on line x = y.

The affine preimage operator computes the affine preimage of a grid £ under ¢. For instance, suppose
now that we apply the affine preimage operator as given in the first example using variable =y and linear
expression 3zg + 21 + 1 to the grid £;; then we get the original grid £ back. If, on the other hand, we
apply the affine preimage operator as given in the second example using variable x(and linear expression
x1 to Lo, then the resulting grid will consist of all the points in R? where the y coordinate is an integral
multiple of 3.

Observe that provided the coefficient aj, of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

1.9.10 Generalized Affine Images

Similarly to convex polyhedra (see Generalized Affine Relations), the library provides two other grid oper-
ators that are generalizations of the single update affine image and preimage operators for grids. The gen-
eralized affine image operator ¢ = (lhs’,rths, f): R® — R", where lhs = (¢,) + d and ths = (a,) + b

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Operations on Rational Grids 26

are affine expressions and f € Q, is defined as

Yo eR" weR": (v,w) € ¢ < ((c,w)+d=; (a,v)—i—b)/\(/\ wi:vi).

0<i<n,c;=0

Note that, when lhs = z}, and f = 0, so that the transfer function is an equality, then the above operator is
equivalent to the application of the standard affine image of £ with respect to the variable xj, and the affine
expression rhs.

1.9.11 Time-Elapse Operator

For any two grids L1, Lo € G, the time-elapse between L1 and Lo, denoted £1 " Lo, is the grid

{p+uqeR" |peLy,qeLonclZ}.

1.9.12 Relation-with Operators

The library provides operators for checking the relation holding between a grid and a congruence, a grid
generator, constraint or a (polyhedron) generator.

Suppose L is a grid and C an arbitrary congruence system representing £. Suppose also that cg =
((a,z) =; b) is a congruence relation with L., = gcon({cg}). The possible relations between £ and cg
are as follows.

* L is disjoint from cg if £ N L., = J; that is, adding cg to C gives us the empty grid.

* L strictly intersects cg if LN Leg # @ and LN Ly C L; that is, adding cg to C gives us a non-empty
grid strictly smaller than L.

* L is included in cg if L C L; that is, adding cg to C leaves £ unchanged.

o L saturates cg if L is included in cg and f = 0, i.e., cg is an equality congruence.

For the relation between £ and a constraint, suppose that ¢ = ((a, x) b) is a constraint with 1 € {=, >
, >} and Q the set of points that satisfy c. The possible relations between £ and c are as follows.

e L is disjoint from cif LN Q = @.
o L strictly intersects cit LN Q # @ and LN Q C L.
e Lisincludedin cif L C Q.

o L saturates c if L is included in c and <1 is =.

A grid £ subsumes a grid generator g if adding g to any grid generator system representing £ does not
change L.

A grid L subsumes a (polyhedron) point or closure point g if adding the corresponding grid point to any
grid generator system representing £ does not change £. A grid £ subsumes a (polyhedron) ray or line g
if adding the corresponding grid line to any grid generator system representing £ does not change L.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.10 The Powerset Construction 27

1.9.13 Widening Operators

The library provides grid widening operators for the domain of grids. The congruence widening and
generator widening follow the specifications provided in [BDHetal05]. The third widening uses either the
congruence or the generator widening, the exact rule governing this choice at the time of the call is left
to the implementation. Note that, as for the widenings provided for convex polyhedra, all the operations
provided by the library for computing a widening £; V Lo of grids £, Lo € G,, require as a precondition
that £; C Ls.

Note:

As is the case for the other operators on grids, the implementation overwrites one of the two grid
arguments with the result of the widening application. It is worth stressing that, in any widening
operation that computes the widening £1 V L, the resulting grid will be assigned to overwrite the
store containing the bigger grid L. The smaller grid £; is not modified. The same observation holds
for all flavors of widenings and extrapolation operators that are implemented in the library and for all
the language interfaces.

1.9.14 Widening with Tokens

This is as for widening with tokens for convex polyhedra.

1.9.15 Extrapolation Operators

Besides the widening operators, the library also implements several extrapolation operators, which differ
from widenings in that their use along an upper iteration sequence does not ensure convergence in a finite
number of steps.

In particular, for each grid widening that is provided, there is a corresponding limited extrapolation op-
erator, which can be used to implement the widening “up to” technique as described in [HPR97]. Each
limited extrapolation operator takes a congruence system as an additional parameter and uses it to improve
the approximation yielded by the corresponding widening operator. Note that, as in the case for convex
polyhedra, a convergence guarantee can only be obtained by suitably restricting the set of congruence
relations that can occur in this additional parameter.

1.10 The Powerset Construction

The PPL provides the finite powerset construction; this takes a pre-existing domain and upgrades it to
one that can represent disjunctive information (by using a finite number of disjuncts). The construction
follows the approach described in [Bag98], also summarized in [BHZ04] where there is an account of
generic widenings for the powerset domain (some of which are supported in the pointset powerset domain
instantiation of this construction described in Section The Pointset Powerset Domain).

1.10.1 The Powerset Domain

The domain is built from a pre-existing base-level domain D which must include an entailment relation
‘F’, meet operation ‘®’, a top element ‘1’ and bottom element ‘0’.

A set S € p(D) is called non-redundant with respect to ‘t’ if and only if 0 ¢ S and Vdy,dy € S : dy
dy = dy = dy. The set of finite non-redundant subsets of D (with respect to ‘+") is denoted by e}, (D).
The function Q) : p¢(D) — g, (D), called Omega-reduction, maps a finite set into its non-redundant

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.11 Operations on the Powerset Construction 28

counterpart; it is defined, for each S € p¢(D), by

def

QL (S)E S\ {deS|d=00or3d €S.dIFd}.

where d I+ d’ denotes d - d' A d # d'.

As the intended semantics of a powerset domain element S € p¢(D) is that of disjunction of the semantics
of D, the finite set S is semantically equivalent to the non-redundant set ' (S); and elements of S will be
called disjuncts. The restriction to the finite subsets reflects the fact that here disjunctions are implemented
by explicit collections of disjuncts. As a consequence of this restriction, for any S € p¢(D) such that
S # {0}, Q" (S) is the (finite) set of the maximal elements of S.

The finite powerset domain over a domain D is the set of all finite non-redundant sets of D and denoted
by D;p. The domain includes an approximation ordering ‘-’ defined so that, for any &1 and Sy € Dy,
S1 Fp Sy if and only if

Vdy € 81 :ddy € Sy . dy = ds.

Therefore the top element is {1} and the bottom element is the emptyset.

Note:

As far as Omega-reduction is concerned, the library adopts a lazy approach: an element of the powerset
domain is represented by a potentially redundant sequence of disjuncts. Redundancies can be elimi-
nated by explicitly invoking the operator omega_reduce (), e.g., before performing the output of
a powerset element. Note that all the documented operators automatically perform Omega-reductions
on their arguments, when needed or appropriate.

1.11 Operations on the Powerset Construction

In this section we briefly describe the generic operations on Powerset Domains that are provided by the
library for any given base-level domain D.

1.11.1 Meet and Upper Bound

Given the sets S; and Sy € Dy, the meet and upper bound operators provided by the library returns the set
Q5 ({di ®dy | di € S1,dy € Sy }) and Omega-reduced set union Q7 (S; U S,) respectively.

1.11.2 Adding a Disjunct

Given the powerset element S € Dy and the base-level element d € D, the add disjunct operator provided
by the library returns the powerset element €7, (S U {d}).

1.11.3 Collapsing a Powerset Element

If the given powerset element is not empty, then the collapse operator returns the singleton powerset con-
sisting of an upper-bound of all the disjuncts.

1.12 The Pointset Powerset Domain

The pointset powerset domain provided by the PPL is the finite powerset domain (defined in Section The
Powerset Construction) whose base-level domain D is one of the classes of semantic geometric descriptors
listed in Section Semantic Geometric Descriptors.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.12 The Pointset Powerset Domain 29

In addition to the operations described for the generic powerset domain in Section Operations on the Pow-
erset Construction, the PPL provides all the generic operations listed in Generic Operations on Semantic
Geometric Descriptors. Here we just describe those operations that are particular to the pointset powerset
domain.

1.12.1 Meet-Preserving Simplification

Let S1 = {di,...,dn}, S2 = {c1,...,¢cp} and S = {s1,...,54} be Omega-reduced elements of a
pointset powerset domain over the same base-level domain. Then:

o S is powerset meet-preserving with respect to S; using context Sy if the meet of S and Ss is equal
to the meet of S; and So;

* S is a powerset simplification with respect to Sy if ¢ < m.

* S is a disjunct meet-preserving simplification with respect to S if, for each s, € S, there exists
d; € S; such that, for each ¢; € So, s;, is a meet-preserving enlargement and simplification of d;
using context ¢;.

The library provides a binary operator (simplify_using_context) for the pointset powerset domain
that returns a powerset which is a powerset meet-preserving, powerset simplification and disjunct meet-
preserving simplification of its first argument using the second argument as context.

Notice that, due to the powerset simplification property, in general a meet-preserving powerset simplifica-
tion is not an enlargement with respect to the ordering defined on the powerset lattice. Because of this, the
operator provided by the library is only well-defined when the base-level domain is not itself a powerset
domain.

1.12.2 Geometric Comparisons

Given the pointset powersets S1, Sz over the same base-level domain and with the same space dimension,
then we say that S; geometrically covers S, if every point (in some disjunct) of S, is also a point in a
disjunct of S7. If S geometrically covers Sy and So geometrically covers Sy, then we say that they are
geometrically equal.

1.12.3 Pairwise Merge

Given the pointset powerset S over a base-level semantic GD domain D, then the pairwise merge operator
takes pairs of distinct elements in S whose upper bound (denoted here by W) in D (using the PPL operator
upper_bound_assign () for D) is the same as their set-theoretical union and replaces them by their
union. This replacement is done recursively so that, for each pair ¢, d of distinct disjuncts in the result set,
we have cW d # c U d.

1.12.4 Powerset Extrapolation Operators

The library implements a generalization of the extrapolation operator for powerset domains proposed in
[BGP99]. The operator BGP99_extrapolation_assign is made parametric by allowing for the
specification of any PPL extrapolation operator for the base-level domain. Note that, even when the
extrapolation operator for the base-level domain D is known to be a widening on D, the BGP99_ -
extrapolation_assign operator cannot guarantee the convergence of the iteration sequence in a
finite number of steps (for a counter-example, see [BHZ04]).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.13 Using the Library 30

1.12.5 Certificate-Based Widenings

The PPL library provides support for the specification of proper widening operators on the pointset pow-
erset domain. In particular, this version of the library implements an instance of the certificate-based
widening framework proposed in [BHZ03b].

A finite convergence certificate for an extrapolation operator is a formal way of ensuring that such an
operator is indeed a widening on the considered domain. Given a widening operator on the base-level
domain D, together with the corresponding convergence certificate, the BHZ03 framework is able to lift
this widening on D to a widening on the pointset powerset domain; ensuring convergence in a finite number
of iterations.

Being highly parametric, the BHZ03 widening framework can be instantiated in many ways. The cur-
rent implementation provides the templatic operator BHZ03_widening_assign<Certificate,
Widening> which only exploits a fraction of this generality, by allowing the user to specify the base-
level widening function and the corresponding certificate. The widening strategy is fixed and uses two
extrapolation heuristics: first, the upper bound operator for the base-level domain is tried; second, the
BGP99 extrapolation operator is tried, possibly applying pairwise merging. If both heuristics fail to con-
verge according to the convergence certificate, then an attempt is made to apply the base-level widening
to the upper bound of the two arguments, possibly improving the result obtained by means of the differ-
ence operator for the base-level domain. For more details and a justification of the overall approach, see
[BHZ03b] and [BHZ04].

The library provides several convergence certificates. Note that, for the domain of Polyhedra, while
Parma_Polyhedra_Library::BHRZ03_Certificate the "BHRZ03_Certificate" is compatible with both the
BHRZ03 and the H79 widenings, H79_Certificate is only compatible with the latter. Note that using dif-
ferent certificates will change the results obtained, even when using the same base-level widening operator.
It is also worth stressing that it is up to the user to see that the widening operator is actually compatible
with a given convergence certificate. If such a requirement is not met, then an extrapolation operator will
be obtained.

1.13 Using the Library
1.13.1 A Note on the Implementation of the Operators

When adopting the double description method for the representation of convex polyhedra, the implemen-
tation of most of the operators may require an explicit conversion from one of the two representations into
the other one, leading to algorithms having a worst-case exponential complexity. However, thanks to the
adoption of lazy and incremental computation techniques, the library turns out to be rather efficient in many
practical cases.

In earlier versions of the library, a number of operators were introduced in two flavors: a lazy version and
an eager version, the latter having the operator name ending with _and_minimize. In principle, only
the lazy versions should be used. The eager versions were added to help a knowledgeable user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

One of the cases when an eager computation might still make sense is when the well-known fail-first
principle comes into play. For instance, if you have to compute the intersection of several polyhedra
and you strongly suspect that the result will become empty after a few of these intersections, then you may
obtain a better performance by calling the eager version of the intersection operator, since the minimization
process also enforces an emptiness check. Note anyway that the same effect can be obtained by interleaving

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.13 Using the Library 31

the calls of the lazy operator with explicit emptiness checks.

Warning:

For the reasons mentioned above, starting from version 0.10 of the library, the usage of the eager ver-
sions (i.e., the ones having a name ending with _and_minimize) of these operators is deprecated;
this is in preparation of their complete removal, which will occur starting from version 0.11.

1.13.2 On Pointset_Powerset and Partially_Reduced_Product Domains: A Warning

For future versions of the PPL library all practical instantiations for the disjuncts for a pointset_powerset
and component domains for the partially_reduced_product domains will be fully supported. However, for
version 0.10, these compound domains should not themselves occur as one of their argument domains.
Therefore their use comes with the following warning.

Warning:

The Pointset_Powerset<PS> and Partially_Reduced_Product<Dl, D2, R>
should only be used with the following instantiations for the disjunct domain template PS and
component domain templates D1 and D2: C_Polyhedron, NNC_Polyhedron, Grid,
Octagonal_Shape<T>, BD_Shape<T>, Box<T>.

1.13.3 On Object-Orientation and Polymorphism: A Disclaimer

The PPL library is mainly a collection of so-called “concrete data types”: while providing the user with a
clean and friendly interface, these types are not meant to --- i.e., they should not --- be used polymorphically
(since, e.g., most of the destructors are not declared virtual). In practice, this restriction means that the
library types should not be used as public base classes to be derived from. A user willing to extend the
library types, adding new functionalities, often can do so by using containment instead of inheritance; even
when there is the need to override a prot ected method, non-public inheritance should suffice.

1.13.4 On Const-Correctness: A Warning about the Use of References and Iterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

// Find a reference to the first point of the non-empty polyhedron ‘ph’.
const Generator_System& gs = ph.generators();

Generator_System: :const_iterator i = gs.begin();
for (Generator_System::const_iterator gs_end = gs.end(); 1 != gs_end; ++1i)
if (i->is_point())
break;
const Generator& p = *i;

// Get the constraints of ‘ph’.

const Constraint_System& cs = ph.constraints();

// Both the const iterator ‘i’ and the reference ‘p’
// are no longer valid at this point.

cout << p.divisor() << endl; // Undefined behavior!
++1; // Undefined behavior!

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.14 Bibliography 32

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the
iterator i and the reference p. Anyway, if really needed, it is always possible to take a copy of, instead of
a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

Generator_System gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.

1.14 Bibliography

[Anc91] C. Ancourt. Génération automatique de codes de transfert pour multiprocesseurs a mémoires
locales. PhD thesis, Université de Paris VI, Paris, France, March 1991.

[BAO5] J. M. Bjorndalen and O. Anshus. Lessons learned in benchmarking - Floating point benchmarks:
Can you trust them? In Proceedings of the Norsk informatikkonferanse 2005 (NIK 2005), pages
89-100, Bergen, Norway, 2005. Tapir Akademisk Forlag.

[Bag97] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD thesis, Diparti-
mento di Informatica, Universita di Pisa, Pisa, Italy, March 1997. Printed as Report TD-1/97.

[Bag98] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-based
languages. Science of Computer Programming, 30(1-2):119-155, 1998.

[BCC* 02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. Design and implementation of a special-purpose static program analyzer for safety-critical
real-time embedded software. In T. AE. Mogensen, D. A. Schmidt, and I. Hal Sudborough, editors,
The Essence of Computation, Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones [on occasion of his 60th birthday], volume 2566 of Lecture Notes in Computer Science, pages
85-108. Springer-Verlag, Berlin, 2002.

[BDHT 05] R. Bagnara, K. Dobson, P. M. Hil, M. Mundell, and E. Zaffanella.
A linear domain for analyzing the distribution of numerical values. Report
2005.06, School of Computing, University of Leeds, UK, 2005. Available at
http://www.comp.leeds.ac.uk/research/pubs/reports.shtml.

[BDH+ 06] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. A
practical tool for analyzing the distribution of numerical values, 2006. Available at
http://www.comp.leeds.ac.uk/hill/Papers/papers.html.

[BDHT 07] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids: A domain for
analyzing the distribution of numerical values. In G. Puebla, editor, Logic-based Program Synthesis
and Transformation, 16th International Symposium, volume 4407 of Lecture Notes in Computer
Science, pages 219-235, Venice, Italy, 2007. Springer-Verlag, Berlin.

[BFT00] A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity recognition of the union of polyhedra.
Report AUT00-13, Automatic Control Laboratory, ETHZ, Zurich, Switzerland, 2000.

[BFT01] A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity recognition of the union of polyhedra.
Computational Geometry: Theory and Applications, 18(3):141-154, 2001.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental results. ACM Transactions
on Programming Languages and Systems, 21(4):747-789, 1999.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.comp.leeds.ac.uk/research/pubs/reports.shtml
http://www.comp.leeds.ac.uk/hill/Papers/papers.html
http://www.cs.unipr.it/ppl/

1.14 Bibliography 33

[BHMZ04] R.Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-relational
numeric abstractions. Report arXiv:cs.PL/0412043, 2004. Extended abstract. Contribution to
the International workshop on “Numerical & Symbolic Abstract Domains” (NSAD’05, Paris, Jan-
vary 21, 2005). Available at http://arxiv.org/and http://www.cs.unipr.it/ppl/.

[BHMZ05a] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-
relational numeric abstractions. Quaderno 399, Dipartimento di Matematica, Universita di Parma,
Italy, 2005. Available at http://www.cs.unipr.it/Publications/.

[BHMZ05b] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-
relational numeric abstractions. In C. Hankin and I. Siveroni, editors, Static Analysis: Proceedings
of the 12th International Symposium, volume 3672 of Lecture Notes in Computer Science, pages
3-18, London, UK, 2005. Springer-Verlag, Berlin.

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In R. Cousot, editor, Static Analysis: Proceedings of the 10th International Symposium,
volume 2694 of Lecture Notes in Computer Science, pages 337-354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

[BHRZ03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno 312, Dipartimento di Matematica, Universita di Parma, Italy, 2003. Available
athttp://www.cs.unipr.it/Publications/.

[BHRZ05] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Science of Computer Programming, 58(1-2):28-56, 2005.

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Universita di Parma,
Italy, 2002. Available at http://www.cs.unipr.it/Publications/.

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editors, Proceedings of the Ist CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systems, pages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Politécnica de Madrid, Facultad de Informatica.

[BHZ03a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, editors, Proceedings of
the 3rd Workshop on Automated Verification of Critical Systems, pages 161-176, Southampton, UK,
2003. Published as TR Number DSSE-TR-2003-2, University of Southampton.

[BHZ03b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In
B. Steffen and G. Levi, editors, Verification, Model Checking and Abstract Interpretation: Proceed-
ings of the 5th International Conference (VMCAI 2004), volume 2937 of Lecture Notes in Computer
Science, pages 135-148, Venice, Italy, 2003. Springer-Verlag, Berlin.

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains.
Quaderno 349, Dipartimento di Matematica, Universita di Parma, Italy, 2004. Available at
http://www.cs.unipr.it/Publications/.

[BHZ05] R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex polyhedra and the
double description method. Formal Aspects of Computing, 17(2):222-257, 2005.

[BHZ06a] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification of hardware and
software systems. Quaderno 457, Dipartimento di Matematica, Universita di Parma, Italy,
2006. Available at http://www.cs.unipr.it/Publications/. Also published as
arXiv:cs.MS/0612085, available from http://arxiv.org/.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://arxiv.org/
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/ppl/

1.14 Bibliography 34

[BHZ06b] R.Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. Software
Tools for Technology Transfer, 8(4/5):449-466, 2006. In the printed version of this article, all the
figures have been improperly printed (rendering them useless). See [BHZ07c].

[BHZ07a] R.Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations to the anal-
ysis and verification of hardware and software systems. Quaderno 458, Dipartimento di Matematica,
Universita di Parma, Italy, 2007. Available at http://www.cs.unipr.it/Publications/.
Also published as arXiv:cs.CG/0701122, available from http://arxiv.org/.

[BHZ07b] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm for in-
teger octagonal constraints. Quaderno 467, Dipartimento di Matematica, Universita di Parma,
Italy, 2007. Available at http://www.cs.unipr.it/Publications/. Also published as
arXiv:0705.4618v2 [cs.DS], available from http://arxiv.org/.

[BHZ07c] R.Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. Software
Tools for Technology Transfer, 9(3/4):413-414,2007. Erratum to [BHZ06b] containing all the figures
properly printed.

[BHZ08a] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight closure algorithm for integer oc-
tagonal constraints. In F. Logozzo, D. Peled, and L. Zuck, editors, Verification, Model Checking and
Abstract Interpretation: Proceedings of the 9th International Conference (VMCAI 2008), volume
4905 of Lecture Notes in Computer Science, pages 8-21, San Francisco, USA, 2008. Springer-
Verlag, Berlin.

[BHZ08b] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1-2):3-21, 2008.

[BHZ09a] R. Bagnara, P. M. Hill, and E. Zaffanella. Applications of polyhedral computations to the
analysis and verification of hardware and software systems. Theoretical Computer Science, 2009.
To appear.

[BHZ09b] R. Bagnara, P. M. Hill, and E. Zaffanella. Exact join detection for convex polyhedra and
other numerical abstractions. Quaderno 492, Dipartimento di Matematica, Universita di Parma,
Italy, 2009. Available at http://www.cs.unipr.it/Publications/. Also published as
arXiv:cs.CG/0904.1783, available from http://arxiv.org/.

[BHZ09c] R. Bagnara, P. M. Hill, and E. Zaffanella. Weakly-relational shapes for numeric abstractions:
Improved algorithms and proofs of correctness. Submitted for publication, 2009.

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Filé, editors, Static Analysis: Proceedings of the 6th International Symposium,
volume 1694 of Lecture Notes in Computer Science, pages 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BK89] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in par-
allelism enhancing transformations. In B. Knobe, editor, Proceedings of the ACM SIGPLAN’89
Conference on Programming Language Design and Implementation (PLDI), volume 24(7) of ACM
SIGPLAN Notices, pages 41-53, Portland, Oregon, USA, 1989. ACM Press.

[BRZHO02a] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, editors, Static Analysis: Pro-
ceedings of the 9th International Symposium, volume 2477 of Lecture Notes in Computer Science,
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZHO02b] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Universita di Parma, Italy,
2002. See also [BRZHO02c]. Available at http://www.cs.unipr.it/Publications/.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/Publications/
http://arxiv.org/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/ppl/

1.14 Bibliography 35

[BRZHO02c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286”. Available at http://www.cs.unipr.it/Publications/, 2002. See [BRZHO02b].

[CC76] P.Cousot and R. Cousot. Static determination of dynamic properties of programs. In B. Robinet,
editor, Proceedings of the Second International Symposium on Programming, pages 106-130, Paris,
France, 1976. Dunod, Paris, France.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proceedings of
the Sixth Annual ACM Symposium on Principles of Programming Languages, pages 269-282, New
York, 1979. ACM Press.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors, Proceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programming, volume
631 of Lecture Notes in Computer Science, pages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equations. U.S.S.R. Computational Mathematics and Mathematical Physics, 4(4):151-
158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities. U.S.S.R. Computational Mathematics and Mathematical Physics,
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem. U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282-293, 1968.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and
Y. Manoussakis, editors, Combinatorics and Computer Science, Sth Franco-Japanese and 4th
Franco-Chinese Conference, Brest, France, July 3-5, 1995, Selected Papers, volume 1120 of Lecture
Notes in Computer Science, pages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral ~ computation FAQ. Swiss Federal Insti-
tute of Technology, Lausanne and Zurich, Switzerland, available at
http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaqg.html, 1998.

[GDD* 04] D. Gopan, F. DiMaio, N. Dor, T. W. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004, volume 2988 of Lecture Notes in
Computer Science, pages 512-529, Barcelona, Spain, 2004. Springer-Verlag, Berlin.

[GJ00] E. Gawrilow and M. Joswig. polymake: A framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editors, Polytopes - Combinatorics and Computation, pages 43-74.
Birkhiuser, 2000.

[GJ01] E. Gawrilow and M. Joswig. polymake: An approach to modular software design in computa-
tional geometry. In Proceedings of the 17th Annual Symposium on Computational Geometry, pages
222-231, Medford, MA, USA, 2001. ACM.

[GR77] D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm. Mathematical Proram-
ming, 12(1):361-371, 1977.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html
http://www.cs.unipr.it/ppl/

1.14 Bibliography 36

[Gra91] P. Granger. Static analysis of linear congruence equalities among variables of a program. In
S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91: Proceedings of the International Joint
Conference on Theory and Practice of Software Development, Volume 1: Colloquium on Trees in
Algebra and Programming (CAAP’91), volume 493 of Lecture Notes in Computer Science, pages
169-192, Brighton, UK, 1991. Springer-Verlag, Berlin.

[Gra97] P. Granger. Static analyses of congruence properties on rational numbers (extended abstract). In
P. Van Hentenryck, editor, Static Analysis: Proceedings of the 4th International Symposium, volume
1302 of Lecture Notes in Computer Science, pages 278-292, Paris, France, 1997. Springer-Verlag,
Berlin.

[Hal79] N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par les Variables
d’un Programme. These de 3¢me cycle d’informatique, Université scientifique et médicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor, Computer
Aided Verification: Proceedings of the 5th International Conference, volume 697 of Lecture Notes
in Computer Science, pages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II, volume 999 of
Lecture Notes in Computer Science, pages 252-264. Springer-Verlag, Berlin, 1995.

[HHL90] L. Huelsbergen, D. Hahn, and J. Larus. Exact dependence analysis using data access descrip-
tors. Technical Report 945, Department of Computer Science, University of Wisconsin, Madison,
1990.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. Proy. POLyhedra INtegrated Environment. Verimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interne 830, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HMT71] L. Henkin,J. D. Monk, and A. Tarski. Cylindric Algebras: Part I. North-Holland, Amsterdam,
1971.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, editor, Static Analysis: Proceedings of the Ist Inter-
national Symposium, volume 864 of Lecture Notes in Computer Science, pages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design, 11(2):157-185, 1997.

[HPWTO01] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Control, pages 2887-2892. IEEE
Computer Society Press, 2001.

[Jea02] B. Jeannet. Convex Polyhedra Library, release 1.1.3¢ edition,
March 2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html.

[JMSY94] 1J. Jaffar, M. J. Mabher, P. J. Stuckey, and R. H. C. Yap. Beyond finite domains. In A. Borning,
editor, Principles and Practice of Constraint Programming: Proceedings of the Second International
Workshop, volume 874 of Lecture Notes in Computer Science, pages 86-94, Rosario, Orcas Island,
Washington, USA, 1994. Springer-Verlag, Berlin.

[KBB+ 06] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices of
a polyhedron is hard. Discrete and Computational Geometry, 2006. Invited contribution. To appear.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html
http://www.cs.unipr.it/ppl/

1.14 Bibliography 37

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequalities. American Math-
ematical Monthly, 63:217-232, 1956.

[LeV92] H. Le Verge. A note on Chernikova’s algorithm. Publication interne 635, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/~loechner/polylib/, March 1999. Declares itself to be
a continuation of [Wil93].

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their vertices. International Journal
of Parallel Programming, 25(6):525-549, 1997.

[Mas92] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences.
In Proceedings of the 6th ACM International Conference on Supercomputing, pages 226-235, Wash-
ington, DC, USA, 1992. ACM Press.

[Mas93] F. Masdupuy. Array Indices Relational Semantic Analysis Using Rational Cosets and Trape-
zoids. These d’informatique, Ecole Polytechnique, Palaiseau, France, December 1993.

[Min0la] A. Miné. A new numerical abstract domain based on difference-bound matrices. In O. Danvy
and A. Filinski, editors, Proceedings of the 2nd Symposium on Programs as Data Objects (PADO
2001), volume 2053 of Lecture Notes in Computer Science, pages 155-172, Aarhus, Denmark, 2001.
Springer-Verlag, Berlin.

[Min01b] A. Miné. The octagon abstract domain. In Proceedings of the Eighth Working Conference
on Reverse Engineering (WCRE’01), pages 310-319, Stuttgart, Germany, 2001. IEEE Computer
Society Press.

[Min02] A. Miné. A few graph-based relational numerical abstract domains. In M. V. Hermenegildo and
G. Puebla, editors, Static Analysis: Proceedings of the 9th International Symposium, volume 2477 of
Lecture Notes in Computer Science, pages 117-132, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[Min04] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In
D. Schmidt, editor, Programming Languages and Systems: Proceedings of the 13th European
Symposium on Programming, volume 2986 of Lecture Notes in Computer Science, pages 3-17,
Barcelona, Spain, 2004. Springer-Verlag, Berlin.

[Min05] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, Ecole Polytechnique,
Paris, France, March 2005.

[MRTTS53] T.S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games - Volume II, num-
ber 28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

[NFO1] T. Nakanishi and A. Fukuda. Modulo interval arithmetic and its application to program analysis.
Transactions of Information Processing Society of Japan, 42(4):829-837, 2001.

[NJPF99] T. Nakanishi, K. Joe, C. D. Polychronopoulos, and A. Fukuda. The modulo interval: A sim-
ple and practical representation for program analysis. In Proceedings of the 1999 International
Conference on Parallel Architectures and Compilation Techniques, pages 91-96, Newport Beach,
California, USA, 1999. IEEE Computer Society.

[NO77] G. Nelson and D. C. Oppen. Fast decision algorithms based on Union and Find. In Proceedings
of the 18th Annual Symposium on Foundations of Computer Science (FOCS’77), pages 114-119,
Providence, RI, USA, 1977. IEEE Computer Society Press. The journal version of this paper is
[NOS8O].

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://icps.u-strasbg.fr/~loechner/polylib/
http://www.cs.unipr.it/ppl/

1.14 Bibliography 38

[NO80] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. Journal of
the ACM, 27(2):356-364, 1980. An earlier version of this paper is [NO77].

[NROO] S.P. K. Nookala and T. Risset. A library for Z-polyhedral operations. Publication interne 1330,
IRISA, Campus de Beaulieu, Rennes, France, 2000.

[NW88] G.L.Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Pra77] V. R. Pratt. Two easy theories whose combination is hard. Memo sent to Nelson and Oppen
concerning a preprint of their paper [NO77], September 1977.

[PS98] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Dover Publications, second edition, 1998.

[QRRI96] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra. Technical Report
1016, IRISA, Campus Universitaire de Bealieu, Rennes, France, July 1996.

[QRRY7] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra using a canonic repre-
sentation. Parallel Processing Letters, 7(2):181-194, 1997.

[QRWO00] F. Quilleré, S. V. Rajopadhye, and D. Wilde. Generation of efficient nested loops from polyhe-
dra. International Journal of Parallel Programming, 28(5):469-498, 2000.

[RBLO6] T. W. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from low-level
code. In J. Hatcliff and F. Tip, editors, Proceedings of the 2006 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, pages 100-111, Charleston, South Car-
olina, USA, 2006. ACM Press.

[Ric02] E. Ricci. Rappresentazione e manipolazione di poliedri convessi per 1’analisi e la verifica di
programmi. Laurea dissertation, University of Parma, Parma, Italy, July 2002. In Italian.

[Sch99] A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, 1999.

[Sho81] R. E. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM,
28(4):769-779, 1981.

[SKO07] A. Simon and A. King. Taming the wrapping of integer arithmetic. In H. Riis Nielson and G. Filé,
editors, Static Analysis: Proceedings of the 14th International Symposium, volume 4634 of Lecture
Notes in Computer Science, pages 121-136, Kongens Lyngby, Denmark, 2007. Springer-Verlag,
Berlin.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraints. Annals of Mathematics and Artificial Intelligence, 8(3-4):315-343, 1993.

[SS07] R. Sen and Y. N. Srikant. Executable analysis using abstract interpretation with circular linear
progressions. In Proceedings of the 5th IEEE/ACM International Conference on Formal Methods
and Models for Co-Design (MEMOCODE 2007), pages 39-48, Nice, France, 2007. IEEE Computer
Society Press.

[SW70] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I. Springer-Verlag,
Berlin, 1970.

[War03] H. S. Warren, Jr. Hacker’s Delight. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

[Wey35] H. Weyl. Elementare theorie der konvexen polyeder. Commentarii Mathematici Helvetici,
7:290-306, 1935. English translation in [Wey50].

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 39

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, editor, Contributions to
the Theory of Games - Volume I, number 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated from [Wey35] by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRISA Publication interne 785, Rennes,
France, 1993.

2 GNU General Public License

Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program--to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to
the recipients the same freedoms that you received. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed,
so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://fsf.org/
http://www.cs.unipr.it/ppl/

2 GNU General Public License 40

avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version™ of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized stan-
dards body, or, in the case of interfaces specified for a particular programming language, one that is widely
used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 41

are not part of the work. For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevo-
cable provided the stated conditions are met. This License explicitly affirms your unlimited permission to
run the unmodified Program. The output from running a covered work is covered by this License only if
the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works for you must do so exclusively on
your behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicens-
ing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 42

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

¢ a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

* b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to “keep
intact all notices”.

* ¢) You must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission
if you have separately received it.

* d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

* a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customar-
ily used for software interchange.

* b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

* ¢) Convey individual copies of the object code with a copy of the written offer to provide the Cor-
responding Source. This alternative is allowed only occasionally and noncommercially, and only if
you received the object code with such an offer, in accord with subsection 6b.

» d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 43

be on a different server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the Corresponding
Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

* ¢) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as
a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for incor-
poration into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modifica-
tion has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must
be in a format that is publicly documented (and with an implementation available to the public in source
code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 44

in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

¢ a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

* b) Requiring preservation of specified reasonable legal notices or author attributions in that material
or in the Appropriate Legal Notices displayed by works containing it; or

¢ ¢) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or

* d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

* ¢) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

« f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of sec-
tion 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by
this License along with a term that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that the further restriction
does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 45

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets
of one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent li-
cense for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowl-

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 46

edge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party based
on the extent of your activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms
that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely from conveying
the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this License will continue to apply to the part
which is the covered work, but the special requirements of the GNU Affero General Public License, section
13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 47

can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 48

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive
mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public
License. Of course, your program’s commands might be different; for a GUI interface, you would use an
“about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU Lesser General Public License instead of
this License. But first, please read http: //www.gnu.org/philosophy/why-not-lgpl.html.

3 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 49

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates X YZ in another language. (Here XYZ stands for

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 50

a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

* A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

* B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 51

Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

« C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
* D. Preserve all the copyright notices of the Document.
* E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

* F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

* G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

* H. Include an unaltered copy of this License.

¢ L. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

* J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

* K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

e L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

e M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

* N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

* O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 52

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 Deprecated List 53

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with... Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

4 Deprecated List

Member Parma_Polyhedra_Library::BD_Shape::add_congruence_and_minimize(const Congruence &cg)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::BD_Shape::add_congruences_and_minimize(const Congruence_System &cgs)
See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/
http://www.cs.unipr.it/ppl/

4 Deprecated List 54

Member Parma_Polyhedra_Library::BD_Shape::add_constraint_and_minimize(const Constraint &c)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::BD_Shape::add_constraints_and_minimize(const Constraint_System &cs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::BD_Shape::add_recycled_congruences_and_minimize(Congruence_System &cgs
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::BD_Shape::add_recycled_constraints_and_minimize(Constraint_System &cs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::BD_Shape::intersection_assign_and_minimize(const BD_Shape &y)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::BD_Shape::upper_bound_assign_and_minimize(const BD_Shape &y)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::add_congruence_and_minimize(const Congruence &c)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::add_congruences_and_minimize(const Congruence_System &cgs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::add_constraint_and_minimize(const Constraint &c)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::add_constraints_and_minimize(const Constraint_System &cs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::add_grid_generator_and_minimize(const Grid_Generator &g)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::add_grid_generators_and_minimize(const Grid_Generator_System &gs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::add_recycled_congruences_and_minimize(Congruence_System &cgs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::add_recycled_constraints_and_minimize(Constraint_System &cs)
See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 Deprecated List 55

Member Parma_Polyhedra_Library::Grid::add_recycled_grid_generators_and_minimize(Grid_Generator_System &g
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::intersection_assign_and_minimize(const Grid &y)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Grid::upper_bound_assign_and_minimize(const Grid &y)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Pointset_Powerset::add_congruence_and_minimize(const Congruence &c)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Pointset_Powerset::add_congruences_and_minimize(const Congruence_System ¢
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Pointset_Powerset::add_constraint_and_minimize(const Constraint &c)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Pointset_Powerset::add_constraints_and_minimize(const Constraint_System &c:
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Pointset_Powerset::intersection_assign_and_minimize(const Pointset_Powerset &
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::add_congruence_and_minimize(const Congruence &cg)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::add_congruences_and_minimize(const Congruence_System &cgs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::add_constraint_and_minimize(const Constraint &c)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::add_constraints_and_minimize(const Constraint_System &cs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::add_generator_and_minimize(const Generator &g)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::add_generators_and_minimize(const Generator_System &gs)
See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

5 Module Index 56

Member Parma_Polyhedra_Library::Polyhedron::add_recycled_congruences_and_minimize(Congruence_System &cg
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints_and_minimize(Constraint_System &cs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::add_recycled_generators_and_minimize(Generator_System &gs)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::intersection_assign_and_minimize(const Polyhedron &y)
See A Note on the Implementation of the Operators.

Member Parma_Polyhedra_Library::Polyhedron::poly_hull_assign_and_minimize(const Polyhedron &y)
See A Note on the Implementation of the Operators.

5 Module Index

5.1 Modules

Here is a list of all modules:

C++ Language Interface 60

6 Namespace Index

6.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:
Parma_Polyhedra_Library (The entire library is confined to this namespace) 69

Parma_Polyhedra_Library::10_Operators (All input/output operators are confined to this
namespace) 76

std (The standard C++ namespace) 77

7 Class Index

7.1 Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
Parma_Polyhedra_Library::BD_Shape< T > 78

Parma_Polyhedra_Library::BHRZ03_Certificate 110

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Class Hierarchy 57

Parma_Polyhedra_Library::Box< ITV > 111
Parma_Polyhedra_Library::Checked_Number< T, Policy > 145
Parma_Polyhedra_Library::Variable::Compare 162
Parma_Polyhedra_Library::BHRZ03_Certificate:: Compare 162
Parma_Polyhedra_Library::H79_Certificate::Compare 162
Parma_Polyhedra_Library::Grid_Certificate::Compare 163
Parma_Polyhedra_Library::Congruence 163
Parma_Polyhedra_Library::Congruence_System 170
Parma_Polyhedra_Library::Constraint_System::const_iterator 174
Parma_Polyhedra_Library::Generator_System::const_iterator 175

Parma_Polyhedra_Library::Grid_Generator_System::const_iterator 178
Parma_Polyhedra_Library::Congruence_System::const_iterator 177
Parma_Polyhedra_Library::Constraint 179
Parma_Polyhedra_Library::Constraint_System 188
Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > 191
Parma_Polyhedra_Library::Determinate< PSET > 192
Parma_Polyhedra_Library::Domain_Product< D1, D2 > 194
Parma_Polyhedra_Library::From_Covering_Box 195
Parma_Polyhedra_Library::Generator 195

Parma_Polyhedra_Library::Grid_Generator 251
Parma_Polyhedra_Library::Generator_System 206

Parma_Polyhedra_Library::Grid_Generator_System 258
Parma_Polyhedra_Library::GMP_Integer 210
Parma_Polyhedra_Library::Grid 211
Parma_Polyhedra_Library::Grid_Certificate 250
Parma_Polyhedra_Library::H79_Certificate 262
Parma_Polyhedra_Library::Interval< Boundary, Info > 264
Parma_Polyhedra_Library::Is_Checked< T > 267
Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > > 267

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8 Class Index 58

Parma_Polyhedra_Library::Is_Native_Or_Checked< T > 268
Parma_Polyhedra_Library::Linear_Expression 268
Parma_Polyhedra_Library::MIP_Problem 276
Parma_Polyhedra_Library::No_Reduction< D1, D2 > 290
Parma_Polyhedra_Library::Octagonal_Shape< T > 291
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > 319
Parma_Polyhedra_Library::Poly_Con_Relation 376
Parma_Polyhedra_Library::Poly_Gen_Relation 377
Parma_Polyhedra_Library::Polyhedron 378
Parma_Polyhedra_Library::C_Polyhedron 139
Parma_Polyhedra_Library::NNC_Polyhedron 285
Parma_Polyhedra_Library::Powerset< D > 414
Parma_Polyhedra_Library::Powerset< Parma_Polyhedra_Library::Determinate< PSET >
> 414
Parma_Polyhedra_Library::Pointset_Powerset< PSET > 347
Parma_Polyhedra_Library::Recycle_Input 420
Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > 420
Parma_Polyhedra_Library::Throwable 421
Parma_Polyhedra_Library::Variable 422
Parma_Polyhedra_Library::Variables_Set 424

8 Class Index

8.1 C(lass List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma_Polyhedra_Library::BD_Shape< T > (A bounded difference shape) 78
Parma_Polyhedra_Library::BHRZ03_Certificate (The convergence certificate for the
BHRZ03 widening operator) 110
Parma_Polyhedra_Library::Box< ITV > (A not necessarily closed, iso-oriented hyperrect-
angle) 111
Parma_Polyhedra_Library::C_Polyhedron (A closed convex polyhedron) 139

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 Class List 59

Parma_Polyhedra_Library::Checked_Number< T, Policy > (A wrapper for numeric types

implementing a given policy) 145

Parma_Polyhedra_Library::Variable::Compare (Binary predicate defining the total ordering

on variables)

Parma_Polyhedra_Library::

certificates)

Parma_Polyhedra_Library::

)

Parma_Polyhedra_Library::

cates)

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

Parma_Polyhedra_Library::

constraints)

Parma_Polyhedra_Library::

generators)

Parma_Polyhedra_Library::

of congruences)

Parma_Polyhedra_Library::

tem of grid generators)

Parma_Polyhedra_Library::

Parma_Polyhedra_Library::

Parma_Polyhedra_Library

duction method for the Constraints_Product domain)

Parma_Polyhedra_Library

constraint system interface)

Parma_Polyhedra_Library

162

BHRZ03_Certificate::Compare (A total ordering on BHRZ03
162

H79_Certificate::Compare (A total ordering on H79 certificates
162

Grid_Certificate::Compare (A total ordering on Grid certifi-
163

Congruence (A linear congruence) 163

Congruence_System (A system of congruences) 170

Constraint_System::const_iterator (An iterator over a system of
174

Generator_System::const_iterator (An iterator over a system of
175

Congruence_System::const_iterator (An iterator over a system
177

Grid_Generator_System::const_iterator (An iterator over a sys-
178

Constraint (A linear equality or inequality) 179

Constraint_System (A system of constraints) 188

::Constraints_Reduction< D1, D2 > (This class provides the re-
191

::Determinate< PSET > (Wraps a PPL class into a determinate
192

::Domain_Product< D1, D2 > (This class is temporary and will

be removed when template typedefs will be supported in C++) 194
Parma_Polyhedra_Library::From_Covering_Box (A tag class) 195
Parma_Polyhedra_Library::Generator (A line, ray, point or closure point) 195
Parma_Polyhedra_Library::Generator_System (A system of generators) 206
Parma_Polyhedra_Library::GMP_Integer (Unbounded integers as provided by the GMP li-

brary) 210
Parma_Polyhedra_Library::Grid (A grid) 211

Parma_Polyhedra_Library
widening operator)

::Grid_Certificate (The convergence certificate for the Grid
250

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 Class List 60

Parma_Polyhedra_Library::Grid_Generator (A grid line, parameter or grid point) 251
Parma_Polyhedra_Library::Grid_Generator_System (A system of grid generators) 258
Parma_Polyhedra_Library::H79_Certificate (A convergence certificate for the H79 widening
operator) 262
Parma_Polyhedra_Library::Interval< Boundary, Info > (A generic, not necessarily closed,
possibly restricted interval) 264
Parma_Polyhedra_Library::Is_Checked< T > 267
Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > > 267
Parma_Polyhedra_Library::Is_Native_Or_Checked< T > 268
Parma_Polyhedra_Library::Linear_Expression (A linear expression) 268

Parma_Polyhedra_Library::MIP_Problem (A Mixed Integer (linear) Programming problem
) 276

Parma_Polyhedra_Library::NNC_Polyhedron (A not necessarily closed convex polyhedron)285

Parma_Polyhedra_Library::No_Reduction< D1, D2 > (This class provides the reduction
method for the Direct_Product domain) 290

Parma_Polyhedra_Library::Octagonal_Shape< T > (An octagonal shape) 291

Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > (The partially re-
duced product of two abstractions) 319

Parma_Polyhedra_Library::Pointset_Powerset< PSET > (The powerset construction instan-
tiated on PPL pointset domains) 347

Parma_Polyhedra_Library::Poly_Con_Relation (The relation between a polyhedron and a
constraint) 376

Parma_Polyhedra_Library::Poly_Gen_Relation (The relation between a polyhedron and a

generator) 377
Parma_Polyhedra_Library::Polyhedron (The base class for convex polyhedra) 378
Parma_Polyhedra_Library::Powerset< D > (The powerset construction on a base-level do-

main) 414
Parma_Polyhedra_Library::Recycle_Input (A tag class) 420
Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > (This class provides the reduction

method for the Smash_Product domain) 420
Parma_Polyhedra_Library::Throwable (User objects the PPL can throw) 421
Parma_Polyhedra_Library::Variable (A dimension of the vector space) 422
Parma_Polyhedra_Library::Variables_Set (An std::set of variables’ indexes) 424

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9 Module Documentation 61

9 Module Documentation

9.1

C++ Language Interface

The core implementation of the Parma Polyhedra Library is written in C++.

Classes

struct Parma_Polyhedra_Library::Is_Checked< T >

struct Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > >
struct Parma_Polyhedra_Library::Is_Native_Or_Checked< T >

class Parma_Polyhedra_Library::Checked_Number< T, Policy >

A wrapper for numeric types implementing a given policy.

class Parma_Polyhedra_Library::Throwable
User objects the PPL can throw.

struct Parma_Polyhedra_Library::From_Covering_Box

A tag class.

struct Parma_Polyhedra_Library::Recycle_Input

A tag class.

class Parma_Polyhedra_Library::Variable

A dimension of the vector space.

struct Parma_Polyhedra_Library::Variable::Compare

Binary predicate defining the total ordering on variables.

class Parma_Polyhedra_Library::Linear_Expression

A linear expression.

class Parma_Polyhedra_Library::Constraint_System

A system of constraints.

class Parma_Polyhedra_Library::Constraint_System::const_iterator

An iterator over a system of constraints.

class Parma_Polyhedra_Library::Constraint

A linear equality or inequality.

class Parma_Polyhedra_Library::Poly_Con_Relation

The relation between a polyhedron and a constraint.

class Parma_Polyhedra_Library::Generator_System

A system of generators.

class Parma_Polyhedra_Library::Generator_System::const_iterator

An iterator over a system of generators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 C++ Language Interface

62

e class Parma_Polyhedra_Library::Generator

A line, ray, point or closure point.

¢ class Parma_Polyhedra_Library::Congruence_System

A system of congruences.

e class Parma_Polyhedra_Library::Congruence_System::const_iterator

An iterator over a system of congruences.

e class Parma_Polyhedra_Library::Congruence

A linear congruence.

* class Parma_Polyhedra_Library::Grid_Generator_System

A system of grid generators.

e class Parma_Polyhedra_Library::Grid_Generator_System::const_iterator

An iterator over a system of grid generators.

¢ class Parma_Polyhedra_Library::Grid_Generator

A grid line, parameter or grid point.

¢ class Parma_Polyhedra_Library::BHRZ03_Certificate

The convergence certificate for the BHRZ03 widening operator.

* struct Parma_Polyhedra_Library::BHRZ03_Certificate::Compare
A total ordering on BHRZ03 certificates.

¢ class Parma_Polyhedra_Library::H79_Certificate

A convergence certificate for the H79 widening operator.

e struct Parma_Polyhedra_Library::H79_Certificate::Compare

A total ordering on H79 certificates.

e class Parma_Polyhedra_Library::Poly_Gen_Relation

The relation between a polyhedron and a generator.

¢ class Parma_Polyhedra_Library::Polyhedron

The base class for convex polyhedra.

e class Parma_Polyhedra_Library::MIP_Problem

A Mixed Integer (linear) Programming problem.

e class Parma_Polyhedra_Library::Grid_Certificate

The convergence certificate for the Grid widening operator.

* class Parma_Polyhedra_Library::C_Polyhedron

A closed convex polyhedron.

* class Parma_Polyhedra_Library::NNC_Polyhedron

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 C++ Language Interface

A not necessarily closed convex polyhedron.

e class Parma_Polyhedra_Library::Grid
A grid.

¢ class Parma_Polyhedra_Library::Interval< Boundary, Info >

A generic, not necessarily closed, possibly restricted interval.

* class Parma_Polyhedra_Library::Box< ITV >

A not necessarily closed, iso-oriented hyperrectangle.

* class Parma_Polyhedra_Library::BD_Shape< T >
A bounded difference shape.

¢ class Parma_Polyhedra_Library::Octagonal_Shape< T >

An octagonal shape.

e class Parma_Polyhedra_Library::Smash_Reduction< D1, D2 >

This class provides the reduction method for the Smash_Product domain.

* class Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 >

This class provides the reduction method for the Constraints_Product domain.

e class Parma_Polyhedra_Library::No_Reduction< D1, D2 >

This class provides the reduction method for the Direct_Product domain.

e class Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >

The partially reduced product of two abstractions.

* class Parma_Polyhedra_Library::Determinate< PSET >

Wraps a PPL class into a determinate constraint system interface.

e class Parma_Polyhedra_Library::Powerset< D >

The powerset construction on a base-level domain.

e class Parma_Polyhedra_Library::Pointset_Powerset< PSET >

The powerset construction instantiated on PPL pointset domains.

* class Parma_Polyhedra_Library::GMP_Integer
Unbounded integers as provided by the GMP library.

Namespaces

* namespace Parma_Polyhedra_Library::10_Operators

All input/output operators are confined to this namespace.

* namespace std

The standard C++ namespace.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 C++ Language Interface 64

Defines

#define PPL_VERSION_MAJOR 0

The major number of the PPL version.

#define PPL_VERSION_MINOR 10

The minor number of the PPL version.

#define PPL_VERSION_REVISION 2

The revision number of the PPL version.

#define PPL_VERSION_BETA 0

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

#define PPL_VERSION "0.10.2"

A string containing the PPL version.

Typedefs

typedef size_t Parma_Polyhedra_Library::dimension_type

An unsigned integral type for representing space dimensions.

typedef size_t Parma_Polyhedra_Library::memory_size_type

An unsigned integral type for representing memory size in bytes.

typedef PPL_COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient
An alias for easily naming the type of PPL coefficients.

Enumerations

enum Parma_Polyhedra_Library::Result {

Parma_Polyhedra_Library::VC_NORMAL, Parma_Polyhedra_Library::V_LT, Parma_Polyhedra_-
Library::V_GT, Parma_Polyhedra_Library::V_EQ,

Parma_Polyhedra_Library::V_NE, Parma_Polyhedra_Library::V_LE, Parma_Polyhedra_-
Library::V_GE, Parma_Polyhedra_Library::V_LGE,
Parma_Polyhedra_Library::VC_MINUS_INFINITY, Parma_Polyhedra_Library::V_NEG_-
OVERFLOW, Parma_Polyhedra_Library::VC_PLUS_INFINITY, Parma_Polyhedra_Library::V_-
POS_OVERFLOW,

Parma_Polyhedra_Library::VC_NAN, Parma_Polyhedra_Library::V_CVT_STR_UNK, Parma_-
Polyhedra_Library::V_DIV_ZERO, Parma_Polyhedra_Library::V_INF_ADD_INF,
Parma_Polyhedra_Library::V_INF_DIV_INF, Parma_Polyhedra_Library::V_INF_MOD, Parma_-
Polyhedra_Library::V_INF_MUL_ZERO, Parma_Polyhedra_Library::V_INF_SUB_INF,
Parma_Polyhedra_Library::V_MOD_ZERO, Parma_Polyhedra_Library::V_SQRT_NEG, Parma_-
Polyhedra_Library::V_UNKNOWN_NEG_OVERFLOW, Parma_Polyhedra_Library::V_-
UNKNOWN_POS_OVERFLOW,

Parma_Polyhedra_Library::V_UNORD_COMP }

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 C++ Language Interface 65

Possible outcomes of a checked arithmetic computation.

enum Parma_Polyhedra_Library::Rounding_Dir { Parma_Polyhedra_Library::ROUND_DOWN,
Parma_Polyhedra_Library::ROUND_UP, Parma_Polyhedra_Library::ROUND_IGNORE , Parma_-
Polyhedra_Library::ROUND_NOT_NEEDED }

Rounding directions for arithmetic computations.

enum Parma_Polyhedra_Library::Degenerate_Element { Parma_Polyhedra_Library::UNIVERSE,
Parma_Polyhedra_Library::EMPTY }

Kinds of degenerate abstract elements.

enum Parma_Polyhedra_Library::Relation_Symbol {

Parma_Polyhedra_Library::LESS_THAN, Parma_Polyhedra_Library::LESS_OR_EQUAL,
Parma_Polyhedra_Library::EQUAL, Parma_Polyhedra_Library:: GREATER_OR_EQUAL,

Parma_Polyhedra_Library:: GREATER_THAN, Parma_Polyhedra_Library::NOT_EQUAL }

Relation symbols.

enum Parma_Polyhedra_Library::Complexity_Class { Parma_Polyhedra_-
Library::POLYNOMIAL_COMPLEXITY, Parma_Polyhedra_Library::SIMPLEX_-
COMPLEXITY, Parma_Polyhedra_Library:: ANY_COMPLEXITY }

Complexity pseudo-classes.

enum Parma_Polyhedra_Library::Optimization_Mode { Parma_Polyhedra_-
Library::MINIMIZATION, Parma_Polyhedra_Library:: MAXIMIZATION }

Possible optimization modes.

enum Parma_Polyhedra_Library::MIP_Problem_Status { Parma_Polyhedra_-
Library::UNFEASIBLE_MIP_PROBLEM, Parma_Polyhedra_Library::UNBOUNDED_MIP_-
PROBLEM, Parma_Polyhedra_Library::OPTIMIZED_MIP_PROBLEM }

Possible outcomes of the MIP_Problem solver.

Variables

* const Throwable *volatile Parma_Polyhedra_Library::abandon_expensive_computations

A pointer to an exception object.

9.1.1 Detailed Description

The core implementation of the Parma Polyhedra Library is written in C++. See Namespace, Hierarchical
and Compound indexes for additional information about each single data type.

9.1.2 Define Documentation

9.1.2.1 #define PPL_VERSION_MAJOR 0

The major number of the PPL version.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 C++ Language Interface 66

9.1.2.2 #define PPL_VERSION_MINOR 10

The minor number of the PPL version.

9.1.2.3 #define PPL_VERSION_REVISION 2

The revision number of the PPL version.

9.1.2.4 #define PPL_VERSION "0.10.2"

A string containing the PPL version. Let M and m denote the numbers associated to PPL_VERSION_-

MAIJOR and PPL_VERSION_MINOR, respectively. The format of PPL_VERSION is M "." m if
both PPL_VERSION_REVISION (r) and PPL_VERSION_BETA (b)are zero, M "." m "pre" b if
PPL_VERSION_REVISION is zero and PPL_VERSION_BETA isnot zerooM "." m "." rif PPL_-
VERSION_REVISION is not zero and PPL_VERSION_BETA is zero,M "." m "." r "pre" bif

neither PPL_VERSION_REVISION nor PPL_VERSION_BETA are zero.

9.1.3 Typedef Documentation

9.1.3.1 typedef size_t Parma_Polyhedra_Library::dimension_type

An unsigned integral type for representing space dimensions.

9.1.3.2 typedef size_t Parma_Polyhedra_Library::memory_size_type

An unsigned integral type for representing memory size in bytes.

9.1.3.3 typedef PPL_COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient

An alias for easily naming the type of PPL coefficients. Objects of type Coefficient are used to implement
the integral valued coefficients occurring in linear expressions, constraints, generators, intervals, bounding
boxes and so on. Depending on the chosen configuration options (see file README . configure), a
Coefficient may actually be:

e The GMP_Integer type, which in turn is an alias for the mpz_class type implemented by the C++
interface of the GMP library (this is the default configuration);

* An instance of the Checked_Number class template: with its default policy (Checked_Number_-
Default_Policy), this implements overflow detection on top of a native integral type (available tem-
plate instances include checked integers having 8, 16, 32 or 64 bits); with the Checked_Number_-
Transparent_Policy, this is a wrapper for native integral types with no overflow detection (available
template instances are as above).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 C++ Language Interface 67

9.1.4 Enumeration Type Documentation

9.1.4.1 enum Parma_Polyhedra_Library::Result

Possible outcomes of a checked arithmetic computation.

Enumerator:

VC_NORMAL Ordinary result class.

V_LT The computed result is inexact and rounded up.

V_GT The computed result is inexact and rounded down.

V_EQ The computed result is exact.

V_NE The computed result is inexact.

V_LE The computed result may be inexact and rounded up.

V_GE The computed result may be inexact and rounded down.
V_LGE The computed result may be inexact.
VC_MINUS_INFINITY Negative infinity unrepresentable result class.
V_NEG_OVERFLOW A negative overflow occurred.
VC_PLUS_INFINITY Positive infinity unrepresentable result class.
V_POS_OVERFLOW A positive overflow occurred.

VC_NAN Not a number result class.

V_CVT_STR_UNK Converting from unknown string.

V_DIV_ZERO Dividing by zero.

V_INF_ADD_INF Adding two infinities having opposite signs.
V_INF_DIV_INF Dividing two infinities.

V_INF_MOD Taking the modulus of an infinity.
V_INF_MUL_ZERO Multiplying an infinity by zero.
V_INF_SUB_INF Subtracting two infinities having the same sign.
V_MOD_ZERO Computing a remainder modulo zero.

V_SQORT _NEG Taking the square root of a negative number.
V_UNKNOWN_NEG_OVERFLOW Unknown result due to intermediate negative overflow.
V_UNKNOWN_POS_OVERFLOW Unknown result due to intermediate positive overflow.
V_UNORD_COMP Unordered comparison.

9.1.4.2 enum Parma_Polyhedra_Library::Rounding_Dir

Rounding directions for arithmetic computations.

Enumerator:

ROUND_DOWN Round toward —oo.

ROUND_UP Round toward +o0.

ROUND_IGNORE Rounding is delegated to lower level. Result info is evaluated lazily.
ROUND_NOT _NEEDED Rounding is not needed: client code must ensure the operation is exact.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 C++ Language Interface 68

9.14.3 enum Parma_Polyhedra_Library::Degenerate_Element

Kinds of degenerate abstract elements.

Enumerator:

UNIVERSE The universe element, i.e., the whole vector space.
EMPTY The empty element, i.e., the empty set.

9.1.4.4 enum Parma_Polyhedra_Library::Relation_Symbol

Relation symbols.

Enumerator:
LESS_THAN Less than.
LESS_OR_EQUAL Less than or equal to.
EQUAL Equal to.
GREATER_OR_EQUAL Greater than or equal to.
GREATER_THAN Greater than.
NOT_EQUAL Not equal to.

9.1.4.5 enum Parma_Polyhedra_Library::Complexity_Class

Complexity pseudo-classes.

Enumerator:

POLYNOMIAL_COMPLEXITY Worst-case polynomial complexity.
SIMPLEX COMPLEXITY Worst-case exponential complexity but typically polynomial behavior.
ANY_COMPLEXITY Any complexity.

9.1.4.6 enum Parma_Polyhedra_Library::Optimization_Mode

Possible optimization modes.

Enumerator:

MINIMIZATION Minimization is requested.
MAXIMIZATION Maximization is requested.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10 Namespace Documentation 69

9.14.7 enum Parma_Polyhedra_Library::MIP_Problem_Status

Possible outcomes of the MIP_Problem solver.

Enumerator:

UNFEASIBLE_MIP_PROBLEM The problem is unfeasible.
UNBOUNDED_MIP_PROBLEM The problem is unbounded.
OPTIMIZED_MIP_PROBLEM The problem has an optimal solution.

9.1.5 Variable Documentation

9.1.5.1 const Throwablex volatile Parma_Polyhedra_Library::abandon_expensive_computations

A pointer to an exception object. This pointer, which is initialized to zero, is repeatedly checked along any
super-linear (i.e., computationally expensive) computation path in the library. When it is found nonzero
the exception it points to is thrown. In other words, making this pointer point to an exception (and leaving
it in this state) ensures that the library will return control to the client application, possibly by throwing the
given exception, within a time that is a linear function of the size of the representation of the biggest object
(powerset of polyhedra, polyhedron, system of constraints or generators) on which the library is operating
upon.

Note:

The only sensible way to assign to this pointer is from within a signal handler or from a parallel thread.
For this reason, the library, apart from ensuring that the pointer is initially set to zero, never assigns to
it. In particular, it does not zero it again when the exception is thrown: it is the client’s responsibility
to do so.

10 Namespace Documentation

10.1 Parma_Polyhedra_Library Namespace Reference

The entire library is confined to this namespace.

Namespaces

* namespace [O_Operators

All input/output operators are confined to this namespace.

Classes

e struct Is_Checked

¢ struct Is_Checked< Checked_Number< T, P > >
e struct Is_Native_Or_Checked

e class Checked_Number

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference

A wrapper for numeric types implementing a given policy.

¢ class Throwable

User objects the PPL can throw.

* struct From_Covering_Box

A tag class.

* struct Recycle_Input

A tag class.

e class Variable

A dimension of the vector space.

* class Linear_Expression

A linear expression.

* class Constraint_System

A system of constraints.

e class Constraint

A linear equality or inequality.

¢ class Poly_Con_Relation

The relation between a polyhedron and a constraint.

* class Generator_System

A system of generators.

¢ class Generator

A line, ray, point or closure point.

¢ class Congruence_System

A system of congruences.

* class Congruence

A linear congruence.

¢ class Grid_Generator_System

A system of grid generators.

¢ class Grid_Generator

A grid line, parameter or grid point.

e class BHRZ03_Certificate

The convergence certificate for the BHRZ03 widening operator.

e class H79_Certificate

A convergence certificate for the H79 widening operator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference

71

* class Poly_Gen_Relation

The relation between a polyhedron and a generator.

¢ class Polyhedron

The base class for convex polyhedra.

e class Variables_Set

An std::set of variables’ indexes.

¢ class MIP_Problem

A Mixed Integer (linear) Programming problem.

¢ class Grid_Certificate

The convergence certificate for the Grid widening operator.

* class C_Polyhedron

A closed convex polyhedron.

e class NNC_Polyhedron

A not necessarily closed convex polyhedron.

e class Grid
A grid.

e class Interval

A generic, not necessarily closed, possibly restricted interval.

¢ class Box

A not necessarily closed, iso-oriented hyperrectangle.

* class BD_Shape
A bounded difference shape.

* class Octagonal_Shape

An octagonal shape.

¢ class Smash_Reduction

This class provides the reduction method for the Smash_Product domain.

e class Constraints_Reduction

This class provides the reduction method for the Constraints_Product domain.

¢ class No_Reduction

This class provides the reduction method for the Direct_Product domain.

e class Partially_Reduced_Product
The partially reduced product of two abstractions.

¢ class Domain_Product

This class is temporary and will be removed when template typedefs will be supported in C++.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 72

e class Determinate

Wraps a PPL class into a determinate constraint system interface.

¢ class Powerset

The powerset construction on a base-level domain.

¢ class Pointset_Powerset

The powerset construction instantiated on PPL pointset domains.

* class GMP_Integer
Unbounded integers as provided by the GMP library.

Typedefs

* typedef size_t dimension_type

An unsigned integral type for representing space dimensions.

* typedef size_t memory_size_type

An unsigned integral type for representing memory size in bytes.

* typedef PPL_COEFFICIENT_TYPE Coefficient
An alias for easily naming the type of PPL coefficients.

Enumerations

e enum Result {
VC_NORMAL, V_LT, V_GT, V_EQ,
V_NE, V_LE, V_GE, V_LGE,
VC_MINUS_INFINITY, V_NEG_OVERFLOW, VC_PLUS_INFINITY, V_POS_OVERFLOW,
VC_NAN, V_CVT_STR_UNK, V_DIV_ZERO, V_INF_ADD_INF,
V_INF_DIV_INF, V_INF_MOD, V_INF_MUL_ZERO, V_INF_SUB_INF,

V_MOD_ZERO, V_SQRT_NEG, V_UNKNOWN_NEG_OVERFLOW, V_UNKNOWN_POS_-
OVERFLOW,

V_UNORD_COMP }

Possible outcomes of a checked arithmetic computation.

e enum Rounding Dir { ROUND_DOWN, ROUND_UP, ROUND_IGNORE , ROUND_NOT_-
NEEDED }

Rounding directions for arithmetic computations.

* enum Degenerate_Element { UNIVERSE, EMPTY }

Kinds of degenerate abstract elements.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 73

* enum Relation_Symbol {
LESS_THAN, LESS_OR_EQUAL, EQUAL, GREATER_OR_EQUAL,
GREATER_THAN, NOT_EQUAL }

Relation symbols.

e enum Complexity_Class { POLYNOMIAL_COMPLEXITY, SIMPLEX COMPLEXITY, ANY_-
COMPLEXITY }

Complexity pseudo-classes.

e enum Optimization_Mode { MINIMIZATION, MAXIMIZATION }

Possible optimization modes.

e enum MIP_Problem_Status { UNFEASIBLE_MIP_PROBLEM, UNBOUNDED_MIP_PROBLEM,
OPTIMIZED_MIP_PROBLEM }

Possible outcomes of the MIP_Problem solver.

Functions

* unsigned version_major ()

Returns the major number of the PPL version.

* unsigned version_minor ()

Returns the minor number of the PPL version.

* unsigned version_revision ()

Returns the revision number of the PPL version.

* unsigned version_beta ()

Returns the beta number of the PPL version.

e const char * version ()

Returns a character string containing the PPL version.

¢ const char * banner ()

Returns a character string containing the PPL banner:

* void set_rounding_for_PPL ()

Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.

* void restore_pre_PPL_rounding ()

Sets the FPU rounding mode as it was before initialization of the PPL.

* void fpu_initialize_control_functions ()

Initializes the FPU control functions.

* fpu_rounding_direction_type fpu_get_rounding_direction ()

Returns the current FPU rounding direction.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 74

* void fpu_set_rounding_direction (fpu_rounding_direction_type dir)

Sets the FPU rounding direction to dir.

 fpu_rounding_control_word_type fpu_save_rounding_direction (fpu_rounding_direction_type dir)

Sets the FPU rounding direction to dir and returns the rounding control word previously in use.

* fpu_rounding_control_word_type fpu_save_rounding_direction_reset_inexact (fpu_rounding_-
direction_type dir)

Sets the FPU rounding direction to dir, clears the inexact computation status, and returns the rounding
control word previously in use.

* void fpu_restore_rounding_direction (fpu_rounding_control_word_type w)

Restores the FPU rounding rounding control word to cw.

* void fpu_reset_inexact ()

Clears the inexact computation status.

* int fpu_check_inexact ()

Queries the inexact computation status.

* Result classify (Result 1)

Extracts the class part of r (normal, minus/plus infinity or nan).

* bool is_special (Result r)

Returns t rue if and only if the class or r is not normal.

* Rounding_Dir inverse (Rounding_Dir dir)

Returns the inverse rounding mode of dir, ROUND_IGNORE being the inverse of itself.

e void initialize ()

Initializes the library.

¢ void finalize ()

Finalizes the library.

 unsigned rational_sqrt_precision_parameter ()

Returns the precision parameter used for rational square root calculations.

¢ void set_rational_sqrt_precision_parameter (const unsigned p)

Sets the precision parameter used for rational square root calculations.

 dimension_type not_a_dimension ()

Returns a value that does not designate a valid dimension.

¢ Coefficient_traits::const_reference Coefficient_zero ()

Returns a const reference to a Coefficient with value 0.

¢ Coefficient_traits::const_reference Coefficient_one ()

Returns a const reference to a Coefficient with value 1.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 75

* unsigned long isqrt (unsigned long x)

Returns the integer square root of x.

 dimension_type max_space_dimension ()

Returns the maximum space dimension this library can handle.

Relational Operators and Comparison Functions

® template<typename T1 , typename T2 >
Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type equal (const T1 &x, const T2 &y)

¢ template<typename T1 , typename T2 >
Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type not_equal (const T1 &x, const T2 &y)

¢ template<typename T1 , typename T2 >
Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type greater_or_equal (const T1 &x, const T2 &y)

¢ template<typename T1 , typename T2 >
Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type greater_than (const T1 &x, const T2 &y)

* template<typename T1 , typename T2 >
Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type less_or_equal (const T1 &x, const T2 &y)

¢ template<typename T1 , typename T2 >
Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value,
bool >::type less_than (const T1 &x, const T2 &y)

Input-Output Operators

¢ template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, void >::itype ascii_dump (std::ostream &s,
const T &t)

Ascii dump for native or checked.

¢ template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, bool >::type ascii_load (std::ostream &s, T &t)

Ascii load for native or checked.

Memory Size Inspection Functions

* template<typename T >
Enable_If< Is_Native< T >::value, memory_size_type >::type total_memory_in_bytes (const
T &)

¢ template<typename T >
Enable_If< Is_Native< T >:value, memory_size_type >:type external_memory_in_bytes
(const T &)

* memory_size_type total_memory_in_bytes (const mpz_class &x)

* memory_size_type external_memory_in_bytes (const mpz_class &x)

* memory_size_type total_memory_in_bytes (const mpq_class &x)

* memory_size_type external_memory_in_bytes (const mpq_class &x)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 76

Variables

* const Throwable svolatile abandon_expensive_computations

A pointer to an exception object.

10.1.1 Detailed Description

The entire library is confined to this namespace.

10.1.2 Function Documentation

10.1.2.1 const charx Parma_Polyhedra_Library::banner ()

Returns a character string containing the PPL banner. The banner provides information about the PPL
version, the licensing, the lack of any warranty whatsoever, the C++ compiler used to build the library,
where to report bugs and where to look for further information.

10.1.2.2 void Parma_Polyhedra_Library::set_rounding_for PPL () [inline]

Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.
This is performed automatically at initialization-time. Calling this function is needed only if restore_pre_-
PPL_rounding() has been previously called.

10.1.2.3 void Parma_Polyhedra_Library::restore_pre_PPL_rounding () [inline]

Sets the FPU rounding mode as it was before initialization of the PPL. After calling this function it is
absolutely necessary to call set_rounding_for_PPL() before using any PPL abstractions based on floating
point numbers. This is performed automatically at finalization-time.

10.1.2.4 int Parma_Polyhedra_Library::fpu_check_inexact () [inline]

Queries the inexact computation status. Returns O if the computation was definitely exact, 1 if it was
definitely inexact, -1 if definite exactness information is unavailable.

10.1.2.5 void Parma_Polyhedra_Library::set_rational_sqrt_precision_parameter (const unsigned
p) [inline]

Sets the precision parameter used for rational square root calculations. The lesser between numerator and
denominator is limited to 2xx*p.

If p is less than or equal to INT_MAX, sets the precision parameter used for rational square root calculations
to p.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::10_Operators Namespace Reference 77

Exceptions:

std::invalid_argument Thrown if p is greater than INT_MAX.

10.2 Parma_Polyhedra_Library::10_Operators Namespace Reference

All input/output operators are confined to this namespace.

Functions

* std::string wrap_string (const std::string &src_string, unsigned indent_depth, unsigned preferred_-
first_line_length, unsigned preferred_line_length)

Utility function for the wrapping of lines of text.

10.2.1 Detailed Description

All input/output operators are confined to this namespace. This is done so that the library’s input/output
operators do not interfere with those the user might want to define. In fact, it is highly unlikely that any
predefined I/O operator will suit the needs of a client application. On the other hand, those applications for
which the PPL I/O operator are enough can easily obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::I0_Operators;
would suffice for most uses. In more complex situations, such as

const Constraint_System& cs = ...;
copy (cs.begin(), cs.end(),
ostream_iterator<Constraint> (cout, "\n"));

the Parma_Polyhedra_Library namespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
// Import all the output operators into the main PPL namespace.
using IO_Operators::operator<<;

}

10.2.2 Function Documentation

10.2.2.1 std::string Parma_Polyhedra_Library::I0_Operators::wrap_string (const std::string
& src_string, unsigned indent_depth, unsigned preferred_first_line_length, unsigned
preferred_line_length)

Utility function for the wrapping of lines of text.

Parameters:

src_string The source string holding the lines to wrap.

indent_depth The indentation depth.

preferred_first_line_length The preferred length for the first line of text.
preferred_line_length The preferred length for all the lines but the first one.

Returns:

The wrapped string.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 std Namespace Reference 78

10.3 std Namespace Reference

The standard C++ namespace.

10.3.1 Detailed Description

The standard C++ namespace. The Parma Polyhedra Library conforms to the C++ standard and, in partic-
ular, as far as reserved names are concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines
several template specializations for the standard library function templates swap () and iter_swap ()
(25.2.2, [lib.alg.swap]), and for the class template numeric_limits (18.2.1, [lib.limits]).

Note:

The PPL provides the specializations of the class template numeric_limits not only for PPL-
specific numeric types, but also for the GMP types mpz_class and mpqg_class. These specializa-
tions will be removed as soon as they will be provided by the C++ interface of GMP.

11 Class Documentation

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference

A bounded difference shape.
#include <ppl.hh>

Public Types

* typedef T coefficient_type_base

The numeric base type upon which bounded differences are built.

* typedef N coefficient_type

The (extended) numeric type of the inhomogeneous term of the inequalities defining a BDS.

Public Member Functions

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xthis.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerr using operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 79

Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

e int32_t hash_code () const

Returns a 32-bit hash code for xthis.

Constructors, Assignment, Swap and Destructor

* BD_Shape (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)

Builds a universe or empty BDS of the specified space dimension.

* BD_Shape (const BD_Shape &y, Complexity_Class complexity=ANY_COMPLEXITY)

Ordinary copy-constructor.

¢ template<typename U >
BD_Shape (const BD_Shape< U > &y, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a conservative, upward approximation of y.

* BD_Shape (const Constraint_System &cs)

Builds a BDS from the system of constraints cs.

* BD_Shape (const Congruence_System &cgs)

Builds a BDS from a system of congruences.

» BD_Shape (const Generator_System &gs)
Builds a BDS from the system of generators gs.

* BD_Shape (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a BDS from the polyhedron ph.

¢ template<typename Interval >
BD_Shape (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)
Builds a BDS out of a box.

» BD_Shape (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a BDS out of a grid.

¢ template<typename U >
BD_Shape (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a BDS from an octagonal shape.

* BD_Shape & operator= (const BD_Shape &y)

The assignment operator (xthis and y can be dimension-incompatible).

* void swap (BD_Shape &y)

Swaps xthis with y (xthis and y can be dimension-incompatible).

* ~BD_Shape ()

Destructor.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 80

Member Functions that Do Not Modify the BD_Shape

dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

dimension_type affine_dimension () const

Returns O, if xt his is empty; otherwise, returns the affine dimension of xthis.

Constraint_System constraints () const

Returns a system of constraints defining xthis.

Constraint_System minimized_constraints () const

Returns a minimized system of constraints defining xthis.

Congruence_System congruences () const

Returns a system of (equality) congruences satisfied by xt his.

Congruence_System minimized_congruences () const

Returns a minimal system of (equality) congruences satisfied by xt his with the same affine dimension
as xthis.

bool bounds_from_above (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded from above in xthis.

bool bounds_from_below (const Linear_Expression &expr) const
Returns t rue if and only if expr is bounded from below in xthis.

bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value is computed.

bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns true if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value and a point where expr reaches it are computed.

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value is computed.

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.

bool contains (const BD_Shape &y) const

Returns t rue if and only if xt his contains y.

bool strictly_contains (const BD_Shape &y) const

Returns t rue if and only if xt hi s strictly contains y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 81

* bool is_disjoint_from (const BD_Shape &y) const

Returns t rue if and only if ¥t his and y are disjoint.

* Poly_Con_Relation relation_with (const Constraint &c) const

Returns the relations holding between xt his and the constraint c.

* Poly_Con_Relation relation_with (const Congruence &cg) const

Returns the relations holding between xt his and the congruence cg.

* Poly_Gen_Relation relation_with (const Generator &g) const

Returns the relations holding between xt his and the generator g.

* bool is_empty () const
Returns t rue if and only if xt his is an empty BDS.

* bool is_universe () const

Returns true if and only if ¥t his is a universe BDS.

* bool is_discrete () const

Returns t rue if and only if xt his is discrete.

* bool is_topologically_closed () const

Returns t rue if and only if xt his is a topologically closed subset of the vector space.

¢ bool is_bounded () const
Returns t rue if and only if ¥t his is a bounded BDS.

* bool contains_integer_point () const

Returns t rue if and only if xt his contains at least one integer point.

* bool constrains (Variable var) const

Returns t rue if and only if var is constrained in xthis.

¢ bool OK () const

Returns t rue if and only if xt hi s satisfies all its invariants.

Space-Dimension Preserving Member Functions that May Modify the BD_Shape

* void add_constraint (const Constraint &c)
Adds a copy of constraint c to the system of bounded differences defining xthis.

¢ bool add_constraint_and_minimize (const Constraint &c)
Adds a copy of constraint c to the system of bounded differences defining xthis.

* void add_congruence (const Congruence &cg)

Adds a copy of congruence cg to the system of congruences of xthis.

* bool add_congruence_and_minimize (const Congruence &cg)

Adds a copy of congruence cg to the system of congruences of xt his, minimizing the result.

* void add_constraints (const Constraint_System &cs)

Adds the constraints in cs to the system of bounded differences defining xt his.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1

Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 82

void add_recycled_constraints (Constraint_System &cs)

Adds the constraints in cs to the system of constraints of xthis.

bool add_constraints_and_minimize (const Constraint_System &cs)

Adds the constraints in cs to the system of bounded differences defining xthis.

bool add_recycled_constraints_and_minimize (Constraint_System &cs)

Adds the constraints in cs to the system of constraints of xt his, minimizing the result.

void add_congruences (const Congruence_System &cgs)
Adds to xt his constraints equivalent to the congruences in cgs.

bool add_congruences_and_minimize (const Congruence_System &cgs)

Behaves as add_congruences(const Congruence_System&), but minimizes the resulting BD shape, re-
turning false if and only if the result is empty.

void add_recycled_congruences (Congruence_System &cgs)
Adds to xt his constraints equivalent to the congruences in cgs.

bool add_recycled_congruences_and_minimize (Congruence_System &cgs)

Behaves as add_recycled_congruences, but minimizes the resulting BD shape, returning false
if and only if the result is empty.

void refine_with_constraint (const Constraint &c)

Uses a copy of constraint c to refine the system of bounded differences defining xthis.

void refine_with_congruence (const Congruence &cg)

Uses a copy of congruence cg to refine the system of bounded differences of xt his.

void refine_with_constraints (const Constraint_System &cs)

Uses a copy of the constraints in cs to refine the system of bounded differences defining xt his.

void refine_with_congruences (const Congruence_System &cgs)

Uses a copy of the congruences in cgs to refine the system of bounded differences defining xthis.

void unconstrain (Variable var)

Computes the cylindrification of xthis with respect to space dimension var, assigning the result to
xthis.

void unconstrain (const Variables_Set &to_be_unconstrained)

Computes the cylindrification of xthis with respect to the set of space dimensions to_be_—
unconstrained, assigning the result to xthis.

void intersection_assign (const BD_Shape &y)

Assigns to xthis the intersection of xthis and y.

bool intersection_assign_and_minimize (const BD_Shape &y)
Assigns to xthis the intersection of xthis and y.

void upper_bound_assign (const BD_Shape &y)

Assigns to xt his the smallest BDS containing the union of xthis and y.

bool upper_bound_assign_and_minimize (const BD_Shape &y)
Assigns to xthis the smallest BDS containing the convex union of xthis and y.

bool upper_bound_assign_if_exact (const BD_Shape &y)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 83

If the upper bound of xthis and y is exact, it is assigned to xthis and true is returned, otherwise
false is returned.

* void difference_assign (const BD_Shape &y)
Assigns to xt his the smallest BD shape containing the set difference of *xthis and y.

* bool simplify_using_context_assign (const BD_Shape &y)

Assigns to xthis a meet-preserving simplification of xt his with respect to y. If false is returned,
then the intersection is empty.

* void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to xthis the affine image of xt his under the function mapping variable var into the affine
expression specified by expr and denominator.

* void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to xt his the affine preimage of xt his under the function mapping variable var into the affine
expression specified by expr and denominator.

* void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

expr

denominator’ where >

Assigns to xt his the image of xt his with respect to the affine relation var’ >
is the relation symbol encoded by relsym.

* void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)
Assigns to xthis the image of xthis with respect to the affine relation 1hs' 1 rhs, where > is the
relation symbol encoded by relsym.

* void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

expr

denominator’ where

Assigns to xt his the preimage of *t his with respect to the affine relation var’ 1<
> is the relation symbol encoded by relsym.

* void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to xt his the preimage of xt his with respect to the affine relation lhs’ > rhs, where < is the
relation symbol encoded by relsym.

* void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xt his the image of xt his with respect to the bounded affine relation % < var’ <

ub_expr
denominator*

* void bounded_affine_preimage (Variable var, const Linear_Expression &Ib_expr, const Linear_-

Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())
1b_expr

Assigns to xthis the preimage of xthis with respect to the bounded affine relation ;>~=>— <

var’ < mo=txb ub_expr
— denominator

* void time_elapse_assign (const BD_Shape &y)

Assigns to xthis the result of computing the time-elapse between xthis and y.

void topological_closure_assign ()

Assigns to xt his its topological closure.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1

Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 84

void CC76_extrapolation_assign (const BD_Shape &y, unsigned *tp=0)
Assigns to xthis the result of computing the CC76-extrapolation between xthis and y.

template <typename Iterator >
void CC76_extrapolation_assign (const BD_Shape &y, Iterator first, Iterator last, unsigned
*tp=0)

Assigns to xt his the result of computing the CC76-extrapolation between xthis and y.

void BHMZO05_widening_assign (const BD_Shape &y, unsigned *tp=0)
Assigns to xthis the result of computing the BHMZ05-widening of *xthis and y.

void limited_BHMZO05_extrapolation_assign (const BD_Shape &y, const Constraint_System
&cs, unsigned *tp=0)
Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of xthis.

void CC76_narrowing_assign (const BD_Shape &y)

Assigns to xthis the result of restoring in y the constraints of xthis that were lost by CC76-
extrapolation applications.

void limited_CC76_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs,
unsigned *tp=0)
Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of xt his.

void H79_widening_assign (const BD_Shape &y, unsigned #tp=0)
Assigns to xt his the result of computing the H79-widening between xthis and y.

void widening_assign (const BD_Shape &y, unsigned xtp=0)
Same as H79_widening_assign(y, tp).

void limited_H79_extrapolation_assign (const BD_Shape &y, const Constraint_System &cs, un-
signed xtp=0)
Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of xthis.

Member Functions that May Modify the Dimension of the Vector Space

* void add_space_dimensions_and_embed (dimension_type m)

Adds m new dimensions and embeds the old BDS into the new space.

void add_space_dimensions_and_project (dimension_type m)
Adds m new dimensions to the BDS and does not embed it in the new vector space.

void concatenate_assign (const BD_Shape &y)
Assigns to xt his the concatenation of xt his and y, taken in this order.

void remove_space_dimensions (const Variables_Set &to_be_removed)
Removes all the specified dimensions.

void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimension new_dimension.

template <typename Partial_Function >
void map_space_dimensions (const Partial_Function &pfunc)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 85

Remaps the dimensions of the vector space according to a partial function.

* void expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

* void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)

Folds the space dimensions in t o_be_foldedinto var.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension that a BDS can handle.

* static bool can_recycle_constraint_systems ()

Returns false indicating that this domain cannot recycle constraints.

* static bool can_recycle_congruence_systems ()

Returns false indicating that this domain cannot recycle congruences.

11.1.1 Detailed Description
template<typename T> class Parma_Polyhedra_Library::BD_Shape< T >

A bounded difference shape. The class template BD_Shape<T> allows for the efficient representation of
a restricted kind of fopologically closed convex polyhedra called bounded difference shapes (BDSs, for
short). The name comes from the fact that the closed affine half-spaces that characterize the polyhedron
can be expressed by constraints of the form +z; < k or z; — x; < k, where the inhomogeneous term & is
a rational number.

Based on the class template type parameter T, a family of extended numbers is built and used to approx-
imate the inhomogeneous term of bounded differences. These extended numbers provide a representation
for the value +o0, as well as rounding-aware implementations for several arithmetic functions. The value
of the type parameter T may be one of the following:

* abounded precision integer type (e.g., int32_t or int64_t);
* a bounded precision floating point type (e.g., f1loat or double);

* an unbounded integer or rational type, as provided by GMP (i.e., mpz_class ormpg_class).

The user interface for BDSs is meant to be as similar as possible to the one developed for the polyhedron
class C_Polyhedron.

The domain of BD shapes optimally supports:

* tautological and inconsistent constraints and congruences;
¢ bounded difference constraints;

* non-proper congruences (i.e., equalities) that are expressible as bounded-difference constraints.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 86

Depending on the method, using a constraint or congruence that is not optimally supported by the domain
will either raise an exception or result in a (possibly non-optimal) upward approximation.

A constraint is a bounded difference if it has the form
Q;T; — a;T; > b

where 1 € {<,=,>} and qa;, a;, b are integer coefficients such that a; = 0, or a; = 0, or a; = a,.
The user is warned that the above bounded difference Constraint object will be mapped into a correct and
optimal approximation that, depending on the expressive power of the chosen template argument T, may
loose some precision. Also note that strict constraints are not bounded differences.

For instance, a Constraint object encoding 3x — 3y < 1 will be approximated by:

e z —y < 1,if T is a (bounded or unbounded) integer type;
e x—y< % if T is the unbounded rational type mpqg_class;

» x —y < k, where k > %, if T is a floating point type (having no exact representation for).

On the other hand, depending from the context, a Constraint object encoding 3x — y < 1 will be either
upward approximated (e.g., by safely ignoring it) or it will cause an exception.

In the following examples it is assumed that the type argument T is one of the possible instances listed
above and that variables x, y and z are defined (where they are used) as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds a BDS corresponding to a cube in R3, given as a system of constraints:

Constraint_System cs;

cs.insert (x >= 0);
cs.insert (x <= 1);
cs.insert (y >= 0);
cs.insert(y <= 1);
cs.insert (z >= 0);
cs.insert (z <= 1);
BD_Shape<T> bd(cs);

Since only those constraints having the syntactic form of a bounded difference are optimally supported,

the following code will throw an exception (caused by constraints 7, 8 and 9):

Constraint_System cs;

cs.
.insert
.insert

Ccs
Cs

Cs.

Cs

Cs.

insert (x
x

y
insert (y
z
z

insert

>=

0);
1);
0);
1);
0);
1);

i
// 8
/79

cs.insert(x + y <= 0);
cs.insert(x - z + x >= 0);
cs.insert (3xz - y <= 1);
BD_Shape<T> bd(cs);

(
(
(
.insert (
(
(
(

11.1.2 Constructor & Destructor Documentation

11.1.2.1 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(dimension_type num_dimensions = 0, Degenerate_Element kind = UNIVERSE)
[inline, explicit]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 87

Builds a universe or empty BDS of the specified space dimension.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the BDS;

kind Specifies whether the universe or the empty BDS has to be built.

11.1.2.2 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(const BD_Shape< T > & y, Complexity_Class complexity = ANY COMPLEXITY)
[inline]

Ordinary copy-constructor. The complexity argument is ignored.

11.1.2.3 template<typename T > template<typename U > Parma_Polyhedra_Library::BD_-
Shape< T >::BD_Shape (const BD_Shape< U > & y, Complexity_Class complexity =
ANY COMPLEXITY) [inline, explicit]

Builds a conservative, upward approximation of y. The complexity argument is ignored.

11.1.2.4 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(const Constraint_System & ¢s) [inline, explicit]

Builds a BDS from the system of constraints cs. The BDS inherits the space dimension of cs.

Parameters:

¢s A system of constraints: constraints that are not bounded differences are ignored (even though they
may have contributed to the space dimension).

Exceptions:

std::invalid_argument Thrown if cs contains a constraint which is not optimally supported by the
BD shape domain.

11.1.2.5 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(const Congruence_System & cgs) [inline, explicit]

Builds a BDS from a system of congruences. The BDS inherits the space dimension of cgs

Parameters:

cgs A system of congruences: some elements may be safely ignored.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 88

11.1.2.6 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(const Generator_System & gs) [inline, explicit]

Builds a BDS from the system of generators gs. Builds the smallest BDS containing the polyhedron
defined by gs. The BDS inherits the space dimension of gs.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.1.2.7 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(const Polyhedron & ph, Complexity_Class complexity = ANY_COMPLEXITY)
[inline, explicit]

Builds a BDS from the polyhedron ph. Builds a BDS containing ph using algorithms whose complexity
does not exceed the one specified by complexity. If complexity is ANY_ COMPLEXITY, then the
BDS built is the smallest one containing ph.

11.1.2.8 template<typename T > template<typename Interval > Parma_Polyhedra_-
Library::BD_Shape< T >::BD_Shape (const Box< Interval > & box, Complexity_Class
complexity = ANY COMPLEXITY) [inline, explicit]

Builds a BDS out of a box. The BDS inherits the space dimension of the box. The built BDS is the most
precise BDS that includes the box.

Parameters:

box The box representing the BDS to be built.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

11.1.2.9 template<typename T > Parma_Polyhedra_Library::BD_Shape< T >::BD_Shape
(const Grid & grid, Complexity_Class complexity = ANY COMPLEXITY) [inline,
explicit]

Builds a BDS out of a grid. The BDS inherits the space dimension of the grid. The built BDS is the most

precise BDS that includes the grid.

Parameters:

grid The grid used to build the BDS.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 89

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of grid exceeds the maximum allowed space di-
mension.

11.1.2.10 template<typename T > template<typename U > Parma_Polyhedra_Library::BD_-
Shape< T >::BD_Shape (const Octagonal_Shape< U > & os, Complexity_Class
complexity = ANY COMPLEXITY) [inline, explicit]

Builds a BDS from an octagonal shape. The BDS inherits the space dimension of the octagonal shape. The
built BDS is the most precise BDS that includes the octagonal shape.

Parameters:

os The octagonal shape used to build the BDS.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of os exceeds the maximum allowed space dimen-
sion.

11.1.3 Member Function Documentation

11.1.3.1 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::bounds_from_above (const Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from above in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

11.1.3.2 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::bounds_from_below (const Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from below in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 90

11.1.3.3 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::maximize
(const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum) const [inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value is computed.

Parameters:

expr The linear expression to be maximized subject to *this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

11.1.3.4 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::maximize
(const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum, Generator & g) const [inline]

Returns true if and only if xthis is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to xthis;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If *this is empty or expr is not bounded from above, false isreturned and sup_n, sup_d, maximum
and g are left untouched.

11.1.3.5 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::minimize
(const Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf d, bool &
minimum) const [inline]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 91

Returns true if and only if xthis is not empty and expr is bounded from below in *this, in which
case the infimum value is computed.

Parameters:

expr The linear expression to be minimized subject to *this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

11.1.3.6 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::minimize
(const Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf d, bool &
minimum, Generator & g) const [inline]

Returns true if and only if *this is not empty and expr is bounded from below in *xthis, in which
case the infimum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be minimized subject to xthis;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, falseisreturnedand inf_n, inf_d,minimum
and g are left untouched.

11.1.3.7 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::contains
(const BD_Shape< T > & y) const [inline]

Returns t rue if and only if *this contains y.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 92

11.1.3.8 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::strictly_contains (const BD_Shape< T > & y) const [inline]

Returns t rue if and only if *this strictly contains y.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

11.1.3.9 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::is_disjoint_from (const BD_Shape< T > & y) const [inline]

Returns t rue if and only if *this and y are disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

11.1.3.10 template<typename T > Poly_Con_Relation Parma_Polyhedra_Library::BD_Shape<
T >::relation_with (const Constraint & ¢) const [inline]

Returns the relations holding between *this and the constraint c.

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible.

11.1.3.11 template<typename T > Poly_Con_Relation Parma_Polyhedra_Library::BD_Shape<
T >::relation_with (const Congruence & cg) const [inline]

Returns the relations holding between *this and the congruence cg.

Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible.

11.1.3.12 template<typename T > Poly_Gen_Relation Parma_Polyhedra_Library::BD_Shape<
T >::relation_with (const Generator & g) const [inline]

Returns the relations holding between xthis and the generator g.

Exceptions:

std::invalid_argument Thrown if *this and generator g are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 93

11.1.3.13 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T >::constrains
(Variable var) const [inline]

Returns t rue if and only if var is constrained in *this.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.1.3.14 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_constraint (const Constraint & ¢) [inline]

Adds a copy of constraint c to the system of bounded differences defining xthis.

Parameters:

¢ The constraint to be added. If it is not a bounded difference, it will be simply ignored.

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible, or c is not
optimally supported by the BD shape domain.

11.1.3.15 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::add_constraint_and_minimize (const Constraint & ¢) [inline]

Adds a copy of constraint c to the system of bounded differences defining xthis.

Returns:

false if and only if the result is empty.

Parameters:

¢ The constraint to be added. If it is not a bounded difference, it will be simply ignored.

Exceptions:
std::invalid_argument Thrown if *this and constraint c are dimension-incompatible, or c is not
optimally supported by the BD shape domain.
Deprecated

See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 94

11.1.3.16 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_congruence (const Congruence & cg) [inline]

Adds a copy of congruence cg to the system of congruences of *this.

Parameters:

c¢g The congruence to be added.

Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible, or cg is
not optimally supported by the BD shape domain.

11.1.3.17 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::add_congruence_and_minimize (const Congruence & cg) [inline]

Adds a copy of congruence cg to the system of congruences of *this, minimizing the result.

Parameters:

cg The congruence to be added.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible, or cg is
not optimally supported by the BD shape domain.

Deprecated

See A Note on the Implementation of the Operators.

11.1.3.18 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_constraints (const Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of bounded differences defining *this.

Parameters:
¢s The constraints that will be added. Constraints that are not bounded differences will be simply
ignored.
Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the BD shape domain.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 95

11.1.3.19 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_recycled_constraints (Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of constraints of xthis.

Parameters:

¢s The constraint system to be added to xthis. The constraints in cs may be recycled.

Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the BD shape domain.

Warning:

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

11.1.3.20 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::add_constraints_and_minimize (const Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of bounded differences defining xthis.

Returns:

false if and only if the result is empty.

Parameters:

¢s The constraints that will be added.

Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the BD shape domain.

Deprecated

See A Note on the Implementation of the Operators.

11.1.3.21 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::add_recycled_constraints_and_minimize (Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of constraints of «this, minimizing the result.

Returns:

false if and only if the result is empty.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 96

Parameters:

¢s The constraint system to be added to xthis. The constraints in cs may be recycled.

Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the BD shape domain.

Warning:

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

Deprecated

See A Note on the Implementation of the Operators.

11.1.3.22 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_congruences (const Congruence_System & cgs) [inline]

Adds to ¥t his constraints equivalent to the congruences in cgs.

Parameters:

cgs Contains the congruences that will be added to the system of constraints of *this.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the BD shape domain.

11.1.3.23 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::add_congruences_and_minimize (const Congruence_System & cgs) [inline]

Behaves as add_congruences(const Congruence_Systemé&), but minimizes the resulting BD shape, return-
ing false if and only if the result is empty.

Deprecated

See A Note on the Implementation of the Operators.

11.1.3.24 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_recycled_congruences (Congruence_System & cgs) [inline]

Adds to xthis constraints equivalent to the congruences in cgs.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 97

Parameters:

cgs Contains the congruences that will be added to the system of constraints of xthis. Its elements
may be recycled.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the BD shape domain.

Warning:

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

11.1.3.25 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::add_recycled_congruences_and_minimize (Congruence_System & cgs) [inline]

Behaves as add_recycled_congruences, but minimizes the resulting BD shape, returning false
if and only if the result is empty.

Deprecated

See A Note on the Implementation of the Operators.

11.1.3.26 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_constraint (const Constraint & ¢) [inline]

Uses a copy of constraint c to refine the system of bounded differences defining *xthis.

Parameters:

¢ The constraint. If it is not a bounded difference, it will be ignored.

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible.

11.1.3.27 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_congruence (const Congruence & cg) [inline]

Uses a copy of congruence cg to refine the system of bounded differences of *this.

Parameters:

cg The congruence. If it is not a bounded difference equality, it will be ignored.

Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 98

11.1.3.28 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_constraints (const Constraint_System & ¢s) [inline]

Uses a copy of the constraints in cs to refine the system of bounded differences defining *this.

Parameters:

¢s The constraint system to be used. Constraints that are not bounded differences are ignored.

Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible.

11.1.3.29 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::refine_with_congruences (const Congruence_System & c¢gs) [inline]

Uses a copy of the congruences in cgs to refine the system of bounded differences defining *this.

Parameters:

cgs The congruence system to be used. Congruences that are not bounded difference equalities are
ignored.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

11.1.3.30 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::unconstrain (Variable var) [inline]

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
xthis.

Parameters:

var The space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of *this.

11.1.3.31 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::unconstrain (const Variables_Set & to_be_unconstrained) [inline]

Computes the cylindrification of *this with respect to the set of space dimensions to_be_-
unconstrained, assigning the result to xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 99

Parameters:

to_be_unconstrained The set of space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.1.3.32 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::intersection_assign (const BD_Shape< T > & y) [inline]

Assigns to xthis the intersection of xthis and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.1.3.33 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::intersection_assign_and_minimize (const BD_Shape< T > & y) [inline]

Assigns to xthis the intersection of xthis and y.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.1.3.34 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::upper_bound_assign (const BD_Shape< T > & y) [inline]

Assigns to xthis the smallest BDS containing the union of *this and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 100

11.1.3.35 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::upper_bound_assign_and_minimize (const BD_Shape< T > & y) [inline]

Assigns to xthis the smallest BDS containing the convex union of *this and y.

Returns:
false if and only if the result is empty.
Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.1.3.36 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::upper_bound_assign_if_exact (const BD_Shape< T > & y) [inline]

If the upper bound of *this and y is exact, it is assigned to *this and true is returned, otherwise
false is returned.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.1.3.37 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::difference_assign (const BD_Shape< T > & y) [inline]

Assigns to xthis the smallest BD shape containing the set difference of *this and y.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

11.1.3.38 template<typename T > bool Parma_Polyhedra_Library::BD_Shape< T
>::simplify_using_context_assign (const BD_Shape< T > & y) [inline]

Assigns to xthis a meet-preserving simplification of xthis with respect to y. If false is returned, then
the intersection is empty.

Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 101

11.1.3.39 template<typename T > void Parma_Polyhedra_Library::BD_Shape<
T >::affine_image (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one()) [inline]

Assigns to xthis the affine image of *this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters:
var The variable to which the affine expression is assigned.
expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of *xthis.

11.1.3.40 template<typename T > void Parma_Polyhedra_Library::BD_Shape<
T >::affine_preimage (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one()) [inline]

Assigns to xthis the affine preimage of *this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is substituted.
expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of xthis.

11.1.3.41 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

expr

denominator? where > is

Assigns to xthis the image of *this with respect to the affine relation var’ >
the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine transfer function.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 102

relsym The relation symbol.
expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of xthis or if relsym is a strict relation symbol.

11.1.3.42 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_image (const Linear_Expression & lhs, Relation_Symbol relsym,
const Linear_Expression & rhs) [inline]

Assigns to xthis the image of *this with respect to the affine relation lhs’ >1 rhs, where < is the
relation symbol encoded by relsym.

Parameters:

Ihs The left hand side affine expression.
relsym The relation symbol.

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with 1hs or rhs orif relsym
is a strict relation symbol.

11.1.3.43 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

expr

denominator’ where >4

Assigns to xthis the preimage of *this with respect to the affine relation var’ p
is the relation symbol encoded by relsym.
Parameters:
var The left hand side variable of the generalized affine transfer function.
relsym The relation symbol.
expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of *this or if relsymis a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 103

11.1.3.44 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::generalized_affine_preimage (const Linear_Expression & lhs, Relation_Symbol
relsym, const Linear_Expression & rhs) [inline]

Assigns to *this the preimage of *this with respect to the affine relation lhs’ tx rhs, where > is the
relation symbol encoded by relsym.

Parameters:

Ihs The left hand side affine expression.
relsym The relation symbol.

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with 1hs or rhs orif relsym
is a strict relation symbol.

11.1.3.45 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::bounded_affine_image (Variable var, const Linear_Expression & Ib_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to *this the image of xthis with respect to the bounded affine relation dclb-ﬁ

ub_expr
denominator *

. < var’ <
nominator — —

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.1.3.46 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::bounded_affine_preimage (Variable var, const Linear_Expression & Ib_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

1b_expr < VaI‘/ <

Assigns to xthis the preimage of xthis with respect to the bounded affine relation 4 =-"-— <

ub_expr
denominator *

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 104

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.1.3.47 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::time_elapse_assign (const BD_Shape< T > & y) [inline]

Assigns to xthis the result of computing the time-elapse between xthis and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.1.3.48 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::CC76_extrapolation_assign (const BD_Shape< T > & y, unsigned x* fp = 0)
[inline]

Assigns to xthis the result of computing the CC76-extrapolation between *this and y.

Parameters:

y A BDS that must be contained in *xthis.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.1.3.49 template<typename T > template<typename Iterator > void Parma_Polyhedra_-
Library::BD_Shape< T >::CC76_extrapolation_assign (const BD_Shape< T > & y,
Iterator first, Iterator last, unsigned xfp =0) [inline]

Assigns to xthis the result of computing the CC76-extrapolation between *this and y.

Parameters:

y A BDS that must be contained in *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 105

first An iterator referencing the first stop-point.
last An iterator referencing one past the last stop-point.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.1.3.50 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::BHMZ05_widening_assign (const BD_Shape< T > & y, unsigned * fp = 0)
[inline]

Assigns to xthis the result of computing the BHMZ05-widening of *this and y.

Parameters:

y A BDS that must be contained in xthis.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

11.1.3.51 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_ BHMZ05_extrapolation_assign (const BD_Shape< T > & y, const
Constraint_System & cs, unsigned * fp = 0) [inline]

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of *this.

Parameters:

y A BDS that must be contained in xthis.
¢s The system of constraints used to improve the widened BDS.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 106

11.1.3.52 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::CC76_narrowing_assign (const BD_Shape< T > & y) [inline]

Assigns to #this the result of restoring in y the constraints of xt hi s that were lost by CC76-extrapolation
applications.
Parameters:

y A BDS that must contain *this.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

Note:

As was the case for widening operators, the argument y is meant to denote the value computed in the
previous iteration step, whereas *this denotes the value computed in the current iteration step (in the
decreasing iteration sequence). Hence, the call x.CC76_narrowing_assign (y) will assign to
x the result of the computation yAx.

11.1.3.53 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_CC76_extrapolation_assign (const BD_Shape< T > & y, const
Constraint_System & cs, unsigned *x fp = 0) [inline]

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of *this.
Parameters:

y A BDS that must be contained in *this.
¢s The system of constraints used to improve the widened BDS.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

11.1.3.54 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::H79_widening_assign (const BD_Shape< T > & y, unsigned +fp =0) [inline]

Assigns to xthis the result of computing the H79-widening between *this and y.

Parameters:

y A BDS that must be contained in xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 107

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.1.3.55 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::limited_H79_extrapolation_assign (const BD_Shape< T > & y, const
Constraint_System & cs, unsigned *x fp = 0) [inline]

Improves the result of the H79-widening computation by also enforcing those constraints in cs that are
satisfied by all the points of *this.

Parameters:

y A BDS that must be contained in xthis.
¢s The system of constraints used to improve the widened BDS.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this, y and cs are dimension-incompatible.

11.1.3.56 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_space_dimensions_and_embed (dimension_type m) [inline]

Adds m new dimensions and embeds the old BDS into the new space.

Parameters:

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new BDS, which is defined by a system
of bounded differences in which the variables running through the new dimensions are unconstrained. For
instance, when starting from the BDS B C R? and adding a third dimension, the result will be the BDS

{(x,y,z)T e R3 | (z,y)T € B}.

11.1.3.57 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::add_space_dimensions_and_project (dimension_type m) [inline]

Adds m new dimensions to the BDS and does not embed it in the new vector space.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 108

Parameters:

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new BDS, which is defined by a system
of bounded differences in which the variables running through the new dimensions are all constrained to
be equal to 0. For instance, when starting from the BDS B C R? and adding a third dimension, the result
will be the BDS

{(z,y,0)T e R® ‘ (z,y)" € B}.

11.1.3.58 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::concatenate_assign (const BD_Shape< T > & y) [inline]

Assigns to xthis the concatenation of *this and y, taken in this order.

Exceptions:

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension ().

11.1.3.59 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::remove_space_dimensions (const Variables_Set & fo_be_removed) [inline]

Removes all the specified dimensions.

Parameters:

to_be_removed The set of Variable objects corresponding to the dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.1.3.60 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::remove_higher_space_dimensions (dimension_type new_dimension) [inline]

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions:

std::invalid_argument Thrown if new_dimension is greater than the space dimension of xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.1 Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference 109

11.1.3.61 template<typename T > template<typename Partial_Function > void
Parma_Polyhedra_Library::BD_Shape< T >::map_space_dimensions (const
Partial_Function & pfunc) [inline]

Remaps the dimensions of the vector space according to a partial function.

Parameters:

pfunc The partial function specifying the destiny of each dimension.
The template class Partial_Function must provide the following methods.
bool has_empty_codomain () const

returns true if and only if the represented partial function has an empty co-domain (i.e., it is always
undefined). The has_empty_codomain () method will always be called before the methods below.
However, if has_empty_codomain () returns t rue, none of the functions below will be called.

dimension_type max_in_codomain () const
returns the maximum value that belongs to the co-domain of the partial function.

bool maps (dimension_type i, dimension_type& j) const
Let f be the represented function and k& be the value of 1. If f is defined in &, then f(k) is assigned to j

and true is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

11.1.3.62 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::expand_space_dimension (Variable var, dimension_typem) [inline]

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

If xthis has space dimension n, with n > 0, and var has space dimension k < n, then the k-th space
dimension is expanded to m new space dimensions n, n + 1, ..., n+m — 1.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.2 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference 110

11.1.3.63 template<typename T > void Parma_Polyhedra_Library::BD_Shape< T
>::fold_space_dimensions (const Variables_Set & to_be_folded, Variable var)
[inline]

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_ -
folded.

If xthis has space dimension n, with n > 0, var has space dimension k£ < n, to_be_foldedis a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

11.1.3.64 template<typename T > int32_t Parma_Polyhedra_Library::BD_Shape< T
>::hash_code () const [inline]

Returns a 32-bit hash code for *this. If x and y are such that x == vy, then x.hash_code () =
y.hash_code ().

The documentation for this class was generated from the following file:

e pplL.hh

11.2 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference

The convergence certificate for the BHRZ03 widening operator.

#include <ppl.hh>

Classes

e struct Compare

A total ordering on BHRZ03 certificates.

Public Member Functions

¢ BHRZ03_Certificate ()

Default constructor.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 111

* BHRZO03_Certificate (const Polyhedron &ph)

Constructor: computes the certificate for ph.

* BHRZ03_Certificate (const BHRZ03_Certificate &y)

Copy constructor.

¢ ~BHRZ03_Certificate ()

Destructor.

* int compare (const BHRZ03_Certificate &y) const

The comparison function for certificates.

e int compare (const Polyhedron &ph) const

Compares *this with the certificate for polyhedron ph.

11.2.1 Detailed Description

The convergence certificate for the BHRZ03 widening operator. Convergence certificates are used to in-
stantiate the BHZ03 framework so as to define widening operators for the finite powerset domain.

Note:

Each convergence certificate has to be used together with a compatible widening operator. In particular,
BHRZO03_Certificate can certify the convergence of both the BHRZ03 and the H79 widenings.

11.2.2 Member Function Documentation

11.2.2.1 int Parma_Polyhedra_Library::BHRZ03_Certificate::compare (const
BHRZ03_Certificate & y) const

The comparison function for certificates.

Returns:

—1, 0 or 1 depending on whether *this is smaller than, equal to, or greater than y, respectively.

Compares *this with y, using a total ordering which is a refinement of the limited growth ordering
relation for the BHRZ03 widening.

The documentation for this class was generated from the following file:

* ppl.hh

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference

A not necessarily closed, iso-oriented hyperrectangle.

#include <ppl.hh>

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 112

Public Types

o typedef ITV interval_type

The type of intervals used to implement the box.

Public Member Functions

* const ITV & get_interval (Variable var) const

Returns a reference the interval that bounds var.

 void set_interval (Variable var, const ITV &i)

Sets to i the interval that bounds var.

* bool get_lower_bound (dimension_type k, bool &closed, Coefficient &n, Coefficient &d) const

If the k-th space dimension is unbounded below, returns false. Otherwise returns t rue and set closed,
n and d accordingly.

* bool get_upper_bound (dimension_type k, bool &closed, Coefficient &n, Coefficient &d) const

If the k-th space dimension is unbounded above, returns false. Otherwise returns t rue and set c1osed,
n and d accordingly.

* Constraint_System constraints () const

Returns a system of constraints defining xt his.

* Constraint_System minimized_constraints () const

Returns a minimized system of constraints defining xt his.

* Congruence_System congruences () const

Returns a system of congruences approximating xthis.

» Congruence_System minimized_congruences () const

Returns a minimized system of congruences approximating *xthis.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xth1i s.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of *t his.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xt his.

* void print () const

Prints xthisto std: :cerr using operator<<.

* void set_empty ()

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 113

Causes the box to become empty, i.e., to represent the empty set.

Constructors, Assignment, Swap and Destructor

* Box (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)

Builds a universe or empty box of the specified space dimension.

* Box (const Box &y, Complexity_Class complexity=ANY_COMPLEXITY)

Ordinary copy-constructor.

¢ template<typename Other_ITV >
Box (const Box< Other_ITV > &y, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a conservative, upward approximation of y.

* Box (const Constraint_System &cs)

Builds a box from the system of constraints cs.

* Box (const Constraint_System &cs, Recycle_Input dummy)

Builds a box recycling a system of constraints cs.

* Box (const Generator_System &gs)

Builds a box from the system of generators gs.

* Box (const Generator_System &gs, Recycle_Input dummy)

Builds a box recycling the system of generators gs.

* Box (const Congruence_System &cgs)

* Box (const Congruence_System &cgs, Recycle_Input dummy)

* template<typename T >
Box (const BD_Shape< T > &bds, Complexity_Class complexity=POLYNOMIAL_-
COMPLEXITY)

Builds a box containing the BDS bds.

¢ template<typename T >
Box (const Octagonal_Shape< T > &oct, Complexity_Class complexity=POLYNOMIAL_-
COMPLEXITY)

Builds a box containing the octagonal shape oct.

* Box (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a box containing the polyhedron ph.

* Box (const Grid &ph, Complexity_Class complexity=POLYNOMIAL_COMPLEXITY)
Builds a box containing the grid gr.

¢ template<typename D1 , typename D2 , typename R >
Box (const Partially_Reduced_Product< D1, D2, R > &dp, Complexity_Class
complexity=ANY_COMPLEXITY)

Builds a box containing the partially reduced product dp.

* Box & operator= (const Box &y)

The assignment operator (xthis and y can be dimension-incompatible).

* void swap (Box &y)

Swaps xthis with y (xthis and y can be dimension-incompatible).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 114

Member Functions that Do Not Modify the Box

 dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

* dimension_type affine_dimension () const

Returns O, if xt his is empty; otherwise, returns the affine dimension of xt his.

* bool is_empty () const

Returns t rue if and only if xt his is an empty box.

¢ bool is_universe () const

Returns t rue if and only if ¥t his is a universe box.

* bool is_topologically_closed () const

Returns t rue if and only if xt his is a topologically closed subset of the vector space.

* bool is_discrete () const

Returns t rue if and only if xt his is discrete.

¢ bool is_bounded () const

Returns t rue if and only if xt his is a bounded box.

* bool contains_integer_point () const

Returns true if and only if xt his contains at least one integer point.

* bool constrains (Variable var) const
Returns t rue if and only if var is constrained in xthis.

* Poly_Con_Relation relation_with (const Constraint &c) const
Returns the relations holding between xthis and the constraint c.

* Poly_Con_Relation relation_with (const Congruence &cg) const
Returns the relations holding between xthis and the congruence cg.

* Poly_Gen_Relation relation_with (const Generator &g) const
Returns the relations holding between xt his and the generator g.

* bool bounds_from_above (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded from above in xthis.

* bool bounds_from_below (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded from below in xthis.

* bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xt his, in which
case the supremum value is computed.

* bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value and a point where expr reaches it are computed.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 115

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value is computed.

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.

bool contains (const Box &) const

Returns t rue if and only if xt his contains y.

bool strictly_contains (const Box &) const

Returns t rue if and only if xt hi s strictly contains y.

bool is_disjoint_from (const Box &y) const

Returns true if and only if xt his and y are disjoint.

bool OK () const

Returns t rue if and only if xt hi s satisfies all its invariants.

Space-Dimension Preserving Member Functions that May Modify the Box

void add_constraint (const Constraint &c)

Adds a copy of constraint c to the system of constraints defining xthis.

void add_constraints (const Constraint_System &cs)

Adds the constraints in cs to the system of constraints defining *t his.

void add_recycled_constraints (Constraint_System &cs)

Adds the constraints in cs to the system of constraints defining xt his.

void add_congruence (const Congruence &cg)

Adds to xthis a constraint equivalent to the congruence cg.

void add_congruences (const Congruence_System &cgs)

Adds to xt his constraints equivalent to the congruences in cgs.

void add_recycled_congruences (Congruence_System &cgs)

Adds to xt his constraints equivalent to the congruences in cgs.

void refine_with_constraint (const Constraint &c)

Use the constraint c to refine xthis.

void refine_with_constraints (const Constraint_System &cs)

Use the constraints in cs to refine xthis.

void refine_with_congruence (const Congruence &cg)

Use the congruence cg to refine xthis.

void refine_with_congruences (const Congruence_System &cgs)

Use the congruences in cgs to refine xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3

Parma_Polyhedra_Library::Box< ITV > Class Template Reference 116

void propagate_constraint (const Constraint &c)

Use the constraint c for constraint propagation on xthis.

void propagate_constraints (const Constraint_System &cs)

Use the constraints in cs for constraint propagagion on xthis.

void unconstrain (Variable var)

Computes the cylindrification of xthis with respect to space dimension var, assigning the result to
*this.

void unconstrain (const Variables_Set &to_be_unconstrained)

Computes the cylindrification of xthis with respect to the set of space dimensions to_be_ -
unconstrained, assigning the result to xthis.

void intersection_assign (const Box &y)
Assigns to xthis the intersection of xthis and y.

void upper_bound_assign (const Box &y)

Assigns to xthis the smallest box containing the union of xthis and y.

bool upper_bound_assign_if exact (const Box &y)

If the upper bound of xthis and y is exact, it is assigned to xthis and true is returned, otherwise
false is returned.

void difference_assign (const Box &y)
Assigns to xthis the difference of *xthis and y.

bool simplify_using_context_assign (const Box &y)

Assigns to xthis a meet-preserving simplification of xt his with respect to y. If false is returned,
then the intersection is empty.

void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to xthis the affine image of *this under the function mapping variable var to the affine
expression specified by expr and denominator.

void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())
Assigns to xt his the affine preimage of xt his under the function mapping variable var to the affine
expression specified by expr and denominator.

void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xt his the image of t hi s with respect to the generalized affine relation var’ 1<
where] is the relation symbol encoded by relsym.

expr
denominator”’

void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xthis the preimage of xthis with respect to the generalized affine relation var’ 1=

T where < is the relation symbol encoded by relsym.

void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

Assigns to xt his the image of xt his with respect to the generalized affine relation lhs’ < rhs, where
> is the relation symbol encoded by relsym.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 117

» void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to xthis the preimage of xthis with respect to the generalized affine relation lhs' > rhs,
where 1 is the relation symbol encoded by relsym.

* void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

b_expr o o) <

Assigns to xt his the image of xt his with respect to the bounded affine relation 5 ==>-— <

ub_expr
denominator®

* void bounded_affine_preimage (Variable var, const Linear_Expression &Ib_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to :this the preimage of xthis with respect to the bounded affine relation ﬁ <
ub_expr

U
var S denominator*

* void time_elapse_assign (const Box &y)

Assigns to xt his the result of computing the time-elapse between xthis and y.

* void topological_closure_assign ()

Assigns to xthis its topological closure.

* void CC76_widening_assign (const Box &y, unsigned xtp=0)
Assigns to xt his the result of computing the CC76-widening between xthis and y.

* template<typename Iterator >
void CC76_widening_assign (const Box &y, Iterator first, Iterator last)
Assigns to xt his the result of computing the CC76-widening between xthis and y.

* void widening_assign (const Box &y, unsigned xtp=0)
Same as CC76_widening_assign(y, tp).

* void limited_CC76_extrapolation_assign (const Box &y, const Constraint_System &cs, unsigned
*tp=0)
Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of xt his.

* void CC76_narrowing_assign (const Box &y)

Assigns to xthis the result of restoring in y the constraints of xthis that were lost by CC76-
extrapolation applications.

Member Functions that May Modify the Dimension of the Vector Space

* void add_space_dimensions_and_embed (dimension_type m)

Adds m new dimensions and embeds the old box into the new space.

* void add_space_dimensions_and_project (dimension_type m)
Adds m new dimensions to the box and does not embed it in the new vector space.

* void concatenate_assign (const Box &y)

Seeing a box as a set of tuples (its points), assigns to xthis all the tuples that can be obtained by
concatenating, in the order given, a tuple of xt his with a tuple of y.

* void remove_space_dimensions (const Variables_Set &to_be_removed)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 118

Removes all the specified dimensions.

* void remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

¢ template<typename Partial_Function >
void map_space_dimensions (const Partial_Function &pfunc)

Remaps the dimensions of the vector space according to a partial function.

* void expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

* void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)

Folds the space dimensions in t o_be_foldedinto var.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension that a Box can handle.

* static bool can_recycle_constraint_systems ()

Returns false indicating that this domain does not recycle constraints.

* static bool can_recycle_congruence_systems ()

Returns false indicating that this domain does not recycle congruences.

11.3.1 Detailed Description
template<typename ITV> class Parma_Polyhedra_Library::Box< ITV >

A not necessarily closed, iso-oriented hyperrectangle. A Box object represents the smash product of n not
necessarily closed and possibly unbounded intervals represented by objects of class ITV, where n is the
space dimension of the box.

An interval constraint (resp., interval congruence) is a syntactic constraint (resp., congruence) that only
mentions a single space dimension.

The Box domain optimally supports:

* tautological and inconsistent constraints and congruences;
* the interval constraints that are optimally supported by the template argument class ITV;

* the interval congruences that are optimally supported by the template argument class ITV.

Depending on the method, using a constraint or congruence that is not optimally supported by the domain
will either raise an exception or result in a (possibly non-optimal) upward approximation.

The user interface for the Box domain is meant to be as similar as possible to the one developed for the
polyhedron class C_Polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 119

11.3.2 Constructor & Destructor Documentation

11.3.2.1 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box
(dimension_type num_dimensions = 0, Degenerate_Element kind = UNIVERSE)
[inline, explicit]

Builds a universe or empty box of the specified space dimension.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the box;

kind Specifies whether the universe or the empty box has to be built.

11.3.2.2 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const Box<
ITV > &y, Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Ordinary copy-constructor. The complexity argument is ignored.

11.3.2.3 template<typename ITV > template<typename Other_ITV > Parma_Polyhedra_-
Library::Box< ITV >::Box (const Box< Other_ITV > & y, Complexity_Class
complexity = ANY_COMPLEXITY) [inline, explicit]

Builds a conservative, upward approximation of y. The complexity argument is ignored.

11.3.2.4 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Constraint_System & ¢s) [inline, explicit]

Builds a box from the system of constraints cs. The box inherits the space dimension of cs.

Parameters:

¢s A system of constraints: constraints that are not interval constraints are ignored (even though they
may have contributed to the space dimension).

11.3.2.5 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Constraint_System & cs, Recycle_Input dummy) [inline]

Builds a box recycling a system of constraints cs. The box inherits the space dimension of cs.

Parameters:

¢s A system of constraints: constraints that are not interval constraints are ignored (even though they
may have contributed to the space dimension).

dummy A dummy tag to syntactically differentiate this one from the other constructors.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 120

11.3.2.6 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Generator_System & gs) [inline, explicit]

Builds a box from the system of generators gs. Builds the smallest box containing the polyhedron defined
by gs. The box inherits the space dimension of gs.
Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.3.2.7 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Generator_System & gs, Recycle_Input dummy) [inline]

Builds a box recycling the system of generators gs. Builds the smallest box containing the polyhedron
defined by gs. The box inherits the space dimension of gs.
Parameters:

gs The generator system describing the polyhedron to be approximated.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.3.2.8 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Congruence_System & cgs) [inline, explicit]

Builds the smallest box containing the grid defined by a system of congruences cgs. The box inherits the
space dimension of cgs.
Parameters:

cgs A system of congruences: congruences that are not non-relational equality constraints are ignored
(though they may have contributed to the space dimension).

11.3.2.9 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Congruence_System & cgs, Recycle_Input dummy) [inline]

Builds the smallest box containing the grid defined by a system of congruences cgs, recycling cgs. The
box inherits the space dimension of cgs.

Parameters:

cgs A system of congruences: congruences that are not non-relational equality constraints are ignored
(though they will contribute to the space dimension).

dummy A dummy tag to syntactically differentiate this one from the other constructors.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 121

11.3.2.10 template<typename ITV > template<typename T > Parma_Polyhedra_Library::Box<
ITV >::Box (const BD_Shape< T > & bds, Complexity_Class complexity =
POLYNOMIAL_COMPLEXITY) [inline, explicit]

Builds a box containing the BDS bds. Builds the smallest box containing bds using a polynomial algo-
rithm. The complexity argument is ignored.

11.3.2.11 template<typename ITV > template<typename T > Parma_Polyhedra_Library::Box<
ITV >::Box (const Octagonal_Shape< T > & oct, Complexity_Class complexity =
POLYNOMIAL_COMPLEXITY) [inline, explicit]

Builds a box containing the octagonal shape oct. Builds the smallest box containing oct using a polyno-
mial algorithm. The complexity argument is ignored.

11.3.2.12 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const
Polyhedron & ph, Complexity_Class complexity = ANY COMPLEXITY) [inline,
explicit]

Builds a box containing the polyhedron ph. Builds a box containing ph using algorithms whose complexity
does not exceed the one specified by complexity. If complexity is ANY_COMPLEXITY, then the
built box is the smallest one containing ph.

11.3.2.13 template<typename ITV > Parma_Polyhedra_Library::Box< ITV >::Box (const Grid
& ph, Complexity_Class complexity = POLYNOMIAL_ COMPLEXITY) [inline,
explicit]

Builds a box containing the grid gr. Builds the smallest box containing gr using a polynomial algorithm.
The complexity argument is ignored.

11.3.2.14 template<typename ITV > template<typename D1 , typename D2 , typename R >
Parma_Polyhedra_Library::Box< ITV >::Box (const Partially_Reduced_Product<
D1, D2, R > & dp, Complexity_Class complexity = ANY _COMPLEXITY) [inline,
explicit]

Builds a box containing the partially reduced product dp. Builds a box containing ph using algorithms
whose complexity does not exceed the one specified by complexity.

11.3.3 Member Function Documentation

11.3.3.1 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::constrains
(Variable var) const [inline]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 122

Returns t rue if and only if var is constrained in *this.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.3.3.2 template<typename ITV > Poly_Con_Relation Parma_Polyhedra_Library::Box< ITV
>::relation_with (const Constraint & ¢) const [inline]

Returns the relations holding between *this and the constraint c.

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible.

11.3.3.3 template<typename ITV > Poly_Con_Relation Parma_Polyhedra_Library::Box< ITV
>::relation_with (const Congruence & cg) const [inline]

Returns the relations holding between *this and the congruence cg.

Exceptions:

std::invalid_argument Thrown if *this and constraint cg are dimension-incompatible.

11.3.3.4 template<typename ITV > Poly_Gen_Relation Parma_Polyhedra_Library::Box< ITV
>::relation_with (const Generator & g) const [inline]

Returns the relations holding between «this and the generator g.

Exceptions:

std::invalid_argument Thrown if *this and generator g are dimension-incompatible.

11.3.3.5 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::bounds_from_above (const Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from above in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 123

11.3.3.6 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::bounds_from_below (const Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from below in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

11.3.3.7 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::maximize
(const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum) const [inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value is computed.

Parameters:

expr The linear expression to be maximized subject to xthis;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

11.3.3.8 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::maximize
(const Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum, Generator & g) const [inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to xthis;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 124

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false isreturned and sup_n, sup_d, maximum
and g are left untouched.

11.3.3.9 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::minimize
(const Linear_Expression & expr, Coefficient & inf n, Coefficient & inf d, bool &
minimum) const [inline]

Returns true if and only if xthis is not empty and expr is bounded from below in *xthis, in which
case the infimum value is computed.

Parameters:

expr The linear expression to be minimized subject to xthis;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

11.3.3.10 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::minimize
(const Linear_Expression & expr, Coefficient & inf _n, Coefficient & inf_d, bool &
minimum, Generator & g) const [inline]

Returns true if and only if xthis is not empty and expr is bounded from below in *xthis, in which
case the infimum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be minimized subject to xthis;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions:

std::invalid_argument Thrown if expr and xthis are dimension-incompatible.

If xthis is empty or expr is not bounded from below, falseisreturnedand inf_n, inf_d, minimum
and g are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 125

11.3.3.11 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV >::contains
(const Box< ITV > & y) const [inline]

Returns t rue if and only if *this contains y.

Exceptions:

std::invalid_argument Thrown if x and y are dimension-incompatible.

11.3.3.12 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::strictly_contains (const Box< ITV > & y) const [inline]

Returns t rue if and only if *this strictly contains y.

Exceptions:

std::invalid_argument Thrown if x and y are dimension-incompatible.

11.3.3.13 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::is_disjoint_from (const Box< ITV > & y) const [inline]

Returns t rue if and only if *this and y are disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are dimension-incompatible.

11.3.3.14 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_constraint (const Constraint & ¢) [inline]

Adds a copy of constraint c to the system of constraints defining *this.

Parameters:
¢ The constraint to be added.
Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible, or c is not
optimally supported by the Box domain.

11.3.3.15 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_constraints (const Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of constraints defining xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 126

Parameters:
¢s The constraints to be added.
Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the box domain.

11.3.3.16 template<typename T > void Parma_Polyhedra_Library::Box< T
>::add_recycled_constraints (Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of constraints defining xthis.

Parameters:

cs The constraints to be added. They may be recycled.

Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the box domain.

Warning:

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

11.3.3.17 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_congruence (const Congruence & cg) [inline]

Adds to xthis a constraint equivalent to the congruence cg.

Parameters:

cg The congruence to be added.

Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible, or cg is
not optimally supported by the box domain.

11.3.3.18 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_congruences (const Congruence_System & cgs) [inline]

Adds to xthis constraints equivalent to the congruences in cgs.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 127

Parameters:

cgs The congruences to be added.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the box domain.

11.3.3.19 template<typename T > void Parma_Polyhedra_Library::Box< T
>::add_recycled_congruences (Congruence_System & cgs) [inline]

Adds to xthis constraints equivalent to the congruences in cgs.

Parameters:

cgs The congruence system to be added to *t his. The congruences in cgs may be recycled.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the box domain.

Warning:

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

11.3.3.20 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_constraint (const Constraint & ¢) [inline]

Use the constraint c to refine *this.

Parameters:

¢ The constraint to be used for refinement.

Exceptions:

std::invalid_argument Thrown if *this and c are dimension-incompatible.

11.3.3.21 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_constraints (const Constraint_System & ¢s) [inline]

Use the constraints in cs to refine xthis.

Parameters:

¢s The constraints to be used for refinement.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 128

Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible.

11.3.3.22 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_congruence (const Congruence & cg) [inline]

Use the congruence cg to refine xthis.

Parameters:

cg The congruence to be used for refinement.

Exceptions:

std::invalid_argument Thrown if *this and cg are dimension-incompatible.

11.3.3.23 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::refine_with_congruences (const Congruence_System & cgs) [inline]

Use the congruences in cgs to refine *this.

Parameters:

cgs The congruences to be used for refinement.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

11.3.3.24 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::propagate_constraint (const Constraint & ¢) [inline]

Use the constraint ¢ for constraint propagation on *this.

Parameters:

¢ The constraint to be used for constraint propagation.

Exceptions:

std::invalid_argument Thrown if *this and c are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 129

11.3.3.25 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::propagate_constraints (const Constraint_System & ¢s) [inline]

Use the constraints in cs for constraint propagagion on *this.

Parameters:

cs The constraints to be used for constraint propagation.

Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible.

11.3.3.26 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::unconstrain
(Variable var) [inline]

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
xthis.

Parameters:

var The space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.3.3.27 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::unconstrain
(const Variables_Set & fo_be_unconstrained) [inline]

Computes the cylindrification of *this with respect to the set of space dimensions to_be_-
unconstrained, assigning the result to xthis.

Parameters:

to_be_unconstrained The set of space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.3.3.28 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::intersection_assign (const Box< ITV > & y) [inline]

Assigns to xthis the intersection of *this and y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 130

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.3.3.29 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::upper_bound_assign (const Box< ITV > &y) [inline]

Assigns to xthis the smallest box containing the union of *this and y.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

11.3.3.30 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::upper_bound_assign_if_exact (const Box< ITV > &y) [inline]

If the upper bound of *this and y is exact, it is assigned to *this and true is returned, otherwise
false is returned.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.3.3.31 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::difference_assign (const Box< ITV > & y) [inline]

Assigns to xthis the difference of *this and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.3.3.32 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::simplify_using_context_assign (const Box< ITV > &y) [inline]

Assigns to xthis a meet-preserving simplification of xthis with respect to y. If false is returned, then
the intersection is empty.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 131

11.3.3.33 template<typename ITV > void Parma_Polyhedra_Library::Box<
ITV >::affine_image (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one()) [inline]

Assigns to xthis the affine image of *this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:
var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.3.3.34 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::affine_preimage (Variable var, const Linear_ Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one()) [inline]

Assigns to xthis the affine preimage of xthis under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is substituted;
expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.3.3.35 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

expr

Assigns to ¥this the image of *this with respect to the generalized affine relation var’ > 32—

where > is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine relation;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 132

relsym The relation symbol;
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.3.3.36 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to *this the preimage of *this with respect to the generalized affine relation var’ <

dexi?r, where 1< is the relation symbol encoded by relsym.
enominator

Parameters:
var The left hand side variable of the generalized affine relation;
relsym The relation symbol;
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.3.3.37 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_image (const Linear_Expression & lhs, Relation_Symbol relsym,
const Linear_Expression & rhs) [inline]

Assigns to *this the image of xthis with respect to the generalized affine relation lhs’ i rhs, where
is the relation symbol encoded by relsym.

Parameters:
Ihs The left hand side affine expression;
relsym The relation symbol;
rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with 1hs or rhs.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 133

11.3.3.38 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::generalized_affine_preimage (const Linear_Expression & lis, Relation_Symbol
relsym, const Linear_Expression & rhs) [inline]

Assigns to *t his the preimage of *t his with respect to the generalized affine relation lhs’ > rhs, where
B is the relation symbol encoded by relsym.

Parameters:

Ihs The left hand side affine expression;
relsym The relation symbol,

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with 1hs or rhs.

11.3.3.39 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::bounded_affine_image (Variable var, const Linear_Expression & Ib_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

1b_expr < var’ <

Assigns to xthis the image of xthis with respect to the bounded affine relation _-=="-— <

ub_expr
denominator *

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.3.3.40 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::bounded_affine_preimage (Variable var, const Linear_Expression & Ib_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

1b_expr <

/
denominator — var’ <

Assigns to xthis the preimage of xt his with respect to the bounded affine relation
ub_expr

denominator *

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 134

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.3.3.41 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::time_elapse_assign (const Box< ITV > & y) [inline]

Assigns to xthis the result of computing the time-elapse between *this and y.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

11.3.3.42 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::CC76_widening_assign (const Box< ITV > &y, unsigned = fp =0) [inline]

Assigns to xthis the result of computing the CC76-widening between xthis and y.

Parameters:

y A box that must be contained in xthis.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.3.3.43 template<typename ITV > template<typename Iterator > void
Parma_Polyhedra_Library::Box< ITV >::CC76_widening_assign (const Box< ITV >
& y, Iterator first, Iterator last) [inline]

Assigns to *this the result of computing the CC76-widening between *this and y.

Parameters:

y A box that must be contained in xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 135

first An iterator that points to the first stop-point.

last An iterator that points one past the last stop-point.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.3.3.44 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::limited_CC76_extrapolation_assign (const Box< ITV > & y, const
Constraint_System & cs, unsigned * fp = 0) [inline]

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of *this.
Parameters:

y A box that must be contained in xthis.
¢s The system of constraints used to improve the widened box.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).
Exceptions:

std::invalid_argument Thrown if xthis, y and cs are dimension-incompatible or if cs contains a
strict inequality.

11.3.3.45 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::CC76_narrowing_assign (const Box< ITV > & y) [inline]

Assigns to xt his the result of restoring in y the constraints of xt h1i s that were lost by CC76-extrapolation
applications.
Parameters:

y A Box that must contain xthis.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

Note:

As was the case for widening operators, the argument y is meant to denote the value computed in the
previous iteration step, whereas xthis denotes the value computed in the current iteration step (in the
decreasing iteration sequence). Hence, the call x.CC76_narrowing_assign (y) will assign to
x the result of the computation yAx.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 136

11.3.3.46 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_space_dimensions_and_embed (dimension_type m) [inline]

Adds m new dimensions and embeds the old box into the new space.

Parameters:

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new box, which is defined by a system
of interval constraints in which the variables running through the new dimensions are unconstrained. For
instance, when starting from the box B C R2 and adding a third dimension, the result will be the box

{(x,y,z)T e R3 ‘ (z,y)T € B}.

11.3.3.47 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::add_space_dimensions_and_project (dimension_type m) [inline]

Adds m new dimensions to the box and does not embed it in the new vector space.

Parameters:

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new box, which is defined by a system
of bounded differences in which the variables running through the new dimensions are all constrained to
be equal to 0. For instance, when starting from the box B C R? and adding a third dimension, the result
will be the box

{(x,y,O)T ER?| (z,y)" € B}.

11.3.3.48 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::concatenate_assign (const Box< ITV > &y) [inline]

Seeing a box as a set of tuples (its points), assigns to *this all the tuples that can be obtained by concate-
nating, in the order given, a tuple of xthis with a tuple of y. Let B C R™ and D C R™ be the boxes
corresponding, on entry, to xthis and y, respectively. Upon successful completion, xthis will represent
the box R C R™*™ such that

def
R = {(xla"'axnvyla"'aym)T ('rlw"vxn)T eB?(yla'“aym)T GD}

Another way of seeing it is as follows: first increases the space dimension of *this by adding
y.space_dimension () new dimensions; then adds to the system of constraints of *this a renamed-
apart version of the constraints of y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 137

11.3.3.49 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::remove_space_dimensions (const Variables_Set & fo_be_removed) [inline]

Removes all the specified dimensions.
Parameters:

to_be_removed The set of Variable objects corresponding to the dimensions to be removed.
Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.3.3.50 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::remove_higher_space_dimensions (dimension_type new_dimension) [inline]

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions:

std::invalid_argument Thrown if new_dimension is greater than the space dimension of xthis.

11.3.3.51 template<typename ITV > template<typename Partial_Function > void
Parma_Polyhedra_Library::Box< ITV >::map_space_dimensions (const
Partial_Function & pfunc) [inline]

Remaps the dimensions of the vector space according to a partial function.

Parameters:
pfunc The partial function specifying the destiny of each dimension.

The template class Partial_Function must provide the following methods.

bool has_empty_codomain () const
returns true if and only if the represented partial function has an empty co-domain (i.e., it is always
undefined). The has_empty_codomain () method will always be called before the methods below.
However, if has_empty_codomain () returns t rue, none of the functions below will be called.

dimension_type max_in_codomain () const

returns the maximum value that belongs to the co-domain of the partial function.

bool maps (dimension_type i, dimension_type& j) const
Let f be the represented function and k be the value of i. If f is defined in &, then f(k) is assigned to j
and true is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::Box< ITV > Class Template Reference 138

11.3.3.52 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::expand_space_dimension (Variable var, dimension_type m) [inline]

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

If xthis has space dimension n, with n > 0, and var has space dimension k < n, then the k-th space
dimension is expanded to m new space dimensions n,n + 1,...,n+m — 1.

11.3.3.53 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV
>::fold_space_dimensions (const Variables_Set & to_be_folded, Variable var)
[inline]

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;
var The variable corresponding to the space dimension that is the destination of the folding operation.
Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_ -
folded.

If xthis has space dimension n, with n > 0, var has space dimension k£ < n, to_be_foldedis a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

11.3.3.54 template<typename ITV > const ITV & Parma_Polyhedra_Library::Box< ITV
>::get_interval (Variable var) const [inline]

Returns a reference the interval that bounds var.
Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 139

11.3.3.55 template<typename ITV > void Parma_Polyhedra_Library::Box< ITV >::set_interval
(Variable var, const ITV & i) [inline]

Sets to i the interval that bounds var.
Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.3.3.56 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::get_lower_bound (dimension_type k, bool & closed, Coefficient & n, Coefficient &
d)const [inline]

If the k-th space dimension is unbounded below, returns false. Otherwise returns t rue and set closed,
n and d accordingly. Let I the interval corresponding to the k-th space dimension. If I is not bounded
from below, simply return false. Otherwise, set closed, n and d as follows: closed is set to true
if the the lower boundary of [is closed and is set to false otherwise; n and d are assigned the integers n
and d such that the canonical fraction n/d corresponds to the greatest lower bound of I. The fraction n/d
is in canonical form if and only if n and d have no common factors and d is positive, 0/1 being the unique
representation for zero.

An undefined behavior is obtained if k is greater than or equal to the space dimension of xthis.

11.3.3.57 template<typename ITV > bool Parma_Polyhedra_Library::Box< ITV
>::get_upper_bound (dimension_type k, bool & closed, Coefficient & n, Coefficient &
d)const [inline]

If the k-th space dimension is unbounded above, returns false. Otherwise returns t rue and set closed,
n and d accordingly. Let I the interval corresponding to the k-th space dimension. If I is not bounded
from above, simply return false. Otherwise, set closed, n and d as follows: closed is set to true
if the the upper boundary of I is closed and is set to false otherwise; n and d are assigned the integers n
and d such that the canonical fraction n/d corresponds to the least upper bound of 1.

An undefined behavior is obtained if k is greater than or equal to the space dimension of xthis.

The documentation for this class was generated from the following file:

* ppl.hh

11.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference

A closed convex polyhedron.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Polyhedron.

Public Member Functions

e C_Polyhedron (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 140

Builds either the universe or the empty C polyhedron.

¢ C_Polyhedron (const Constraint_System &cs)

Builds a C polyhedron from a system of constraints.

¢ C_Polyhedron (Constraint_System &cs, Recycle_Input dummy)

Builds a C polyhedron recycling a system of constraints.

* C_Polyhedron (const Generator_System &gs)

Builds a C polyhedron from a system of generators.

e C_Polyhedron (Generator_System &gs, Recycle_Input dummy)

Builds a C polyhedron recycling a system of generators.

e C_Polyhedron (const Congruence_System &cgs)

Builds a C polyhedron from a system of congruences.

e C_Polyhedron (Congruence_System &cgs, Recycle_Input dummy)

Builds a C polyhedron recycling a system of congruences.

e C_Polyhedron (const NNC_Polyhedron &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a C polyhedron representing the topological closure of the NNC polyhedron y.

¢ template<typename Interval >
C_Polyhedron (const Box< Interval > &box, Complexity Class complexity=ANY_-
COMPLEXITY)

Builds a C polyhedron out of a box.

* template<typename U >
C_Polyhedron (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a C polyhedron out of a BD shape.

¢ template<typename U >
C_Polyhedron (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a C polyhedron out of an octagonal shape.

* C_Polyhedron (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a C polyhedron out of a grid.

e C_Polyhedron (const C_Polyhedron &y, Complexity_Class complexity=ANY_COMPLEXITY)

Ordinary copy-constructor.

e C_Polyhedron & operator= (const C_Polyhedron &y)

The assignment operator. (xthis and y can be dimension-incompatible.).

* C_Polyhedron & operator= (const NNC_Polyhedron &y)
Assigns to xthis the topological closure of the NNC polyhedron y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 141

e ~C_Polyhedron ()

Destructor.

* bool poly_hull_assign_if_exact (const C_Polyhedron &y)

If the poly-hull of xthis and y is exact it is assigned to xthis and t rue is returned, otherwise false
is returned.

* bool upper_bound_assign_if_exact (const C_Polyhedron &y)
Same as poly_hull_assign_if _exact(y).

11.4.1 Detailed Description

A closed convex polyhedron. An object of the class C_Polyhedron represents a topologically closed convex
polyhedron in the vector space R”.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains a strict inequality constraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containing a closure point.

Note:

Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the class NNC_Polyhedron, the precise topological closure test
will be performed.

11.4.2 Constructor & Destructor Documentation

11.4.2.1 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (dimension_type
num_dimensions = 0, Degenerate_Element kind = UNIVERSE) [inline, explicit]

Builds either the universe or the empty C polyhedron.

Parameters:
num_dimensions The number of dimensions of the vector space enclosing the C polyhedron;

kind Specifies whether a universe or an empty C polyhedron should be built.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a O-dimension space universe C polyhedron is built.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 142

11.4.2.2 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Constraint_System &
¢s) [inline, explicit]

Builds a C polyhedron from a system of constraints. The polyhedron inherits the space dimension of the
constraint system.

Parameters:

¢s The system of constraints defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the system of constraints contains strict inequalities.

11.4.2.3 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Constraint_System & cs,
Recycle_Input dummy) [inline]

Builds a C polyhedron recycling a system of constraints. The polyhedron inherits the space dimension of
the constraint system.

Parameters:

¢s The system of constraints defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::invalid_argument Thrown if the system of constraints contains strict inequalities.

11.4.2.4 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Generator_System &
gs) [inline, explicit]

Builds a C polyhedron from a system of generators. The polyhedron inherits the space dimension of the
generator system.

Parameters:

gs The system of generators defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 143

11.4.2.5 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Generator_System & gs,
Recycle_Input dummy) [inline]

Builds a C polyhedron recycling a system of generators. The polyhedron inherits the space dimension of
the generator system.
Parameters:

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

11.4.2.6 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Congruence_System &
cgs) [explicit]

Builds a C polyhedron from a system of congruences. The polyhedron inherits the space dimension of the
congruence system.
Parameters:

cgs The system of congruences defining the polyhedron.

11.4.2.7 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Congruence_System & cgs,
Recycle_Input dummy)

Builds a C polyhedron recycling a system of congruences. The polyhedron inherits the space dimension of
the congruence system.

Parameters:

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

11.4.2.8 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const NNC_Polyhedron & y,
Complexity_Class complexity = ANY COMPLEXITY) [explicit]

Builds a C polyhedron representing the topological closure of the NNC polyhedron y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::C_Polyhedron Class Reference 144

Parameters:

y The NNC polyhedron to be used;

complexity This argument is ignored.

11.4.2.9 template<typename Interval > Parma_Polyhedra_Library::C_Polyhedron::C_-
Polyhedron (const Box< Interval > & box, Complexity_Class complexity =
ANY_ COMPLEXITY) [inline, explicit]

Builds a C polyhedron out of a box. The polyhedron inherits the space dimension of the box and is the
most precise that includes the box. The algorithm used has polynomial complexity.

Parameters:

box The box representing the polyhedron to be approximated;

complexity This argument is ignored.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

11.4.2.10 template<typename U > Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron
(const BD_Shape< U > & bd, Complexity_Class complexity = ANY_COMPLEXITY)
[inline, explicit]

Builds a C polyhedron out of a BD shape. The polyhedron inherits the space dimension of the BDS and is
the most precise that includes the BDS.

Parameters:

bd The BDS used to build the polyhedron.

complexity This argument is ignored as the algorithm used has polynomial complexity.

11.4.2.11 template<typename U > Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron
(const Octagonal_Shape< U > & os, Complexity_Class complexity =
ANY_ COMPLEXITY) [inline, explicit]

Builds a C polyhedron out of an octagonal shape. The polyhedron inherits the space dimension of the
octagonal shape and is the most precise that includes the octagonal shape.
Parameters:

os The octagonal shape used to build the polyhedron.

complexity This argument is ignored as the algorithm used has polynomial complexity.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 145

11.4.2.12 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Grid & grid,
Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds a C polyhedron out of a grid. The polyhedron inherits the space dimension of the grid and is the
most precise that includes the grid.

Parameters:

grid The grid used to build the polyhedron.

complexity This argument is ignored as the algorithm used has polynomial complexity.

11.4.2.13 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const C_Polyhedron & y,
Complexity_Class complexity = ANY_COMPLEXITY) [inline]

Ordinary copy-constructor. The complexity argument is ignored.

11.4.3 Member Function Documentation

11.4.3.1 bool Parma_Polyhedra_Library::C_Polyhedron::poly_hull_assign_if_exact (const
C_Polyhedron & y)

If the poly-hull of *this and y is exact it is assigned to *this and true is returned, otherwise false
is returned.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.
The documentation for this class was generated from the following file:

* ppl.hh

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template
Reference

A wrapper for numeric types implementing a given policy.

#include <ppl.hh>

Public Member Functions

¢ bool OK () const

Checks if all the invariants are satisfied.

* Result classify (bool nan=true, bool inf=true, bool sign=true) const
Classifies xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 146

Constructors

¢ Checked_Number ()

Default constructor.

* Checked_Number (const Checked_Number &y)

Copy-constructor.

® template<typename From , typename From_Policy >

Checked_Number (const Checked_Number< From, From_Policy > &y, Rounding_Dir dir)

Direct initialization from a Checked_Number and rounding mode.

* Checked_Number (signed char y, Rounding_Dir dir)

Direct initialization from a signed char and rounding mode.

* Checked_Number (signed short y, Rounding_Dir dir)

Direct initialization from a signed short and rounding mode.

* Checked_Number (signed int y, Rounding_Dir dir)

Direct initialization from a signed int and rounding mode.

* Checked_Number (signed long y, Rounding_Dir dir)

Direct initialization from a signed long and rounding mode.

* Checked_Number (signed long long y, Rounding_Dir dir)

Direct initialization from a signed long long and rounding mode.

* Checked_Number (unsigned char y, Rounding_Dir dir)

Direct initialization from an unsigned char and rounding mode.

* Checked_Number (unsigned short y, Rounding_Dir dir)

Direct initialization from an unsigned short and rounding mode.

* Checked_Number (unsigned int y, Rounding_Dir dir)

Direct initialization from an unsigned int and rounding mode.

* Checked_Number (unsigned long y, Rounding_Dir dir)

Direct initialization from an unsigned long and rounding mode.

* Checked_Number (unsigned long long y, Rounding_Dir dir)

Direct initialization from an unsigned long long and rounding mode.

* Checked_Number (float y, Rounding_Dir dir)

Direct initialization from a float and rounding mode.

* Checked_Number (double y, Rounding_Dir dir)

Direct initialization from a double and rounding mode.

* Checked_Number (long double y, Rounding_Dir dir)

Direct initialization from a long double and rounding mode.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 147

* Checked_Number (const mpq_class &y, Rounding_Dir dir)

Direct initialization from a rational and rounding mode.

* Checked_Number (const mpz_class &y, Rounding_Dir dir)

Direct initialization from an unbounded integer and rounding mode.

* Checked_Number (const char xy, Rounding_Dir dir)

Direct initialization from a C string and rounding mode.

¢ template<typename From >
Checked_Number (const From &, Rounding_Dir dir, typename Enable_If< Is_Special< From
>::value, bool >::type ignored=false)

Direct initialization from special and rounding mode.

¢ template<typename From , typename From_Policy >

Checked_Number (const Checked_Number< From, From_Policy > &y)

Direct initialization from a Checked_Number, default rounding mode.

* Checked_Number (signed char y)

Direct initialization from a signed char, default rounding mode.

* Checked_Number (signed short y)

Direct initialization from a signed short, default rounding mode.

* Checked_Number (signed int y)

Direct initialization from a signed int, default rounding mode.

* Checked_Number (signed long y)

Direct initialization from a signed long, default rounding mode.

* Checked_Number (signed long long y)

Direct initialization from a signed long long, default rounding mode.

* Checked_Number (unsigned char y)

Direct initialization from an unsigned char, default rounding mode.

* Checked_Number (unsigned short y)

Direct initialization from an unsigned short, default rounding mode.

* Checked_Number (unsigned int y)

Direct initialization from an unsigned int, default rounding mode.

* Checked_Number (unsigned long y)

Direct initialization from an unsigned long, default rounding mode.

* Checked_Number (unsigned long long y)

Direct initialization from an unsigned long long, default rounding mode.

* Checked_Number (float y)

Direct initialization from a float, default rounding mode.

* Checked_Number (double y)

Direct initialization from a double, default rounding mode.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 148

* Checked_Number (long double y)

Direct initialization from a long double, default rounding mode.

* Checked_Number (const mpq_class &y)

Direct initialization from a rational, default rounding mode.

* Checked_Number (const mpz_class &y)

Direct initialization from an unbounded integer, default rounding mode.

¢ Checked_Number (const char *y)

Direct initialization from a C string, default rounding mode.

¢ template<typename From >
Checked_Number (const From &, typename Enable_If< Is_Special< From >::value, bool
>::type ignored=false)

Direct initialization from special, default rounding mode.

Accessors and Conversions

 operator T () const

Conversion operator: returns a copy of the underlying numeric value.

e T & raw_value ()

Returns a reference to the underlying numeric value.

e const T & raw_value () const

Returns a const reference to the underlying numeric value.

Assignment Operators

* Checked_Number & operator= (const Checked_Number &y)

Assignment operator.

¢ template<typename From >
Checked_Number & operator= (const From &y)

Assignment operator.

¢ template<typename From_Policy >

Checked_Number & operator+= (const Checked_Number< T, From_Policy > &y)

Add and assign operator.

* Checked_Number & operator+= (const T &y)

Add and assign operator.

¢ template<typename From >
Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator+= (const From &y)

Add and assign operator.

¢ template<typename From_Policy >
Checked_Number & operator-= (const Checked_Number< T, From_Policy > &y)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 149

Subtract and assign operator.

* Checked_Number & operator-= (const T &y)

Subtract and assign operator.

¢ template<typename From >
Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator-= (const From &y)

Subtract and assign operator.

¢ template<typename From_Policy >
Checked_Number & operatorx= (const Checked_Number< T, From_Policy > &y)

Multiply and assign operator.

* Checked_Number & operator+= (const T &y)
Multiply and assign operator.

¢ template<typename From >
Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operators= (const From &y)

Multiply and assign operator.

¢ template<typename From_Policy >

Checked_Number & operator/= (const Checked_Number< T, From_Policy > &y)

Divide and assign operator.

* Checked_Number & operator/= (const T &y)

Divide and assign operator.

¢ template<typename From >
Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator/= (const From &y)

Divide and assign operator.

¢ template<typename From_Policy >

Checked_Number & operator%= (const Checked_Number< T, From_Policy > &y)

Compute remainder and assign operator.

* Checked_Number & operator%= (const T &y)

Compute remainder and assign operator.

¢ template<typename From >
Enable_If< Is_Native_Or_Checked< From >::value, Checked_Number< T, Policy > & >::type
operator%= (const From &y)

Compute remainder and assign operator.

Increment and Decrement Operators

* Checked_Number & operator++ ()

Pre-increment operator.

* Checked_Number operator++ (int)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 150

Post-increment operator.

* Checked_Number & operator-- ()

Pre-decrement operator.

* Checked_Number operator-- (int)

Post-decrement operator.

Related Functions
(Note that these are not member functions.)

¢ template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_not_a_number (const T &x)
¢ template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_minus_infinity (const T &x)
¢ template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_plus_infinity (const T &x)
* template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, int >::type is_infinity (const T &x)
* template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, bool >::type is_integer (const T &x)
* template<typename To , typename From >
Enable_If< Is_Native_Or_Checked< To >::value &&Is_Special< From >::value, Result >::type
construct (To &to, const From &x, Rounding_Dir dir)
¢ template<typename To , typename From >
Enable_If< Is_Native_Or_Checked< To >::value &&Is_Special< From >::value, Result >::type
assign_r (To &to, const From &x, Rounding_Dir dir)
* template<typename To >
Enable_If< Is_Native_Or_Checked< To >::value, Result >::type assign_r (To &to, const char *x,
Rounding_Dir dir)
¢ template<typename To , typename To_Policy >
Enable_If< Is_Native_Or_Checked< To >:value, Result >::type assign_r (To &to, char xx,
Rounding_Dir dir)
¢ template<typename T , typename Policy >
void swap (Checked_Number< T, Policy > &x, Checked_Number< T, Policy > &y)

Swaps x with y.

Memory Size Inspection Functions

¢ template<typename T , typename Policy >
size_t total_memory_in_bytes (const Checked_Number< T, Policy > &x)

Returns the total size in bytes of the memory occupied by x.

¢ template<typename T , typename Policy >
memory_size_type external_memory_in_bytes (const Checked_Number< T, Policy > &x)

Returns the size in bytes of the memory managed by x.

Arithmetic Operators

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 151

¢ template<typename T , typename Policy >
Checked_Number< T, Policy > operator+ (const Checked_Number< T, Policy > &x)
Unary plus operator.

® template<typename T , typename Policy >
void floor_assign (Checked_Number< T, Policy > &x)

Assigns to x largest integral value not greater than x.

¢ template<typename T , typename Policy >
void floor_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >

&y)

Assigns to x largest integral value not greater than y.

® template<typename T , typename Policy >
void ceil_assign (Checked_Number< T, Policy > &x)

Assigns to x smallest integral value not less than x.

¢ template<typename T , typename Policy >
void ceil_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >

&y)

Assigns to x smallest integral value not less than y.

¢ template<typename T , typename Policy >
void trunc_assign (Checked_Number< T, Policy > &x)

Round x to the nearest integer not larger in absolute value.

template<typename T , typename Policy >
void trunc_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the value of y rounded to the nearest integer not larger in absolute value.

template<typename T , typename Policy >
void neg_assign (Checked_Number< T, Policy > &x)

Assigns to x its negation.

template<typename T , typename Policy >
void neg_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the negation of y.

template<typename T , typename Policy >
void abs_assign (Checked_Number< T, Policy > &x)

Assigns to x its absolute value.

template<typename T , typename Policy >
void abs_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the absolute value of y.

template<typename T , typename Policy >
void add_mul_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

Assigns to x the value x + y * z.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5

Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 152

template <typename T , typename Policy >
void sub_mul_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

Assigns to x the value x — y * z.

template<typename T , typename Policy >
void ged_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y,
const Checked_Number< T, Policy > &z)

Assigns to x the greatest common divisor of y and z.

template<typename T , typename Policy >

void gecdext_assign (Checked_Number< T, Policy > &x, Checked_Number< T, Policy > &s,
Checked_Number< T, Policy > &t, const Checked_Number< T, Policy > &y, const Checked_-
Number< T, Policy > &z)

Assigns to x the greatest common divisor of y and z, setting s and t such that sxy + txz = x = ged(y, z).

template <typename T , typename Policy >
void lcm_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy > &y,
const Checked_Number< T, Policy > &z)

Assigns to x the least common multiple of y and z.

template <typename T , typename Policy >
void exact_div_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy
> &y, const Checked_Number< T, Policy > &z)

If z divides y, assigns to x the quotient of the integer division of y and z.

template <typename T , typename Policy >
void sqrt_assign (Checked_Number< T, Policy > &x, const Checked_Number< T, Policy >
&y)

Assigns to x the integer square root of y.

Relational Operators and Comparison Functions

® template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator== (const T1
&x, const T2 &y)

Equality operator.

template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator!= (const T1
&x, const T2 &y)

Disequality operator.

template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator>= (const T1
&x, const T2 &y)

Greater than or equal to operator.

template <typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator> (const T1
&x, const T2 &y)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 153

Greater than operator.

* template<typename T1 , typename T2 >
Enable_If< Is_Native Or_Checked< T1 >::value &&Is_Native Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator<= (const T1
&x, const T2 &y)

Less than or equal to operator.

* template<typename T1 , typename T2 >

Enable_If< Is_Native_Or_Checked< T1 >::value &&Is_Native_Or_Checked< T2 >::value
&&(Is_Checked< T1 >::value||Is_Checked< T2 >::value), bool >::type operator< (const T1
&x, const T2 &y)

Less than operator.

* template<typename From >
Enable_If< Is_Native_Or_Checked< From >::value, int >::type sgn (const From &x)

Returns —1, 0 or 1 depending on whether the value of x is negative, zero or positive, respectively.

¢ template<typename Froml , typename From2 >
Enable_If< Is_Native_Or_Checked< Froml >::value &&Is_Native_Or_Checked< From?2
>::value, int >::type cmp (const From1 &x, const From?2 &y)

Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than
v, respectively.

Input-Output Operators

* template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, Result >::type output (std::ostream &os, const
T &x, const Numeric_Format &fmt, Rounding_Dir dir)
¢ template<typename T, typename Policy >
std::ostream & operator<< (std::ostream &os, const Checked_Number< T, Policy > &x)
Output operator.

¢ template<typename T >
Enable_If< Is_Native_Or_Checked< T >::value, Result >::type input (T &x, std::istream &is,
Rounding_Dir dir)

Input function.

¢ template<typename T, typename Policy >
std::istream & operator>> (std::istream &is, Checked_Number< T, Policy > &x)

Input operator.

Accessor Functions

* template<typename T , typename Policy >
const T & raw_value (const Checked_Number< T, Policy > &x)

Returns a const reference to the underlying integer value.

¢ template<typename T , typename Policy >
T & raw_value (Checked_Number< T, Policy > &x)

Returns a reference to the underlying integer value.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 154

11.5.1 Detailed Description

template<typename T, typename Policy> class Parma_Polyhedra_Library::Checked_Number< T,
Policy >

A wrapper for numeric types implementing a given policy. The wrapper and related functions implement
an interface which is common to all kinds of coefficient types, therefore allowing for a uniform coding
style. This class also implements the policy encoded by the second template parameter. The default policy
is to perform the detection of overflow errors.

11.5.2 Member Function Documentation
11.5.2.1 template<typename T , typename Policy > Result Parma_Polyhedra_-

Library::Checked_Number< T, Policy >::classify (bool nan = true, bool inf = true,
bool sign = true) const [inline]

Classifies xthis. Returns the appropriate Result characterizing:

e whether xthis is NaN, if nan is true;
» whether *this is a (positive or negative) infinity, if inf is true;

e the sign of *xthis, if signis true.

11.5.3 Friends And Related Function Documentation

11.5.3.1 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_not_a_number (const T & x) [related]

11.53.2 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_minus_infinity (const T & x) [related]

11.5.3.3 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_plus_infinity (const T & x) [related]

11.5.3.4 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, int >::type
is_infinity (const T & x) [related]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 155

11.5.3.5 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, bool >::type
is_integer (const T & x) [related]

11.5.3.6 template<typename To , typename From > Enable_If< Is_Native_Or_Checked< To
>::value &&Is_Special< From >::value, Result >::type construct (To & f0, const From
& x, Rounding_Dir dir) [related]

11.5.3.7 template<typename To , typename From > Enable_If< Is_Native_Or_Checked< To
>::value &&Is_Special< From >::value, Result >::type assign_r (To & fo, const From &
x, Rounding_Dir dir) [related]

11.5.3.8 template<typename To > Enable_If< Is Native_Or_Checked< To >::value, Result
>::type assign_r (To & 7o, const char x x, Rounding_Dir dir) [related]

11.5.3.9 template<typename To , typename To_Policy > Enable_If< Is_Native_Or_Checked< To
>::value, Result >::type assign_r (To & to, char x x, Rounding_Dir dir) [related]

11.5.3.10 template<typename T , typename Policy > memory_size_type total_memory_in_bytes
(const Checked_Number< T, Policy > & x) [related]

Returns the total size in bytes of the memory occupied by x.

11.5.3.11 template<typename T , typename Policy > memory_size_type
external_memory_in_bytes (const Checked_Number< T, Policy > & x) [related]

Returns the size in bytes of the memory managed by x.

11.5.3.12 template<typename T , typename Policy > Linear_Expression operator+ (const
Checked_Number< T, Policy > & x) [related]

Unary plus operator. Returns the linear expression e.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 156

11.5.3.13 template<typename T , typename Policy > void floor_assign (Checked_Number< T,
Policy > & x) [related]

Assigns to x largest integral value not greater than x.

11.5.3.14 template<typename T , typename Policy > void floor_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x largest integral value not greater than y.

11.5.3.15 template<typename T , typename Policy > void ceil_assign (Checked_Number< T,
Policy > & x) [related]

Assigns to x smallest integral value not less than x.

11.5.3.16 template<typename T , typename Policy > void ceil_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x smallest integral value not less than y.

11.5.3.17 template<typename T , typename Policy > void trunc_assign (Checked_Number< T,
Policy > & x) [related]

Round x to the nearest integer not larger in absolute value.

11.5.3.18 template<typename T , typename Policy > void trunc_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x the value of y rounded to the nearest integer not larger in absolute value.

11.5.3.19 template<typename T , typename Policy > void neg_assign (Checked_Number< T,
Policy > & x) [related]

Assigns to x its negation.

11.5.3.20 template<typename T , typename Policy > void neg_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 157

Assigns to x the negation of y.

11.5.3.21 template<typename T , typename Policy > void abs_assign (Checked_Number< T,
Policy > & x) [related]

Assigns to x its absolute value.

11.5.3.22 template<typename T , typename Policy > void abs_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x the absolute value of y.

11.5.3.23 template<typename T , typename Policy > void add_mul_assign (Checked_Number<
T, Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number<
T, Policy > & z) [related]

Assigns to x the value x + y * z.

11.5.3.24 template<typename T , typename Policy > void sub_mul_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number< T,
Policy > & z) [related]

Assigns to x the value x — y * z.

11.5.3.25 template<typename T , typename Policy > void gcd_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number< T,
Policy > & z) [related]

Assigns to x the greatest common divisor of y and z.

11.5.3.26 template<typename T , typename Policy > void gcdext_assign (Checked_Number< T,
Policy > & x, Checked_Number< T, Policy > & s, Checked_Number< T, Policy > & ¢,
const Checked_Number< T, Policy > & y, const Checked_Number< T, Policy > & z)
[related]

Assigns to x the greatest common divisor of y and z, setting s and t such that sxy + txz = x = ged(y, z).
Extended GCD.

Assigns to x the greatest common divisor of v and z, and to s and t the values such that y * s + z x t =
X.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 158

11.5.3.27 template<typename T , typename Policy > void lcm_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number< T,
Policy > & 7) [related]

Assigns to x the least common multiple of v and z.

11.5.3.28 template<typename T , typename Policy > void exact_div_assign (Checked_Number<
T, Policy > & x, const Checked_Number< T, Policy > & y, const Checked_Number<
T, Policy > & z) [related]

If z divides vy, assigns to x the quotient of the integer division of v and z. The behavior is undefined if z
does not divide y.

11.5.3.29 template<typename T , typename Policy > void sqrt_assign (Checked_Number< T,
Policy > & x, const Checked_Number< T, Policy > & y) [related]

Assigns to x the integer square root of y.

11.5.3.30 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator== (const T1 & x, const T2
& y) [related]

Equality operator.

11.5.3.31 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value & & (Is_Checked< T1
>::value|[Is_Checked< T2 >::value), bool >::type operator!= (const T1 & x, const T2
& y) [related]

Disequality operator.

11.5.3.32 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator>= (const T1 & x, const T2
& y) [related]

Greater than or equal to operator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 159

11.5.3.33 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator> (const T1 & x, const T2
& y) [related]

Greater than operator.

11.5.3.34 template<typename T1, typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value & &(Is_Checked< T1
>::value|[Is_Checked< T2 >::value), bool >::type operator<= (const T1 & x, const T2
& y) [related]

Less than or equal to operator.

11.5.3.35 template<typename T1 , typename T2 > Enable_If< Is_Native_Or_Checked<
T1 >::value &&Is_Native_Or_Checked< T2 >::value &&(Is_Checked< T1
>::value||Is_Checked< T2 >::value), bool >::type operator< (const T1 & x, const T2
& y) [related]

Less than operator.

11.5.3.36 template<typename From > Enable_If< Is_Native_Or_Checked< From >::value, int
>::type sgn (const From & x) [related]

Returns —1, 0 or 1 depending on whether the value of x is negative, zero or positive, respectively.

11.5.3.37 template<typename Froml , typename From2 > Enable_If< Is_Native_Or_Checked <
Froml >::value &&Is_Native_Or_Checked< From2 >::value, int >::type cmp (const
Froml & x, const From2 & y) [related]

Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than v,
respectively.

11.5.3.38 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, Result
>::type output (std::ostream & os, const T & x, const Numeric_Format & fint,
Rounding Dir dir) [related]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 160

11.5.3.39 template<typename T , typename Policy > std::ostream & operator<< (std::ostream &
s, const Checked_Number< T, Policy > & x) [related]

Output operator. Output operators.

Writes t rue if cs is empty. Otherwise, writes on s the constraints of cs, all in one row and separated by

"non
s .

Writes false if gs is empty. Otherwise, writes on s the generators of gs, all in one row and separated
by Vl’ H.
Writes t rue if cgs is empty. Otherwise, writes on s the congruences of cgs, all in one row and separated
by ll, H'
Writes a textual representation of ph on s: false is written if ph is an empty polyhedron; true is
written if ph is a universe polyhedron; a minimized system of constraints defining ph is written otherwise,

all constraints in one row separated by ",

Writes a textual representation of gr on s: false is written if gr is an empty grid; t rue is written if gr
is a universe grid; a minimized system of congruences defining gr is written otherwise, all congruences in

non

one row separated by ", "s.

Writes a textual representation of bds on s: false is written if bds is an empty polyhedron; t rue is
written if bds is the universe polyhedron; a system of constraints defining bds is written otherwise, all

non

constraints separated by ",

Writes a textual representation of oct on s: false is written if oct is an empty polyhedron; true
is written if oct is a universe polyhedron; a system of constraints defining oct is written otherwise, all

non

constraints separated by ",

Writes a textual representation of dp on s.

11.5.3.40 template<typename T > Enable_If< Is_Native_Or_Checked< T >::value, Result
>::type input (T & x, std::istream & is, Rounding_Dir dir) [related]

Input function.

Parameters:

is Input stream to read from;
x Number (possibly extended) to assign to in case of successful reading;

dir Rounding mode to be applied.

Returns:

Result of the input operation. Success, success with imprecision, overflow, parsing error: all possibil-
ities are taken into account, checked for, and properly reported.

This function attempts reading a (possibly extended) number from the given stream i s, possibly rounding
as specified by dir, assigning the result to x upon success, and returning the appropriate Result.

The input syntax allows the specification of:

* plain base-10 integer numbers as 34976098, -77 and +13;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5

Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 161

base-10 integer numbers in scientific notation as 15e2 and 15%"2 (both meaning 15 - 102 = 1500),
9200e-2and -18%"+11111111111111111;

base-10 rational numbers in fraction notation as 15/3 and 15/-3;

base-10 rational numbers in fraction/scientific notation as 15/30e-1 (meaning 5) and
15%"-3/29e2 (meaning 3/580000);

base-10 rational numbers in floating point notation as 71 . 3 (meaning 713/10) and -0.123456
(meaning —1929/15625);

base-10 rational numbers in floating point scientific notation as 2.2e-1 (meaning 11/50) and
-2.20001%"+3 (meaning —220001,/100);

integers and rationals (in fractional, floating point and scientific notations) specified by using
Mathematica-style bases, in the range from 2 to 36, as 211 (meaning 3), 36"z (mean-
ing 35), 36""xyz (meaning 44027), 2""11.1 (meaning 7/2), 10""2e3 (meaning 2000),
8""2e3 (meaning 1024), 8""2.1e3 (meaning 1088), 8""20402543.120347e7 (meaning
9073863231288), 82 . 1 (meaning 17/8); note that the base and the exponent are always written
as plain base-10 integer numbers; also, when an ambiguity may arise, the character e is interpreted
as a digit, so that 16" 1e2 (meaning 482) is different from 16" 1%"2 (meaning 256);

the C-style hexadecimal prefix Ox is interpreted as the Mathematica-style prefix 16"";

special values like inf and +inf (meaning +00), —inf (meaning —o0), and nan (meaning "not a
number").

The rationale behind the accepted syntax can be summarized as follows:

Valid

if the syntax is accepted by Mathematica, then this function accepts it with the same semantics;

if the syntax is acceptable as standard C++ integer or floating point literal (except for octal notation
and type suffixes, which are not supported), then this function accepts it with the same semantics;

natural extensions of the above are accepted with the natural extensions of the semantics;

special values are accepted.

syntax is more formally and completely specified by the following grammar, with the additional

provisos that everything is case insensitive, that the syntactic category BDIGIT is further restricted by the
current base and that for all bases above 14, any e is always interpreted as a digit and never as a delimiter
for the exponent part (if such a delimiter is desired, it has to be written as *”).

number : NAN INF : "inf’
| SIGN INF ;
| INF
| num NAN : "nan’
| num DIV num ;
4
SIGN HEA
num ¢ unum |7+
| SIGN unum ;
unum : unuml EXP : e’
| HEX unuml | TN

unuml

base BASE unuml ;

POINT HEA
: mantissa ;
mantissa EXP exponent

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Variable::Compare Struct Reference 162

i DIV o/

mantissa: bdigits

| POINT bdigits MINUS A
| bdigits POINT ;

| bdigits POINT bdigits

; PLUS HE

exponent: SIGN digits

| diqits HEX . 7 0x’
; ;
bdigits : BDIGIT BASE HER
| bdigits BDIGIT ;
;
DIGIT HERA VLA M
digits : DIGIT ;
| digits DIGIT
; BDIGIT =: 0" .. 79/
| ra” .. "z’

11.5.3.41 template<typename T , typename Policy > std::istream & operator>> (std::istream &
is, Checked_Number< T, Policy > & x) [related]

Input operator.

11.5.3.42 template<typename T , typename Policy > void swap (Checked_Number< T, Policy >
& x, Checked_Number< T, Policy > & y) [related]

Swaps x with y. Specializes std: : swap.

11.5.3.43 template<typename T , typename Policy > const mpz_class & raw_value (const
Checked_Number< T, Policy > & x) [related]

Returns a const reference to the underlying integer value.

11.5.3.44 template<typename T , typename Policy > mpz_class & raw_value (Checked_Number <
T, Policy > & x) [related]

Returns a reference to the underlying integer value.

The documentation for this class was generated from the following file:

« ppLhh

11.6 Parma_Polyhedra_Library::Variable::Compare Struct Reference

Binary predicate defining the total ordering on variables.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::BHRZ03_Certificate:: Compare Struct Reference 163

#include <ppl.hh>

Public Member Functions

* bool operator() (Variable x, Variable y) const

Returns t rue if and only if x comes before y.

11.6.1 Detailed Description

Binary predicate defining the total ordering on variables.

The documentation for this struct was generated from the following file:
* ppl.hh
11.7 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Refer-
ence

A total ordering on BHRZO03 certificates.
#include <ppl.hh>

Public Member Functions

* bool operator() (const BHRZ03_Certificate &x, const BHRZ03_Certificate &y) const

Returns t rue if and only if x comes before y.

11.7.1 Detailed Description

A total ordering on BHRZ03 certificates. This binary predicate defines a total ordering on BHRZ03 certifi-
cates which is used when storing information about sets of polyhedra.

The documentation for this struct was generated from the following file:

* ppl.hh

11.8 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference

A total ordering on H79 certificates.
#include <ppl.hh>

Public Member Functions

* bool operator() (const H79_Certificate &x, const H79_Certificate &y) const

Returns t rue if and only if x comes before y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.9 Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference 164

11.8.1 Detailed Description

A total ordering on H79 certificates. This binary predicate defines a total ordering on H79 certificates
which is used when storing information about sets of polyhedra.

The documentation for this struct was generated from the following file:

* ppl.hh

11.9 Parma_Polyhedra_Library::Grid_Certificate:: Compare Struct Reference

A total ordering on Grid certificates.

#include <ppl.hh>

Public Member Functions

* bool operator() (const Grid_Certificate &x, const Grid_Certificate &y) const

Returns t rue if and only if x comes before y.

11.9.1 Detailed Description

A total ordering on Grid certificates. This binary predicate defines a total ordering on Grid certificates
which is used when storing information about sets of grids.

The documentation for this struct was generated from the following file:

* ppl.hh

11.10 Parma_Polyhedra_Library::Congruence Class Reference

A linear congruence.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Row.

Public Member Functions

* Congruence (const Congruence &cg)

Ordinary copy-constructor.

* Congruence (const Constraint &c)

Copy-constructs (modulo 0) from equality constraint c.

» ~Congruence ()

Destructor.

* Congruence & operator= (const Congruence &cg)

Assignment operator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Congruence Class Reference

165

 dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthi s.

¢ Coefficient_traits::const_reference coefficient (Variable v) const

Returns the coefficient of vin xthis.

 Coefficient_traits::const_reference inhomogeneous_term () const

Returns the inhomogeneous term of xt his.

¢ Coefficient_traits::const_reference modulus () const

Returns a const reference to the modulus of xthis.

* Congruence & operator/= (Coefficient_traits::const_reference k)
Multiplies k into the modulus of xthis.

* bool is_tautological () const

Returns t rue if and only if xt his is a tautology (i.e., an always true congruence).

¢ bool is_inconsistent () const

Returns t rue if and only if xt his is inconsistent (i.e., an always false congruence).

* bool is_proper_congruence () const

Returns t rue if the modulus is greater than zero.

* bool is_equality () const

Returns true if xt his is an equality.

* bool is_equal_at_dimension (dimension_type dim, const Congruence &cg) const

Returns true if xthis is equal to cg in dimension dim.

* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthis to std: :cerrusing operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation of the internal representation of xthis.

¢ bool OK () const

Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Congruence Class Reference

166

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Congruence can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Congruence & zero_dim_integrality ()

Returns a reference to the true (zero-dimension space) congruence 0 = 1 (mod 1), also known as the

integrality congruence.

* static const Congruence & zero_dim_false ()

Returns a reference to the false (zero-dimension space) congruence 0 =1 (mod 0).

« static Congruence create (const Linear_Expression &el, const Linear_Expression &e?2)

Returns the congruence el = e2 (mod 1).

« static Congruence create (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the congruence e = n (mod 1).

« static Congruence create (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the congruence n = e (mod 1).

Protected Member Functions

* void sign_normalize ()

Normalizes the signs.

e void normalize ()

Normalizes signs and the inhomogeneous term.

* void strong_normalize ()

Calls normalize, then divides out common factors.

Friends

» Congruence operator/ (const Congruence &cg, Coefficient_traits::const_reference k)

Returns a copy of cg, multiplying k into the copy’s modulus.

* Congruence operator/ (const Constraint &c, Coefficient_traits::const_reference m)

Creates a congruence from c, with m as the modulus.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Congruence Class Reference 167

Related Functions
(Note that these are not member functions.)

» Congruence operator%= (const Linear_Expression &el, const Linear_Expression &e2)

Returns the congruence el = €2 (mod 1).

» Congruence operator%= (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the congruence e = n (mod 1).

11.10.1 Detailed Description
A linear congruence. An object of the class Congruence is a congruence:
«cg =" aiz; +b=0 (mod m)

where n is the dimension of the space, a; is the integer coefficient of variable z;, b is the integer inho-

mogeneous term and m is the integer modulus; if m = 0, then cg represents the equality congruence
n—1 . . .

Y i aix; +b=0and, if m # 0, then the congruence cg is said to be a proper congruence.

How to build a congruence

Congruences (mod 1) are typically built by applying the congruence symbol ‘%= to a pair of lin-
ear expressions. Congruences with modulus m are typically constructed by building a congruence
(mod 1) using the given pair of linear expressions and then adding the modulus m using the modulus
symbol is ‘/’.

The space dimension of a congruence is defined as the maximum space dimension of the arguments of its
constructor.

In the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds the equality congruence 3z + 5y — z = 0, having space dimension 3:
Congruence eq_cg((3xx + 5%y — z %= 0) / 0);

The following code builds the congruence 42 = 2y — 13 (mod 1), having space dimension 2:
Congruence modl_cg (4xx %= 2«y - 13);

The following code builds the congruence 42 = 2y — 13 (mod 2), having space dimension 2:
Congruence mod2_cg ((4*x %= 2xy — 13) / 2);

An unsatisfiable congruence on the zero-dimension space R can be specified as follows:
Congruence false_cg = Congruence::zero_dim_false();

Equivalent, but more involved ways are the following:

Congruence false_cgl ((Linear_Expression::zero() %=
Congruence false_cg2((Linear_Expression::zero() %=

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Congruence Class Reference 168

In contrast, the following code defines an unsatisfiable congruence having space dimension 3:

o

Congruence false_cg3((0*xz %= 1) / 0);

How to inspect a congruence

Several methods are provided to examine a congruence and extract all the encoded information: its
space dimension, its modulus and the value of its integer coefficients.

Example 2

The following code shows how it is possible to access the modulus as well as each of the coefficients.
Given a congruence with linear expression e and modulus m (in this case x — 5y + 3z = 4 (mod 5)),
we construct a new congruence with the same modulus m but where the linear expression is 2e (2z —

10y + 6z = 8 (mod 5)).

Congruence cgl ((x — 5%y + 3%z %= 4) / 5);
cout << "Congruence cgl: " << cgl << endl;
const Coefficient& m = cgl.modulus();
if (m == 0)
cout << "Congruence cgl is an equality." << endl;
else {
Linear_Expression e;
for (dimension_type i = cgl.space_dimension(); i-- > 0;)
e += 2 x cgl.coefficient (Variable(i)) * Variable(i);
e += 2 % cgl.inhomogeneous_term();

o

Congruence cg2((e %= 0) / m);
cout << "Congruence cg2: " << cg2 << endl;

}
The actual output could be the following:

Congruence cgl: A - 5%«B + 3xC %= 4 / 5
Congruence cg2: 2xA - 10%B + 6+C %= 8 / 5

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) congruence considered.

11.10.2 Constructor & Destructor Documentation

11.10.2.1 Parma_Polyhedra_Library::Congruence::Congruence (const Constraint & c)
[explicit]

Copy-constructs (modulo 0) from equality constraint c.

Exceptions:

std::invalid_argument Thrown if c is an inequality.

11.10.3 Member Function Documentation

11.10.3.1 Coefficient_traits::const_reference Parma_Polyhedra_Library::Congruence::coefficient
(Variable v) const [inline]

Returns the coefficient of v in *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Congruence Class Reference 169

Exceptions:

std::invalid_argument thrown if the index of v is greater than or equal to the space dimension of
*this.

11.10.3.2 Congruence & Parma_Polyhedra_Library::Congruence::operator/=
(Coefficient_traits::const_reference k) [inline]

Multiplies k into the modulus of *this. If called with xthis representing the congruence e; = eo
(mod m), then it returns with xthis representing the congruence e; = es (mod mk).

11.10.3.3 bool Parma_Polyhedra_Library::Congruence::is_tautological () const

Returns true if and only if *this is a tautology (i.e., an always true congruence). A tautological con-
gruence has one the following two forms:

* an equality: Z?;OI Oz; + 0 ==0;or

* a proper congruence: Z;:Ol 0x; + 0% = 0/m, where b = 0 (mod m).

11.10.3.4 bool Parma_Polyhedra_Library::Congruence::is_inconsistent () const

Returns true if and only if *this is inconsistent (i.e., an always false congruence). An inconsistent
congruence has one of the following two forms:

« an equality: 3.7~ Ox; + b == 0 where b # 0; or

* a proper congruence: Z?:_Ol 0x; + b% = 0/m, where b # 0 (mod m).

11.10.3.5 bool Parma_Polyhedra_Library::Congruence::is_proper_congruence () const
[inline]

Returns t rue if the modulus is greater than zero. A congruence with a modulus of 0 is a linear equality.

11.10.3.6 bool Parma_Polyhedra_Library::Congruence::is_equality () const [inline]

Returns true if xthis is an equality. A modulus of zero denotes a linear equality.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Congruence Class Reference 170

11.10.3.7 void Parma_Polyhedra_Library::Congruence::sign_normalize () [protected]

Normalizes the signs. The signs of the coefficients and the inhomogeneous term are normalized, leaving
the first non-zero homogeneous coefficient positive.

11.10.3.8 void Parma_Polyhedra_Library::Congruence::normalize () [protected]

Normalizes signs and the inhomogeneous term. Applies sign_normalize, then reduces the inhomogeneous
term to the smallest possible positive number.

11.10.3.9 void Parma_Polyhedra_Library::Congruence::strong_normalize () [protected]

Calls normalize, then divides out common factors. Strongly normalized Congruences have equivalent
semantics if and only if their syntaxes (as output by operator< <) are equal.

11.10.4 Friends And Related Function Documentation

11.10.4.1 Congruence operator/ (const Congruence & cg, Coefficient_traits::const_reference k)
[friend]

Returns a copy of cg, multiplying k into the copy’s modulus. If cg represents the congruence e; = es
(mod m), then the result represents the congruence e; = eo (mod mk).

11.10.4.2 Congruence operator/ (const Constraint & ¢, Coefficient_traits::const_reference m)
[friend]

Creates a congruence from c, with m as the modulus.

11.10.4.3 Congruence operator %= (const Linear_Expression & el, const Linear_Expression &
e2) [related]

Returns the congruence el = e2 (mod 1).

11.10.4.4 Congruence operator %= (const Linear_Expression & e, Coefficient_traits::const_-
reference n) [related]

Returns the congruence ¢ = n (mod 1).

The documentation for this class was generated from the following file:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Congruence_System Class Reference 171

* ppl.hh

11.11 Parma_Polyhedra_Library::Congruence_System Class Reference

A system of congruences.
#include <ppl.hh>
Inherits Parma_Polyhedra_Library::Matrix.

Classes

e class const_iterator

An iterator over a system of congruences.

Public Member Functions

» Congruence_System ()

Default constructor: builds an empty system of congruences.

* Congruence_System (const Congruence &cg)

Builds the singleton system containing only congruence cg.

» Congruence_System (const Constraint &c)

If ¢ represents the constraint ey = ez, builds the singleton system containing only constraint e; = ez

(mod 0).

* Congruence_System (const Constraint_System &cs)

Builds a system containing copies of any equalities in cs.

* Congruence_System (const Congruence_System &cgs)

Ordinary copy-constructor.

* ~Congruence_System ()

Destructor.

* Congruence_System & operator= (const Congruence_System &cgs)

Assignment operator.

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

* bool is_equal_to (const Congruence_System &cgs) const

Returns true if and only if xt his is exactly equal to cgs.

* bool has_linear_equalities () const

Returns t rue if and only if xt his contains one or more linear equalities.

e void clear ()

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Congruence_System Class Reference 172

Removes all the congruences and sets the space dimension to O.

¢ void insert (const Congruence &cg)

Inserts in xthis a copy of the congruence cg, increasing the number of space dimensions if needed.

¢ void insert (const Constraint &c)

Inserts in xt his a copy of the equality constraint c, seen as a modulo 0 congruence, increasing the number
of space dimensions if needed.

* void insert (const Congruence_System &cgs)

Inserts in xthis a copy of the congruences in cgs, increasing the number of space dimensions if needed.

* void recycling_insert (Congruence_System &cgs)

Inserts into xt his the congruences in cgs, increasing the number of space dimensions if needed.

* bool empty () const

Returns t rue if and only if xt his has no congruences.

* const_iterator begin () const

Returns the const_iterator pointing to the first congruence, if this is not empty; otherwise, returns the
past-the-end const_iterator.

* const_iterator end () const

Returns the past-the-end const_iterator.

¢ bool OK () const

Checks if all the invariants are satisfied.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerrusing operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

* dimension_type num_equalities () const

Returns the number of equalities.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Congruence_System Class Reference 173

* dimension_type num_proper_congruences () const

Returns the number of proper congruences.

* void swap (Congruence_System &cgs)

Swaps xthis with y.

* void add_unit_rows_and_columns (dimension_type dims)

Adds dims rows and dims columns of zeroes to the matrix, initializing the added rows as in the unit
congruence system.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Congruence_System can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Congruence_System & zero_dim_empty ()

Returns the system containing only Congruence::zero_dim_false().

Protected Member Functions

* bool satisfies_all_congruences (const Grid_Generator &g) const

Returns t rue if g satisfies all the congruences.

11.11.1 Detailed Description

A system of congruences. An object of the class Congruence_System is a system of congruences, i.e., a
multiset of objects of the class Congruence. When inserting congruences in a system, space dimensions
are automatically adjusted so that all the congruences in the system are defined on the same vector space.

In all the examples it is assumed that variables x and y are defined as follows:
Variable x(0);

Variable y(1);

Example 1

The following code builds a system of congruences corresponding to an integer grid in R?:

Congruence_System cgs;
cgs.insert (x %= 0);
cgs.insert (y %= 0);

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Congruence_System Class Reference 174

Note that: the congruence system is created with space dimension zero; the first and second congruence
insertions increase the space dimension to 1 and 2, respectively.

Example 2

By adding to the congruence system of the previous example, the congruence + y = 1 (mod 2):

°

cgs.insert ((x + vy %= 1) / 2);

we obtain the grid containing just those integral points where the sum of the x and y values is odd.

Example 3

The following code builds a system of congruences corresponding to the grid in Z? containing just the
integral points on the x axis:

Congruence_System cgs;
cgs.insert (x %= 0);
cgs.insert ((y %= 0) / 0);

Note:

After inserting a multiset of congruences in a congruence system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent congruence system will be available,
where original congruences may have been reordered, removed (if they are trivial, duplicate or implied
by other congruences), linearly combined, etc.

11.11.2 Constructor & Destructor Documentation

11.11.2.1 Parma_Polyhedra_Library::Congruence_System::Congruence_System (const
Constraint & ¢) [inline, explicit]

If c represents the constraint e; = eg, builds the singleton system containing only constraint e; = eg
(mod 0).

Exceptions:

std::invalid_argument Thrown if c is not an equality constraint.

11.11.3 Member Function Documentation

11.11.3.1 void Parma_Polyhedra_Library::Congruence_System::insert (const Congruence & cg)
[inline]

Inserts in *this a copy of the congruence cg, increasing the number of space dimensions if needed. The
copy of cg will be strongly normalized after being inserted.

11.11.3.2 void Parma_Polyhedra_Library::Congruence_System::insert (const Constraint & c)

Inserts in *this a copy of the equality constraint c, seen as a modulo 0 congruence, increasing the number
of space dimensions if needed. The modulo 0 congruence will be strongly normalized after being inserted.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.12 Parma_Polyhedra_Library::Constraint_System::const_iterator Class Reference 175

Exceptions:

std::invalid_argument Thrown if c is a relational constraint.

11.11.3.3 void Parma_Polyhedra_Library::Congruence_System::insert (const
Congruence_System & cgs)

Inserts in *this a copy of the congruences in cgs, increasing the number of space dimensions if needed.
The inserted copies will be strongly normalized.

11.11.3.4 void Parma_Polyhedra_Library::Congruence_System::add_unit_rows_and_columns
(dimension_type dims)

Adds dims rows and dims columns of zeroes to the matrix, initializing the added rows as in the unit
congruence system.
Parameters:

dims The number of rows and columns to be added: must be strictly positive.

Turns the r x ¢ matrix A into the (r + dims) x (¢ + dims) matrix (4 %) where B is the dims x dims

vl) The matrix is expanded avoiding reallocation whenever possible.

unit matrix of the form (1 0

The documentation for this class was generated from the following file:

* ppl.hh

11.12 Parma_Polyhedra_Library::Constraint_System::const_iterator Class Ref-
erence

An iterator over a system of constraints.

#include <ppl.hh>

Public Member Functions

e const_iterator ()

Default constructor.

* const_iterator (const const_iterator &y)

Ordinary copy-constructor.

e ~const_iterator ()

Destructor.

* const_iterator & operator= (const const_iterator &y)

Assignment operator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.13 Parma_Polyhedra_Library::Generator_System::const_iterator Class Reference 176

* const Constraint & operatorx () const

Dereference operator.

* const Constraint * operator-> () const

Indirect member selector.

* const_iterator & operator++ ()

Prefix increment operator.

* const_iterator operator++ (int)

Postfix increment operator.

* bool operator== (const const_iterator &y) const

Returns t rue if and only if ¥t his and y are identical.

* bool operator!= (const const_iterator &y) const

Returns t rue if and only if xt his and y are different.

11.12.1 Detailed Description

An iterator over a system of constraints. A const_iterator is used to provide read-only access to each
constraint contained in a Constraint_System object.

Example

The following code prints the system of constraints defining the polyhedron ph:

const Constraint_System& cs = ph.constraints();
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); 1 != cs_end; ++1i)
cout << xi << endl;

The documentation for this class was generated from the following file:

* ppl.hh

11.13 Parma_Polyhedra_Library::Generator_System::const_iterator Class Ref-
erence

An iterator over a system of generators.
#include <ppl.hh>

Inherited by Parma_Polyhedra_Library::Grid_Generator_System::const_iterator [private].

Public Member Functions

e const_iterator ()

Default constructor.

* const_iterator (const const_iterator &y)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.14 Parma_Polyhedra_Library::Congruence_System::const_iterator Class Reference 177

Ordinary copy-constructor.

e ~const_iterator ()

Destructor.

* const_iterator & operator= (const const_iterator &y)

Assignment operator.

* const Generator & operators () const

Dereference operator.

 const Generator * operator-> () const

Indirect member selector.

* const_iterator & operator++ ()

Prefix increment operator.

e const_iterator operator++ (int)

Postfix increment operator.

* bool operator== (const const_iterator &y) const

Returns t rue if and only if xt his and y are identical.

* bool operator!= (const const_iterator &y) const

Returns true if and only if ¥t his and y are different.

11.13.1 Detailed Description

An iterator over a system of generators. A const_iterator is used to provide read-only access to each
generator contained in an object of Generator_System.

Example

The following code prints the system of generators of the polyhedron ph:

const Generator_System& gs = ph.generators();
for (Generator_System::const_iterator i = gs.begin(),
gs_end = gs.end(); 1 != gs_end; ++1i)
cout << xi << endl;

The same effect can be obtained more concisely by using more features of the STL:

const Generator_System& gs = ph.generators();
copy (gs.begin(), gs.end(), ostream_iterator<Generator> (cout, "\n"));

The documentation for this class was generated from the following file:

* ppl.hh
11.14 Parma_Polyhedra_Library::Congruence_System::const_iterator Class
Reference

An iterator over a system of congruences.

#include <ppl.hh>

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.14 Parma_Polyhedra_Library::Congruence_System::const_iterator Class Reference 178

Public Member Functions

e const_iterator ()

Default constructor.

* const_iterator (const const_iterator &y)

Ordinary copy-constructor.

e ~const_iterator ()

Destructor.

* const_iterator & operator= (const const_iterator &y)

Assignment operator.

* const Congruence & operators () const

Dereference operator.

 const Congruence * operator-> () const

Indirect member selector.

* const_iterator & operator++ ()

Prefix increment operator.

* const_iterator operator++ (int)

Postfix increment operator.

* bool operator== (const const_iterator &y) const

Returns t rue if and only if ¥t his and y are identical.

* bool operator!= (const const_iterator &y) const

Returns true if and only if ¥t his and y are different.

11.14.1 Detailed Description

An iterator over a system of congruences. A const_iterator is used to provide read-only access to each
congruence contained in an object of Congruence_System.

Example

The following code prints the system of congruences defining the grid gr:

const Congruence_System& cgs = gr.congruences();
for (Congruence_System::const_iterator i = cgs.begin(),
cgs_end = cgs.end(); i != cgs_end; ++1i)

cout << x1i << endl;

The documentation for this class was generated from the following file:

e ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class Reference 179

11.15 Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class
Reference

An iterator over a system of grid generators.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Generator_System::const_iterator.

Public Member Functions

¢ const_iterator ()

Default constructor.

* const_iterator (const const_iterator &y)

Ordinary copy-constructor.

e ~const_iterator ()

Destructor.

e const_iterator & operator= (const const_iterator &y)

Assignment operator.

* const Grid_Generator & operatorx () const

Dereference operator.

* const Grid_Generator * operator-> () const

Indirect member selector.

* const_iterator & operator++ ()

Prefix increment operator.

* const_iterator operator++ (int)

Postfix increment operator.

* bool operator== (const const_iterator &y) const

Returns t rue if and only if xt his and y are identical.

* bool operator!= (const const_iterator &y) const

Returns t rue if and only if xt his and y are different.

11.15.1 Detailed Description

An iterator over a system of grid generators. A const_iterator is used to provide read-only access to each
generator contained in an object of Grid_Generator_System.

Example

The following code prints the system of generators of the grid gr:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 180

const Grid_Generator_System& gs = gr.generators();
for (Grid_Generator_System::const_iterator i = gs.begin(),
gs_end = gs.end(); 1 != gs_end; ++1i)

cout << x1i << endl;
The same effect can be obtained more concisely by using more features of the STL:

const Generator_System& gs = gr.generators();
copy (gs.begin(), gs.end(), ostream_iterator<Grid_Generator> (cout, "\n"));

The documentation for this class was generated from the following file:

e pplL.hh

11.16 Parma_Polyhedra_Library::Constraint Class Reference

A linear equality or inequality.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_Row.

Public Types

e enum Type { EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY }

The constraint type.

Public Member Functions

¢ Constraint (const Constraint &c)

Ordinary copy-constructor.

* Constraint (const Congruence &cg)

Copy-constructs from equality congruence cg.

¢ ~Constraint ()

Destructor.

* Constraint & operator= (const Constraint &c)

Assignment operator.

 dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

» Type type () const

Returns the constraint type of xthis.

* bool is_equality () const

Returns t rue if and only if xt his is an equality constraint.

* bool is_inequality () const

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 181

Returns t rue if and only if xt his is an inequality constraint (either strict or non-strict).

* bool is_nonstrict_inequality () const

Returns t rue if and only if *xt his is a non-strict inequality constraint.

* bool is_strict_inequality () const

Returns t rue if and only if ¥t his is a strict inequality constraint.

¢ Coefficient_traits::const_reference coefficient (Variable v) const

Returns the coefficient of vin xthis.

 Coefficient_traits::const_reference inhomogeneous_term () const

Returns the inhomogeneous term of xthis.

* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

* bool is_tautological () const

Returns t rue if and only if xt his is a tautology (i.e., an always true constraint).

¢ bool is_inconsistent () const

Returns t rue if and only if xt his is inconsistent (i.e., an always false constraint).

* bool is_equivalent_to (const Constraint &y) const

Returns t rue if and only if xt his and y are equivalent constraints.

¢ void ascii_dump () const

Writes to std: : cerr an ASCII representation of xthis.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerrusing operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* bool OK () const

Checks if all the invariants are satisfied.

* void swap (Constraint &y)
Swaps xthis with y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 182

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Constraint can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

e static const Constraint & zero_dim_false ()

The unsatisfiable (zero-dimension space) constraint 0 = 1.

* static const Constraint & zero_dim_positivity ()

The true (zero-dimension space) constraint 0 < 1, also known as positivity constraint.

Friends

 Constraint operator== (const Linear_Expression &el, const Linear_Expression &e?2)

Returns the constraint el = e2.

 Constraint operator== (Variable v1, Variable v2)

Returns the constraint vl = v2.

 Constraint operator== (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the constraint e = n.

* Constraint operator== (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the constraint n = e.

» Constraint operator>= (const Linear_Expression &el, const Linear_Expression &e?2)

Returns the constraint el >= e2.

 Constraint operator>= (Variable v1, Variable v2)

Returns the constraint vl >= v2.

 Constraint operator>= (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the constraint e >= n.

 Constraint operator>= (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the constraint n >= e.

 Constraint operator<= (const Linear_Expression &el, const Linear_Expression &e?2)

Returns the constraint el <= e2.

 Constraint operator<= (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the constraint e <= n.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 183

 Constraint operator<= (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the constraint n <= e.

» Constraint operator> (const Linear_Expression &el, const Linear_Expression &e?2)

Returns the constraint el > eZ2.

 Constraint operator> (Variable v1, Variable v2)

Returns the constraint vl > v2.

* Constraint operator> (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the constraint e > n.

* Constraint operator> (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the constraint n > e.

 Constraint operator< (const Linear_Expression &el, const Linear_Expression &e2)

Returns the constraint el < e2.

* Constraint operator< (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the constraint e < n.

 Constraint operator< (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the constraint n < e.

Related Functions
(Note that these are not member functions.)

* Constraint operator<= (Variable v1, Variable v2)

Returns the constraint vl <= v2.

* Constraint operator< (Variable v1, Variable v2)

Returns the constraint vl < v2.

* std::ostream & operator<< (std::ostream &s, const Constraint:: Type &t)

Output operator.

11.16.1 Detailed Description

A linear equality or inequality. An object of the class Constraint is either:
* an equality: Z?':_Ol a;x; +b=0;
* anon-strict inequality: Z?;OI a;x; +b>0; or
* a strict inequality: E;:Ol a;z; +b>0;

where n is the dimension of the space, a; is the integer coefficient of variable x; and b is the integer
inhomogeneous term.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 184

How to build a constraint

Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equality (==), non-strict inequalities (>= and <=) and strict inequalities (< and
>). The space dimension of a constraint is defined as the maximum space dimension of the arguments
of its constructor.

In the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z (2);

Example 1

The following code builds the equality constraint 3z + 5y — z = 0, having space dimension 3:
Constraint eq_c(3*x + 5y - z == 0);

The following code builds the (non-strict) inequality constraint 4z > 2y — 13, having space dimension

Constraint ineq_c(4*xx >= 2%y — 13);

The corresponding strict inequality constraint 4z > 2y — 13 is obtained as follows:
Constraint strict_ineq c (4*x > 2%y - 13);

An unsatisfiable constraint on the zero-dimension space R can be specified as follows:
Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_cl (Linear_Expression::zero() == 1);
Constraint false_c2 (Linear_Expression::zero() >= 1);
Constraint false_c3(Linear_Expression::zero() > 0);

In contrast, the following code defines an unsatisfiable constraint having space dimension 3:

Constraint false_c(0xz == 1);
How to inspect a constraint

Several methods are provided to examine a constraint and extract all the encoded information: its
space dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an

inequality constraint (in this case x — by + 3z < 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraint z — 5y + 3z > 4).

Constraint cl(x — 5*y + 3%z <= 4);
cout << "Constraint cl: " << cl << endl;
if (cl.is_equality())
cout << "Constraint cl is not an inequality." << endl;
else {
Linear_Expression e;
for (dimension_type i = cl.space_dimension(); i-- > 0;)
e += cl.coefficient (Variable(i)) =* Variable(i);
e += cl.inhomogeneous_term() ;
Constraint c2 = cl.is_strict_inequality () ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c2 << endl;

}
The actual output is the following:

Constraint cl: -A + 5%B — 3%C >= -4

Complement c2: A — 5%B + 3%C > 4
Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 185

11.16.2 Member Enumeration Documentation

11.16.2.1 enum Parma_Polyhedra_Library::Constraint::Type

The constraint type.

Enumerator:

EQUALITY The constraint is an equality.
NONSTRICT_INEQUALITY The constraint is a non-strict inequality.
STRICT_INEQUALITY The constraint is a strict inequality.

11.16.3 Constructor & Destructor Documentation

11.16.3.1 Parma_Polyhedra_Library::Constraint::Constraint (const Congruence & cg)
[explicit]

Copy-constructs from equality congruence cg.

Exceptions:

std::invalid_argument Thrown if cqg is a proper congruence.

11.16.4 Member Function Documentation

11.16.4.1 Coefficient_traits::const_reference Parma_Polyhedra_Library::Constraint::coefficient
(Variable v) const [inline]

Returns the coefficient of v in *this.

Exceptions:

std::invalid_argument thrown if the index of v is greater than or equal to the space dimension of
xthis.

11.16.4.2 bool Parma_Polyhedra_Library::Constraint::is_tautological () const

Returns t rue if and only if *this is a tautology (i.e., an always true constraint). A tautology can have
either one of the following forms:

* an equality: Z;’:—Ol O0x; + 0= 0; or
* anon-strict inequality: Z?;OI Ox; +b > 0, where b > 0; or

* astrict inequality: Z?’:_Ol 0x; +b > 0, where b > 0.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 186

11.16.4.3 bool Parma_Polyhedra_Library::Constraint::is_inconsistent () const

Returns true if and only if *this is inconsistent (i.e., an always false constraint). An inconsistent
constraint can have either one of the following forms:

* an equality: Z?;OI 0x; + b = 0, where b # 0; or
* anon-strict inequality: ZZZJ O0z; + b > 0, where b < 0; or

* astrict inequality: 2?2—01 0z; + b > 0, where b < 0.

11.16.4.4 bool Parma_Polyhedra_Library::Constraint::is_equivalent_to (const Constraint & y)
const

Returns true if and only if xthis and y are equivalent constraints. Constraints having different space
dimensions are not equivalent. Note that constraints having different types may nonetheless be equivalent,
if they both are tautologies or inconsistent.

11.16.5 Friends And Related Function Documentation

11.16.5.1 Constraint operator== (const Linear_Expression & eI, const Linear_Expression & ¢2)
[friend]

Returns the constraint el = e2.

11.16.5.2 Constraint operator== (Variable v1, Variable v2) [friend]

Returns the constraint v1 = v2.

11.16.5.3 Constraint operator== (const Linear_Expression & e, Coefficient_traits::const_-
reference n) [friend]

Returns the constraint e = n.

11.16.5.4 Constraint operator== (Coefficient_traits::const_reference n, const Linear_Expression
& e) [friend]

Returns the constraint n = e.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 187

11.16.5.5 Constraint operator>= (const Linear_Expression & e, const Linear_Expression & e2)
[friend]

Returns the constraint el >=e2.

11.16.5.6 Constraint operator>= (Variable v1, Variable v2) [friend]

Returns the constraint v1 >= v2.

11.16.5.7 Constraint operator>= (const Linear_Expression & e, Coefficient_traits::const_-
reference n) [friend]

Returns the constraint e >= n.

11.16.5.8 Constraint operator>= (Coefficient_traits::const_reference n, const Linear_Expression
& e) [friend]

Returns the constraint n >=e.

11.16.5.9 Constraint operator<= (const Linear_Expression & el, const Linear_Expression & e2)
[friend]

Returns the constraint el <=e2.

11.16.5.10 Constraint operator<= (const Linear_Expression & e, Coefficient_traits::const_-
reference n) [friend]

Returns the constraint e <= n.

11.16.5.11 Constraint operator<= (Coefficient_traits::const_reference n, const Linear_Expression
& e¢) [friend]

Returns the constraint n <= e.

11.16.5.12 Constraint operator> (const Linear_Expression & el, const Linear_Expression & ¢2)
[friend]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Constraint Class Reference 188

Returns the constraint el > e2.

11.16.5.13 Constraint operator> (Variable v1, Variable v2) [friend]

Returns the constraint vl > v2.

11.16.5.14 Constraint operator> (const Linear_Expression & e, Coefficient_traits::const_-
reference n) [friend]

Returns the constraint e > n.

11.16.5.15 Constraint operator> (Coefficient_traits::const_reference n, const Linear_Expression
& e¢) [friend]

Returns the constraint n > e.

11.16.5.16 Constraint operator< (const Linear_Expression & el, const Linear_Expression & ¢2)
[friend]

Returns the constraint el < e2.

11.16.5.17 Constraint operator< (const Linear_Expression & e, Coefficient_traits::const_-
reference n) [friend]

Returns the constraint e < n.

11.16.5.18 Constraint operator< (Coefficient_traits::const_reference n, const Linear_Expression
& e¢) [friend]

Returns the constraint n < e.

11.16.5.19 Constraint operator<= (Variable v1, Variable v2) [related]

Returns the constraint vl <= v2.

11.16.5.20 Constraint operator< (Variable vI, Variable v2) [related]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Constraint_System Class Reference 189

Returns the constraint vl < v2.

11.16.5.21 std::ostream & operator<< (std::ostream & s, const Constraint::Type &)
[related]

Output operator.

The documentation for this class was generated from the following file:

e ppl.hh

11.17 Parma_Polyhedra_Library::Constraint_System Class Reference

A system of constraints.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_System.

Classes

e class const_iterator

An iterator over a system of constraints.

Public Member Functions

* Constraint_System ()

Default constructor: builds an empty system of constraints.

 Constraint_System (const Constraint &c)

Builds the singleton system containing only constraint c.

 Constraint_System (const Congruence_System &cgs)

Builds a system containing copies of any equalities in cgs.

* Constraint_System (const Constraint_System &cs)

Ordinary copy-constructor.

e ~Constraint_System ()

Destructor.

* Constraint_System & operator= (const Constraint_System &y)

Assignment operator.

 dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xt his.

* bool has_strict_inequalities () const

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Constraint_System Class Reference 190

Returns t rue if and only if xt his contains one or more strict inequality constraints.

¢ void clear ()

Removes all the constraints from the constraint system and sets its space dimension to 0.

e void insert (const Constraint &c)

Inserts in xthis a copy of the constraint c, increasing the number of space dimensions if needed.

* bool empty () const

Returns true if and only if xt his has no constraints.

e const_iterator begin () const

Returns the const_iterator pointing to the first constraint, if xthis is not empty; otherwise, returns the
past-the-end const_iterator.

¢ const_iterator end () const

Returns the past-the-end const_iterator.

¢ bool OK () const

Checks if all the invariants are satisfied.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xthis.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerrusing operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xth1is.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

¢ void swap (Constraint_System &y)
Swaps «this with y.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Constraint_System can handle.

e static void initialize ()

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Constraint_System Class Reference 191

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Constraint_System & zero_dim_empty ()

Returns the singleton system containing only Constraint::zero_dim_false().

Related Functions
(Note that these are not member functions.)

¢ void swap (Parma_Polyhedra_Library::Generator_System &X, Parma_Polyhedra_-
Library::Generator_System &y)

e void swap (Parma_Polyhedra_Library::Grid_Generator_System &x, Parma_Polyhedra_-
Library::Grid_Generator_System &y)

11.17.1 Detailed Description

A system of constraints. An object of the class Constraint_System is a system of constraints, i.e., a multiset
of objects of the class Constraint. When inserting constraints in a system, space dimensions are automati-
cally adjusted so that all the constraints in the system are defined on the same vector space.

In all the examples it is assumed that variables x and y are defined as follows:
Variable x(0);

Variable y(1);

Example 1

The following code builds a system of constraints corresponding to a square in R?:

Constraint_System cs;
cs.insert (x >= 0);
cs.insert (x <= 3);
cs.insert (y >= 0);
cs.insert (y <= 3);

Note that: the constraint system is created with space dimension zero; the first and third constraint
insertions increase the space dimension to 1 and 2, respectively.

Example 2

By adding four strict inequalities to the constraint system of the previous example, we can remove just
the four vertices from the square defined above.

cs.insert(x + y > 0);
cs.insert(x + y < 6);
cs.insert (x - y < 3);
cs.insert(y - x < 3);

Example 3

The following code builds a system of constraints corresponding to a half-strip in R?:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.18 Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > Class Template Referend®92

Constraint_System cs;
cs.insert (x >= 0);
cs.insert(x — y <= 0);
cs.insert(x -y + 1 >= 0);

Note:

After inserting a multiset of constraints in a constraint system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent constraint system will be available, where
original constraints may have been reordered, removed (if they are trivial, duplicate or implied by other
constraints), linearly combined, etc.

11.17.2 Friends And Related Function Documentation

11.17.2.1 void swap (Parma_Polyhedra_Library::Generator_System & x,
Parma_Polyhedra_Library::Generator_System & y) [related]

11.17.2.2 void swap (Parma_Polyhedra_Library::Grid_Generator_System & x,
Parma_Polyhedra_Library::Grid_Generator_System & y) [related]

The documentation for this class was generated from the following file:

* ppl.hh

11.18 Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > Class Tem-
plate Reference

This class provides the reduction method for the Constraints_Product domain.

#include <ppl.hh>

Public Member Functions

 Constraints_Reduction ()

Default constructor.

¢ void product_reduce (D1 &d1, D2 &d2)

The constraints reduction operator for sharing constraints between the domains.

¢ ~Constraints_Reduction ()

Destructor.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.19 Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference 193

11.18.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::Constraints_Reduction<
D1,D2 >

This class provides the reduction method for the Constraints_Product domain. The reduction classes are
used to instantiate the Partially_Reduced_Product domain. This class adds the constraints defining each of
the component domains to the other component.

11.18.2 Member Function Documentation

11.18.2.1 template<typename D1 , typename D2 > void Parma_Polyhedra_-
Library::Constraints_Reduction< D1, D2 >::product_reduce (D1 & d1, D2 & d2)
[inline]

The constraints reduction operator for sharing constraints between the domains. The minimized constraint
system defining the domain element d1 is added to d2 and the minimized constraint system defining d2
is added to d1. In each case, the donor domain must provide a constraint system in minimal form; this
must define a polyhedron in which the donor element is contained. The recipient domain selects a subset
of these constraints that it can add to the recipient element. For example: if the domain D1 is the Grid
domain and D2 the NNC Polyhedron domain, then only the equality constraints are copied from d1 to d2
and from d2 to d1.

Parameters:

dl A pointset domain element;

d2 A pointset domain element;

The documentation for this class was generated from the following file:

* ppl.hh

11.19 Parma_Polyhedra_Library::Determinate< PSET > Class Template Refer-
ence

Wraps a PPL class into a determinate constraint system interface.

#include <ppl.hh>

Public Member Functions
Constructors and Destructor

* Determinate (const PSET &p)

Injection operator: builds the determinate constraint system element corresponding to the base-level
element p.

* Determinate (const Constraint_System &cs)

Injection operator: builds the determinate constraint system element corresponding to the base-level
element represented by cs.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.19 Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference 194

* Determinate (const Congruence_System &cgs)

Injection operator: builds the determinate constraint system element corresponding to the base-level
element represented by cgs.

* Determinate (const Determinate &y)

Copy constructor.

e ~Determinate ()

Destructor.

Member Functions that May Modify the Domain Element

* void upper_bound_assign (const Determinate &y)

Assigns to xthis the upper bound of xthis and y.

* void meet_assign (const Determinate &y)

Assigns to xthis the meet of xthis and y.

* void weakening_assign (const Determinate &y)

Assigns to xt his the result of weakening xthis with y.

* void concatenate_assign (const Determinate &y)

Assigns to xthis the concatenation of xt his and y, taken in this order.

¢ PSET & element ()

Returns a reference to the embedded element.

¢ void mutate ()
* Determinate & operator= (const Determinate &y)

Assignment operator.

* void swap (Determinate &y)

Swaps xthis with y.

Member Functions that Do Not Modify the Domain Element

const PSET & element () const

Returns a const reference to the embedded element.

* bool is_top () const

Returns true if and only if xthis is the top of the determinate constraint system (i.e., the whole vector
space).

¢ bool is_bottom () const

Returns t rue if and only if xt his is the bottom of the determinate constraint system.

* bool definitely_entails (const Determinate &y) const

Returns t rue if and only if xt his entails y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.20 Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template Reference 195

* bool is_definitely_equivalent_to (const Determinate &y) const

Returns t rue if and only if xt his and y are equivalent.

* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xt his.

* memory_size_type external_memory_in_bytes () const

Returns a lower bound to the size in bytes of the memory managed by *xthis.

bool OK () const

Checks if all the invariants are satisfied.

* static bool has_nontrivial_weakening ()

11.19.1 Detailed Description
template<typename PSET> class Parma_Polyhedra_Library::Determinate< PSET >

Wraps a PPL class into a determinate constraint system interface.

11.19.2 Member Function Documentation

11.19.2.1 template<typename PSET > bool Parma_Polyhedra_Library::Determinate< PSET
>::has_nontrivial_weakening () [inline, static]

Returns t rue if and only if this domain has a nontrivial weakening operator.

The documentation for this class was generated from the following file:

e ppl.hh
11.20 Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template
Reference

This class is temporary and will be removed when template typedefs will be supported in C++.

#include <ppl.hh>

11.20.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::Domain_Product< D1,
D2 >

This class is temporary and will be removed when template typedefs will be supported in C++. When tem-
plate typedefs will be supported in C++, what now is verbosely denoted by Domain_Product<Domainl,
Domain2>::Direct_Product will simply be denoted by Direct_Product<Domainl, Domain2>.

The documentation for this class was generated from the following file:

e pplL.hh

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.21 Parma_Polyhedra_Library::From_Covering_Box Struct Reference 196

11.21 Parma_Polyhedra_Library::From_Covering_Box Struct Reference

A tag class.
#include <ppl.hh>

11.21.1 Detailed Description

A tag class. Tag class to make the Grid covering box constructor unique.

The documentation for this struct was generated from the following file:

* ppl.hh

11.22 Parma_Polyhedra_Library::Generator Class Reference

A line, ray, point or closure point.
#include <ppl.hh>
Inherits Parma_Polyhedra_Library::Linear_Row.

Inherited by Parma_Polyhedra_Library::Grid_Generator [private].

Public Types

* enum Type { LINE, RAY, POINT, CLOSURE_POINT }
The generator type.

Public Member Functions

* Generator (const Generator &g)

Ordinary copy-constructor.

¢ ~Generator ()

Destructor.

* Generator & operator= (const Generator &g)

Assignment operator.

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing *this.

* Type type () const

Returns the generator type of xthis.

bool is_line () const

Returns t rue if and only if xt his is a line.

* bool is_ray () const

Returns t rue if and only if xt his is a ray.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 197

* bool is_point () const

Returns true if and only if xt his is a point.

* bool is_closure_point () const

Returns t rue if and only if xt his is a closure point.

¢ Coefficient_traits::const_reference coefficient (Variable v) const

Returns the coefficient of vin xthis.

¢ Coefficient_traits::const_reference divisor () const

If xthis is either a point or a closure point, returns its divisor.

* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xt his.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

* bool is_equivalent_to (const Generator &y) const

Returns true if and only if xt his and y are equivalent generators.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xthis.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthis to std: :cerrusing operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

¢ bool OK () const

Checks if all the invariants are satisfied.

* void swap (Generator &y)

Swaps xthis with y.

Static Public Member Functions

* static Generator line (const Linear_Expression &e)

Returns the line of direction e.

* static Generator ray (const Linear_Expression &e)

Returns the ray of direction e.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 198

 static Generator point (const Linear_Expression &e=Linear_Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Returns the point at e / d.

e static Generator closure_point (const Linear Expression &e=Linear_Expression::zero(),
Coefficient_traits::const_reference d=Coefficient_one())

Returns the closure point at e / d.

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Generator can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Generator & zero_dim_point ()

Returns the origin of the zero-dimensional space R°.

* static const Generator & zero_dim_closure_point ()

Returns, as a closure point, the origin of the zero-dimensional space R°.

Related Functions
(Note that these are not member functions.)

¢ template<typename To >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir)

Computes the rectilinear (or Manhattan) distance between x and y.

* template<typename Temp , typename To >
bool rectilinear_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp &tmp2)

Computes the rectilinear (or Manhattan) distance between x and y.

¢ template<typename To >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &Xx, const Generator &y, Rounding_Dir dir)

Computes the euclidean distance between x and y.

* template<typename Temp , typename To >
bool euclidean_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp &tmp2)

Computes the euclidean distance between x and y.

¢ template<typename To >
bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 199

Computes the L, distance between x and y.
¢ template<typename Temp , typename To >

bool I_infinity_distance_assign (Checked_Number< To, Extended_Number_Policy > &r, const
Generator &x, const Generator &y, Rounding_Dir dir, Temp &tmp0, Temp &tmp1, Temp &tmp2)

Computes the Lo distance between x and y.

e std::ostream & operator< < (std::ostream &s, const Generator::Type &t)

Output operator.

11.22.1 Detailed Description

A line, ray, point or closure point. An object of the class Generator is one of the following:

e alinel = (ag,...,a,_1)";

e arayr = (ag,...,an_1)%;

s apointp = (%,..., =T,

* aclosure point ¢ = (%,..., =11,

where 7 is the dimension of the space and, for points and closure points, d > 0 is the divisor.

A note on terminology.

As observed in Section Representations of Convex Polyhedra, there are cases when, in order to repre-
sent a polyhedron P using the generator system G = (L, R, P, C), we need to include in the finite set
P even points of P that are not vertices of P. This situation is even more frequent when working with
NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other libraries use the
word ‘vertex’.

How to build a generator.

Each type of generator is built by applying the corresponding function (1ine, ray, point or
closure_point) to a linear expression, representing a direction in the space; the space dimen-
sion of the generator is defined as the space dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply ig-
nored). When defining points and closure points, an optional Coefficient argument can be used as a
common divisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z (2);

Example 1

The following code builds a line with direction x — y — z and having space dimension 3:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 200

Generator 1 = line(x -y - z);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator 1 = line(x -y - z + 15);
By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator 1 = line(0*x);

Example 2

The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x -y — z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the point p = (1,0,2)" € R3:
Generator p = point (lxx + Oxy + 2%z);
The same effect can be obtained by using the following code:
Generator p = point(x + 2xz);
Similarly, the origin O € R3 can be defined using either one of the following lines of code:

Generator origin3 = point (0xx + O0xy + 0xz);
Generator origin3_alt = point (0xz);

Note however that the following code would have defined a different point, namely 0 € R:
Generator origin2 = point (0x*y);

The following two lines of code both define the only point having space dimension zero, namely
0 € RY. In the second case we exploit the fact that the first argument of the function point is

optional.
Generator origin0 = Generator::zero_dim_point () ;
Generator originO_alt = point();
Example 4

The point p specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the function point (the divisor):

Generator p = point (2+«x + 0*y + 4%z, 2);

Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-

nal) coordinates. For instance, the point ¢ = (—1.5,3.2,2.1)T € R? can be specified by the following
code:

Generator g = point (-15%x + 32y + 21xz, 10);

If a zero divisor is provided, an exception is thrown.

Example 5

Closure points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure point ¢ = (1,0,2)T € R? is defined by

Generator c¢ = closure_point (1xx + 0xy + 2%x2z);

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 201

For the particular case of the (only) closure point having space dimension zero, we can use any of the

following:
Generator closure_origin0O = Generator::zero_dim_closure_point ();
Generator closure_originO_alt = closure_point () ;

How to inspect a generator

Several methods are provided to examine a generator and extract all the encoded information: its space
dimension, its type and the value of its integer coefficients.

Example 6

The following code shows how it is possible to access each single coefficient of a generator. If gl
is a point having coordinates (ay, . . .,a,_1)T, we construct the closure point g2 having coordinates
(ag,2a1,...,(i+1ag,...,nap_1)T

if (gl.is_point()) {
cout << "Point gl: " << gl << endl;
Linear_Expression e;
for (dimension_type i = gl.space_dimension(); i-- > 0;)
e += (i + 1) » gl.coefficient (Variable(i)) * Variable(i);
Generator g2 = closure_point (e, gl.divisor());
cout << "Closure point g2: " << g2 << endl;
}

else
cout << "Generator gl is not a point." << endl;
Therefore, for the point
Generator gl = point (2*xx — y + 3%z, 2);

we would obtain the following output:

Point gl: p((2«A — B + 3xC)/2)
Closure point g2: cp((2«A - 2+«B + 9xC)/2)

When working with (closure) points, be careful not to confuse the notion of coefficient with the notion
of coordinate: these are equivalent only when the divisor of the (closure) point is 1.

11.22.2 Member Enumeration Documentation

11.22.2.1 enum Parma_Polyhedra_Library::Generator::Type

The generator type.

Enumerator:
LINE The generator is a line.
RAY The generator is a ray.
POINT The generator is a point.
CLOSURE_POINT The generator is a closure point.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 202

11.22.3 Member Function Documentation

11.22.3.1 Generator line (const Linear_Expression & ¢) [inline, static]

Returns the line of direction e. Shorthand for Generator Generator::line(const Linear_Expression& e).

Exceptions:

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

11.22.3.2 Generator ray (const Linear_Expression & ¢) [inline, static]

Returns the ray of direction e. Shorthand for Generator Generator::ray(const Linear_Expression& e).

Exceptions:

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

11.22.3.3 Generator point (const Linear_Expression & ¢ = Linear_Expression: :zero(),
Coefficient_traits::const_reference d = Coefficient_one()) [inline, static]

Returns the point at e / d. Shorthand for Generator Generator::point(const Linear_Expression& e,
Coefficient_traits::const_reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions:

std::invalid_argument Thrown if d is zero.

11.22.3.4 Generator closure_point (const Linear_Expression & ¢ = Linear_ -
Expression: :zero(), Coefficient_traits::const_reference d =
Coefficient_one()) [inline, static]

Returns the closure point at e / d. Shorthand for Generator Generator::closure_point(const Linear_-
Expression& e, Coefficient_traits::const_reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions:

std::invalid_argument Thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 203

11.22.3.5 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::coefficient
(Variable v) const [inline]

Returns the coefficient of v in *this.

Exceptions:
std::invalid_argument Thrown if the index of v is greater than or equal to the space dimension of

*this.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

11.22.3.6 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::divisor ()
const [inline]

If ¥t his is either a point or a closure point, returns its divisor.

Exceptions:

std::invalid_argument Thrown if xthis is neither a point nor a closure point.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

11.22.3.7 bool Parma_Polyhedra_Library::Generator::is_equivalent_to (const Generator & y)
const

Returns true if and only if *this and y are equivalent generators. Generators having different space
dimensions are not equivalent.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator.

11.22.4 Friends And Related Function Documentation

11.22.4.1 template<typename To > bool rectilinear_distance_assign (Checked_Number<
To, Extended_Number_Policy > & r, const Generator & x, const Generator & y,
Rounding_Dir dir) [related]

Computes the rectilinear (or Manhattan) distance between x and y. Computes the euclidean distance
between x and y.

If the rectilinear distance between x and vy is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 204

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns t rue;
returns £alse otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns £alse otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns £alse otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

11.22.4.2 template<typename Temp , typename To > bool rectilinear_distance_assign
(Checked_Number< To, Extended_Number_Policy > & r, const Generator & x, const
Generator & y, Rounding Dir dir, Temp & tmp0, Temp & tmpl, Temp & tmp2)
[related]

Computes the rectilinear (or Manhattan) distance between x and y. If the rectilinear distance between x
and y is defined, stores an approximation of it into r and returns t rue; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmpO, tmpl and tmp2.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 205

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the rectilinear distance between x and y is defined, stores an approximation of it into r and returns
true; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmpO, tmp1l and tmp2.

11.22.4.3 template<typename To > bool euclidean_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const Generator & x, const Generator & y,
Rounding_Dir dir) [related]

Computes the euclidean distance between x and y. If the euclidean distance between x and v is defined,
stores an approximation of it into r and returns t rue; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked _Number<To, Extended_Number_-
Policy>.

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns t rue;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked _Number<To, Extended_Number_-
Policy>.

If the euclidean distance between x and y is defined, stores an approximation of it into r and returns t rue;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

11.22.4.4 template<typename Temp , typename To > bool euclidean_distance_assign
(Checked_Number< To, Extended_Number_Policy > & r, const Generator & x, const
Generator & y, Rounding_Dir dir, Temp & tmp0, Temp & tmpl, Temp & tmp2)
[related]

Computes the euclidean distance between x and y. If the euclidean distance between x and y is defined,
stores an approximation of it into r and returns t rue; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmpl and tmp?2.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.22 Parma_Polyhedra_Library::Generator Class Reference 206

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the euclidean distance between x and vy is defined, stores an approximation of it into r and returns t rue;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmp1l and tmp2.

11.22.4.5 template<typename To > bool |_infinity_distance_assign (Checked_Number< To,
Extended_Number_Policy > & r, const Generator & x, const Generator & y,
Rounding Dir dir) [related]

Computes the L., distance between x and y. If the L., distance between x and y is defined, stores an
approximation of it into r and returns t rue; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the L, distance between x and vy is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the L., distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<To, Extended_Number_-
Policy>.

If the L, distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using variables of type Checked_Number<Temp, Extended_Number_-
Policy>.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.23 Parma_Polyhedra_Library::Generator_System Class Reference 207

11.22.4.6 template<typename Temp , typename To > bool I_infinity_distance_assign
(Checked_Number< To, Extended_Number_Policy > & r, const Generator & x, const
Generator & y, Rounding_Dir dir, Temp & tmp0, Temp & tmpl, Temp & tmp2)
[related]

Computes the L., distance between x and y. If the L., distance between x and y is defined, stores an
approximation of it into r and returns t rue; returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmp0, tmpl and tmp?2.

Note:

Distances are only defined between generators that are points and/or closure points; for rays or lines,
false is returned.

If the L, distance between x and y is defined, stores an approximation of it into r and returns true;
returns false otherwise.

The direction of the approximation is specified by dir.

All computations are performed using the temporary variables tmpO, tmp1l and tmp2.

11.22.4.7 std::ostream & operator<< (std::ostream & s, const Generator::Type & ¢)
[related]

Output operator.

The documentation for this class was generated from the following file:

* ppl.hh

11.23 Parma_Polyhedra_Library::Generator_System Class Reference

A system of generators.
#include <ppl.hh>
Inherits Parma_Polyhedra_Library::Linear_System.

Inherited by Parma_Polyhedra_Library::Grid_Generator_System [private].

Classes

e class const_iterator

An iterator over a system of generators.

Public Member Functions

* Generator_System ()

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.23 Parma_Polyhedra_Library::Generator_System Class Reference 208

Default constructor: builds an empty system of generators.

* Generator_System (const Generator &g)

Builds the singleton system containing only generator g.

e Generator_System (const Generator_System &gs)

Ordinary copy-constructor.

* ~Generator_System ()

Destructor.

* Generator_System & operator= (const Generator_System &y)

Assignment operator.

 dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

¢ void clear ()

Removes all the generators from the generator system and sets its space dimension to 0.

* void insert (const Generator &g)

Inserts in xthis a copy of the generator g, increasing the number of space dimensions if needed.

* bool empty () const

Returns t rue if and only if xt his has no generators.

* const_iterator begin () const

Returns the const_iterator pointing to the first generator, if xthis is not empty; otherwise, returns the
past-the-end const_iterator.

e const_iterator end () const

Returns the past-the-end const_iterator.

¢ bool OK () const

Checks if all the invariants are satisfied.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of *t his.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerr using operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.23 Parma_Polyhedra_Library::Generator_System Class Reference 209

Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

¢ void swap (Generator_System &y)

Swaps *this with y.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Generator_System can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Generator_System & zero_dim_univ ()

Returns the singleton system containing only Generator::zero_dim_point().

11.23.1 Detailed Description

A system of generators. An object of the class Generator_System is a system of generators, i.e., a multiset
of objects of the class Generator (lines, rays, points and closure points). When inserting generators in a
system, space dimensions are automatically adjusted so that all the generators in the system are defined
on the same vector space. A system of generators which is meant to define a non-empty polyhedron must
include at least one point: the reason is that lines, rays and closure points need a supporting point (lines
and rays only specify directions while closure points only specify points in the topological closure of the
NNC polyhedron).

In all the examples it is assumed that variables x and y are defined as follows:
Variable x(0);

Variable y(1);

Example 1
The following code defines the line having the same direction as the x axis (i.e., the first Cartesian
axis) in R2:

Generator_System gs;
gs.insert (line(x + 0x*y));

As said above, this system of generators corresponds to an empty polyhedron, because the line has no
supporting point. To define a system of generators that does correspond to the x axis, we can add the
following code which inserts the origin of the space as a point:

gs.insert (point (0xx + 0*y));

Since space dimensions are automatically adjusted, the following code obtains the same effect:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.23 Parma_Polyhedra_Library::Generator_System Class Reference 210

gs.insert (point (0xx));

In contrast, if we had added the following code, we would have defined a line parallel to the x axis
through the point (0,1)" € R2.

gs.insert (point (0xx + 1l*y));

Example 2

The following code builds a ray having the same direction as the positive part of the z axis in R?:

Generator_System gs;
gs.insert (ray(x + 0xy));

To define a system of generators indeed corresponding to the set
{(z,00" eR* |z >0},

one just has to add the origin:

gs.insert (point (0xx + 0*y));

Example 3

The following code builds a system of generators having four points and corresponding to a square in
R? (the same as Example 1 for the system of constraints):

Generator_System gs;

gs.insert (point (0xx + Oxy
gs.insert (point (0xx + 3xy
gs.insert (point (3xx + Oxy
gs.insert (point (3xx + 3xy

Example 4

By using closure points, we can define the kernel (i.e., the largest open set included in a given set)
of the square defined in the previous example. Note that a supporting point is needed and, for that
purpose, any inner point could be considered.

Generator_System gs;
gs.insert (point(x + vy));

(
gs.insert (closure_point (0*xx + O0xy));
gs.insert (closure_point (0xx + 3%y));
gs.insert (closure_point (3xx + 0xy));
gs.insert (closure_point (3xx + 3*y));

Example 5§

The following code builds a system of generators having two points and a ray, corresponding to a
half-strip in R? (the same as Example 2 for the system of constraints):

Generator_System gs;
gs.insert (point (0xx + 0*y));
gs.insert (point (0*x + 1xy));
gs.insert (ray(x - y));

Note:

After inserting a multiset of generators in a generator system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent generator system will be available,
where original generators may have been reordered, removed (if they are duplicate or redundant), etc.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.24 Parma_Polyhedra_Library::GMP_Integer Class Reference 211

11.23.2 Member Function Documentation

11.23.2.1 bool Parma_Polyhedra_Library::Generator_System::OK () const

Checks if all the invariants are satisfied. Returns t rue if and only if *this is a valid Linear_System and
each row in the system is a valid Generator.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator_System.

11.23.2.2 bool Parma_Polyhedra_Library::Generator_System::ascii_load (std::istream & s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns true if successful, false otherwise. Resizes the matrix of generators using the
numbers of rows and columns read from s, then initializes the coordinates of each generator and its type
reading the contents from s.

Reimplemented in Parma_Polyhedra_Library::Grid_Generator_System.

The documentation for this class was generated from the following file:

* ppl.hh

11.24 Parma_Polyhedra_Library::GMP_Integer Class Reference

Unbounded integers as provided by the GMP library.

#include <ppl.hh>

Related Functions
(Note that these are not member functions.)

Arithmetic Operators

* void rem_assign (GMP_Integer &x, const GMP_Integer &y, const GMP_Integer &z)

Assigns to x the remainder of the division of y by z.

* int cmp (const GMP_Integer &x, const GMP_Integer &y)

Returns a negative, zero or positive value depending on whether x is lower than, equal to or greater than
v, respectively.

11.24.1 Detailed Description

Unbounded integers as provided by the GMP library. GMP_Integer is an alias for the mpz_-
class type defined in the C++ interface of the GMP library. For more information, see
http://www.swox.com/gmp/

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.swox.com/gmp/
http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 212

11.24.2 Friends And Related Function Documentation

11.24.2.1 void rem_assign (GMP_Integer & x, const GMP_Integer & y, const GMP_Integer & 7)
[related]

Assigns to x the remainder of the division of y by z.

The documentation for this class was generated from the following file:

* ppl.hh

11.25 Parma_Polyhedra_Library::Grid Class Reference

A grid.
#include <ppl.hh>

Public Types

* typedef Coefficient coefficient_type

The numeric type of coefficients.

Public Member Functions

¢ Grid (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds a grid having the specified properties.

* Grid (const Congruence_System &cgs)

Builds a grid, copying a system of congruences.

* Grid (Congruence_System &cgs, Recycle_Input dummy)

Builds a grid, recycling a system of congruences.

¢ Grid (const Constraint_System &cs)

Builds a grid, copying a system of constraints.

¢ Grid (Constraint_System &cs, Recycle_Input dummy)

Builds a grid, recycling a system of constraints.

¢ Grid (const Grid_Generator_System &const_gs)

Builds a grid, copying a system of grid generators.

* Grid (Grid_Generator_System &gs, Recycle_Input dummy)

Builds a grid, recycling a system of grid generators.

¢ template<typename Interval >

Grid (const Box< Interval > &box, Complexity_Class complexity=ANY_COMPLEXITY)
Builds a grid out of a box.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 213

¢ template<typename U >
Grid (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a grid out of a bounded-difference shape.

* template<typename U >
Grid (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a grid out of an octagonal shape.

* template<typename Box >
Grid (const Box &box, From_Covering_Box dummy)

Builds a grid out of a generic, interval-based covering box.

¢ Grid (const Polyhedron &ph, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a grid from a polyhedron using algorithms whose complexity does not exceed the one specified by
complexity. If complexity is ANY_COMPLEXITY, then the grid built is the smallest one containing
ph.

* Grid (const Grid &y, Complexity_Class complexity=ANY_COMPLEXITY)

Ordinary copy-constructor.

* Grid & operator= (const Grid &y)

The assignment operator. (xthis and y can be dimension-incompatible.).

Member Functions that Do Not Modify the Grid

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

* dimension_type affine_dimension () const

Returns O, if xt his is empty; otherwise, returns the affine dimension of xthis.

* Constraint_System constraints () const

Returns a system of equality constraints satisfied by xt his with the same affine dimension as xthis.

* Constraint_System minimized_constraints () const

Returns a minimal system of equality constraints satisfied by xt his with the same affine dimension as
*this.

* const Congruence_System & congruences () const

Returns the system of congruences.

 const Congruence_System & minimized_congruences () const

Returns the system of congruences in minimal form.

* const Grid_Generator_System & grid_generators () const

Returns the system of generators.

* const Grid_Generator_System & minimized_grid_generators () const

Returns the minimized system of generators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 214

* Poly_Con_Relation relation_with (const Congruence &cg) const

Returns the relations holding between xthis and cg.

* Poly_Gen_Relation relation_with (const Grid_Generator &g) const

Returns the relations holding between xthis and g.

* Poly_Gen_Relation relation_with (const Generator &g) const

Returns the relations holding between xthis and g.

* Poly_Con_Relation relation_with (const Constraint &c) const

Returns the relations holding between xthis and c.

* bool is_empty () const
Returns t rue if and only if xt his is an empty grid.

* bool is_universe () const

Returns t rue if and only if xt his is a universe grid.

* bool is_topologically_closed () const

Returns t rue if and only if xt his is a topologically closed subset of the vector space.

* bool is_disjoint_from (const Grid &y) const

Returns true if and only if ¥t his and y are disjoint.

¢ bool is_discrete () const

Returns t rue if and only if xt his is discrete.

¢ bool is_bounded () const
Returns t rue if and only if xt hi s is bounded.

* bool contains_integer_point () const

Returns t rue if and only if xt his contains at least one integer point.

* bool constrains (Variable var) const

Returns t rue if and only if var is constrained in xt his.

* bool bounds_from_above (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded in xthis.

* bool bounds_from_below (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded in xthis.

* bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value is computed.

* bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &point) const
Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value and a point where expr reaches it are computed.

* bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 215

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value is computed.

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &point) const

Returns true if and only if xt his is not empty and expzr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.

bool contains (const Grid &y) const

Returns true if and only if xt his contains y.

bool strictly_contains (const Grid &y) const

Returns t rue if and only if xt hi s strictly contains y.

template <typename Interval >
void get_covering_box (Box< Interval > &box) const

Writes the covering box for xt his into box.

bool OK (bool check_not_empty=false) const

Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Grid

void add_congruence (const Congruence &cg)

Adds a copy of congruence cgto xthis.

bool add_congruence_and_minimize (const Congruence &c)

Adds a copy of congruence cg to the system of congruences of t his, reducing the result.

void add_grid_generator (const Grid_Generator &g)
Adds a copy of grid generator g to the system of generators of xthis.

bool add_grid_generator_and_minimize (const Grid_Generator &g)
Adds a copy of grid generator g to the system of generators of xt his, reducing the result.

void add_congruences (const Congruence_System &cgs)

Adds a copy of each congruence in cgs to xthis.

void add_recycled_congruences (Congruence_System &cgs)

Adds the congruences in cgs to *this.

bool add_congruences_and_minimize (const Congruence_System &cgs)

Adds a copy of the congruences in cgs to the system of congruences of xt his, reducing the result.

bool add_recycled_congruences_and_minimize (Congruence_System &cgs)

Adds the congruences in cgs to the system of congruences of this, reducing the result.

void add_constraint (const Constraint &c)

Adds to xthis a congruence equivalent to constraint c.

bool add_constraint_and_minimize (const Constraint &c)

Adds to xthis a congruence equivalent to constraint ¢, also minimizing the result.

void add_constraints (const Constraint_System &cs)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 216

Adds to xt his congruences equivalent to the constraints in cs.

bool add_constraints_and_minimize (const Constraint_System &cs)

Adds to xthis congruences equivalent to the constraints in cs, minimizing the result.

void add_recycled_constraints (Constraint_System &cs)
Adds to xt his congruences equivalent to the constraints in cs.

bool add_recycled_constraints_and_minimize (Constraint_System &cs)

Adds to xthis congruences equivalent to the constraints in cs, minimizing the result.

void refine_with_congruence (const Congruence &cg)

Uses a copy of the congruence cg to refine xthis.

void refine_with_congruences (const Congruence_System &cgs)

Uses a copy of the congruences in cgs to refine xthis.

void refine_with_constraint (const Constraint &c)

Uses a copy of the constraint c to refine xthis.

void refine_with_constraints (const Constraint_System &cs)

Uses a copy of the constraints in cs to refine xthis.

void add_grid_generators (const Grid_Generator_System &gs)

Adds a copy of the generators in gs to the system of generators of xt his.

void add_recycled_grid_generators (Grid_Generator_System &gs)

Adds the generators in gs to the system of generators of this.

bool add_grid_generators_and_minimize (const Grid_Generator_System &gs)

Adds a copy of the generators in gs to the system of generators of *t his, reducing the result.

bool add_recycled_grid_generators_and_minimize (Grid_Generator_System &gs)

Adds the generators in gs to the system of generators of this, reducing the result.

void unconstrain (Variable var)

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
*this.

void unconstrain (const Variables_Set &to_be_unconstrained)

Computes the cylindrification of xthis with respect to the set of space dimensions to_be_—
unconstrained, assigning the result to xthis.

void intersection_assign (const Grid &y)

Assigns to xthis the intersection of xthis and y.

bool intersection_assign_and_minimize (const Grid &y)
Assigns to xt his the intersection of xthis and y, reducing the result.

void upper_bound_assign (const Grid &y)
Assigns to xthis the least upper bound of xthis and y.

bool upper_bound_assign_and_minimize (const Grid &y)
Assigns to xthis the least upper bound of xt his and y, reducing the result.

bool upper_bound_assign_if_exact (const Grid &y)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 217

If the upper bound of xthis and y is exact it is assigned to this and true is returned, otherwise
false is returned.

* void difference_assign (const Grid &y)
Assigns to xthis the grid-difference of xthis and y.

* bool simplify_using_context_assign (const Grid &y)
Assigns to xthis a meet-preserving simplification of xt his with respect to y. If false is returned,
then the intersection is empty.

* void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())
Assigns to xthis the affine image of this under the function mapping variable var to the affine
expression specified by expr and denominator.

* void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to xt his the affine preimage of xt his under the function mapping variable var to the affine
expression specified by expr and denominator.

* void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one(), Coefficient_-
traits::const_reference modulus=Coefficient_zero())

expr

Assigns to xthis the image of xt his with respect to the generalized affine relation var' = "2 ——

(mod modulus).

* void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one(),
Coefficient_traits::const_reference modulus=Coefficient_zero())

Assigns to xthis the preimage of xthis with respect to the generalized affine relation var' =

TP —— (mod modulus).
enominator

* void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs, Coefficient_traits::const_reference modulus=Coefficient_zero())
Assigns to xthis the image of xthis with respect to the generalized affine relation lhs’ = rhs
(mod modulus).

* void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol rel-
sym, const Linear_Expression &rhs, Coefficient_traits::const_reference modulus=Coefficient_-
zero())

Assigns to xthis the preimage of xthis with respect to the generalized affine relation lhs’ = rhs
(mod modulus).

* void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-

Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

1b_expr <

Assigns to xt his the image of *t his with respect to the bounded dffine relation ;=="-— < var’ <

ub_expr
denominator*

* void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())
Assigns to xthis the preimage of xthis with respect to the bounded affine relation % <

var’ < -_ubexpr
— denominator

* void time_elapse_assign (const Grid &y)

Assigns to xt his the result of computing the time-elapse between xthis and y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 218

void topological_closure_assign ()

Assigns to xt his its topological closure.

void congruence_widening_assign (const Grid &y, unsigned *tp=NULL)

Assigns to xthis the result of computing the Grid widening between xthis and y using congruence
systems.

void generator_widening_assign (const Grid &y, unsigned xtp=NULL)

Assigns to xthis the result of computing the Grid widening between xthis and y using generator
systems.

void widening_assign (const Grid &y, unsigned *tp=NULL)
Assigns to xt his the result of computing the Grid widening between xthis and y.

void limited_congruence_extrapolation_assign (const Grid &y, const Congruence_System &cgs,
unsigned *tp=NULL)
Improves the result of the congruence variant of Grid widening computation by also enforcing those
congruences in cgs that are satisfied by all the points of xt his.

void limited_generator_extrapolation_assign (const Grid &y, const Congruence_System &cgs,
unsigned *tp=NULL)
Improves the result of the generator variant of the Grid widening computation by also enforcing those
congruences in cgs that are satisfied by all the points of xt his.

void limited_extrapolation_assign (const Grid &y, const Congruence_System &cgs, unsigned
+tp=NULL)
Improves the result of the Grid widening computation by also enforcing those congruences in cgs that
are satisfied by all the points of xthis.

Member Functions that May Modify the Dimension of the Vector Space

void add_space_dimensions_and_embed (dimension_type m)

Adds m new space dimensions and embeds the old grid in the new vector space.

void add_space_dimensions_and_project (dimension_type m)

Adds m new space dimensions to the grid and does not embed it in the new vector space.

void concatenate_assign (const Grid &y)

Assigns to xthis the concatenation of xt his and y, taken in this order.

void remove_space_dimensions (const Variables_Set &to_be_removed)

Removes all the specified dimensions from the vector space.

void remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension.

template <typename Partial Function >
void map_space_dimensions (const Partial_Function &pfunc)

Remaps the dimensions of the vector space according to a partial function.

void expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 219

* void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)

Folds the space dimensions in to_be_foldedinto var.

Miscellaneous Member Functions

e ~Grid ()

Destructor.

* void swap (Grid &y)

Swaps xthis with grid y. (xthis and y can be dimension-incompatible.).

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xt his.

* void print () const

Prints xthisto std: :cerr using operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets
*this accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthi s.

e int32_t hash_code () const
Returns a 32-bit hash code for xt his.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension all kinds of Grid can handle.

* static bool can_recycle_congruence_systems ()

Returns true indicating that this domain has methods that can recycle congruences.

* static bool can_recycle_constraint_systems ()

Returns true indicating that this domain has methods that can recycle constraints.

11.25.1 Detailed Description

A grid. An object of the class Grid represents a rational grid.

The domain of grids optimally supports:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 220

* all (proper and non-proper) congruences;
* tautological and inconsistent constraints;

* linear equality constraints (i.e., non-proper congruences).

Depending on the method, using a constraint that is not optimally supported by the domain will either raise
an exception or result in a (possibly non-optimal) upward approximation.

The domain of grids support a concept of double description similar to the one developed for polyhedra:
hence, a grid can be specified as either a finite system of congruences or a finite system of generators (see
Section Rational Grids) and it is always possible to obtain either representation. That is, if we know the
system of congruences, we can obtain from this a system of generators that define the same grid and vice
versa. These systems can contain redundant members, or they can be in the minimal form.

A key attribute of any grid is its space dimension (the dimension n € N of the enclosing vector space):

* all grids, the empty ones included, are endowed with a space dimension;

* most operations working on a grid and another object (another grid, a congruence, a generator, a set
of variables, etc.) will throw an exception if the grid and the object are not dimension-compatible
(see Section Space Dimensions and Dimension-compatibility for Grids);

e the only ways in which the space dimension of a grid can be changed are with explicit calls to
operators provided for that purpose, and with standard copy, assignment and swap operators.

Note that two different grids can be defined on the zero-dimension space: the empty grid and the universe
grid RO,

In all the examples it is assumed that variables x and y are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a grid corresponding to the even integer pairs in R?, given as a system of
congruences:

Congruence_System cgs;
cgs.insert ((x %= 0) / 2);

cgs.insert ((y %= 0) / 2);
Grid gr(cgs);

The following code builds the same grid as above, but starting from a system of generators specifying
three of the points:

Grid_Generator_System gs;
gs.insert (grid_point (0xx + 0*y));
gs.insert (grid_point (0xx + 2*y));
gs.insert (grid_point (2xx + 0xy));
Grid gr(gs);

Example 2

The following code builds a grid corresponding to a line in R? by adding a single congruence to the
universe grid:

Congruence_System cgs;
cgs.insert(x — y == 0);
Grid gr(cgs);

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 221

The following code builds the same grid as above, but starting from a system of generators specifying
a point and a line:

Grid_Generator_System gs;
gs.insert (grid_point (0xx + 0x*y));
gs.insert (grid_line(x + y));

Grid gr(gs);

Example 3

The following code builds a grid corresponding to the integral points on the line z = y in R? con-
structed by adding an equality and congruence to the universe grid:

Congruence_System cgs;
cgs.insert(x - y == 0);

°

cgs.insert (x %= 0);
Grid gr(cgs);

The following code builds the same grid as above, but starting from a system of generators specifying
a point and a parameter:

Grid_Generator_System gs;
gs.insert (grid_point (0xx + 0x*y));
gs.insert (parameter(x + y));

Grid gr(gs);

Example 4

The following code builds the grid corresponding to a plane by creating the universe grid in R?:
Grid gr(2);

The following code builds the same grid as above, but starting from the empty grid in R? and inserting
the appropriate generators (a point, and two lines).

Grid gr (2, EMPTY);

gr.add_grid_generator (grid_point (0*xx + 0xy));
gr.add_grid_generator (grid_line(x));
gr.add_grid_generator (grid_line(y));

Note that a generator system must contain a point when describing a grid. To ensure that this is
always the case it is required that the first generator inserted in an empty grid is a point (otherwise, an
exception is thrown).

Example 5§

The following code shows the use of the function add_space_dimensions_and_embed:

Grid gr(1l);
gr.add_congruence (x == 2);
gr.add_space_dimensions_and_embed (1) ;

We build the universe grid in the 1-dimension space R. Then we add a single equality congruence,
thus obtaining the grid corresponding to the singleton set {2} C R. After the last line of code, the
resulting grid is

{@yTeR?|yeR}.

Example 6

The following code shows the use of the function add_space_dimensions_and_project:

Grid gr(l);
gr.add_congruence (x == 2);
gr.add_space_dimensions_and_project (1) ;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 222

The first two lines of code are the same as in Example 4 for add_space_dimensions_and_-
embed. After the last line of code, the resulting grid is the singleton set {(2, O)T} C R2.

Example 7

The following code shows the use of the function affine_image:

Grid gr (2, EMPTY);

gr.add_grid_generator (grid_point (0*x + 0xy));
gr.add_grid_generator (grid_point (4+xx + 0xy));
gr.add_grid_generator (grid_point (0*x + 2xy));
Linear_Expression expr = x + 3;
gr.affine_image (x, expr);

In this example the starting grid is all the pairs of 2 and y in R? where z is an integer multiple of 4
and y is an integer multiple of 2. The considered variable is « and the affine expression is z + 3. The
resulting grid is the given grid translated 3 integers to the right (all the pairs (z,y) where z is -1 plus
an integer multiple of 4 and y is an integer multiple of 2). Moreover, if the affine transformation for
the same variable x is instead x + y:

Linear_Expression expr = x + y;
the resulting grid is every second integral point along the = y line, with this line of points repeated
at every fourth integral value along the x axis. Instead, if we do not use an invertible transformation
for the same variable; for example, the affine expression y:

Linear_Expression expr = y;

the resulting grid is every second point along the x = y line.

Example 8

The following code shows the use of the function affine_preimage:

Grid gr (2, EMPTY);

gr.add_grid_generator (grid_point (0*xx + 0xy));
gr.add_grid_generator (grid_point (4*xx + 0xy));
gr.add_grid_generator (grid_point (0*x + 2xy));
Linear_Expression expr = x + 3;
gr.affine_preimage (x, expr);

In this example the starting grid, var and the affine expression and the denominator are the same as
in Example 6, while the resulting grid is similar but translated 3 integers to the left (all the pairs (x, y)
where x is -3 plus an integer multiple of 4 and y is an integer multiple of 2).. Moreover, if the affine
transformation for x is z + y
Linear_Expression expr = x + y;

the resulting grid is a similar grid to the result in Example 6, only the grid is slanted along z = —y.
Instead, if we do not use an invertible transformation for the same variable x, for example, the affine
expression y:

Linear_Expression expr = y;

the resulting grid is every fourth line parallel to the = axis.

Example 9

For this example we also use the variables:

Variable z (2);
Variable w(3);

The following code shows the use of the function remove_space_dimensions:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 223

Grid_Generator_System gs;
gs.insert (grid_point (3*x + y +0*xz + 2%w));
Grid gr(gs);
Variables_Set to_be_removed;
to_be_removed.insert (y);
to_be_removed.insert (z);
gr.remove_space_dimensions (to_be_removed) ;
The starting grid is the singleton set {(3,1,0,2)"} C R*, while the resulting grid is {(3,2)T} C

R2. Be careful when removing space dimensions incrementally: since dimensions are automatically
renamed after each application of the remove_space_dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> to_be_removedl;
to_be_removedl.insert (y);
gr.remove_space_dimensions (to_be_removedl) ;
set<Variable> to_be_removed?2;
to_be_removed2.insert (z);
gr.remove_space_dimensions (to_be_removed2) ;

In this case, the result is the grid {(S,O)T} C R2: when removing the set of dimensions to_-—
be_removed2 we are actually removing variable w of the original grid. For the same reason, the
operator remove_space_dimensions is not idempotent: removing twice the same non-empty
set of dimensions is never the same as removing them just once.

11.25.2 Constructor & Destructor Documentation

11.25.2.1 Parma_Polyhedra_Library::Grid::Grid (dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE) [inline, explicit]

Builds a grid having the specified properties.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the grid;

kind Specifies whether the universe or the empty grid has to be built.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

11.25.2.2 Parma_Polyhedra_Library::Grid::Grid (const Congruence_System & cgs) [inline,
explicit]

Builds a grid, copying a system of congruences. The grid inherits the space dimension of the congruence
system.

Parameters:

cgs The system of congruences defining the grid.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 224

11.25.2.3 Parma_Polyhedra_Library::Grid::Grid (Congruence_System & cgs, Recycle_Input
dummy) [inline]

Builds a grid, recycling a system of congruences. The grid inherits the space dimension of the congruence
system.

Parameters:

cgs The system of congruences defining the grid. Its data-structures may be recycled to build the grid.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

11.25.2.4 Parma_Polyhedra_Library::Grid::Grid (const Constraint_System & c¢s) [explicit]

Builds a grid, copying a system of constraints. The grid inherits the space dimension of the constraint
system.

Parameters:

¢s The system of constraints defining the grid.

Exceptions:

std::invalid_argument Thrown if the constraint system cs contains inequality constraints.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

11.25.2.5 Parma_Polyhedra_Library::Grid::Grid (Constraint_System & cs, Recycle_Input
dummy)

Builds a grid, recycling a system of constraints. The grid inherits the space dimension of the constraint
system.
Parameters:

¢s The system of constraints defining the grid. Its data-structures may be recycled to build the grid.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::invalid_argument Thrown if the constraint system cs contains inequality constraints.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 225

11.25.2.6 Parma_Polyhedra_Library::Grid::Grid (const Grid_Generator_System & const_gs)
[inline, explicit]

Builds a grid, copying a system of grid generators. The grid inherits the space dimension of the generator
system.

Parameters:

const_gs The system of generators defining the grid.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

11.25.2.7 Parma_Polyhedra_Library::Grid::Grid (Grid_Generator_System & gs, Recycle_Input
dummy) [inline]

Builds a grid, recycling a system of grid generators. The grid inherits the space dimension of the generator
system.
Parameters:

gs The system of generators defining the grid. Its data-structures may be recycled to build the grid.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

11.25.2.8 template<typename Interval > Parma_Polyhedra_Library::Grid::Grid (const Box<
Interval > & box, Complexity_Class complexity = ANY _COMPLEXITY) [inline,
explicit]

Builds a grid out of a box. The grid inherits the space dimension of the box. The built grid is the most
precise grid that includes the box.
Parameters:

box The box representing the grid to be built.
complexity This argument is ignored as the algorithm used has polynomial complexity.
Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 226

11.25.2.9 template<typename U > Parma_Polyhedra_Library::Grid::Grid (const BD_Shape< U
> & bd, Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

Builds a grid out of a bounded-difference shape. The grid inherits the space dimension of the BDS. The
built grid is the most precise grid that includes the BDS.

Parameters:

bd The BDS representing the grid to be built.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of bd exceeds the maximum allowed space dimen-
sion.

11.25.2.10 template<typename U > Parma_Polyhedra_Library::Grid::Grid (const
Octagonal_Shape< U > & os, Complexity_Class complexity = ANY COMPLEXITY)
[inline, explicit]

Builds a grid out of an octagonal shape. The grid inherits the space dimension of the octagonal shape. The
built grid is the most precise grid that includes the octagonal shape.

Parameters:

os The octagonal shape representing the grid to be built.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of os exceeds the maximum allowed space dimen-
sion.

11.25.2.11 template<typename Box > Parma_Polyhedra_Library::Grid::Grid (const Box & box,
From_Covering_Box dummy) [inline]

Builds a grid out of a generic, interval-based covering box. The covering box is a set of upper and lower
values for each dimension. When a covering box is tiled onto empty space the corners of the tiles form a
rectilinear grid.

A box interval with only one bound fixes the values of all grid points in the dimension associated with the
box to the value of the bound. A box interval which has upper and lower bounds of equal value allows all
grid points with any value in the dimension associated with the interval. The presence of a universe interval
results in the empty grid. The empty box produces the empty grid of the same dimension as the box.

Parameters:

box The covering box representing the grid to be built;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 227

dummy A dummy tag to make this constructor syntactically unique.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

std::invalid_argument Thrown if box contains any topologically open bounds.

The template class Box must provide the following methods.
dimension_type space_dimension() const

returns the dimension of the vector space enclosing the grid represented by the covering box.
bool is_empty () const

returns t rue if and only if the covering box describes the empty set.

bool get_lower_bound (dimension_type k, bools& closed,
Coefficient& n, Coefficient& d) const

Let I be the interval corresponding to the k-th space dimension. If I is not bounded from below, simply
return false. Otherwise, set closed, n and d as follows: closed is set to t rue if the lower boundary
of I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the greatest lower bound of I. The fraction n/d is in canonical form

if and only if n and d have no common factors and d is positive, 0/1 being the unique representation for
Zero.

bool get_upper_bound (dimension_type k, bool& closed,
Coefficients& n, Coefficienté& d) const

Let I be the interval corresponding to the k-th space dimension. If I is not bounded from above, simply
return false. Otherwise, set closed, n and d as follows: closed is set to t rue if the upper boundary
of I is closed and is set to false otherwise; n and d are assigned the integers n and d such that the
canonical fraction n/d corresponds to the least upper bound of I.

11.25.2.12 Parma_Polyhedra_Library::Grid::Grid (const Polyhedron & ph, Complexity_Class
complexity = ANY_COMPLEXITY) [explicit]

Builds a grid from a polyhedron using algorithms whose complexity does not exceed the one specified by
complexity. If complexityis ANY_COMPLEXITY, then the grid built is the smallest one containing
ph. The grid inherits the space dimension of polyhedron.

Parameters:

ph The polyhedron.

complexity The complexity class.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 228

11.25.2.13 Parma_Polyhedra_Library::Grid::Grid (const Grid & y, Complexity_Class complexity
=ANY COMPLEXITY)

Ordinary copy-constructor. The complexity argument is ignored.

11.25.3 Member Function Documentation

11.25.3.1 bool Parma_Polyhedra_Library::Grid::is_topologically_closed () const

Returns t rue if and only if *this is a topologically closed subset of the vector space. A grid is always
topologically closed.

11.25.3.2 bool Parma_Polyhedra_Library::Grid::is_disjoint_from (const Grid & y) const

Returns t rue if and only if *this and y are disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are dimension-incompatible.

11.25.3.3 bool Parma_Polyhedra_Library::Grid::is_discrete () const

Returns t rue if and only if *this is discrete. A grid is discrete if it can be defined by a generator system
which contains only points and parameters. This includes the empty grid and any grid in dimension zero.

11.25.3.4 bool Parma_Polyhedra_Library::Grid::constrains (Variable var) const

Returns t rue if and only if var is constrained in *this.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.25.3.5 bool Parma_Polyhedra_Library::Grid::bounds_from_above (const Linear_Expression
& expr) const [inline]

Returns t rue if and only if expr is bounded in xthis. This method is the same as bounds_from_below.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 229

11.25.3.6 bool Parma_Polyhedra_Library::Grid::bounds_from_below (const Linear_Expression
& expr) const [inline]

Returns t rue if and only if expr is bounded in xt his. This method is the same as bounds_from_above.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

11.25.3.7 bool Parma_Polyhedra_Library::Grid::maximize (const Linear_Expression & expr,
Coefficient & sup_n, Coefficient & sup_d, bool & maximum) const [inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value is computed.

Parameters:

expr The linear expression to be maximized subject to *this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this. Always t rue when this bounds
expr. Present for interface compatibility with class Polyhedron, where closure points can result
in a value of false.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded by *this, false is returned and sup_n, sup_d and
maximum are left untouched.

11.25.3.8 bool Parma_Polyhedra_Library::Grid::maximize (const Linear_Expression & expr,
Coefficient & sup_n, Coefficient & sup_d, bool & maximum, Generator & point) const
[inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to xthis;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this. Always t rue when this bounds
expr. Present for interface compatibility with class Polyhedron, where closure points can result
in a value of false;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 230

point When maximization succeeds, will be assigned a point where expr reaches its supremum value.

Exceptions:

std::invalid_argument Thrown if expr and xthis are dimension-incompatible.

If ¥*this is empty or expr is not bounded by *this, false isreturned and sup_n, sup_d, maximum
and point are left untouched.

11.25.3.9 bool Parma_Polyhedra_Library::Grid::minimize (const Linear_Expression & expr,
Coefficient & inf n, Coefficient & inf d, bool & minimum) const [inline]

Returns true if and only if xthis is not empty and expr is bounded from below in *xthis, in which
case the infimum value is computed.

Parameters:

expr The linear expression to be minimized subject to xthis;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if the is the infimum value can be reached in this. Always true when this
bounds expr. Present for interface compatibility with class Polyhedron, where closure points
can result in a value of false.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

11.25.3.10 bool Parma_Polyhedra_Library::Grid::minimize (const Linear_Expression & expr,
Coefficient & inf _n, Coefficient & inf_d, bool & minimum, Generator & point) const
[inline]

Returns t rue if and only if *this is not empty and expr is bounded from below in *this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be minimized subject to *this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if the is the infimum value can be reached in this. Always true when this
bounds expr. Present for interface compatibility with class Polyhedron, where closure points
can result in a value of false;

point When minimization succeeds, will be assigned a point where expr reaches its infimum value.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 231

Exceptions:
std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false isreturned and inf_n, inf_d, minimum
and point are left untouched.

11.25.3.11 bool Parma_Polyhedra_Library::Grid::contains (const Grid & y) const

Returns t rue if and only if *this contains y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.12 bool Parma_Polyhedra_Library::Grid::strictly_contains (const Grid & y) const
[inline]

Returns t rue if and only if *this strictly contains y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.13 template<typename Interval > void Parma_Polyhedra_Library::Grid::get_covering_-
box (Box< Interval > & box) const [inline]

Writes the covering box for *this into box. The covering box is a set of upper and lower values for each
dimension. When the covering box written into box is tiled onto empty space the corners of the tiles form
the sparsest rectilinear grid that includes *this.

The value of the lower bound of each interval of the resulting box are as close as possible to the origin,
with positive values taking preference when the lowest positive value equals the lowest negative value.

If all the points have a single value in a particular dimension of the grid then there is only a lower bound
on the interval produced in box, and the lower bound denotes the single value for the dimension. If the
coordinates of the points in a particular dimension include every value then the upper and lower bounds of
the associated interval in box are set equal. The empty grid produces the empty box. The zero dimension
universe grid produces the zero dimension universe box.

Parameters:

box The Box into which the covering box is written.

Exceptions:

std::invalid_argument Thrown if *this and box are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 232

11.25.3.14 bool Parma_Polyhedra_Library::Grid::OK (bool check_not_empty = £alse) const

Checks if all the invariants are satisfied.

Returns:

true if and only if *this satisfies all the invariants and either check_not_empty is false or
*this is not empty.

Parameters:

check_not_empty true if and only if, in addition to checking the invariants, *this must be checked
to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are written on std: : cerr in case invariants are violated. This is
useful for the purpose of debugging the library.

11.25.3.15 void Parma_Polyhedra_Library::Grid::add_congruence (const Congruence & cg)
[inline]

Adds a copy of congruence cg to *this.

Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible.

11.25.3.16 bool Parma_Polyhedra_Library::Grid::add_congruence_and_minimize (const
Congruence & c)

Adds a copy of congruence cg to the system of congruences of this, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if *this and congruence cg are dimension-incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.17 void Parma_Polyhedra_Library::Grid::add_grid_generator (const Grid_Generator &
g)

Adds a copy of grid generator g to the system of generators of xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 233

Exceptions:

std::invalid_argument Thrown if *this and generator g are dimension-incompatible, or if *this
is an empty grid and g is not a point.

11.25.3.18 bool Parma_Polyhedra_Library::Grid::add_grid_generator_and_minimize (const
Grid_Generator & g)

Adds a copy of grid generator g to the system of generators of *t his, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if *this and generator g are dimension-incompatible, or if *this
is an empty grid and g is not a point.

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.19 void Parma_Polyhedra_Library::Grid::add_congruences (const Congruence_System
& cgs) [inline]

Adds a copy of each congruence in cgs to xthis.

Parameters:

cgs Contains the congruences that will be added to the system of congruences of xthis.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible.

11.25.3.20 void Parma_Polyhedra_Library::Grid::add_recycled_congruences
(Congruence_System & cgs)

Adds the congruences in cgs to xthis.

Parameters:

cgs The congruence system to be added to *this. The congruences in cgs may be recycled.

Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 234

Warning:

The only assumption that can be made about cgs upon successful or exceptional return is that it can
be safely destroyed.

11.25.3.21 bool Parma_Polyhedra_Library::Grid::add_congruences_and_minimize (const
Congruence_System & c¢gs) [inline]

Adds a copy of the congruences in cgs to the system of congruences of *thi s, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

cgs Contains the congruences that will be added to the system of congruences of xthis.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.22 bool Parma_Polyhedra_Library::Grid::add_recycled_congruences_and_minimize
(Congruence_System & cgs)

Adds the congruences in cgs to the system of congruences of this, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

cgs The congruence system to be added to xthis. The congruences in cgs may be recycled.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

Warning:

The only assumption that can be made about cgs upon successful or exceptional return is that it can
be safely destroyed.

Deprecated

See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 235

11.25.3.23 void Parma_Polyhedra_Library::Grid::add_constraint (const Constraint & c)
[inline]

Adds to *this a congruence equivalent to constraint c.

Parameters:

¢ The constraint to be added.

Exceptions:

std::invalid_argument Thrown if *this and c are dimension-incompatible or if constraint c is not
optimally supported by the grid domain.

11.25.3.24 bool Parma_Polyhedra_Library::Grid::add_constraint_and_minimize (const
Constraint & ¢) [inline]

Adds to *this a congruence equivalent to constraint c, also minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

¢ The constraint to be added.

Exceptions:

std::invalid_argument Thrown if xthis and c are dimension-incompatible or if constraint c is not
optimally supported by the grid domain.

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.25 void Parma_Polyhedra_Library::Grid::add_constraints (const Constraint_System &
cs)

Adds to *this congruences equivalent to the constraints in cs.

Parameters:

¢s The constraints to be added.

Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible or if cs contains a
constraint whcih is not optimally supported by the grid domain.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 236

11.25.3.26 bool Parma_Polyhedra_Library::Grid::add_constraints_and_minimize (const
Constraint_System & ¢s) [inline]

Adds to *this congruences equivalent to the constraints in cs, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

¢s The constraints to be added.

Exceptions:

std::invalid_argument Thrown if *xthis and cs are dimension-incompatible or if cs contains a
constraint whcih is not optimally supported by the grid domain.

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.27 void Parma_Polyhedra_Library::Grid::add_recycled_constraints (Constraint_System
& ¢s) [inline]

Adds to ¥t his congruences equivalent to the constraints in cs.

Parameters:

¢s The constraints to be added. They may be recycled.

Exceptions:

std::invalid_argument Thrown if *xthis and cs are dimension-incompatible or if cs contains a
constraint whcih is not optimally supported by the grid domain.

Warning:

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

11.25.3.28 bool Parma_Polyhedra_Library::Grid::add_recycled_constraints_and_minimize
(Constraint_System & ¢s) [inline]

Adds to xthis congruences equivalent to the constraints in cs, minimizing the result.

Returns:

false if and only if the result is empty.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 237

Parameters:

¢s The constraints to be added. They may be recycled.

Exceptions:

std::invalid_argument Thrown if *xthis and cs are dimension-incompatible or if cs contains a
constraint whcih is not optimally supported by the grid domain.

Warning:

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.29 void Parma_Polyhedra_Library::Grid::refine_with_congruence (const Congruence &
cg) [inline]

Uses a copy of the congruence cg to refine xthis.

Parameters:

c¢g The congruence used.

Exceptions:

std::invalid_argument Thrown if *this and congruence cg are dimension-incompatible.

11.25.3.30 void Parma_Polyhedra_Library::Grid::refine_with_congruences (const
Congruence_System & cgs) [inline]

Uses a copy of the congruences in cgs to refine xthis.

Parameters:

cgs The congruences used.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

11.25.3.31 void Parma_Polyhedra_Library::Grid::refine_with_constraint (const Constraint & ¢)

Uses a copy of the constraint ¢ to refine xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 238

Parameters:
¢ The constraint used. If it is not an equality, it will be ignored
Exceptions:

std::invalid_argument Thrown if *this and c are dimension-incompatible.

11.25.3.32 void Parma_Polyhedra_Library::Grid::refine_with_constraints (const
Constraint_System & cs)

Uses a copy of the constraints in c¢s to refine xthis.

Parameters:

¢s The constraints used. Constraints that are not equalities are ignored.
Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible.

11.25.3.33 void Parma_Polyhedra_Library::Grid::add_grid_generators (const
Grid_Generator_System & gs)

Adds a copy of the generators in gs to the system of generators of xthis.

Parameters:

gs Contains the generators that will be added to the system of generators of *this.
Exceptions:

std::invalid_argument Thrown if xthis and gs are dimension-incompatible, or if xthis is empty
and the system of generators gs is not empty, but has no points.

11.25.3.34 void Parma_Polyhedra_Library::Grid::add_recycled_grid_generators
(Grid_Generator_System & gs)

Adds the generators in gs to the system of generators of this.

Parameters:

gs The generator system to be added to *this. The generators in gs may be recycled.
Exceptions:

std::invalid_argument Thrown if *this and gs are dimension-incompatible.
Warning:

The only assumption that can be made about gs upon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 239

11.25.3.35 bool Parma_Polyhedra_Library::Grid::add_grid_generators_and_minimize (const
Grid_Generator_System & gs)

Adds a copy of the generators in gs to the system of generators of xthis, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

gs Contains the generators that will be added to the system of generators of *this.

Exceptions:

std::invalid_argument Thrown if xthis and gs are dimension-incompatible, or if this is empty
and the system of generators gs is not empty, but has no points.

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.36 bool Parma_Polyhedra_Library::Grid::add_recycled_grid_generators_and_minimize
(Grid_Generator_System & gs)

Adds the generators in gs to the system of generators of this, reducing the result.

Returns:

false if and only if the result is empty.

Parameters:

gs The generator system to be added to xthis. The generators in gs may be recycled.

Exceptions:

std::invalid_argument Thrown if *this and gs are dimension-incompatible.

Warning:

The only assumption that can be made about gs upon successful or exceptional return is that it can be
safely destroyed.

Deprecated

See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 240

11.25.3.37 void Parma_Polyhedra_Library::Grid::unconstrain (Variable var)

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
xthis.

Parameters:

var The space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.25.3.38 void Parma_Polyhedra_Library::Grid::unconstrain (const Variables_Set &
to_be_unconstrained)

Computes the cylindrification of *this with respect to the set of space dimensions to_be_ -
unconstrained, assigning the result to xthis.

Parameters:

to_be_unconstrained The set of space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.25.3.39 void Parma_Polyhedra_Library::Grid::intersection_assign (const Grid & y)

Assigns to xthis the intersection of xthis and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.40 bool Parma_Polyhedra_Library::Grid::intersection_assign_and_minimize (const Grid
&y)

Assigns to xthis the intersection of xthis and y, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 241

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.41 void Parma_Polyhedra_Library::Grid::upper_bound_assign (const Grid & y)

Assigns to xthis the least upper bound of xthis and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.42 bool Parma_Polyhedra_Library::Grid::upper_bound_assign_and_minimize (const
Grid & y)

Assigns to xthis the least upper bound of *this and y, reducing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.25.3.43 bool Parma_Polyhedra_Library::Grid::upper_bound_assign_if_exact (const Grid & y)

If the upper bound of xthis and y is exact it is assigned to this and t rue is returned, otherwise false
is returned.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.44 void Parma_Polyhedra_Library::Grid::difference_assign (const Grid & y)

Assigns to xthis the grid-difference of xthis and y. The grid difference between grids x and y is the
smallest grid containing all the points from x and y that are only in x.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 242

11.25.3.45 bool Parma_Polyhedra_Library::Grid::simplify_using_context_assign (const Grid & y)

Assigns to xthis a meet-preserving simplification of *this with respect to y. If false is returned, then
the intersection is empty.

Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.25.3.46 void Parma_Polyhedra_Library::Grid::affine_image (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to *this the affine image of this under the function mapping variable var to the affine expres-
sion specified by expr and denominator.
Parameters:

var The variable to which the affine expression is assigned;
expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.25.3.47 void Parma_Polyhedra_Library::Grid::affine_preimage (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to xthis the affine preimage of xthis under the function mapping variable var to the affine
expression specified by expr and denominator.
Parameters:

var The variable to which the affine expression is substituted;
expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 243

11.25.3.48 void Parma_Polyhedra_Library::Grid::generalized_affine_image (Variable
var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one (),
Coefficient_traits::const_reference modulus = Coefficient_zero())

expr

Assigns to xthis the image of *this with respect to the generalized affine relation var’ = —"F——

(mod modulus).

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol where EQUAL is the symbol for a congruence relation;
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression. Optional argument with an
automatic value of one;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of zero.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of this.

11.25.3.49 void Parma_Polyhedra_Library::Grid::generalized_affine_preimage
(Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one (),
Coefficient_traits::const_reference modulus = Coefficient_zero())

Assigns to xthis the preimage of *this with respect to the generalized affine relation var’ = —"F——
(mod modulus).

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol where EQUAL is the symbol for a congruence relation;
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression. Optional argument with an
automatic value of one;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of zero.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 244

11.25.3.50 void Parma_Polyhedra_Library::Grid::generalized_affine_image (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs,
Coefficient_traits::const_reference modulus = Coefficient_zero())

Assigns to xthis the image of *this with respect to the generalized affine relation lhs’ = rhs
(mod modulus).

Parameters:

Ihs The left hand side affine expression.
relsym The relation symbol where EQUAL is the symbol for a congruence relation;
rhs The right hand side affine expression.

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of zero.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with 1hs or rhs.

11.25.3.51 void Parma_Polyhedra_Library::Grid::generalized_affine_preimage (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs,
Coefficient_traits::const_reference modulus = Coefficient_zero())

Assigns to *this the preimage of *this with respect to the generalized affine relation lhs’ = rhs
(mod modulus).

Parameters:

lhs The left hand side affine expression;
relsym The relation symbol where EQUAL is the symbol for a congruence relation;
rhs The right hand side affine expression;

modulus The modulus of the congruence lhs = rhs. A modulus of zero indicates lhs == rhs. Optional
argument with an automatic value of zero.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with 1hs or rhs.

11.25.3.52 void Parma_Polyhedra_Library::Grid::bounded_affine_image (Variable var,
const Linear_Expression & Ib_expr, const Linear_Expression & ub_expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to xthis the image of xthis with respect to the bounded affine relation dlb*;?‘prt < var’ <
ubiexpr enominator

denominator *

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 245

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.25.3.53 void Parma_Polyhedra_Library::Grid::bounded_affine_preimage (Variable
var, const Linear_Expression & Ib_expr, const Linear_Expression & ub_expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to xthis the preimage of *this with respect to the bounded affine relation % < var’ <
ub_expr

denominator *

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.25.3.54 void Parma_Polyhedra_Library::Grid::time_elapse_assign (const Grid & y)

Assigns to xthis the result of computing the time-elapse between xthis and y.
Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.55 void Parma_Polyhedra_Library::Grid::congruence_widening_assign (const Grid & y,
unsigned * fp = NULL)

Assigns to xthis the result of computing the Grid widening between *this and y using congruence
systems.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 246

Parameters:

y A grid that must be contained in *this;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.56 void Parma_Polyhedra_Library::Grid::generator_widening_assign (const Grid & y,
unsigned * fp = NULL)

Assigns to xthis the result of computing the Grid widening between xthis and y using generator sys-
tems.

Parameters:

y A grid that must be contained in xthis;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.57 void Parma_Polyhedra_Library::Grid::widening_assign (const Grid & y, unsigned x
tp = NULL)

Assigns to *this the result of computing the Grid widening between xthis and y. This widening uses
either the congruence or generator systems depending on which of the systems describing x and y are up
to date and minimized.

Parameters:

y A grid that must be contained in *this;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.25.3.58 void Parma_Polyhedra_Library::Grid::limited_congruence_extrapolation_assign
(const Grid & y, const Congruence_System & cgs, unsigned * fp = NULL)

Improves the result of the congruence variant of Grid widening computation by also enforcing those con-
gruences in cgs that are satisfied by all the points of *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 247

Parameters:

y A grid that must be contained in *this;
cgs The system of congruences used to improve the widened grid;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).
Exceptions:

std::invalid_argument Thrown if *this, y and cs are dimension-incompatible.

11.25.3.59 void Parma_Polyhedra_Library::Grid::limited_generator_extrapolation_assign (const
Grid & y, const Congruence_System & cgs, unsigned * fp = NULL)

Improves the result of the generator variant of the Grid widening computation by also enforcing those
congruences in cgs that are satisfied by all the points of *this.

Parameters:

y A grid that must be contained in *this;
cgs The system of congruences used to improve the widened grid;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this, y and cs are dimension-incompatible.

11.25.3.60 void Parma_Polyhedra_Library::Grid::limited_extrapolation_assign (const Grid & y,
const Congruence_System & cgs, unsigned * fp = NULL)

Improves the result of the Grid widening computation by also enforcing those congruences in cgs that are
satisfied by all the points of *this.

Parameters:

y A grid that must be contained in *this;
cgs The system of congruences used to improve the widened grid;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if xthis, y and cs are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 248

11.25.3.61 void Parma_Polyhedra_Library::Grid::add_space_dimensions_and_embed
(dimension_type m)

Adds m new space dimensions and embeds the old grid in the new vector space.
Parameters:

m The number of dimensions to add.
Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

The new space dimensions will be those having the highest indexes in the new grid, which is characterized
by a system of congruences in which the variables which are the new dimensions can have any value. For
instance, when starting from the grid £ C R? and adding a third space dimension, the result will be the
grid

{(z,9,2)" eR® | (x,y)" € L}

11.25.3.62 void Parma_Polyhedra_Library::Grid::add_space_dimensions_and_project
(dimension_type m)

Adds m new space dimensions to the grid and does not embed it in the new vector space.
Parameters:

m The number of space dimensions to add.
Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

The new space dimensions will be those having the highest indexes in the new grid, which is characterized
by a system of congruences in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the grid £ C R? and adding a third space dimension, the
result will be the grid

{(2,9,00" eR®| (z,y)" € L }.

11.25.3.63 void Parma_Polyhedra_Library::Grid::concatenate_assign (const Grid & y)

Assigns to xthis the concatenation of *this and y, taken in this order.

Exceptions:

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension ().

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 249

11.25.3.64 void Parma_Polyhedra_Library::Grid::remove_space_dimensions (const Variables_Set
& to_be_removed)

Removes all the specified dimensions from the vector space.

Parameters:

to_be_removed The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.25.3.65 void Parma_Polyhedra_Library::Grid::remove_higher_space_dimensions
(dimension_type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_ -
dimension.

Exceptions:

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of xthis.

11.25.3.66 template<typename Partial_Function > void Parma_Polyhedra_-
Library::Grid::map_space_dimensions (const Partial_Function & pfunc)
[inline]

Remaps the dimensions of the vector space according to a partial function. If pfunc maps only some of
the dimensions of ¥+t his then the rest will be projected away.

If the highest dimension mapped to by pfunc is higher than the highest dimension in *this then the
number of dimensions in this will be increased to the highest dimension mapped to by pfunc.

Parameters:

pfunc The partial function specifying the destiny of each space dimension.

The template class Partial_Function must provide the following methods.
bool has_empty_codomain () const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain () method will always be called before the methods below.
However, if has_empty_codomain () returns t rue, none of the functions below will be called.

dimension_type max_in_codomain () const

returns the maximum value that belongs to the codomain of the partial function. The max_in_-—
codomain () method is called at most once.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.25 Parma_Polyhedra_Library::Grid Class Reference 250

bool maps (dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to
j and true is returned. If f is undefined in &, then false is returned. This method is called at most n
times, where n is the dimension of the vector space enclosing the grid.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

11.25.3.67 void Parma_Polyhedra_Library::Grid::expand_space_dimension (Variable var,
dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated,;

m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

If xthis has space dimension n, with n > 0, and var has space dimension & < n, then the k-th space
dimension is expanded to m new space dimensions n, n + 1, ..., n+m — 1.

11.25.3.68 void Parma_Polyhedra_Library::Grid::fold_space_dimensions (const Variables_Set &
to_be_folded, Variable var)

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_ -
folded.

If xthis has space dimension n, with n > 0, var has space dimension k < n, to_be_foldedis a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.26 Parma_Polyhedra_Library::Grid_Certificate Class Reference 251

11.25.3.69 int32_t Parma_Polyhedra_Library::Grid::hash_code () const [inline]

Returns a 32-bit hash code for *this. If x and y are such that x == vy, then x.hash_code () ==
y.hash_code ().

The documentation for this class was generated from the following file:

* ppl.hh

11.26 Parma_Polyhedra_Library::Grid_Certificate Class Reference

The convergence certificate for the Grid widening operator.

#include <ppl.hh>

Classes

* struct Compare

A total ordering on Grid certificates.

Public Member Functions

¢ Grid_Certificate ()

Default constructor.

* Grid_Certificate (const Grid &gr)

Constructor: computes the certificate for gr.

Grid_Certificate (const Grid_Certificate &y)

Copy constructor.

¢ ~Grid_Certificate ()

Destructor.

* int compare (const Grid_Certificate &y) const

The comparison function for certificates.

* int compare (const Grid &gr) const
Compares xthis with the certificate for grid gr.

11.26.1 Detailed Description

The convergence certificate for the Grid widening operator. Convergence certificates are used to instantiate
the BHZ03 framework so as to define widening operators for the finite powerset domain.

Note:

Each convergence certificate has to be used together with a compatible widening operator. In particular,
Grid_Certificate can certify the Grid widening.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.27 Parma_Polyhedra_Library::Grid_Generator Class Reference 252

11.26.2 Member Function Documentation

11.26.2.1 int Parma_Polyhedra_Library::Grid_Certificate::compare (const Grid_Certificate & y)
const

The comparison function for certificates.

Returns:

—1, 0 or 1 depending on whether *this is smaller than, equal to, or greater than y, respectively.
The documentation for this class was generated from the following file:

* ppl.hh

11.27 Parma_Polyhedra_Library::Grid_Generator Class Reference

A grid line, parameter or grid point.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Generator.

Public Types

e enum Type { LINE, PARAMETER, POINT }
The generator type.

Public Member Functions

* Grid_Generator (const Grid_Generator &g)

Ordinary copy-constructor.

¢ ~Grid_Generator ()

Destructor.

¢ Grid_Generator & operator= (const Grid_Generator &g)

Assignment operator.

* Grid_Generator & operator= (const Generator &g)

Assignment operator.

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing *this.

* Type type () const

Returns the generator type of xt his.

bool is_line () const

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.27 Parma_Polyhedra_Library::Grid_Generator Class Reference 253

Returns t rue if and only if xt his is a line.

* bool is_parameter () const

Returns t rue if and only if xt his is a parameter.

* bool is_line_or_parameter () const

Returns t rue if and only if ¥t his is a line or a parameter.

* bool is_point () const

Returns true if and only if xt his is a point.

* bool is_parameter_or_point () const

Returns t rue if and only if xt his row represents a parameter or a point.

¢ Coefficient_traits::const_reference coefficient (Variable v) const

Returns the coefficient of vin xthis.

¢ Coefficient_traits::const_reference divisor () const

Returns the divisor of xthis.

* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

* bool is_equivalent_to (const Grid_Generator &y) const

Returns t rue if and only if xt his and y are equivalent generators.

* bool is_equal_to (const Grid_Generator &y) const

Returns true if xthis is exactly equal to y.

* bool is_equal_at_dimension (dimension_type dim, const Grid_Generator &gg) const

Returns true if xthis is equal to gg in dimension dim.

* bool all_homogeneous_terms_are_zero () const

Returns t rue if and only if all the homogeneous terms of xthis are 0.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of *this.

¢ void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xt his.

* void print () const

Prints xthisto std: :cerr using operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.27 Parma_Polyhedra_Library::Grid_Generator Class Reference

254

¢ bool OK () const

Checks if all the invariants are satisfied.

* void swap (Grid_Generator &y)
Swaps xthis with y.

¢ void coefficient_swap (Grid_Generator &y)

Swaps «this with y, leaving xt his with the original capacity.

Static Public Member Functions

* static Grid_Generator grid_line (const Linear_Expression &e)

Returns the line of direction e.

e static Grid_Generator parameter (const Linear_Expression &e=Linear_Expression::zero(),

Coefficient_traits::const_reference d=Coefficient_one())

Returns the parameter of direction e and size e/d.

e static Grid_Generator grid_point (const Linear Expression &e=Linear_Expression::zero(),

Coefficient_traits::const_reference d=Coefficient_one())

Returns the point at e / d.

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Grid_Generator can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Grid_Generator & zero_dim_point ()

Returns the origin of the zero-dimensional space R°.

Related Functions
(Note that these are not member functions.)

* std::ostream & operator<< (std::ostream &s, const Grid_Generator::Type &t)

Output operator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.27 Parma_Polyhedra_Library::Grid_Generator Class Reference 255

11.27.1 Detailed Description

A grid line, parameter or grid point. An object of the class Grid_Generator is one of the following:

o agrid_linel = (ag,...,an,_1)";
* aparameter ¢ = (%,..., “==)T;
* agrid_pointp = (%, ..., 22=1)T;

where n is the dimension of the space and, for grid_points and parameters, d > 0 is the divisor.

How to build a grid generator.

Each type of generator is built by applying the corresponding function (grid_line, parameter or
grid_point) to a linear expression; the space dimension of the generator is defined as the space di-
mension of the corresponding linear expression. Linear expressions used to define a generator should
be homogeneous (any constant term will be simply ignored). When defining grid points and pa-
rameters, an optional Coefficient argument can be used as a common divisor for all the coefficients
occurring in the provided linear expression; the default value for this argument is 1.

In all the following examples it is assumed that variables x, y and z are defined as follows:

Variable x(0);
Variable y(1);
Variable z (2);

Example 1

The following code builds a grid line with direction © — y — z and having space dimension 3:
Grid_Generator 1 = grid_line(x -y - z);
By definition, the origin of the space is not a line, so that the following code throws an exception:

Grid_Generator 1 = grid_line (0*x);

Example 2

The following code builds the parameter as the vector p = (1,—1,—1)T € R3 which has the same
direction as the line in Example 1:

Grid_Generator g = parameter(x - y - 2z);

Note that, unlike lines, for parameters, the length as well as the direction of the vector represented by
the code is significant. Thus g is not the same as the parameter g1 defined by

Grid_Generator gl = parameter (2x - 2y - 2z);
By definition, the origin of the space is not a parameter, so that the following code throws an exception:

Grid_Generator g = parameter (0*x);

Example 3

The following code builds the grid point p = (1,0,2)T € R3:
Grid_Generator p = grid_point (lxx + 0xy + 2%z);

The same effect can be obtained by using the following code:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.27 Parma_Polyhedra_Library::Grid_Generator Class Reference 256

Grid_Generator p = grid_point(x + 2xz);
Similarly, the origin 0 € R3 can be defined using either one of the following lines of code:

Grid_Generator origin3 = grid_point (0xx + Oxy + 0%z);
Grid_Generator origin3_alt = grid_point (0xz);

Note however that the following code would have defined a different point, namely 0 € R2:
Grid_Generator origin2 = grid_point (0*y);

The following two lines of code both define the only grid point having space dimension zero, namely
0 € RY. In the second case we exploit the fact that the first argument of the function point is

optional.
Grid_Generator origin0 = Generator::zero_dim_point ();
Grid_Generator origin0O_alt = grid_point();
Example 4

The grid point p specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the function grid_point (the divisor):

Grid_Generator p = grid_point (2xx + O0xy + 4%z, 2);

Obviously, the divisor can be used to specify points having some non-integer (but rational) coordinates.
For instance, the grid point p1 = (—1.5,3.2,2.1)T € R? can be specified by the following code:

Grid_Generator pl = grid_point (-15%x + 32xy + 21%z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5

Parameters, like grid points can have a divisor. For instance, the parameter ¢ = (1,0,2)T € R? can
be defined:

Grid_Generator g = parameter (2xx + 0xy + 4xz, 2);

Also, the divisor can be used to specify parameters having some non-integer (but rational) coordinates.
For instance, the parameter ¢ = (—1.5,3.2,2.1)T € R3 can be defined:

Grid_Generator g = parameter (-15+«x + 32%y + 21xz, 10);

If a zero divisor is provided, an exception is thrown.

How to inspect a grid generator

Several methods are provided to examine a grid generator and extract all the encoded information: its
space dimension, its type and the value of its integer coefficients and the value of the denominator.

Example 6
The following code shows how it is possible to access each single coefficient of a grid generator. If g1
is a grid point having coordinates (ag, . . ., a,_1)", we construct the parameter g2 having coordinates
: T
(ap,2a1,...,(i+ 1)as,...,nap_1)
if (gl.is_point()) {
cout << "Grid point gl: " << gl << endl;
Linear_Expression e;
for (dimension_type i = gl.space_dimension(); i-- > 0;)
e += (1 + 1) » gl.coefficient (Variable(i)) * Variable(i);
Grid_Generator g2 = parameter (e, gl.divisor());
cout << "Parameter g2: " << g2 << endl;
}
else
cout << "Grid Generator gl is not a grid point." << endl;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.27 Parma_Polyhedra_Library::Grid_Generator Class Reference 257

Therefore, for the grid point
Grid_Generator gl = grid_point(2+«x — y + 3xz, 2);
we would obtain the following output:

Grid point gl: p((2+«A — B + 3xC)/2)
Parameter g2: parameter ((2xA — 2B + 9%C)/2)

When working with grid points and parameters, be careful not to confuse the notion of coefficient with
the notion of coordinate: these are equivalent only when the divisor is 1.

11.27.2 Member Enumeration Documentation

11.27.2.1 enum Parma_Polyhedra_Library::Grid_Generator::Type

The generator type.

Enumerator:

LINE The generator is a grid line.
PARAMETER The generator is a parameter.
POINT The generator is a grid point.

Reimplemented from Parma_Polyhedra_Library::Generator.

11.27.3 Member Function Documentation

11.27.3.1 Grid_Generator grid_line (const Linear_Expression & ¢) [inline, static]

Returns the line of direction e. Shorthand for Grid_Generator Grid_Generator::grid_line(const Linear_-
Expression& e).

Exceptions:

std::invalid_argument Thrown if the homogeneous part of e represents the origin of the vector space.

11.27.3.2 Grid_Generator parameter (const Linear_ Expression & e =
Linear_ Expression: :zero (), Coefficient_traits::const_reference d =
Coefficient_one()) [inline, static]

Returns the parameter of direction e and size e/d. Shorthand for Grid_Generator Grid_-
Generator::parameter(const Linear_Expression& e, Coefficient_traits::const_reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions:

std::invalid_argument Thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.27 Parma_Polyhedra_Library::Grid_Generator Class Reference 258

11.27.3.3 Grid_Generator grid_point (const Linear_Expression & e =
Linear Expression::zero (), Coefficient_traits::const_reference d =
Coefficient_one()) [inline, static]

Returns the point at e / d. Shorthand for Grid_Generator Grid_Generator::grid_point(const Linear_-
Expression& e, Coefficient_traits::const_reference d).

Both e and d are optional arguments, with default values Linear_Expression::zero() and Coefficient_one(),
respectively.

Exceptions:

std::invalid_argument Thrown if d is zero.

11.27.3.4 Coefficient_traits::const_reference Parma_Polyhedra_Library::Grid_-
Generator::coefficient (Variable v) const [inline]

Returns the coefficient of v in xthis.

Exceptions:

std::invalid_argument Thrown if the index of v is greater than or equal to the space dimension of
*this.

Reimplemented from Parma_Polyhedra_Library::Generator.

11.27.3.5 Coefficient_traits::const_reference Parma_Polyhedra_Library::Grid_-
Generator::divisor () const [inline]

Returns the divisor of *this.

Exceptions:

std::invalid_argument Thrown if *this is a line.

Reimplemented from Parma_Polyhedra_Library::Generator.

11.27.3.6 bool Parma_Polyhedra_Library::Grid_Generator::is_equivalent_to (const
Grid_Generator & y) const

Returns true if and only if *this and y are equivalent generators. Generators having different space
dimensions are not equivalent.

Reimplemented from Parma_Polyhedra_Library::Generator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.28 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 259

11.27.3.7 void Parma_Polyhedra_Library::Grid_Generator::coefficient_swap (Grid_Generator &
y)

Swaps *this with y, leaving *this with the original capacity. All elements up to and including the last
element of the smaller of xthis and y are swapped. The parameter divisor element of y is swapped with
the divisor element of xthis.

11.27.4 Friends And Related Function Documentation

11.27.4.1 std::ostream & operator<< (std::ostream & s, const Grid_Generator::Type &)
[related]

Output operator.

The documentation for this class was generated from the following file:

* ppl.hh

11.28 Parma_Polyhedra_Library::Grid_Generator_System Class Reference

A system of grid generators.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Generator_System.

Classes

e class const_iterator

An iterator over a system of grid generators.

Public Member Functions

* Grid_Generator_System ()

Default constructor: builds an empty system of generators.

* Grid_Generator_System (const Grid_Generator &g)

Builds the singleton system containing only generator g.

* Grid_Generator_System (dimension_type dim)

Builds an empty system of generators of dimension dim.

* Grid_Generator_System (const Grid_Generator_System &gs)

Ordinary copy-constructor.

* ~Grid_Generator_System ()

Destructor.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.28 Parma_Polyhedra_Library::Grid_Generator_System Class Reference

260

Grid_Generator_System & operator= (const Grid_Generator_System &y)

Assignment operator.

dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

void clear ()

Removes all the generators from the generator system and sets its space dimension to 0.

void insert (const Grid_Generator &g)

Inserts into xt his a copy of the generator g, increasing the number of space dimensions if needed.

void recycling_insert (Grid_Generator &g)

Inserts into xt his the generator g, increasing the number of space dimensions if needed.

void recycling_insert (Grid_Generator_System &gs)

Inserts into xthis the generators in gs, increasing the number of space dimensions if needed.

bool empty () const

Returns t rue if and only if xt his has no generators.

const_iterator begin () const

Returns the const_iterator pointing to the first generator, if t his is not empty; otherwise, returns the past-

the-end const_iterator.

const_iterator end () const

Returns the past-the-end const_iterator.

dimension_type num_rows () const

Returns the number of rows (generators) in the system.

dimension_type num_parameters () const

Returns the number of parameters in the system.

dimension_type num_lines () const

Returns the number of lines in the system.

bool has_points () const

Returns t rue if and only if xt his contains one or more points.

bool is_equal_to (const Grid_Generator_System &y) const

Returns t rue if xthis is identical to y.

bool OK () const

Checks if all the invariants are satisfied.

void ascii_dump () const

Writes to std: : cerr an ASCII representation of xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.28 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 261

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerr using operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by *this.

¢ void swap (Grid_Generator_System &y)
Swaps xthis with y.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Grid_Generator_System can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Grid_Generator_System & zero_dim_univ ()

Returns the singleton system containing only Grid_Generator::zero_dim_point().

11.28.1 Detailed Description

A system of grid generators. An object of the class Grid_Generator_System is a system of grid generators,
i.e., a multiset of objects of the class Grid_Generator (lines, parameters and points). When inserting gener-
ators in a system, space dimensions are automatically adjusted so that all the generators in the system are
defined on the same vector space. A system of grid generators which is meant to define a non-empty grid
must include at least one point: the reason is that lines and parameters need a supporting point (lines only
specify directions while parameters only specify direction and distance.

In all the examples it is assumed that variables x and y are defined as follows:

Variable x(0);
Variable y(1);

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.28 Parma_Polyhedra_Library::Grid_Generator_System Class Reference 262

Example 1

The following code defines the line having the same direction as the z axis (i.e., the first Cartesian
axis) in R2:

Grid_Generator_System gs;

gs.insert (grid_line(x + Oxy));

As said above, this system of generators corresponds to an empty grid, because the line has no sup-
porting point. To define a system of generators that does correspond to the = axis, we can add the
following code which inserts the origin of the space as a point:

gs.insert (grid_point (0xx + 0xy));
Since space dimensions are automatically adjusted, the following code obtains the same effect:
gs.insert (grid_point (0xx));

In contrast, if we had added the following code, we would have defined a line parallel to the x axis
through the point (0,1)T € R2.

gs.insert (grid_point (0*xx + 1xy));

Example 2

The following code builds a system of generators corresponding to the grid consisting of all the integral
points on the z axes; that is, all points satisfying the congruence relation

{(z,0T e R? |z (mod 1)0},

Grid_Generator_System gs;
gs.insert (parameter (x + 0xy));
gs.insert (grid_point (0*xx + 0xy));

Example 3

The following code builds a system of generators having three points corresponding to a non-relational
grid consisting of all points whose coordinates are integer multiple of 3.

Grid_Generator_System gs;

gs.insert (grid_point (0xx + 0xy));
gs.insert (grid_point (0*xx + 3xy));
gs.insert (grid_point (3xx + 0xy));

Example 4

By using parameters instead of two of the points we can define the same grid as that defined in the
previous example. Note that there has to be at least one point and, for this purpose, any point in the
grid could be considered. Thus the following code builds two identical grids from the grid generator
systems gs and gs1.

Grid_Generator_System gs;
gs.insert (grid_point (0*xx + 0xy));
gs.insert (parameter (0xx + 3xy));
gs.insert (parameter (3xx + 0xy));
Grid_Generator_System gsl;
gsl.insert (grid_point (3*x + 3%y));
gsl.insert (parameter (0xx + 3%y));
gsl.insert (parameter (3xx + 0xy));

Example 5

The following code builds a system of generators having one point and a parameter corresponding to
all the integral points that lie on z 4+ y = 2 in R?

Grid_Generator_System gs;
gs.insert (grid_point (1xx + 1*y));
gs.insert (parameter (1xx — 1xy));

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.29 Parma_Polyhedra_Library::H79_Certificate Class Reference 263

Note:

After inserting a multiset of generators in a grid generator system, there are no guarantees that an exact
copy of them can be retrieved: in general, only an equivalent grid generator system will be available,
where original generators may have been reordered, removed (if they are duplicate or redundant), etc.

11.28.2 Member Function Documentation

11.28.2.1 void Parma_Polyhedra_Library::Grid_Generator_System::insert (const
Grid_Generator & g)

Inserts into xthis a copy of the generator g, increasing the number of space dimensions if needed. If g
is an all-zero parameter then the only action is to ensure that the space dimension of *this is at least the
space dimension of g.

11.28.2.2 bool Parma_Polyhedra_Library::Grid_Generator_System::OK () const

Checks if all the invariants are satisfied. Returns t rue if and only if *this is a valid Linear_System and
each row in the system is a valid Grid_Generator.

Reimplemented from Parma_Polyhedra_Library::Generator_System.

11.28.2.3 bool Parma_Polyhedra_Library::Grid_Generator_System::ascii_load (std::istream & s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostreamé&) const) and sets «this
accordingly. Returns true if successful, false otherwise. Resizes the matrix of generators using the
numbers of rows and columns read from s, then initializes the coordinates of each generator and its type
reading the contents from s.

Reimplemented from Parma_Polyhedra_Library::Generator_System.

The documentation for this class was generated from the following file:

* ppl.hh

11.29 Parma_Polyhedra_Library::H79_Certificate Class Reference

A convergence certificate for the H79 widening operator.

#include <ppl.hh>

Classes

* struct Compare

A total ordering on H79 certificates.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.29 Parma_Polyhedra_Library::H79_Certificate Class Reference 264

Public Member Functions

e H79_Certificate ()

Default constructor.

* template<typename PH >
H79_Certificate (const PH &ph)

Constructor: computes the certificate for ph.

* H79_Certificate (const Polyhedron &ph)

Constructor: computes the certificate for ph.

* H79_Certificate (const H79_Certificate &y)

Copy constructor.

e ~H79_Certificate ()

Destructor.

* int compare (const H79_Certificate &y) const

The comparison function for certificates.

* template<typename PH >
int compare (const PH &ph) const

Compares xthis with the certificate for polyhedron ph.

* int compare (const Polyhedron &ph) const

Compares xt his with the certificate for polyhedron ph.

11.29.1 Detailed Description

A convergence certificate for the H79 widening operator. Convergence certificates are used to instantiate
the BHZ03 framework so as to define widening operators for the finite powerset domain.

Note:
The convergence of the H79 widening can also be certified by BHRZ03_Certificate.

11.29.2 Member Function Documentation

11.29.2.1 int Parma_Polyhedra_Library::H79_Certificate::compare (const H79_Certificate & y)
const

The comparison function for certificates.

Returns:

—1, 0 or 1 depending on whether *this is smaller than, equal to, or greater than y, respectively.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.30 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 265

Compares *xthis with y, using a total ordering which is a refinement of the limited growth ordering
relation for the H79 widening.

The documentation for this class was generated from the following file:

e ppl.hh

11.30 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template
Reference

A generic, not necessarily closed, possibly restricted interval.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Interval_Base.

Public Member Functions

* void swap (Interval &y)
Swaps «this with y.

* void topological_closure_assign ()

Assigns to xt his its topological closure.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

¢ template<typename From >
Enable_If< Is_Singleton< From >::value||Is_Interval< From >:value, I_Result >:type
difference_assign (const From &x)

Assigns to xt his the smallest interval containing the set-theoretic difference of xthis and x.

¢ template<typename Froml , typename From2 >
Enable_If<((Is_Singleton< Froml >::value||Is_Interval< Froml >::value)&&(Is_Singleton<
From2 >::value||Is_Interval< From2 >::value)), I_Result >::type difference_assign (const From1
&x, const From?2 &y)

Assigns to xt his the smallest interval containing the set-theoretic difference of x and y.

¢ template<typename From >
Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value, I_Result >::type lower_-
approximation_difference_assign (const From &x)

Assigns to xthis the largest interval contained in the set-theoretic difference of xthis and x.

* template<typename From >
Enable_If< Is_Interval< From >::value, bool >::type simplify_using_context_assign (const From

&y)

Assigns to xthis a meet-preserving simplification of xt his with respect to y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.30 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 266

* template<typename From >
Enable_If< Is_Interval< From >::value, void >::type empty_intersection_assign (const From &y)

Assigns to xt his an interval having empty intersection with y. The assigned interval should be as large as
possible.

* template<typename From >
Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value, I_Result >::type refine_-
existential (Relation_Symbol rel, const From &x)

Refines t o according to the existential relation rel with x.

¢ template<typename From >
Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value, I_Result >::type refine_-
universal (Relation_Symbol rel, const From &x)

Refines to so that it satisfies the universal relation rel with x.

* template<typename Froml , typename From2 >
Enable_If<((Is_Singleton< Froml >::value||Is_Interval< Froml >::value)&&(Is_Singleton<
From2 >::value||Is_Interval< From2 >::value)), I_Result >::type mul_assign (const Froml &x,
const From?2 &y)

¢ template<typename Froml , typename From2 >
Enable_If<((Is_Singleton< Froml >::value||ls_Interval< Froml >::value)&&(Is_Singleton<
From2 >::value||Is_Interval< From2 >::value)), I_Result >::type div_assign (const Froml &x,
const From2 &y)

11.30.1 Detailed Description

template<typename Boundary, typename Info> class Parma_Polyhedra_Library::Interval<
Boundary, Info >

A generic, not necessarily closed, possibly restricted interval. The class template type parameter
Boundary represents the type of the interval boundaries, and can be chosen, among other possibilities,
within one of the following number families:

* a bounded precision native integer type (that is, from signed char to long long and from
int8_t toint64_t);

* a bounded precision floating point type (float, double or long double);

* an unbounded integer or rational type, as provided by the C++ interface of GMP (mpz_class or
mpg_class).

The class template type parameter Info allows to control a number of features of the class, among which:

* the ability to support open as well as closed boundaries;
* the ability to represent empty intervals in addition to nonempty ones;

* the ability to represent intervals of extended number families that contain positive and negative in-
finities;

* the ability to support (independently from the type of the boundaries) plain intervals of real numbers
and intervals subject to generic restrictions (e.g., intervals of integer numbers).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.30 Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference 267

11.30.2 Member Function Documentation

11.30.2.1 template<typename Boundary , typename Info > template<typename From > Enable_-
If< Is_Interval< From >::value, bool >::type Parma_Polyhedra_Library::Interval <
Boundary, Info >::simplify_using_context_assign (const From & y) [inline]

Assigns to xthis a meet-preserving simplification of ¥t his with respect to y.

Returns:

false if and only if the meet of *this and y is empty.

11.30.2.2 template<typename Boundary , typename Info > template<typename From > Enable_-
If< Is_Interval< From >::value, void >::type Parma_Polyhedra_Library::Interval<
Boundary, Info >::empty_intersection_assign (const From & y) [inline]

Assigns to xthis an interval having empty intersection with y. The assigned interval should be as large
as possible.

Note:

Depending on interval restrictions, there could be many maximal intervals all inconsistent with respect
toy.

11.30.2.3 template<typename To_Boundary , typename To_Info > template<typename
From > Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value,
I_Result >::type Parma_Polyhedra_Library::Interval< To_Boundary, To_Info
>::refine_existential (Relation_Symbol rel, const From & x) [inline]

Refines t o according to the existential relation rel with x. The t o interval is restricted to become, upon
successful exit, the smallest interval of its type that contains the set

{a€to|Ibex.arelb}.

Returns:

77

11.30.2.4 template<typename To_Boundary , typename To_Info > template<typename
From > Enable_If< Is_Singleton< From >::value||Is_Interval< From >::value,
I_Result >::type Parma_Polyhedra_Library::Interval< To_Boundary, To_Info
>::refine_universal (Relation_Symbol rel, const From & x) [inline]

Refines t o so that it satisfies the universal relation rel with x. The to interval is restricted to become,
upon successful exit, the smallest interval of its type that contains the set

{acto|Vbex:arelb}.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.31 Parma_Polyhedra_Library::Is_Checked< T > Struct Template Reference 268

Returns:

7

11.30.2.5 template<typename To_Boundary , typename To_Info > template<typename Froml ,
typename From2 > Enable_If<((Is_Singleton< From1 >::value||Is_Interval< From1
>::value) & &(Is_Singleton< From2 >::value||Is_Interval< From2 >::value)), I_Result
>::type Parma_Polyhedra_Library::Interval< To_Boundary, To_Info >::mul_assign
(const From1 & x, const From2 & y) [inline]

+ + + + +|*|yl>0|yu<0|yl<O,yu>0]|+---

+ + + + | x1 > 0 |xlxylxusxyu[xuxylxIxyu| xuxyl,xukyu | +--------- S
+ + + | xu < 0 |xlxyu,xuxyl|xuxyu,xlxyl| xIxyu,xlxyl | + + +

+ + [x1<0 xu>0|xlxyu,xuxyu|xuxyl,xlxylmin(xlxyu,xuxyl),| | | | [max(xlxyl,xusxyu) |

11.30.2.6 template<typename To_Boundary , typename To_Info > template<typename Froml ,
typename From2 > Enable_If<((Is_Singleton< From1 >::value||Is_Interval< Froml
>::value)& &(Is_Singleton< From2 >::value||Is_Interval< From2 >::value)), I_Result
>::type Parma_Polyhedra_Library::Interval< To_Boundary, To_Info >::div_assign
(const From1 & x, const From2 & y) [inline]

+ + + +|/|yu<0|yl>0]+ + + +
| xu<=0 |[xu/yl,xl/yu|xl/yl,xu/yu| + + + + |x1<=0 xu>=0|xu/yu,xl/yu|xl/yl,xu/yl|
+ + + + | xI>=0 |xu/yuxl/yl|xl/yu,xu/yl| + + + +

The documentation for this class was generated from the following file:

* ppl.hh

11.31 Parma_Polyhedra_Library::Is_Checked< T > Struct Template Reference

Inherits Parma_Polyhedra_Library::False.

11.31.1 Detailed Description
template<typename T> struct Parma_Polyhedra_Library::Is_Checked< T >
The documentation for this struct was generated from the following file:

* ppl.hh

11.32 Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > >
Struct Template Reference

Inherits Parma_Polyhedra_Library::True.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.33 Parma_Polyhedra_Library::Is_Native_Or_Checked< T > Struct Template Reference 269

11.32.1 Detailed Description

template<typename T, typename P> struct Parma_Polyhedra_Library::Is_Checked< Checked_-
Number< T, P > >

The documentation for this struct was generated from the following file:

* ppl.hh
11.33 Parma_Polyhedra_Library::Is_Native_Or_Checked< T > Struct Template
Reference

Inherits Parma_Polyhedra_Library::Bool< Is_Native< T >::value||Is_Checked< T >::value >.
Inherited by Parma_Polyhedra_Library::Is_Singleton< T, Enable >.

11.33.1 Detailed Description
template<typename T> struct Parma_Polyhedra_Library::Is_Native_Or_Checked< T >

The documentation for this struct was generated from the following file:

« ppLhh

11.34 Parma_Polyhedra_Library::Linear_Expression Class Reference

A linear expression.
#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Linear_Row.

Public Member Functions

* Linear_Expression ()

Default constructor: returns a copy of Linear_Expression::zero().

* Linear_Expression (const Linear_Expression &e)

Ordinary copy-constructor.

e ~Linear_Expression ()

Destructor.

 Linear_Expression (Coefficient_traits::const_reference n)

Builds the linear expression corresponding to the inhomogeneous term n.

e Linear_Expression (Variable v)

Builds the linear expression corresponding to the variable v.

 Linear_Expression (const Constraint &c)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.34 Parma_Polyhedra_Library::Linear_Expression Class Reference 270

Builds the linear expression corresponding to constraint c.

* Linear_Expression (const Generator &g)

Builds the linear expression corresponding to generator g (for points and closure points, the divisor is not
copied,).

* Linear_Expression (const Grid_Generator &g)
Builds the linear expression corresponding to grid generator g (for points, parameters and lines the divisor

is not copied).

* Linear_Expression (const Congruence &cg)

Builds the linear expression corresponding to congruence cg.

 dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

¢ Coefficient_traits::const_reference coefficient (Variable v) const

Returns the coefficient of vin xthis.

* Coefficient_traits::const_reference inhomogeneous_term () const

Returns the inhomogeneous term of xt his.

* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by *xthis.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerrusing operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

¢ bool OK () const

Checks if all the invariants are satisfied.

¢ void swap (Linear_Expression &y)

Swaps xthis with y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.34 Parma_Polyhedra_Library::Linear_Expression Class Reference 271

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Linear_Expression can handle.

e static void initialize ()

Initializes the class.

e static void finalize ()

Finalizes the class.

* static const Linear_Expression & zero ()

Returns the (zero-dimension space) constant 0.

Friends

 Linear_Expression operator+ (const Linear_Expression &el, const Linear_Expression &e?2)

Returns the linear expression el + e2.

 Linear_Expression operator+ (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the linear expression n + e.

* Linear_Expression operator+ (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the linear expression e + n.

 Linear_Expression operator+ (Variable v, const Linear_Expression &e)

Returns the linear expression v + e.

e Linear_Expression operator+ (Variable v, Variable w)

Returns the linear expression v + w.

» Linear_Expression operator- (const Linear_Expression &el, const Linear_Expression &e2)

Returns the linear expression el - e2.

 Linear_Expression operator- (Variable v, Variable w)

Returns the linear expression v - w.

» Linear_Expression operator- (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the linear expression n - e.

* Linear_Expression operator- (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the linear expression e - n.

 Linear_Expression operator- (Variable v, const Linear_Expression &e)

Returns the linear expression v - e.

» Linear_Expression operator- (const Linear_Expression &e, Variable v)

Returns the linear expression e - v.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.34 Parma_Polyhedra_Library::Linear_Expression Class Reference 272

» Linear_Expression operator (Coefficient_traits::const_reference n, const Linear_Expression &e)

Returns the linear expression n * e.

» Linear_Expression operatorx (const Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the linear expression e * n.

» Linear_Expression & operator+= (Linear_Expression &el, const Linear_Expression &e2)

Returns the linear expression el + e2 and assigns it to e1.

» Linear_Expression & operator+= (Linear_Expression &e, Variable v)

Returns the linear expression e + v and assigns it to e.

* Linear_Expression & operator+= (Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the linear expression e + n and assigns it to e.

* Linear_Expression & operator-= (Linear_Expression &el, const Linear_Expression &e2)

Returns the linear expression el - e2 and assigns it to e1.

* Linear_Expression & operator-= (Linear_Expression &e, Variable v)

Returns the linear expression e - v and assigns it to e.

» Linear_Expression & operator-= (Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the linear expression e - n and assigns it to e.

» Linear_Expression & operators= (Linear_Expression &e, Coefficient_traits::const_reference n)

Returns the linear expression n x e and assigns it to e.

Arithmetic Operators

 Linear_Expression operator- (const Linear_Expression &e)

Unary minus operator.

Related Functions
(Note that these are not member functions.)

» Linear_Expression operator+ (const Linear_Expression &e, Variable v)

Returns the linear expression e + v.

11.34.1 Detailed Description

A linear expression. An object of the class Linear_Expression represents the linear expression

n—1
1=0

where n is the dimension of the vector space, each a; is the integer coefficient of the ¢-th variable x; and b
is the integer for the inhomogeneous term.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.34 Parma_Polyhedra_Library::Linear_Expression Class Reference 273

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classes Variable and Coefficient: available operators include unary negation, binary addition and
subtraction, as well as multiplication by a Coefficient. The space dimension of a linear expression is defined
as the maximum space dimension of the arguments used to build it: in particular, the space dimension of a
Variable x is defined as x . 1d () +1, whereas all the objects of the class Coefficient have space dimension
ZEero.

Example

The following code builds the linear expression 4x — 2y — z + 14, having space dimension 3:
Linear_Expression e = 4xx - 2xy - z + 14;

Another way to build the same linear expression is:

Linear_Expression el = 4xx;

Linear_ Expression e2 = 2xy;
Linear_Expression e3 = z;

Linear_Expression e = Linear_Expression (14);
e += el - e2 - e3;

Note that e1, e2 and e 3 have space dimension 1, 2 and 3, respectively; also, in the fourth line of code,
e is created with space dimension zero and then extended to space dimension 3 in the fifth line.

11.34.2 Constructor & Destructor Documentation

11.34.2.1 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (Variable v)

Builds the linear expression corresponding to the variable v.

Exceptions:

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-—
space_dimension ().

11.34.2.2 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const Constraint
&c¢) [explicit]

Builds the linear expression corresponding to constraint c. Given the constraint ¢ = (Z:;_Ol a;x; +b < O) ,
where <t € {=, >, >}, this builds the linear expression E;:Ol a;x;+b. If c is an inequality (resp., equality)
constraint, then the built linear expression is unique up to a positive (resp., non-zero) factor.

11.34.2.3 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const Generator &
g) [explicit]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.34 Parma_Polyhedra_Library::Linear_Expression Class Reference 274

Builds the linear expression corresponding to generator g (for points and closure points, the divisor is not

An—1

copied). Given the generator g = (%,..., =%)T (where, for lines and rays, we have d = 1), this builds

the linear expression Z;:Ol a;z;. The inhomogeneous term of the linear expression will always be 0. If
g is a ray, point or closure point (resp., a line), then the linear expression is unique up to a positive (resp.,
non-zero) factor.

11.34.2.4 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const
Grid_Generator & g) [explicit]

Builds the linear expression corresponding to grid generator g (for points, parameters and lines the divisor
An_1

is not copied). Given the grid generator g = (2, ..., “271)7T this builds the linear expression 22:01 a;T;.
The inhomogeneous term of the linear expression is always 0.

11.34.2.5 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (const Congruence
& cg) [explicit]

Builds the linear expression corresponding to congruence cg. Given the congruence cg = (Z?:_Ol a;x; +

b=0 (mod m)), this builds the linear expression 37 a;x; + b.

11.34.3 Friends And Related Function Documentation

11.34.3.1 Linear_Expression operator+ (const Linear_Expression & eI, const Linear_Expression
& e2) [friend]

Returns the linear expression el + e2.

11.34.3.2 Linear_Expression operator+ (Coefficient_traits::const_reference n, const
Linear_Expression & ¢) [friend]

Returns the linear expression n + e.

11.34.3.3 Linear_Expression operator+ (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e + n.

11.34.3.4 Linear_Expression operator+ (Variable v, const Linear_Expression & ¢) [friend]

Returns the linear expression v + e.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.34 Parma_Polyhedra_Library::Linear_Expression Class Reference 275

11.34.3.5 Linear_Expression operator+ (Variable v, Variable w) [friend]

Returns the linear expression v + w.

11.34.3.6 Linear_Expression operator- (const Linear_Expression & ¢) [friend]

Unary minus operator. Returns the linear expression - e.

11.34.3.7 Poly_Gen_Relation operator- (const Linear_Expression & el, const Linear_Expression
& e2) [friend]

Returns the linear expression el - e2. Yields the assertion with all the conjuncts of x that are not in y.

11.34.3.8 Linear_Expression operator- (Variable v, Variable w) [friend]

Returns the linear expression v - w.

11.34.3.9 Linear_Expression operator- (Coefficient_traits::const_reference n, const
Linear_Expression & ¢) [friend]

Returns the linear expression n - e.

11.34.3.10 Linear_Expression operator- (const Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e - n.

11.34.3.11 Linear_Expression operator- (Variable v, const Linear_Expression & ¢) [friend]

Returns the linear expression v - e.

11.34.3.12 Linear_Expression operator- (const Linear_Expression & e, Variablev) [friend]

Returns the linear expression e - v.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.34 Parma_Polyhedra_Library::Linear_Expression Class Reference 276

11.34.3.13 Linear_Expression operatorx (Coefficient_traits::const_reference n, const
Linear_Expression & ¢) [friend]

Returns the linear expression n * e.

11.34.3.14 Linear_Expression operators (const Linear Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e * n.

11.34.3.15 Linear_Expression & operator+= (Linear_Expression & el, const Linear_Expression
& e2) [friend]

Returns the linear expression el + e2 and assigns it to e 1.

11.34.3.16 Linear_Expression & operator+= (Linear_Expression & e, Variablev) [friend]

Returns the linear expression e + v and assigns it to e.

Exceptions:

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-—
space_dimension ().

11.34.3.17 Linear_Expression & operator+= (Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e + n and assigns it to e.

11.34.3.18 Linear_Expression & operator-= (Linear_Expression & el, const Linear_Expression
& e¢2) [friend]

Returns the linear expression el - e2 and assigns itto el.

11.34.3.19 Linear_Expression & operator-= (Linear_Expression & e, Variablev) [friend]

Returns the linear expression e - v and assigns it to e.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 277

Exceptions:

std::length_error Thrown if the space dimension of v exceeds Linear_Expression::max_-—
space_dimension ().

11.34.3.20 Linear_Expression & operator-= (Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression e - n and assigns it to e.

11.34.3.21 Linear_Expression & operators= (Linear_Expression & e,
Coefficient_traits::const_reference n) [friend]

Returns the linear expression n * e and assigns it to e.

11.34.3.22 Linear_Expression operator+ (const Linear_Expression & e, Variable v) [related]

Returns the linear expression e + v.

The documentation for this class was generated from the following file:

* ppl.hh

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference

A Mixed Integer (linear) Programming problem.

#include <ppl.hh>

Public Types

¢ enum Control_Parameter_Name { PRICING }

Names of MIP problems’ control parameters.

e enum Control_Parameter_Value { PRICING_STEEPEST_EDGE_FLOAT, PRICING._-
STEEPEST_EDGE_EXACT, PRICING_TEXTBOOK }

Possible values for MIP problem’s control parameters.

* typedef Constraint_Sequence::const_iterator const_iterator

A type alias for the read-only iterator on the constraints defining the feasible region.

Public Member Functions

e MIP_Problem (dimension_type dim=0)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 278

Builds a trivial MIP problem.

template<typename In >
MIP_Problem (dimension_type dim, In first, In last, const Variables_Set &int_vars, const Linear_-
Expression &obj=Linear_Expression::zero(), Optimization_Mode mode=MAXIMIZATION)

Builds an MIP problem having space dimension dim from the sequence of constraints in the range
[first, last), the objective function obj and optimization mode mode; those dimensions whose indices
occur in int_vars are constrained to take an integer value.

template<typename In >
MIP_Problem (dimension_type dim, In first, In last, const Linear_Expression &obj=Linear_-
Expression::zero(), Optimization_Mode mode=MAXIMIZATION)

Builds an MIP problem having space dimension dim from the sequence of constraints in the range
[first, last), the objective function ob j and optimization mode mode.

MIP_Problem (dimension_type dim, const Constraint_System &cs, const Linear_Expression
&obj=Linear_Expression::zero(), Optimization_Mode mode=MAXIMIZATION)

Builds an MIP problem having space dimension dim from the constraint system cs, the objective function
ob j and optimization mode mode.

MIP_Problem (const MIP_Problem &y)

Ordinary copy-constructor.

~MIP_Problem ()

Destructor.

MIP_Problem & operator= (const MIP_Problem &y)

Assignment operator.

dimension_type space_dimension () const

Returns the space dimension of the MIP problem.

const Variables_Set & integer_space_dimensions () const

Returns a set containing all the variables’ indexes constrained to be integral.

const_iterator constraints_begin () const

Returns a read-only iterator to the first constraint defining the feasible region.

const_iterator constraints_end () const

Returns a past-the-end read-only iterator to the sequence of constraints defining the feasible region.

const Linear_Expression & objective_function () const

Returns the objective function.

Optimization_Mode optimization_mode () const

Returns the optimization mode.

void clear ()

Resets xthis to be equal to the trivial MIP problem.

void add_space_dimensions_and_embed (dimension_type m)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 279

Adds m new space dimensions and embeds the old MIP problem in the new vector space.

* void add_to_integer_space_dimensions (const Variables_Set &i_vars)

Sets the variables whose indexes are in set i_vars to be integer space dimensions.

¢ void add_constraint (const Constraint &c)

Adds a copy of constraint c to the MIP problem.

* void add_constraints (const Constraint_System &cs)

Adds a copy of the constraints in cs to the MIP problem.

* void set_objective_function (const Linear_Expression &obj)

Sets the objective function to ob j.

* void set_optimization_mode (Optimization_Mode mode)

Sets the optimization mode to mode.

¢ bool is_satisfiable () const
Checks satisfiability of xt his.

e MIP_Problem_Status solve () const
Optimizes the MIP problem.

* void evaluate_objective_function (const Generator &evaluating_point, Coefficient &num, Coeffi-
cient &den) const

num
den

Sets num and den so that is the result of evaluating the objective function on evaluating point.

* const Generator & feasible_point () const

Returns a feasible point for xt his, if it exists.

* const Generator & optimizing_point () const

Returns an optimal point for xt his, if it exists.

* void optimal_value (Coefficient &num, Coefficient &den) const

num

Sets num and den so that ™
en

is the solution of the optimization problem.

¢ bool OK () const

Checks if all the invariants are satisfied.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of *this.

¢ void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerr using operator<<.

* bool ascii_load (std::istream &s)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 280

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xt hi s.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

* void swap (MIP_Problem &y)
Swaps xthis with y.

* Control_Parameter_Value get_control_parameter (Control_Parameter_Name name) const

Returns the value of the control parameter name.

* void set_control_parameter (Control_Parameter_Value value)

Sets control parameter value.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension an MIP_Problem can handle.

11.35.1 Detailed Description

A Mixed Integer (linear) Programming problem. An object of this class encodes a mixed integer (linear)
programming problem. The MIP problem is specified by providing:

* the dimension of the vector space;
* the feasible region, by means of a finite set of linear equality and non-strict inequality constraints;

* the subset of the unknown variables that range over the integers (the other variables implicitly ranging
over the reals);

* the objective function, described by a Linear_Expression;

¢ the optimization mode (either maximization or minimization).

The class provides support for the (incremental) solution of the MIP problem based on variations of the
revised simplex method and on branch-and-bound techniques. The result of the resolution process is ex-
pressed in terms of an enumeration, encoding the feasibility and the unboundedness of the optimization
problem. The class supports simple feasibility tests (i.e., no optimization), as well as the extraction of an
optimal (resp., feasible) point, provided the MIP_Problem is optimizable (resp., feasible).

By exploiting the incremental nature of the solver, it is possible to reuse part of the computational work
already done when solving variants of a given MIP_Problem: currently, incremental resolution supports the
addition of space dimensions, the addition of constraints, the change of objective function and the change
of optimization mode.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 281

11.35.2 Member Enumeration Documentation

11.35.2.1 enum Parma_Polyhedra_Library::MIP_Problem::Control_Parameter_Name

Names of MIP problems’ control parameters.

Enumerator:

PRICING The pricing rule.

11.35.2.2 enum Parma_Polyhedra_Library::MIP_Problem::Control_Parameter_Value

Possible values for MIP problem’s control parameters.

Enumerator:

PRICING_STEEPEST_EDGE_FLOAT Steepest edge pricing method, using floating points (de-
fault).

PRICING _STEEPEST EDGE_EXACT Steepest edge pricing method, using Coefficient.
PRICING _TEXTBOOK Textbook pricing method.

11.35.3 Constructor & Destructor Documentation

11.35.3.1 Parma_Polyhedra_Library::MIP_Problem::MIP_Problem (dimension_type dim = 0)
[explicit]

Builds a trivial MIP problem. A trivial MIP problem requires to maximize the objective function 0 on a
vector space under no constraints at all: the origin of the vector space is an optimal solution.
Parameters:

dim The dimension of the vector space enclosing xthis (optional argument with default value 0).

Exceptions:

std::length_error Thrown if dim exceeds max_space_dimension ().

11.35.3.2 template<typename In > Parma_Polyhedra_Library::MIP_Problem::MIP_Problem
(dimension_type dim, In first, In last, const Variables_Set & int_vars, const
Linear_Expression & obj = Linear_Expression: :zero (), Optimization_Mode
mode = MAXIMIZATION) [inline]

Builds an MIP problem having space dimension dim from the sequence of constraints in the range
[first, last), the objective function ob7 and optimization mode mode; those dimensions whose indices
occur in int_vars are constrained to take an integer value.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 282

Parameters:
dim The dimension of the vector space enclosing xthis.
first An input iterator to the start of the sequence of constraints.
last A past-the-end input iterator to the sequence of constraints.
int_vars The set of variables’ indexes that are constrained to take integer values.
obj The objective function (optional argument with default value 0).

mode The optimization mode (optional argument with default value MAXIMIZATION).

Exceptions:

std::length_error Thrown if dim exceeds max_space_dimension ().

std::invalid_argument Thrown if a constraint in the sequence is a strict inequality, if the space di-
mension of a constraint (resp., of the objective function or of the integer variables) or the space
dimension of the integer variable set is strictly greater than dim.

11.35.3.3 template<typename In > Parma_Polyhedra_Library::MIP_Problem::MIP_Problem
(dimension_type dim, In first, In last, const Linear_Expression & obj =
Linear Expression::zero (), Optimization_Mode mode = MAXIMIZATION)
[inline]

Builds an MIP problem having space dimension dim from the sequence of constraints in the range
[first, last), the objective function ob j and optimization mode mode.

Parameters:

dim The dimension of the vector space enclosing *this.

first An input iterator to the start of the sequence of constraints.

last A past-the-end input iterator to the sequence of constraints.

obj The objective function (optional argument with default value 0).

mode The optimization mode (optional argument with default value MAXIMIZATION).

Exceptions:

std::length_error Thrown if dim exceeds max_space_dimension ().

std::invalid_argument Thrown if a constraint in the sequence is a strict inequality or if the space
dimension of a constraint (resp., of the objective function or of the integer variables) is strictly
greater than dim.

11.35.3.4 Parma_Polyhedra_Library::MIP_Problem::MIP_Problem (dimension_type
dim, const Constraint_System & cs, const Linear_Expression & obj =
Linear_ Expression: :zero (), Optimization_Mode mode = MAXIMIZATION)

Builds an MIP problem having space dimension dim from the constraint system cs, the objective function
ob j and optimization mode mode.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 283

Parameters:
dim The dimension of the vector space enclosing xthis.
¢s The constraint system defining the feasible region.
obj The objective function (optional argument with default value 0).
mode The optimization mode (optional argument with default value MAXIMIZATION).

Exceptions:

std::length_error Thrown if dim exceeds max_space_dimension ().

std::invalid_argument Thrown if the constraint system contains any strict inequality or if the space
dimension of the constraint system (resp., the objective function) is strictly greater than dim.

11.35.4 Member Function Documentation

11.35.4.1 void Parma_Polyhedra_Library::MIP_Problem::clear () [inline]

Resets xthis to be equal to the trivial MIP problem. The space dimension is reset to 0.

11.35.4.2 void Parma_Polyhedra_Library::MIP_Problem::add_space_dimensions_and_embed
(dimension_type m)

Adds m new space dimensions and embeds the old MIP problem in the new vector space.

Parameters:

m The number of dimensions to add.

Exceptions:
std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed

dimension max_space_dimension ().

The new space dimensions will be those having the highest indexes in the new MIP problem; they are
initially unconstrained.

11.35.4.3 void Parma_Polyhedra_Library::MIP_Problem::add_to_integer_space_dimensions
(const Variables_Set & i_vars)

Sets the variables whose indexes are in set 1_vars to be integer space dimensions.

Exceptions:

std::invalid_argument Thrown if some index in i_vars does not correspond to a space dimension
in xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 284

11.35.4.4 void Parma_Polyhedra_Library::MIP_Problem::add_constraint (const Constraint & c)

Adds a copy of constraint ¢ to the MIP problem.
Exceptions:

std::invalid_argument Thrown if the constraint c is a strict inequality or if its space dimension is
strictly greater than the space dimension of xthis.

11.35.4.5 void Parma_Polyhedra_Library::MIP_Problem::add_constraints (const
Constraint_System & cs)

Adds a copy of the constraints in cs to the MIP problem.

Exceptions:

std::invalid_argument Thrown if the constraint system cs contains any strict inequality or if its space
dimension is strictly greater than the space dimension of *xthis.

11.35.4.6 void Parma_Polyhedra_Library::MIP_Problem::set_objective_function (const
Linear_Expression & obj)

Sets the objective function to ob j.
Exceptions:

std::invalid_argument Thrown if the space dimension of ob 7 is strictly greater than the space dimen-
sion of xthis.

11.35.4.7 bool Parma_Polyhedra_Library::MIP_Problem::is_satisfiable () const

Checks satisfiability of xthis.

Returns:

true if and only if the MIP problem is satisfiable.

11.35.4.8 MIP_Problem_Status Parma_Polyhedra_Library::MIP_Problem::solve () const

Optimizes the MIP problem.

Returns:

An MIP_Problem_Status flag indicating the outcome of the optimization attempt (unfeasible, un-
bounded or optimized problem).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.35 Parma_Polyhedra_Library::MIP_Problem Class Reference 285

11.35.4.9 void Parma_Polyhedra_Library::MIP_Problem::evaluate_objective_function (const
Generator & evaluating_point, Coefficient & num, Coefficient & den) const

Sets num and den so that “72° is the result of evaluating the objective function on evaluating_point.

Parameters:

evaluating_point The point on which the objective function will be evaluated.
num On exit will contain the numerator of the evaluated value.

den On exit will contain the denominator of the evaluated value.
Exceptions:

std::invalid_argument Thrown if xthis and evaluating_point are dimension-incompatible or
if the generator evaluating_point is not a point.

11.35.4.10 const Generator& Parma_Polyhedra_Library::MIP_Problem::feasible_point () const

Returns a feasible point for xthis, if it exists.
Exceptions:

std::domain_error Thrown if the MIP problem is not satisfiable.

11.35.4.11 const Generator& Parma_Polyhedra_Library::MIP_Problem::optimizing_point ()
const

Returns an optimal point for xthis, if it exists.
Exceptions:

std::domain_error Thrown if xthis doesn’t not have an optimizing point, i.e., if the MIP problem is
unbounded or not satisfiable.

11.35.4.12 void Parma_Polyhedra_Library::MIP_Problem::optimal_value (Coefficient & num,
Coefficient & den) const [inline]

num

Sets num and den so that o

is the solution of the optimization problem.

Exceptions:

std::domain_error Thrown if xthis doesn’t not have an optimizing point, i.e., if the MIP problem is
unbounded or not satisfiable.

The documentation for this class was generated from the following file:

* ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.36 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 286

11.36 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference

A not necessarily closed convex polyhedron.

#include <ppl.hh>

Inherits Parma_Polyhedra_Library::Polyhedron.

Public Member Functions

NNC_Polyhedron (dimension_type num_dimensions=0, Degenerate_Element kind=UNIVERSE)
Builds either the universe or the empty NNC polyhedron.

NNC_Polyhedron (const Constraint_System &cs)

Builds an NNC polyhedron from a system of constraints.

NNC_Polyhedron (Constraint_System &cs, Recycle_Input dummy)

Builds an NNC polyhedron recycling a system of constraints.

NNC_Polyhedron (const Generator_System &gs)
Builds an NNC polyhedron from a system of generators.

NNC_Polyhedron (Generator_System &gs, Recycle_Input dummy)
Builds an NNC polyhedron recycling a system of generators.

NNC_Polyhedron (const Congruence_System &cgs)

Builds an NNC polyhedron from a system of congruences.

NNC_Polyhedron (Congruence_System &cgs, Recycle_Input dummy)

Builds an NNC polyhedron recycling a system of congruences.

NNC_Polyhedron (const C_Polyhedron &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds an NNC polyhedron from the C polyhedron y.

template <typename Interval >
NNC_Polyhedron (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds an NNC polyhedron out of a box.

NNC_Polyhedron (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)
Builds an NNC polyhedron out of a grid.

template <typename U >
NNC_Polyhedron (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a NNC polyhedron out of a BD shape.

template<typename U >
NNC_Polyhedron (const Octagonal_Shape< U > &os, Complexity_Class complexity=ANY_-
COMPLEXITY)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.36 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 287

Builds a NNC polyhedron out of an octagonal shape.

e NNC_Polyhedron (const NNC_Polyhedron &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Ordinary copy-constructor.

e NNC_Polyhedron & operator= (const NNC_Polyhedron &y)

The assignment operator. (xthis and y can be dimension-incompatible.).

* NNC_Polyhedron & operator= (const C_Polyhedron &y)
Assigns to xt his the C polyhedron y.

e ~NNC_Polyhedron ()

Destructor.

* bool poly_hull_assign_if_exact (const NNC_Polyhedron &y)

If the poly-hull of xthis and y is exact it is assigned to *this and true is returned, otherwise false
is returned.

* bool upper_bound_assign_if_exact (const NNC_Polyhedron &y)
Same as poly_hull_assign_if_exact(y).

11.36.1 Detailed Description

A not necessarily closed convex polyhedron. An object of the class NNC_Polyhedron represents a not
necessarily closed (NNC) convex polyhedron in the vector space R™.

Note:

Since NNC polyhedra are a generalization of closed polyhedra, any object of the class C_Polyhedron
can be (explicitly) converted into an object of the class NNC_Polyhedron. The reason for defining
two different classes is that objects of the class C_Polyhedron are characterized by a more efficient
implementation, requiring less time and memory resources.

11.36.2 Constructor & Destructor Documentation

11.36.2.1 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (dimension_type
num_dimensions = 0, Degenerate_Element kind = UNIVERSE) [inline,
explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the NNC polyhedron;

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.36 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 288

Both parameters are optional: by default, a O-dimension space universe NNC polyhedron is built.

11.36.2.2 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const
Constraint_System & ¢s) [inline, explicit]

Builds an NNC polyhedron from a system of constraints. The polyhedron inherits the space dimension of
the constraint system.
Parameters:

c¢s The system of constraints defining the polyhedron.

11.36.2.3 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Constraint_System
& cs, Recycle_Input dummy) [inline]

Builds an NNC polyhedron recycling a system of constraints. The polyhedron inherits the space dimension
of the constraint system.
Parameters:

¢s The system of constraints defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

11.36.2.4 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const
Generator_System & gs) [inline, explicit]

Builds an NNC polyhedron from a system of generators. The polyhedron inherits the space dimension of

the generator system.

Parameters:

gs The system of generators defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.36.2.5 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Generator_System
& gs, Recycle_Input dummy) [inline]

Builds an NNC polyhedron recycling a system of generators. The polyhedron inherits the space dimension
of the generator system.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.36 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 289

Parameters:

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.36.2.6 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const
Congruence_System & cgs) [explicit]

Builds an NNC polyhedron from a system of congruences. The polyhedron inherits the space dimension
of the congruence system.
Parameters:

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

11.36.2.7 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Congruence_System
& cgs, Recycle_Input dummy)

Builds an NNC polyhedron recycling a system of congruences. The polyhedron inherits the space dimen-
sion of the congruence system.
Parameters:

cgs The system of congruences defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

11.36.2.8 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const C_Polyhedron
& y, Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds an NNC polyhedron from the C polyhedron y.

Parameters:

y The C polyhedron to be used;

complexity This argument is ignored.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.36 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 290

11.36.2.9 template<typename Interval > Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Box< Interval > & box, Complexity_Class complexity =
ANY COMPLEXITY) [inline, explicit]

Builds an NNC polyhedron out of a box. The polyhedron inherits the space dimension of the box and is
the most precise that includes the box.

Parameters:
box The box representing the polyhedron to be built;

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

11.36.2.10 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Grid & grid,
Complexity_Class complexity = ANY_COMPLEXITY) [explicit]

Builds an NNC polyhedron out of a grid. The polyhedron inherits the space dimension of the grid and is
the most precise that includes the grid.

Parameters:

grid The grid used to build the polyhedron.
complexity This argument is ignored as the algorithm used has polynomial complexity.

11.36.2.11 template<typename U > Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const BD_Shape< U > & bd, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a NNC polyhedron out of a BD shape. The polyhedron inherits the space dimension of the BD
shape and is the most precise that includes the BD shape.

Parameters:

bd The BD shape used to build the polyhedron.
complexity This argument is ignored as the algorithm used has polynomial complexity.

11.36.2.12 template<typename U > Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Octagonal_Shape< U > & os, Complexity_Class complexity =
ANY_COMPLEXITY) [inline, explicit]

Builds a NNC polyhedron out of an octagonal shape. The polyhedron inherits the space dimension of the
octagonal shape and is the most precise that includes the octagonal shape.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.37 Parma_Polyhedra_Library::No_Reduction< D1, D2 > Class Template Reference 291

Parameters:

os The octagonal shape used to build the polyhedron.

complexity This argument is ignored as the algorithm used has polynomial complexity.

11.36.3 Member Function Documentation

11.36.3.1 bool Parma_Polyhedra_Library::NNC_Polyhedron::poly_hull_assign_if exact (const
NNC_Polyhedron & y)

If the poly-hull of *this and y is exact it is assigned to *this and true is returned, otherwise false
is returned.

Exceptions:
std::invalid_argument Thrown if xthis and y are dimension-incompatible.

The documentation for this class was generated from the following file:

* ppl.hh

11.37 Parma_Polyhedra_Library::No_Reduction< D1, D2 > Class Template Ref-
erence

This class provides the reduction method for the Direct_Product domain.

#include <ppl.hh>

Public Member Functions

¢ No_Reduction ()

Default constructor.

* void product_reduce (D1 &d1, D2 &d2)

The null reduction operator.

¢ ~No_Reduction ()

Destructor.

11.37.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::No_Reduction< D1, D2
>

This class provides the reduction method for the Direct_Product domain. The reduction classes are used
to instantiate the Partially_Reduced_Product domain template parameter R. This class does no reduction at
all.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 292

11.37.2 Member Function Documentation
11.37.2.1 template<typename D1 , typename D2 > void Parma_Polyhedra_-

Library::No_Reduction< D1, D2 >::product_reduce (D1 & dI, D2 & d2)
[inline]

The null reduction operator. The parameters d1 and d2 are ignored.

The documentation for this class was generated from the following file:

* ppl.hh

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Refer-
ence

An octagonal shape.

#include <ppl.hh>

Public Types

* typedef T coefficient_type_base

The numeric base type upon which OSs are built.

* typedef N coefficient_type

The (extended) numeric type of the inhomogeneous term of the inequalities defining an OS.

Public Member Functions

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xthis.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xt his.

* void print () const

Prints xthisto std: :cerr using operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthis.

e memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 293

¢ int32_t hash_code () const
Returns a 32-bit hash code for xthis.

Constructors, Assignment, Swap and Destructor

* QOctagonal_Shape (dimension_type num_dimensions=0, Degenerate_Element
kind=UNIVERSE)

Builds an universe or empty OS of the specified space dimension.

e Octagonal_Shape (const Octagonal_Shape &x, Complexity_Class complexity=ANY_-
COMPLEXITY)

Ordinary copy-constructor.

¢ template<typename U >
Octagonal_Shape (const Octagonal_Shape< U > &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a conservative, upward approximation of y.

¢ QOctagonal_Shape (const Constraint_System &cs)

Builds an OS from the system of constraints cs.

* Octagonal_Shape (const Congruence_System &cgs)

Builds an OS from a system of congruences.

* Octagonal_Shape (const Generator_System &gs)

Builds an OS from the system of generators gs.

* Octagonal_Shape (const Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)
Builds an OS from the polyhedron ph.

¢ template<typename Interval >
Octagonal_Shape (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)
Builds an OS out of a box.

* Octagonal_Shape (const Grid &grid, Complexity_Class complexity=ANY_COMPLEXITY)
Builds an OS that approximates a grid.

¢ template<typename U >
Octagonal_Shape (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_-
COMPLEXITY)
Builds an OS from a BD shape.

* Octagonal_Shape & operator= (const Octagonal_Shape &y)

The assignment operator. (xthis and y can be dimension-incompatible.).

* void swap (Octagonal_Shape &y)

Swaps xthis with octagon y. (xthis and y can be dimension-incompatible.).

* ~Qctagonal_Shape ()

Destructor.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 294

Member Functions that Do Not Modify the Octagonal_Shape

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xth1i s.

* dimension_type affine_dimension () const

Returns O, if xthis is empty; otherwise, returns the affine dimension of xthis.

* Constraint_System constraints () const

Returns the system of constraints defining xthis.

* Constraint_System minimized_constraints () const

Returns a minimized system of constraints defining xthis.

» Congruence_System congruences () const

Returns a system of (equality) congruences satisfied by xthis.

» Congruence_System minimized_congruences () const

Returns a minimal system of (equality) congruences satisfied by xt his with the same affine dimension
as xthis.

* bool contains (const Octagonal_Shape &y) const

Returns t rue if and only if xt his contains y.

* bool strictly_contains (const Octagonal_Shape &y) const

Returns t rue if and only if xt hi s strictly contains y.

* bool is_disjoint_from (const Octagonal_Shape &y) const

Returns t rue if and only if ¥t his and y are disjoint.

* Poly_Con_Relation relation_with (const Constraint &c) const

Returns the relations holding between xt his and the constraint c.

* Poly_Con_Relation relation_with (const Congruence &cg) const

Returns the relations holding between xt his and the congruence cg.

* Poly_Gen_Relation relation_with (const Generator &g) const

Returns the relations holding between xt his and the generator g.

* bool is_empty () const

Returns t rue if and only if xt his is an empty OS.

* bool is_universe () const

Returns t rue if and only if ¥t his is a universe OS.

¢ bool is_discrete () const

Returns t rue if and only if xt his is discrete.

¢ bool is_bounded () const
Returns t rue if and only if xt his is a bounded OS.

* bool is_topologically_closed () const

Returns t rue if and only if xt his is a topologically closed subset of the vector space.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 295

bool contains_integer_point () const

Returns t rue if and only if xt his contains (at least) an integer point.

bool constrains (Variable var) const

Returns t rue if and only if var is constrained in xt his.

bool bounds_from_above (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded from above in xthis.

bool bounds_from_below (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded from below in xthis.

bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value is computed.

bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value and a point where expr reaches it are computed.

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if xt his is not empty and expzr is bounded from below in xthis, in which
case the infimum value is computed.

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.

bool OK () const

Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Octagonal_Shape

void add_constraint (const Constraint &c)

Adds a copy of constraint c to the system of constraints defining xthis.

void add_constraints (const Constraint_System &cs)

Adds the constraints in cs to the system of constraints defining xt his.

void add_recycled_constraints (Constraint_System &cs)

Adds the constraints in cs to the system of constraints of ¥t his.

void add_congruence (const Congruence &cg)

Adds to xthis a constraint equivalent to the congruence cg.

void add_congruences (const Congruence_System &cgs)

Adds to xt his constraints equivalent to the congruences in cgs.

void add_recycled_congruences (Congruence_System &cgs)

Adds to xthis constraints equivalent to the congruences in cgs.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 296

* void refine_with_constraint (const Constraint &c)

Uses a copy of constraint c to refine the system of octagonal constraints defining xt his.

* void refine_with_congruence (const Congruence &cg)

Uses a copy of congruence cg to refine the system of octagonal constraints of xthis.

* void refine_with_constraints (const Constraint_System &cs)

Uses a copy of the constraints in cs to refine the system of octagonal constraints defining xthis.

* void refine_with_congruences (const Congruence_System &cgs)

Uses a copy of the congruences in cgs to refine the system of octagonal constraints defining xt his.

¢ void unconstrain (Variable var)

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
xthis.

 void unconstrain (const Variables_Set &to_be_unconstrained)

Computes the cylindrification of xthis with respect to the set of space dimensions to_be_ -
unconstrained, assigning the result to xthis.

* void intersection_assign (const Octagonal_Shape &y)

Assigns to xthis the intersection of xthis and y.

* void upper_bound_assign (const Octagonal_Shape &y)
Assigns to xt his the smallest OS that contains the convex union of xthis and y.

* bool upper_bound_assign_if_exact (const Octagonal_Shape &y)

If the upper bound of xthis and y is exact, it is assigned to xthis and true is returned, otherwise
false is returned.

* void difference_assign (const Octagonal_Shape &y)

Assigns to xt his the smallest octagon containing the set difference of xthis and y.

* bool simplify_using_context_assign (const Octagonal_Shape &y)

Assigns to xthis a meet-preserving simplification of xt his with respect to y. If false is returned,
then the intersection is empty.

* void affine_image (Variable var, const Linear Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to xthis the affine image of xthis under the function mapping variable var into the affine
expression specified by expr and denominator.

* void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())
Assigns to xt his the affine preimage of xt his under the function mapping variable var into the affine
expression specified by expr and denominator.

* void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xthis the image of xthis with respect to the generalized affine transfer function var’ <

d#, where X is the relation symbol encoded by relsym.
enominator

* void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 297

Assigns to xt hi s the image of t hi s with respect to the generalized affine transfer function lhs' 1< rhs,
where X is the relation symbol encoded by relsym.

* void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

bexpr o o) <

Assigns to xt his the image of xt his with respect to the bounded affine relation 5 ==>-— <

ub_expr
denominator
* void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

expr

denominator’ where

Assigns to xt his the preimage of xt his with respect to the affine relation var’ <
> is the relation symbol encoded by relsym.

* void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)

Assigns to xthis the preimage of *this with respect to the generalized affine relation lhs’ 1 rhs,
where X is the relation symbol encoded by relsym.

* void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-

Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

1b_expr

Assigns to xthis the preimage of xthis with respect to the bounded affine relation 7 ==2"— <

ub_expr

’
var S denominator*

* void time_elapse_assign (const Octagonal_Shape &y)

Assigns to xt his the result of computing the time-elapse between xthis and y.

* void topological_closure_assign ()

Assigns to xt his its topological closure.

» void CC76_extrapolation_assign (const Octagonal_Shape &y, unsigned *tp=0)
Assigns to xthis the result of computing the CC76-extrapolation between xthis and y.

* template<typename Iterator >
void CC76_extrapolation_assign (const Octagonal_Shape &y, Iterator first, Iterator last, unsigned
*tp=0)
Assigns to xthis the result of computing the CC76-extrapolation between *this and y.

* void BHMZ05_widening_assign (const Octagonal_Shape &y, unsigned xtp=0)
Assigns to xt his the result of computing the BHMZ05-widening between xthis and y.

* void widening_assign (const Octagonal_Shape &y, unsigned xtp=0)
Same as BHMZ05_widening_assign(y, tp).

* void limited_BHMZO05_extrapolation_assign (const Octagonal_Shape &y, const Constraint_-
System &cs, unsigned *tp=0)
Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of xthis.

* void CC76_narrowing_assign (const Octagonal_Shape &y)

Restores from y the constraints of xt his, lost by CC76-extrapolation applications.

* void limited_CC76_extrapolation_assign (const Octagonal_Shape &y, const Constraint_System
&cs, unsigned xtp=0)
Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs
that are satisfied by all the points of xt his.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 298

Member Functions that May Modify the Dimension of the Vector Space

* void add_space_dimensions_and_embed (dimension_type m)

Adds m new dimensions and embeds the old OS into the new space.

* void add_space_dimensions_and_project (dimension_type m)

Adds m new dimensions to the OS and does not embed it in the new space.

* void concatenate_assign (const Octagonal_Shape &y)

Assigns to xt his the concatenation of xthis and y, taken in this order.

* void remove_space_dimensions (const Variables_Set &to_be_removed)

Removes all the specified dimensions.

* void remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

¢ template<typename Partial_Function >
void map_space_dimensions (const Partial_Function &pfunc)

Remaps the dimensions of the vector space according to a partial function.

* void expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

* void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)

Folds the space dimensions in t o_be_foldedinto var.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension that an OS can handle.

* static bool can_recycle_constraint_systems ()

Returns false indicating that this domain cannot recycle constraints.

* static bool can_recycle_congruence_systems ()

Returns false indicating that this domain cannot recycle congruences.

Related Functions
(Note that these are not member functions.)

» dimension_type coherent_index (const dimension_type i)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 299

11.38.1 Detailed Description
template<typename T> class Parma_Polyhedra_Library::Octagonal_Shape< T >

An octagonal shape. The class template Octagonal _Shape<T> allows for the efficient representation of
a restricted kind of topologically closed convex polyhedra called octagonal shapes (OSs, for short). The
name comes from the fact that, in a vector space of dimension 2, bounded OSs are polygons with at most
eight sides. The closed affine half-spaces that characterize the OS can be expressed by constraints of the
form

ar; +bxr; <k

where a,b € {—1,0, 1} and k is a rational number, which are called octagonal constraints.

Based on the class template type parameter T, a family of extended numbers is built and used to approxi-
mate the inhomogeneous term of octagonal constraints. These extended numbers provide a representation
for the value +o0, as well as rounding-aware implementations for several arithmetic functions. The value
of the type parameter T may be one of the following:

* abounded precision integer type (e.g., int32_t or int64_t);
* a bounded precision floating point type (e.g., f1loat or double);

 an unbounded integer or rational type, as provided by GMP (i.e., mpz_class ormpg_class).

The user interface for OSs is meant to be as similar as possible to the one developed for the polyhedron
class C_Polyhedron.

The OS domain optimally supports:

* tautological and inconsistent constraints and congruences;

* octagonal constraints;

* non-proper congruences (i.e., equalities) that are expressible as octagonal constraints.
Depending on the method, using a constraint or congruence that is not optimally supported by the domain
will either raise an exception or result in a (possibly non-optimal) upward approximation.

A constraint is octagonal if it has the form
+ta;x; = a;x; X b

where 1 € {<,=,>} and a;, aj, b are integer coefficients such that a; = 0, or a; = 0, or a; = a;.
The user is warned that the above octagonal Constraint object will be mapped into a correct and optimal
approximation that, depending on the expressive power of the chosen template argument T, may loose
some precision. Also note that strict constraints are not octagonal.

For instance, a Constraint object encoding 3z + 3y < 1 will be approximated by:

e £+ y < 1,if T is a (bounded or unbounded) integer type;
cx+y< %, if T is the unbounded rational type mpg_class;

e x+y <k, where k > %, if T is a floating point type (having no exact representation for %).

On the other hand, depending from the context, a Constraint object encoding 3z — y < 1 will be either
upward approximated (e.g., by safely ignoring it) or it will cause an exception.

In the following examples it is assumed that the type argument T is one of the possible instances listed
above and that variables x, y and z are defined (where they are used) as follows:

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 300

Variable x(0);
Variable y(1);
Variable z(2);

Example 1

The following code builds an OS corresponding to a cube in R3, given as a system of constraints:

Constraint_System cs;

cs.insert (x >= 0);
cs.insert (x <= 3);
cs.insert (y >= 0);
cs.insert (y <= 3);
cs.insert (z >= 0);
cs.insert (z <= 3);

Octagonal_Shape<T> oct (cs);
In contrast, the following code will raise an exception, since constraints 7, 8, and 9 are not octagonal:

Constraint_System cs;

cs.insert (x >= 0);
cs.insert (x <= 3);
cs.insert (y >= 0);
cs.insert (y <= 3);
cs.insert (z >= 0);
cs.insert (z <= 3);
cs.insert (x — 3xy <= 5); /7 (1)
cs.insert(x — y + z <= 5); // (8)
cs.insert(x + y + z <= 5); // (9)
s);

Octagonal_Shape<T> oct (c

’

11.38.2 Constructor & Destructor Documentation

11.38.2.1 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::0Octagonal_Shape (dimension_type num_dimensions = 0, Degenerate_Element kind =
UNIVERSE) [inline, explicit]

Builds an universe or empty OS of the specified space dimension.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the OS;
kind Specifies whether the universe or the empty OS has to be built.

11.38.2.2 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::0Octagonal_Shape (const Octagonal_Shape< T > & x, Complexity_Class complexity

= ANY_ COMPLEXITY) [inline]

Ordinary copy-constructor. The complexity argument is ignored.

11.38.2.3 template<typename T > template<typename U > Parma_Polyhedra_-
Library::Octagonal_Shape< T >::Octagonal_Shape (const Octagonal_Shape< U > &
y, Complexity_Class complexity = ANY COMPLEXITY) [inline, explicit]

Builds a conservative, upward approximation of y. The complexity argument is ignored.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 301

11.38.2.4 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::0ctagonal_Shape (const Constraint_System & ¢s) [inline, explicit]

Builds an OS from the system of constraints cs. The OS inherits the space dimension of cs.

Parameters:

cs A system of constraints: constraints that are not octagonal constraints are ignored (even though
they may have contributed to the space dimension).

Exceptions:

std::invalid_argument Thrown if the system of constraints cs contains strict inequalities.

11.38.2.5 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (const Congruence_System & c¢gs) [inline, explicit]

Builds an OS from a system of congruences. The OS inherits the space dimension of cgs

Parameters:

cgs A system of congruences: some elements may be safely ignored.

11.38.2.6 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::0Octagonal_Shape (const Generator_System & gs) [inline, explicit]

Builds an OS from the system of generators gs. Builds the smallest OS containing the polyhedron defined
by gs. The OS inherits the space dimension of gs.

Exceptions:

std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.38.2.7 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::0Octagonal_Shape (const Polyhedron & ph, Complexity_Class complexity =
ANY_ COMPLEXITY) [inline, explicit]

Builds an OS from the polyhedron ph. Builds an OS containing ph using algorithms whose complexity
does not exceed the one specified by complexity. If complexity is ANY_COMPLEXITY, then the
OS built is the smallest one containing ph.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 302

11.38.2.8 template<typename T > template<typename Interval > Parma_Polyhedra_-
Library::Octagonal_Shape< T >::Octagonal_Shape (const Box< Interval > & box,
Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

Builds an OS out of a box. The OS inherits the space dimension of the box. The built OS is the most
precise OS that includes the box.

Parameters:
box The box representing the BDS to be built.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

11.38.2.9 template<typename T > Parma_Polyhedra_Library::Octagonal_Shape< T
>::Octagonal_Shape (const Grid & grid, Complexity_Class complexity =
ANY COMPLEXITY) [inline, explicit]

Builds an OS that approximates a grid. The OS inherits the space dimension of the grid. The built OS is
the most precise OS that includes the grid.

Parameters:
grid The grid used to build the OS.

complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of grid exceeds the maximum allowed space di-
mension.

11.38.2.10 template<typename T > template<typename U > Parma_Polyhedra_-
Library::Octagonal_Shape< T >::Octagonal_Shape (const BD_Shape< U > & bd,
Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

Builds an OS from a BD shape. The OS inherits the space dimension of the BD shape. The built OS is the
most precise OS that includes the BD shape.

Parameters:

bd The BD shape used to build the OS.
complexity This argument is ignored as the algorithm used has polynomial complexity.

Exceptions:

std::length_error Thrown if the space dimension of bd exceeds the maximum allowed space dimen-
sion.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 303

11.38.3 Member Function Documentation

11.38.3.1 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::contains (const Octagonal_Shape< T > & y) const [inline]

Returns t rue if and only if *this contains y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.38.3.2 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::strictly_contains (const Octagonal_Shape< T > & y) const [inline]

Returns t rue if and only if *this strictly contains y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.38.3.3 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::is_disjoint_from (const Octagonal_Shape< T > & y) const [inline]

Returns t rue if and only if *this and y are disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

11.38.3.4 template<typename T > Poly_Con_Relation Parma_Polyhedra_-
Library::Octagonal_Shape< T >::relation_with (const Constraint & c¢) const
[inline]

Returns the relations holding between *this and the constraint c.

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible.

11.38.3.5 template<typename T > Poly_Con_Relation Parma_Polyhedra_-
Library::Octagonal_Shape< T >::relation_with (const Congruence & cg) const
[inline]

Returns the relations holding between xthis and the congruence cg.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 304

Exceptions:

std::invalid_argument Thrown if xthis and cg are dimension-incompatible.

11.38.3.6 template<typename T > Poly_Gen_Relation Parma_Polyhedra_-
Library::Octagonal_Shape< T >::relation_with (const Generator & g) const
[inline]

Returns the relations holding between xthis and the generator g.

Exceptions:

std::invalid_argument Thrown if xthis and generator g are dimension-incompatible.

11.38.3.7 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::constrains (Variable var) const [inline]

Returns t rue if and only if var is constrained in *this.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.38.3.8 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::bounds_from_above (const Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from above in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

11.38.3.9 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::bounds_from_below (const Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from below in xthis.

Exceptions:

std::invalid_argument Thrown if expr and xthis are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 305

11.38.3.10 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::maximize (const Linear_Expression & expr, Coefficient & sup_n, Coefficient &
sup_d, bool & maximum) const [inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value is computed.

Parameters:

expr The linear expression to be maximized subject to *this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

11.38.3.11 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::maximize (const Linear_Expression & expr, Coefficient & sup_n, Coefficient &
sup_d, bool & maximum, Generator & g) const [inline]

Returns true if and only if xthis is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to xthis;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If *this is empty or expr is not bounded from above, false isreturned and sup_n, sup_d, maximum
and g are left untouched.

11.38.3.12 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::minimize (const Linear_Expression & expr, Coefficient & inf _n, Coefficient &
inf_d, bool & minimum) const [inline]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 306

Returns true if and only if xthis is not empty and expr is bounded from below in *this, in which
case the infimum value is computed.
Parameters:

expr The linear expression to be minimized subject to *this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

11.38.3.13 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::minimize (const Linear_Expression & expr, Coefficient & inf _n, Coefficient &
inf_d, bool & minimum, Generator & g) const [inline]

Returns true if and only if xthis is not empty and expr is bounded from below in *this, in which
case the infimum value and a point where expr reaches it are computed.
Parameters:

expr The linear expression to be minimized subject to xthis;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, falseisreturnedand inf_n, inf_d, minimum
and g are left untouched.

11.38.3.14 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_constraint (const Constraint & ¢) [inline]

Adds a copy of constraint c to the system of constraints defining *this.

Parameters:

¢ The constraint to be added.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 307

Exceptions:

std::invalid_argument Thrown if *this and constraint c are dimension-incompatible, or c is not
optimally supported by the OS domain.

11.38.3.15 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_constraints (const Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of constraints defining *this.
Parameters:

¢s The constraints that will be added.
Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the OS domain.

11.38.3.16 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_recycled_constraints (Constraint_System & ¢s) [inline]

Adds the constraints in cs to the system of constraints of xthis.
Parameters:

¢s The constraint system to be added to xthis. The constraints in cs may be recycled.
Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible, or cs contains a con-
straint which is not optimally supported by the OS domain.

Warning:

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

11.38.3.17 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_congruence (const Congruence & cg) [inline]

Adds to xthis a constraint equivalent to the congruence cg.
Parameters:

cg The congruence to be added.
Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible, or cg is
not optimally supported by the OS domain.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 308

11.38.3.18 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_congruences (const Congruence_System & cgs) [inline]

Adds to *this constraints equivalent to the congruences in cgs.

Parameters:

cgs The congruences to be added.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the OS domain.

11.38.3.19 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_recycled_congruences (Congruence_System & cgs) [inline]

Adds to *this constraints equivalent to the congruences in cgs.

Parameters:

cgs The congruence system to be added to *this. The congruences in cgs may be recycled.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, or cgs contains a
congruence which is not optimally supported by the OS domain.

Warning:

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

11.38.3.20 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::refine_with_constraint (const Constraint & ¢) [inline]

Uses a copy of constraint c to refine the system of octagonal constraints defining xthis.

Parameters:

¢ The constraint. If it is not a octagonal constraint, it will be ignored.

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 309

11.38.3.21 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::refine_with_congruence (const Congruence & cg) [inline]

Uses a copy of congruence cg to refine the system of octagonal constraints of xthis.

Parameters:

cg The congruence. If it is not a octagonal equality, it will be ignored.

Exceptions:

std::invalid_argument Thrown if *this and congruence cg are dimension-incompatible.

11.38.3.22 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::refine_with_constraints (const Constraint_System & ¢s) [inline]

Uses a copy of the constraints in cs to refine the system of octagonal constraints defining *this.

Parameters:

¢s The constraint system to be used. Constraints that are not octagonal are ignored.

Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible.

11.38.3.23 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::refine_with_congruences (const Congruence_System & cgs) [inline]

Uses a copy of the congruences in cgs to refine the system of octagonal constraints defining xthis.

Parameters:

cgs The congruence system to be used. Congruences that are not octagonal equalities are ignored.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

11.38.3.24 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::unconstrain (Variable var) [inline]

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
*this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 310

Parameters:

var The space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.38.3.25 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::unconstrain (const Variables_Set & fo_be_unconstrained) [inline]

Computes the cylindrification of *this with respect to the set of space dimensions to_be_ -
unconstrained, assigning the result to xthis.

Parameters:

to_be_unconstrained The set of space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.38.3.26 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::intersection_assign (const Octagonal_Shape< T > & y) [inline]

Assigns to xthis the intersection of *this and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.38.3.27 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::upper_bound_assign (const Octagonal_Shape< T > & y) [inline]

Assigns to xthis the smallest OS that contains the convex union of *this and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.38.3.28 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::upper_bound_assign_if_exact (const Octagonal_Shape< T > &y) [inline]

If the upper bound of *this and y is exact, it is assigned to *this and true is returned, otherwise
false is returned.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 311

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.38.3.29 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::difference_assign (const Octagonal_Shape< T > & y) [inline]

Assigns to xthis the smallest octagon containing the set difference of xthis and y.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

11.38.3.30 template<typename T > bool Parma_Polyhedra_Library::Octagonal_Shape< T
>::simplify_using_context_assign (const Octagonal_Shape< T > & y) [inline]

Assigns to xthis a meet-preserving simplification of xthis with respect to y. If false is returned, then
the intersection is empty.

Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.38.3.31 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape<
T >::affine_image (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

Assigns to xthis the affine image of *this under the function mapping variable var into the affine
expression specified by expr and denominator.
Parameters:

var The variable to which the affine expression is assigned.
expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 312

11.38.3.32 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape<
T >::affine_preimage (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

Assigns to xthis the affine preimage of *this under the function mapping variable var into the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is substituted.
expr The numerator of the affine expression.

denominator The denominator of the affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of xthis.

11.38.3.33 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape<
T >::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to *this the image of *this with respect to the generalized affine transfer function var’ <

d%, where 1< is the relation symbol encoded by relsym.
enominator

Parameters:
var The left hand side variable of the generalized affine transfer function.
relsym The relation symbol.
expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of xthis or if relsym is a strict relation symbol.

11.38.3.34 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::generalized_affine_image (const Linear_Expression & /s, Relation_Symbol relsym,
const Linear_Expression & rhs) [inline]

Assigns to ¥t his the image of xthis with respect to the generalized affine transfer function lhs’ > rhs,
where i is the relation symbol encoded by relsym.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 313

Parameters:

Ihs The left hand side affine expression.
relsym The relation symbol.

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with 1hs or rhs orif relsym
is a strict relation symbol.

11.38.3.35 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::bounded_affine_image (Variable var, const Linear_Expression & Ib_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

1b_expr < var’ <

Assigns to xthis the image of xthis with respect to the bounded affine relation _—=="-— <

ub_expr
denominator *

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.38.3.36 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::generalized_affine_preimage (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

expr

denominator’ where >4

Assigns to ¥t his the preimage of *this with respect to the affine relation var’ >
is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine transfer function.
relsym The relation symbol.
expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 314

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a dimension of xthis or if relsymis a strict relation symbol.

11.38.3.37 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::generalized_affine_preimage (const Linear_Expression & Ihs, Relation_Symbol
relsym, const Linear_Expression & rhs) [inline]

Assigns to *this the preimage of x*this with respect to the generalized affine relation lhs’ > rhs, where
< is the relation symbol encoded by relsym.

Parameters:

Ihs The left hand side affine expression;
relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with 1hs or rhs orif relsym
is a strict relation symbol.

11.38.3.38 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::bounded_affine_preimage (Variable var, const Linear_Expression & Ib_expr, const
Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to xthis the preimage of *this with respect to the bounded affine relation % <var’ <
ub_expr

denominator *

Parameters:
var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).
Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
xthis are dimension-incompatible or if var is not a space dimension of *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 315

11.38.3.39 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::time_elapse_assign (const Octagonal_Shape< T > & y) [inline]

Assigns to xthis the result of computing the time-elapse between *this and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.38.3.40 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::CC76_extrapolation_assign (const Octagonal_Shape< T > & y, unsigned * tp = 0)
[inline]

Assigns to xthis the result of computing the CC76-extrapolation between xthis and y.

Parameters:

y An OS that must be contained in *this.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).
Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.38.3.41 template<typename T > template<typename Iterator > void
Parma_Polyhedra_Library::Octagonal_Shape< T >::CC76_extrapolation_assign
(const Octagonal_Shape< T > & y, Iterator first, Iterator last, unsigned * tp = 0)
[inline]

Assigns to xthis the result of computing the CC76-extrapolation between xthis and y.

Parameters:
y An OS that must be contained in *this.
first An iterator that points to the first stop_point.
last An iterator that points to the last stop_point.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 316

11.38.3.42 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::BHMZ05_widening_assign (const Octagonal_Shape< T > &y, unsigned * tp = 0)
[inline]

Assigns to xthis the result of computing the BHMZ05-widening between «this and y.

Parameters:

y An OS that must be contained in *this.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.38.3.43 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::limited_BHMZ05_extrapolation_assign (const Octagonal_Shape< T > & y, const
Constraint_System & cs, unsigned * fp =0) [inline]

Improves the result of the BHMZ05-widening computation by also enforcing those constraints in cs that
are satisfied by all the points of *this.

Parameters:

y An OS that must be contained in *this.
¢s The system of constraints used to improve the widened OS.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if xthis, y and cs are dimension-incompatible or if there is in cs a
strict inequality.

11.38.3.44 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::CC76_narrowing_assign (const Octagonal_Shape< T > & y) [inline]

Restores from y the constraints of xthis, lost by CC76-extrapolation applications.

Parameters:

y An OS that must contain *this.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 317

11.38.3.45 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::limited_CC76_extrapolation_assign (const Octagonal_Shape< T > & y, const
Constraint_System & cs, unsigned « fp =0) [inline]

Improves the result of the CC76-extrapolation computation by also enforcing those constraints in cs that
are satisfied by all the points of *this.

Parameters:

y An OS that must be contained in *this.
¢s The system of constraints used to improve the widened OS.

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this, y and cs are dimension-incompatible or if cs contains a
strict inequality.

11.38.3.46 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_space_dimensions_and_embed (dimension_type m) [inline]

Adds m new dimensions and embeds the old OS into the new space.

Parameters:
m The number of dimensions to add.
The new dimensions will be those having the highest indexes in the new OS, which is characterized by a

system of constraints in which the variables running through the new dimensions are not constrained. For
instance, when starting from the OS O C R? and adding a third dimension, the result will be the OS

{(x,y,z)T eR? | (z,y)T € (9}.

11.38.3.47 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::add_space_dimensions_and_project (dimension_type m) [inline]

Adds m new dimensions to the OS and does not embed it in the new space.

Parameters:

m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new OS, which is characterized by a
system of constraints in which the variables running through the new dimensions are all constrained to be
equal to 0. For instance, when starting from the OS O C R2 and adding a third dimension, the result will
be the OS

{(a:,y,())T ER?| (z,y)T € 0}

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 318

11.38.3.48 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::concatenate_assign (const Octagonal_Shape< T > & y) [inline]

Assigns to xthis the concatenation of *this and y, taken in this order.

Exceptions:

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension ().

11.38.3.49 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::remove_space_dimensions (const Variables_Set & to_be_removed) [inline]

Removes all the specified dimensions.

Parameters:

to_be_removed The set of Variable objects corresponding to the dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.38.3.50 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::remove_higher_space_dimensions (dimension_type new_dimension) [inline]

Removes the higher dimensions so that the resulting space will have dimension new_dimension.

Exceptions:

std::invalid_argument Thrown if new_dimension is greater than the space dimension of xthis.

11.38.3.51 template<typename T > template<typename Partial_Function > void
Parma_Polyhedra_Library::Octagonal_Shape< T >::map_space_dimensions (const
Partial_Function & pfunc) [inline]

Remaps the dimensions of the vector space according to a partial function.

Parameters:

pfunc The partial function specifying the destiny of each dimension.
The template class Partial_Function must provide the following methods.

bool has_empty_codomain () const

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.38 Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference 319

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain () method will always be called before the methods below.
However, if has_empty_codomain () returns t rue, none of the functions below will be called.

dimension_type max_in_codomain () const
returns the maximum value that belongs to the codomain of the partial function.

bool maps (dimension_type i, dimension_type& j) const
Let f be the represented function and k be the value of i. If f is defined in &, then f(k) is assigned to j
and t rue is returned. If f is undefined in k, then false is returned.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

11.38.3.52 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::expand_space_dimension (Variable var, dimension_type m) [inline]

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated;

m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

If xthis has space dimension n, with n > 0, and var has space dimension & < n, then the k-th space
dimension is expanded to m new space dimensions n, n + 1, ..., n+m — 1.

11.38.3.53 template<typename T > void Parma_Polyhedra_Library::Octagonal_Shape< T
>::fold_space_dimensions (const Variables_Set & fo_be_folded, Variable var)
[inline]

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_—
folded.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 320

If xthis has space dimension n, with n > 0, var has space dimension k£ < n, to_be_foldedis a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

11.38.3.54 template<typename T > int32_t Parma_Polyhedra_Library::Octagonal_Shape< T
>::hash_code () const [inline]

Returns a 32-bit hash code for *this. If x and y are such that x == vy, then x.hash_code () ==
y.hash_code ().

11.38.4 Friends And Related Function Documentation

11.38.4.1 template<typename T > dimension_type coherent_index (const dimension_type 7)
[related]

The documentation for this class was generated from the following file:

* ppl.hh

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >
Class Template Reference

The partially reduced product of two abstractions.

#include <ppl.hh>

Public Member Functions

e Partially_Reduced_Product (dimension_type num_dimensions=0, Degenerate_Element
kind=UNIVERSE)

Builds an object having the specified properties.

e Partially_Reduced_Product (const Congruence_System &cgs)

Builds a pair, copying a system of congruences.

* Partially_Reduced_Product (Congruence_System &cgs)

Builds a pair, recycling a system of congruences.

* Partially_Reduced_Product (const Constraint_System &cs)

Builds a pair, copying a system of constraints.

Partially_Reduced_Product (Constraint_System &cs)

Builds a pair; recycling a system of constraints.

Partially_Reduced_Product (const C_Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 321

Builds a product, from a C polyhedron.

* Partially_Reduced_Product (const NNC_Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product, from an NNC polyhedron.

e Partially_Reduced_Product (const Grid &gr, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product, from a grid.

* template<typename Interval >
Partially_Reduced_Product (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product out of a box.

¢ template<typename U >
Partially_Reduced_Product (const BD_Shape< U > &bd, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a product out of a BD shape.

* template<typename U >
Partially_Reduced_Product (const Octagonal_Shape< U > &os, Complexity_Class
complexity=ANY_COMPLEXITY)

Builds a product out of an octagonal shape.

* Partially_Reduced_Product (const Partially_Reduced_Product &y, Complexity_Class
complexity=ANY_COMPLEXITY)

Ordinary copy-constructor.

* template<typename E1 , typename E2 , typename S >
Partially_Reduced_Product (const Partially_Reduced_Product< E1, E2, S > &y, Complexity_Class
complexity=ANY_COMPLEXITY)

Builds a conservative, upward approximation of y.

* Partially_Reduced_Product & operator= (const Partially_Reduced_Product &y)

The assignment operator. (xthis and y can be dimension-incompatible.).

¢ bool reduce () const
Reduce.

Member Functions that Do Not Modify the Partially_Reduced_Product

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

* dimension_type affine_dimension () const

Returns the minimum affine dimension (see also grid affine dimension) of the components of xt his.

e const D1 & domainl () const

Returns a constant reference to the first of the pair.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 322

* const D2 & domain2 () const

Returns a constant reference to the second of the pair.

 Constraint_System constraints () const

Returns a system of constraints which approximates xthis.

* Constraint_System minimized_constraints () const

Returns a system of constraints which approximates *t his, in reduced form.

* Congruence_System congruences () const

Returns a system of congruences which approximates xthis.

* Congruence_System minimized_congruences () const

Returns a system of congruences which approximates xthis, in reduced form.

* Poly_Con_Relation relation_with (const Constraint &c) const

Returns the relations holding between xthis and c.

* Poly_Con_Relation relation_with (const Congruence &cg) const

Returns the relations holding between xthis and cg.

* Poly_Gen_Relation relation_with (const Generator &g) const

Returns the relations holding between xthis and g.

* bool is_empty () const

Returns t rue if and only if either of the components of xt his are empty.

¢ bool is_universe () const

Returns t rue if and only if both of the components of xt his are the universe.

* bool is_topologically_closed () const

Returns true if and only if both of the components of xthis are topologically closed subsets of the
vector space.

* bool is_disjoint_from (const Partially_Reduced_Product &y) const

Returns t rue if and only if *t his and y are componentwise disjoint.

* bool is_discrete () const

Returns t rue if and only if a component of xt his is discrete.

* bool is_bounded () const

Returns t rue if and only if a component of xt his is bounded.

¢ bool constrains (Variable var) const

Returns t rue if and only if var is constrained in xt his.

* bool bounds_from_above (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded in xthis.

* bool bounds_from_below (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded in xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 323

bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns true if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value is computed.

bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &point) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xt his, in which
case the supremum value and a point where expr reaches it are computed.

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns true if and only if xthis is not empty and expr is bounded from below i xthis, in which
case the infimum value is computed.

bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &point) const

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.

bool contains (const Partially_Reduced_Product &y) const

Returns t rue if and only if each component of xt his contains the corresponding component of y.

bool strictly_contains (const Partially_Reduced_Product &y) const
Returns t rue if and only if each component of xt his strictly contains the corresponding component
of y.

bool OK () const

Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Partially_Reduced_-
Product

void add_constraint (const Constraint &c)

Adds constraint c to xthis.

void refine_with_constraint (const Constraint &c)

Use the constraint c to refine xthis.

void add_congruence (const Congruence &cg)

Adds a copy of congruence cqgto xthis.

void refine_with_congruence (const Congruence &cg)

Use the congruence cg to refine xthis.

void add_congruences (const Congruence_System &cgs)

Adds a copy of the congruences in cgs to xthis.

void refine_with_congruences (const Congruence_System &cgs)

Use the congruences in cgs to refine xthis.

void add_recycled_congruences (Congruence_System &cgs)

Adds the congruences in cgs to *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 324

void add_constraints (const Constraint_System &cs)

Adds a copy of the constraint system in cs to xthis.

void refine_with_constraints (const Constraint_System &cs)
Use the constraints in cs to refine xthis.

void add_recycled_constraints (Constraint_System &cs)
Adds the constraint system in cs to xthis.

void unconstrain (Variable var)

Computes the cylindrification of xthis with respect to space dimension var, assigning the result to
xthis.

void unconstrain (const Variables_Set &to_be_unconstrained)

Computes the cylindrification of xthis with respect to the set of space dimensions to_be_—
unconstrained, assigning the result to xthis.

void intersection_assign (const Partially_Reduced_Product &y)

Assigns to xt his the componentwise intersection of xthis and y.

void upper_bound_assign (const Partially_Reduced_Product &y)
Assigns to xthis an upper bound of xt his and y computed on the corresponding components.

bool upper_bound_assign_if_exact (const Partially_Reduced_Product &y)

Assigns to xthis an upper bound of xt his and y computed on the corresponding components. If it is
exact on each of the components of xt his, true is returned, otherwise false is returned.

void difference_assign (const Partially_Reduced_Product &y)
Assigns to xt his an approximation of the set-theoretic difference of xthis and y.

void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())
Assigns to xthis the affine image of this under the function mapping variable var to the affine
expression specified by expr and denominator.

void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())
Assigns to xthis the affine preimage of xt his under the function mapping variable var to the affine
expression specified by expr and denominator.

void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

expr

Assigns to xthis the image of xt his with respect to the generalized dffine relation var’ b 32—

where X is the relation symbol encoded by relsym (see also generalized affine relation.).

void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-

Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())
Assigns to xthis the preimage of xthis with respect to the generalized affine relation var’ <
LXDY where X is the relation symbol encoded by relsym. (see also generalized affine rela-

denominator’
tion.).

void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)
Assigns to xt his the image of xt his with respect to the generalized affine relation hs’ > rhs, where
> is the relation symbol encoded by relsym. (see also generalized affine relation.).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 325

* void generalized_affine_preimage (const Linear Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)
Assigns to xthis the preimage of xthis with respect to the generalized affine relation Ths' < ths,
where X is the relation symbol encoded by relsym. (see also generalized affine relation.).

* void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-

Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

1b_expr <

/
denominator — var S

Assigns to xt his the image of xt his with respect to the bounded affine relation
ub_expr
denominator’

* void bounded_affine_preimage (Variable var, const Linear_Expression &Ib_expr, const Linear_-

Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xthis the preimage of xthis with respect to the bounded affine relation ﬁ <

ub_expr

U
var S denominator*

* void time_elapse_assign (const Partially_Reduced_Product &y)
Assigns to xt his the result of computing the time-elapse between xt his and y. (See also time-elapse.).

* void topological_closure_assign ()

Assigns to xt his its topological closure.

* void widening_assign (const Partially_Reduced_Product &y, unsigned *tp=NULL)
Assigns to xt his the result of computing the "widening" between xthis and y.

Member Functions that May Modify the Dimension of the Vector Space

* void add_space_dimensions_and_embed (dimension_type m)

Adds m new space dimensions and embeds the components of ¥t hi s in the new vector space.

* void add_space_dimensions_and_project (dimension_type m)
Adds m new space dimensions and does not embed the components in the new vector space.

* void concatenate_assign (const Partially_Reduced_Product &y)

Assigns to the first (resp., second) component of xt his the "concatenation" of the first (resp., second)
components of xthis and y, taken in this order. See also Concatenating Polyhedra and Concatenating
Grids.

* void remove_space_dimensions (const Variables_Set &to_be_removed)

Removes all the specified dimensions from the vector space.

* void remove_higher_space_dimensions (dimension_type new_dimension)
Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension.

¢ template<typename Partial_Function >
void map_space_dimensions (const Partial Function &pfunc)

Remaps the dimensions of the vector space according to a partial function.

* void expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

* void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)

Folds the space dimensions in to_be_foldedinto var.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 326

Miscellaneous Member Functions

e ~Partially_Reduced_Product ()

Destructor.

* void swap (Partially_Reduced_Product &y)

Swaps xthis with product y. (xthis and y can be dimension-incompatible.).

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of xthis.

* void print () const

Prints xthis to std: :cerrusing operator<<.

* bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets
xthis accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

* int32_t hash_code () const
Returns a 32-bit hash code for xthi s.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension this product can handle.

Protected Types

¢ typedef D1 Domainl
The type of the first component.

¢ typedef D2 Domain2

The type of the second component.

Protected Member Functions

* void clear_reduced_flag () const

Clears the reduced flag.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 327

* void set_reduced_flag () const
Sets the reduced flag.

¢ bool is_reduced () const

Return t rue if and only if the reduced flag is set.

Protected Attributes

* D1dl

The first component.

e D242

The second component.

¢ bool reduced

Flag to record whether the components are reduced with respect to each other and the reduction class.

11.39.1 Detailed Description

template<typename D1, typename D2, typename R> class Parma_Polyhedra_Library::Partially_-
Reduced_Product< D1, D2, R >

The partially reduced product of two abstractions.

Warning:

At present, the supported instantiations for the two domain templates D1 and D2 are the simple
pointset domains: C_Polyhedron, NNC_Polyhedron,Grid, Octagonal_Shape<T>,BD_-
Shape<T>, Box<T>.

An object of the class Partially_Reduced_Product<D1l, D2, R> represents the (partially re-
duced) product of two pointset domains D1 and D2 where the form of any reduction is defined by the
reduction class R.

Suppose D and D, are two abstract domains with concretization functions: v1: D1 — R™ and vy: Dy —
R™, respectively.

The partially reduced product D = D; x Ds, for any reduction class R, has a concretization y: D — R"”
where, if d = (dy,ds) € D
Y(d) = 71(d1) N2(dz).

The operations are defined to be the result of applying the corresponding operations on each of the compo-
nents provided the product is already reduced by the reduction method defined by R. In particular, if R is
the No_Reduction<D1, D2> class, then the class Partially_Reduced_Product<Dl, D2,
R> domain is the direct product as defined in [CC79].

How the results on the components are interpreted and combined depend on the specific test. For example,
the test for emptiness will first make sure the product is reduced (using the reduction method provided by
R if it is not already known to be reduced) and then test if either component is empty; thus, if R defines no
reduction between its components and d = (G, P) € (G x P) is a direct product in one dimension where
G denotes the set of numbers that are integral multiples of 3 while P denotes the set of numbers between

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 328

1 and 2, then an operation that tests for emptiness should return false. However, the test for the universe
returns true if and only if the test 1s_universe () on both components returns true.

In all the examples it is assumed that the template R is the No_Reduction<D1, D2> class and
that variables x and y are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a direct product of a Grid and NNC Polyhedron, corresponding to the
positive even integer pairs in R2, given as a system of congruences:

Congruence_System cgs;

o

cgs.insert ((x %= 0) / 2);

cgs.insert ((y %= 0) / 2);

Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1l, D2> >
dp (cgs) ;

dp.add_constraint (x >= 0);

dp.add_constraint (y >= 0);

Example 2

The following code builds the same product in R?:

Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<Dl, D2> > dp(2);
dp.add_constraint (x >= 0);
dp.add_constraint (y >= 0);
dp.add_congruence ((x %= 0)
dp.add_congruence ((y %= 0)

Example 3

The following code will write "dp is empty":
Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<Dl, D2> > dp(1l);

o

dp.add_congruence ((x %= 0) / 2);
dp.add_congruence ((x %= 1) / 2);
if (dp.is_empty())

cout << "dp is empty." << endl;
else

cout << "dp is not empty." << endl;

Example 4

The following code will write "dp is not empty":

Partially_Reduced_Product<Grid, NNC_Polyhedron, No_Reduction<D1l, D2> > dp(1l);
dp.add_congruence ((x %= 0) / 2);
dp.add_constraint (x >= 1);
dp.add_constraint (x <= 1);
if (dp.is_empty())
cout << "dp is empty." << endl;
else
cout << "dp is not empty." << endl;

11.39.2 Constructor & Destructor Documentation

11.39.2.1 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product
(dimension_type num_dimensions = 0, Degenerate_Element kind = UNIVERSE)
[inline, explicit]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 329

Builds an object having the specified properties.

Parameters:
num_dimensions The number of dimensions of the vector space enclosing the pair;

kind Specifies whether a universe or an empty pair has to be built.

Exceptions:

std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

11.39.2.2 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (const
Congruence_System & cgs) [inline, explicit]

Builds a pair, copying a system of congruences. The pair inherits the space dimension of the congruence
system.

Parameters:

cgs The system of congruences to be approximated by the pair.

Exceptions:
std::invalid_argument Thrown if the system of congruences is imcompatible with one of the compo-
nents.

std::length_error Thrown if the space dimension of cgs exceeds the maximum allowed space di-
mension.

11.39.2.3 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product
(Congruence_System & cgs) [inline, explicit]

Builds a pair, recycling a system of congruences. The pair inherits the space dimension of the congruence
system.

Parameters:

cgs The system of congruences to be approximates by the pair. Its data-structures may be recycled to
build the pair.

Exceptions:

std::invalid_argument Thrown if the system of congruences is imcompatible with one of the compo-
nents.

std::length_error Thrown if the space dimension of cgs exceeds the maximum allowed space di-
mension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 330

11.39.2.4 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (const
Constraint_System & ¢s) [inline, explicit]

Builds a pair, copying a system of constraints. The pair inherits the space dimension of the constraint
system.

Parameters:

¢s The system of constraints to be approximated by the pair.

Exceptions:
std::invalid_argument Thrown if the system of constraints is imcompatible with one of the compo-
nents.

std::length_error Thrown if the space dimension of cs exceeds the maximum allowed space dimen-
sion.

11.39.2.5 template<typename D1, typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product
(Constraint_System & ¢s) [inline, explicit]

Builds a pair, recycling a system of constraints. The pair inherits the space dimension of the constraint
system.

Parameters:

cs The system of constraints to be approximated by the pair.

Exceptions:

std::invalid_argument Thrown if the system of constraints is imcompatible with one of the compo-
nents.

std::length_error Thrown if the space dimension of cs exceeds the maximum allowed space dimen-
sion.

11.39.2.6 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product (const
C_Polyhedron & ph, Complexity_Class complexity = ANY COMPLEXITY) [inline,
explicit]

Builds a product, from a C polyhedron. Builds a product containing ph using algorithms whose complexity
does not exceed the one specified by complexity. If complexity is ANY_COMPLEXITY, then the
built product is the smallest one containing ph. The product inherits the space dimension of the polyhedron.

Parameters:

ph The polyhedron to be approximated by the product.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 331

complexity The complexity that will not be exceeded.

Exceptions:

std::length_error Thrown if the space dimension of ph exceeds the maximum allowed space dimen-
sion.

11.39.2.7 template<typename D1, typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product
(const NNC_Polyhedron & ph, Complexity_Class complexity = ANY_COMPLEXITY)
[inline, explicit]

Builds a product, from an NNC polyhedron. Builds a product containing ph using algorithms whose
complexity does not exceed the one specified by complexity. If complexityis ANY_COMPLEXITY,
then the built product is the smallest one containing ph. The product inherits the space dimension of the
polyhedron.

Parameters:

ph The polyhedron to be approximated by the product.

complexity The complexity that will not be exceeded.

Exceptions:

std::length_error Thrown if the space dimension of ph exceeds the maximum allowed space dimen-
sion.

11.39.2.8 template<typename D1 , typename D2 , typename R > Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::Partially_Reduced_Product
(const Grid & gr, Complexity_Class complexity = ANY _COMPLEXITY) [inline,
explicit]

Builds a product, from a grid. Builds a product containing gr. The product inherits the space dimension
of the grid.
Parameters:

gr The grid to be approximated by the product.

complexity The complexity is ignored.

Exceptions:

std::length_error Thrown if the space dimension of gr exceeds the maximum allowed space dimen-
sion.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 332

11.39.2.9 template<typename D1 , typename D2 , typename R > template<typename
Interval > Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::Partially_Reduced_Product (const Box< Interval > & box, Complexity_Class
complexity = ANY_COMPLEXITY) [inline]

Builds a product out of a box. Builds a product containing box. The product inherits the space dimension
of the box.
Parameters:

box The box representing the pair to be built.

complexity The complexity is ignored.

Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

11.39.2.10 template<typename D1 , typename D2 , typename R > template<typename
U > Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::Partially_Reduced_Product (const BD_Shape< U > & bd, Complexity_Class
complexity = ANY COMPLEXITY) [inline]

Builds a product out of a BD shape. Builds a product containing bd. The product inherits the space
dimension of the BD shape.
Parameters:

bd The BD shape representing the product to be built.

complexity The complexity is ignored.

Exceptions:

std::length_error Thrown if the space dimension of bd exceeds the maximum allowed space dimen-
sion.

11.39.2.11 template<typename D1 , typename D2 , typename R > template<typename
U > Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::Partially_Reduced_Product (const Octagonal_Shape< U > & os, Complexity_Class
complexity = ANY_COMPLEXITY) [inline]

Builds a product out of an octagonal shape. Builds a product containing os. The product inherits the space
dimension of the octagonal shape.

Parameters:

os The octagonal shape representing the product to be built.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 333

complexity The complexity is ignored.

Exceptions:

std::length_error Thrown if the space dimension of os exceeds the maximum allowed space dimen-
sion.

11.39.2.12 template<typename D1 , typename D2 , typename R > template<typename
E1l, typename E2 , typename S > Parma_Polyhedra_Library::Partially_-
Reduced_Product< D1, D2, R >::Partially_Reduced_Product (const
Partially_Reduced_Product< E1, E2, S > & y, Complexity_Class complexity =
ANY COMPLEXITY) [inline, explicit]

Builds a conservative, upward approximation of y. Builds a product containing y using algorithms whose
complexity does not exceed the one specified by complexity. If complexityis ANY_COMPLEXITY,
then the built product is the smallest one containing y. The product inherits the space dimension of y.

Parameters:

y The product to be approximated.

complexity The complexity that will not be exceeded.

Exceptions:

std::length_error Thrown if the space dimension of y exceeds the maximum allowed space dimen-
sion.

The built product is independent of the order of the components of y.

11.39.3 Member Function Documentation
11.39.3.1 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-

Library::Partially_Reduced_Product< D1, D2, R >::is_disjoint_from (const
Partially_Reduced_Product< D1,D2,R > & y) const [inline]

Returns t rue if and only if *this and y are componentwise disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are dimension-incompatible.

11.39.3.2 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::constrains (Variable var) const
[inline]

Returns t rue if and only if var is constrained in *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 334

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.39.3.3 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::bounds_from_above (const
Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded in *this. This method is the same as bounds_from_below.

Exceptions:

std::invalid_argument Thrown if expr and xthis are dimension-incompatible.

11.39.3.4 template<typename D1 , typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::bounds_from_below (const
Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded in xthis. This method is the same as bounds_from_above.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

11.39.3.5 template<typename D1 , typename D2 , typename R > bool Parma_-
Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::maximize (const
Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool &
maximum) const [inline]

Returns true if and only if xthis is not empty and expr is bounded from above in *this, in which
case the supremum value is computed.
Parameters:

expr The linear expression to be maximized subject to xthis;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded by *this, false is returned and sup_n, sup_d and
maximum are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 335

11.39.3.6 template<typename D1 , typename D2 , typename R > bool Parma_-
Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::maximize (const
Linear_Expression & expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum,
Generator & point) const [inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to xthis;
sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if the supremum value can be reached in this.

point When maximization succeeds, will be assigned a generator point where expr reaches its supre-
mum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If *this is empty or expr is not bounded by *this, false isreturned and sup_n, sup_d, maximum
and point are left untouched.

11.39.3.7 template<typename D1 , typename D2 , typename R > bool Parma_-
Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::minimize (const
Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum)
const [inline]

Returns t rue if and only if *this is not empty and expr is bounded from below i *t his, in which case
the infimum value is computed.

Parameters:

expr The linear expression to be minimized subject to *this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum t rue if the infimum value can be reached in this.
Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 336

11.39.3.8 template<typename D1 , typename D2 , typename R > bool Parma_-
Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::minimize (const
Linear_Expression & expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum,
Generator & point) const [inline]

Returns true if and only if *this is not empty and expr is bounded from below in *this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be minimized subject to xthis;
inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if the infimum value can be reached in this.

point When minimization succeeds, will be assigned a generator point where expr reaches its infi-
mum value.

Exceptions:
std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If *xthis is empty or expr is not bounded from below, falseisreturnedand inf_n, inf_ d,minimum
and point are left untouched.

11.39.3.9 template<typename D1 , typename D2 , typename R > bool Parma_-
Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::contains (const
Partially_Reduced_Product< D1,D2, R > & y) const [inline]

Returns t rue if and only if each component of *this contains the corresponding component of y.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

11.39.3.10 template<typename D1, typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::strictly_contains (const
Partially_Reduced_Product< D1,D2,R > & y) const [inline]

Returns t rue if and only if each component of *this strictly contains the corresponding component of
y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 337

11.39.3.11 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_constraint (const Constraint
& c¢) [inline]

Adds constraint c to *this.
Exceptions:

std::invalid_argument Thrown if *this and c are dimension-incompatible.

11.39.3.12 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::refine_with_constraint (const
Constraint & ¢) [inline]

Use the constraint ¢ to refine xthis.
Parameters:

¢ The constraint to be used for refinement.
Exceptions:

std::invalid_argument Thrown if *this and c are dimension-incompatible.

11.39.3.13 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_congruence (const
Congruence & cg) [inline]

Adds a copy of congruence cg to *this.

Exceptions:

std::invalid_argument Thrown if *this and congruence cg are dimension-incompatible.

11.39.3.14 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::refine_with_congruence (const
Congruence & cg) [inline]

Use the congruence cg to refine xthis.

Parameters:

cg The congruence to be used for refinement.

Exceptions:

std::invalid_argument Thrown if xthis and cg are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 338

11.39.3.15 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_congruences (const
Congruence_System & cgs) [inline]

Adds a copy of the congruences in cgs to *this.

Parameters:

cgs The congruence system to be added.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

11.39.3.16 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::refine_with_congruences (const
Congruence_System & cgs) [inline]

Use the congruences in cgs to refine xthis.

Parameters:

cgs The congruences to be used for refinement.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible.

11.39.3.17 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_recycled_congruences
(Congruence_System & cgs) [inline]

Adds the congruences in cgs to xthis.

Parameters:

cgs The congruence system to be added that may be recycled.

Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible.

Warning:

The only assumption that can be made about cgs upon successful or exceptional return is that it can
be safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 339

11.39.3.18 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_constraints (const
Constraint_System & ¢s) [inline]

Adds a copy of the constraint system in cs to xthis.

Parameters:

¢s The constraint system to be added.

Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible.

11.39.3.19 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::refine_with_constraints (const
Constraint_System & ¢s) [inline]

Use the constraints in cs to refine xthis.
Parameters:
¢s The constraints to be used for refinement.

Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible.

11.39.3.20 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::add_recycled_constraints
(Constraint_System & ¢s) [inline]

Adds the constraint system in cs to xthis.

Parameters:

¢s The constraint system to be added that may be recycled.

Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible.

Warning:

The only assumption that can be made about cs upon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 340

11.39.3.21 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::unconstrain
(Variable var) [inline]

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
xthis.

Parameters:

var The space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.39.3.22 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::unconstrain
(const Variables_Set & fo_be_unconstrained) [inline]

Computes the cylindrification of *this with respect to the set of space dimensions to_be_-
unconstrained, assigning the result to xthis.

Parameters:

to_be_unconstrained The set of space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.39.3.23 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::intersection_assign (const
Partially_Reduced_Product< D1,D2,R > & y) [inline]

Assigns to xthis the componentwise intersection of *this and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.39.3.24 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::upper_bound_assign (const
Partially_Reduced_Product< D1,D2,R > & y) [inline]

Assigns to xthis an upper bound of *this and y computed on the corresponding components.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 341

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.39.3.25 template<typename D1, typename D2 , typename R > bool Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::upper_bound_assign_if_exact
(const Partially_Reduced_Product< D1,D2,R > & y) [inline]

Assigns to xthis an upper bound of *this and y computed on the corresponding components. If it is
exact on each of the components of xthis, true is returned, otherwise false is returned.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.39.3.26 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::difference_assign (const
Partially_Reduced_Product< D1,D2,R > & y) [inline]

Assigns to xthis an approximation of the set-theoretic difference of xthis and y.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.39.3.27 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::affine_image
(Variable var, const Linear_Expression & expr, Coefficient_traits::const_reference
denominator = Coefficient_one()) [inline]

Assigns to ¥t his the affine image of this under the function mapping variable var to the affine expres-
sion specified by expr and denominator.
Parameters:

var The variable to which the affine expression is assigned;
expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 342

11.39.3.28 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::affine_preimage (Variable var,
const Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to *this the affine preimage of *this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is substituted;
expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.39.3.29 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::generalized_affine_image
(Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

expr

Assigns to *this the image of *this with respect to the generalized affine relation var’ a4 3 —P——

where i< is the relation symbol encoded by relsym (see also generalized affine relation.).

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol;
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of xthis or if *this is a C_Polyhedron
and relsymis a strict relation symbol.

11.39.3.30 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::generalized_affine_preimage
(Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one ())
[inline]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 343

Assigns to xthis the preimage of xthis with respect to the generalized affine relation var’ <

m, where < is the relation symbol encoded by relsym. (see also generalized affine relation.).

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol,
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this or if *this is a C_Polyhedron
and relsymis a strict relation symbol.

11.39.3.31 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::generalized_affine_image (const
Linear_Expression & /hs, Relation_Symbol relsym, const Linear_Expression & rhs)
[inline]

Assigns to ¥t his the image of ¥this with respect to the generalized affine relation 1hs’ i rhs, where >
is the relation symbol encoded by relsym. (see also generalized affine relation.).
Parameters:

Ihs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with 1hs or rhs orif *this is
a C_Polyhedron and relsym is a strict relation symbol.

11.39.3.32 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::generalized_affine_preimage
(const Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression &
rhs) [inline]

Assigns to *this the preimage of *t his with respect to the generalized affine relation lhs’ > rhs, where
< is the relation symbol encoded by relsym. (see also generalized affine relation.).
Parameters:

Ihs The left hand side affine expression;

relsym The relation symbol;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 344

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with 1hs or rhs orif *this is
a C_Polyhedron and relsym is a strict relation symbol.

11.39.3.33 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::bounded_affine_image
(Variable var, const Linear_Expression & Ib_expr, const Linear Expression &
ub_expr, Coefficient_traits::const_reference denominator = Coefficient_one ())
[inline]

Assigns to *this the image of xthis with respect to the bounded affine relation delb—i

ub_expr
denominator *

. < var’ <
nominator — —

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
xthis are dimension-incompatible or if var is not a space dimension of *this.

11.39.3.34 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::bounded_affine_preimage
(Variable var, const Linear_Expression & /b_expr, const Linear_Expression &
ub_expr, Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

Assigns to xthis the preimage of *this with respect to the bounded affine relation % <var’ <

ub_expr
denominator *

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 345

11.39.3.35 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::time_elapse_assign (const
Partially_Reduced_Product< D1,D2,R > & y) [inline]

Assigns to xthis the result of computing the time-elapse between *this and y. (See also time-elapse.).
Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.39.3.36 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::widening_assign (const
Partially_Reduced_Product< D1, D2, R > & y, unsigned * fp = NULL) [inline]

Assigns to xthis the result of computing the "widening" between *this and y. This widening uses
either the congruence or generator systems depending on which of the systems describing x and y are up
to date and minimized.

Parameters:

y A product that must be contained in *xthis;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

11.39.3.37 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::add_space_dimensions_and_embed (dimension_type m) [inline]

Adds m new space dimensions and embeds the components of *this in the new vector space.

Parameters:
m The number of dimensions to add.
Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

11.39.3.38 template<typename D1 , typename D2 , typename R > void
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R
>::add_space_dimensions_and_project (dimension_type m) [inline]

Adds m new space dimensions and does not embed the components in the new vector space.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 346

Parameters:

m The number of space dimensions to add.

Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

11.39.3.39 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::concatenate_assign (const
Partially_Reduced_Product< D1,D2,R > & y) [inline]

Assigns to the first (resp., second) component of xthis the "concatenation" of the first (resp., second)
components of xthis and y, taken in this order. See also Concatenating Polyhedra and Concatenating
Grids.

Exceptions:

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension ().

11.39.3.40 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::remove_space_dimensions (const
Variables_Set & to_be_removed) [inline]

Removes all the specified dimensions from the vector space.

Parameters:

to_be_removed The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.39.3.41 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::remove_higher_space_dimensions
(dimension_type new_dimension) [inline]

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_ -
dimension.

Exceptions:

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.39 Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template
Reference 347

11.39.3.42 template<typename D1 , typename D2 , typename R > template<typename
Partial_Function > void Parma_Polyhedra_Library::Partially_Reduced_Product<
D1, D2, R >::map_space_dimensions (const Partial_Function & pfunc) [inline]

Remaps the dimensions of the vector space according to a partial function. If pfunc maps only some of
the dimensions of ¥t his then the rest will be projected away.

If the highest dimension mapped to by pfunc is higher than the highest dimension in *this then the
number of dimensions in this will be increased to the highest dimension mapped to by pfunc.
Parameters:

pfunc The partial function specifying the destiny of each space dimension.
The template class Partial_Function must provide the following methods.
bool has_empty_codomain () const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain () method will always be called before the methods below.
However, if has_empty_codomain () returns t rue, none of the functions below will be called.

dimension_type max_in_codomain () const

returns the maximum value that belongs to the codomain of the partial function. The max_in_-
codomain () method is called at most once.

bool maps (dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to
j and true is returned. If f is undefined in &, then false is returned. This method is called at most n
times, where n is the dimension of the vector space enclosing xthis.

The result is undefined if pfunc does not encode a partial function with the properties described in speci-
fication of the mapping operator.

11.39.3.43 template<typename D1 , typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::expand_space_dimension
(Variable var, dimension_type m) [inline]

Creates m copies of the space dimension corresponding to var.

Parameters:
var The variable corresponding to the space dimension to be replicated;
m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

If *this has space dimension n, with n > 0, and var has space dimension £ < n, then the k-th space
dimension is expanded to m new space dimensions n,n + 1,...,n+m — 1.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 348

11.39.3.44 template<typename D1, typename D2 , typename R > void Parma_Polyhedra_-
Library::Partially_Reduced_Product< D1, D2, R >::fold_space_dimensions (const
Variables_Set & to_be_folded, Variable var) [inline]

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_ -
folded.

If xthis has space dimension n, with n > 0, var has space dimension k < n, to_be_foldedis a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

11.39.3.45 template<typename D1 , typename D2 , typename R > int32_t
Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >::hash_code ()
const [inline]

Returns a 32-bit hash code for *this. If x and y are such that x == vy, then x.hash_code () ==
y.hash_code ().

The documentation for this class was generated from the following file:

* ppl.hh

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template
Reference

The powerset construction instantiated on PPL pointset domains.
#include <ppl.hh>

Inherits Powerset< Parma_Polyhedra_Library::Determinate<< PSET > >.

Public Member Functions

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xt his.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 349

* void print () const

Prints xthisto std: :cerr using operator<<.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xt his
accordingly. Returns t rue if successful, false otherwise.

Constructors

¢ Pointset_Powerset (dimension_type num_dimensions=0, Degenerate_Element
kind=UNIVERSE)

Builds a universe (top) or empty (bottom) Pointset_Powerset.

* Pointset_Powerset (const Pointset_ Powerset &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Ordinary copy-constructor.

* template<typename QH >
Pointset_Powerset (const Pointset_Powerset< QH > &y, Complexity_Class complexity=ANY_-
COMPLEXITY)

Conversion constructor: the type QH of the disjuncts in the source powerset is different from PSET.

¢ template<typename QH1 , typename QH2 , typename R >
Pointset_Powerset (const Partially_Reduced_Product< QH1, QH2, R > &prp, Complexity_Class
complexity=ANY_COMPLEXITY)

Creates a Pointset_Powerset from a product This will be created as a single disjunct of type PSET that
approximates the product.

* Pointset_Powerset (const Constraint_System &cs)

Creates a Pointset_Powerset with a single disjunct approximating the system of constraints cs.

* Pointset_Powerset (const Congruence_System &cgs)

Creates a Pointset_Powerset with a single disjunct approximating the system of congruences cgs.

* Pointset_Powerset (const C_Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of a closed polyhedron.

* Pointset_Powerset (const NNC_Polyhedron &ph, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of an nnc polyhedron.

* Pointset_Powerset (const Grid &gr, Complexity_Class complexity=ANY_COMPLEXITY)

Builds a pointset_powerset out of a grid.

¢ template<typename T >
Pointset_Powerset (const Octagonal_Shape< T > &os, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of an octagonal shape.

¢ template<typename T >
Pointset_Powerset (const BD_Shape< T > &bds, Complexity_Class complexity=ANY_-
COMPLEXITY)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 350

Builds a pointset_powerset out of a bd shape.

¢ template<typename Interval >
Pointset_Powerset (const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a pointset_powerset out of a box.

Member Functions that Do Not Modify the Pointset_Powerset

» dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xthis.

* dimension_type affine_dimension () const

Returns the dimension of the vector space enclosing xthis.

* bool is_empty () const

Returns t rue if and only if xt hi s is an empty powerset.

¢ bool is_universe () const

Returns t rue if and only if xt hi s is the top element of the powerser lattice.

* bool is_topologically_closed () const

Returns t rue if and only if all the disjuncts in xt his are topologically closed.

* bool is_bounded () const

Returns t rue if and only if all elements in xt his are bounded.

* bool is_disjoint_from (const Pointset_Powerset &y) const
Returns t rue if and only if xt his and y are disjoint.

* bool is_discrete () const

Returns t rue if and only if xt his is discrete.

* bool constrains (Variable var) const
Returns t rue if and only if var is constrained in xthis.

* bool bounds_from_above (const Linear_Expression &expr) const
Returns t rue if and only if expr is bounded from above in xthis.

* bool bounds_from_below (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded from below in xthis.

* bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value is computed.

* bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value and a point where expr reaches it are computed.

* bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 351

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value is computed.

* bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns true if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.

* bool geometrically_covers (const Pointset_Powerset &y) const

Returns t rue if and only if xt his geometrically covers y, i.e., if any point (in some element) of y is
also a point (of some element) of xthis.

* bool geometrically_equals (const Pointset_Powerset &y) const

Returns true if and only if xthis is geometrically equal to y, i.e., if (the elements of) xthis and y
contain the same set of points.

* bool contains (const Pointset_Powerset &y) const

Returns t rue if and only if each disjunct of y is contained in a disjunct of xthis.

* bool strictly_contains (const Pointset_Powerset &y) const

Returns t rue if and only if each disjunct of y is strictly contained in a disjunct of xthis.

* bool contains_integer_point () const

Returns t rue if and only if xt his contains at least one integer point.

* Poly_Con_Relation relation_with (const Constraint &c) const

Returns the relations holding between the powerset xt his and the constraint c.

* Poly_Gen_Relation relation_with (const Generator &g) const

Returns the relations holding between the powerset xt his and the generator g.

* Poly_Con_Relation relation_with (const Congruence &cg) const

Returns the relations holding between the powerset xt his and the congruence c.

* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns a lower bound to the size in bytes of the memory managed by *this.

¢ int32_t hash_code () const
Returns a 32-bit hash code for xthis.

¢ bool OK () const

Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Pointset_Powerset

* void add_disjunct (const PSET &ph)
Adds to xthis the disjunct ph.

¢ void add_constraint (const Constraint &c)
Intersects xt his with constraint c.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 352

e void refine_with_constraint (const Constraint &c)

Use the constraint c to refine xthis.

¢ bool add_constraint_and_minimize (const Constraint &c)

Intersects xt his with the constraint c, minimizing the result.

* void add_constraints (const Constraint_System &cs)
Intersects xt his with the constraints in cs.

* void refine_with_constraints (const Constraint_System &cs)

Use the constraints in cs to refine *this.

* bool add_constraints_and_minimize (const Constraint_System &cs)

Intersects xt his with the constraints in cs, minimizing the result.

* void add_congruence (const Congruence &c)

Intersects xt his with congruence c.

* void refine_with_congruence (const Congruence &cg)

Use the congruence cg to refine xthis.

* bool add_congruence_and_minimize (const Congruence &c)

Intersects xt his with the congruence c, minimizing the result.

* void add_congruences (const Congruence_System &cgs)

Intersects xt his with the congruences in cgs.

* void refine_with_congruences (const Congruence_System &cgs)

Use the congruences in cgs to refine xthis.

* bool add_congruences_and_minimize (const Congruence_System &cs)

Intersects xt his with the congruences in cs, minimizing the result.

* void unconstrain (Variable var)

Computes the cylindrification of xthis with respect to space dimension var, assigning the result to
*this.

¢ void unconstrain (const Variables_Set &to_be_unconstrained)

Computes the cylindrification of xthis with respect to the set of space dimensions to_be_—
unconstrained, assigning the result to xthis.

* void topological_closure_assign ()

Assigns to xthis its topological closure.

* void intersection_assign (const Pointset_Powerset &y)

Assigns to xthis the intersection of xthis and y.

* bool intersection_assign_and_minimize (const Pointset_Powerset &y)

Assigns to xt his the intersection of xthis and y.

* void difference_assign (const Pointset_Powerset &y)

Assigns to xthis an (a smallest) over-approximation as a powerset of the disjunct domain of the set-
theoretical difference of *xthis and y.

* bool simplify_using_context_assign (const Pointset_Powerset &y)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 353

Assigns to xthis a meet-preserving simplification of xthis with respect to y. If false is returned,
then the intersection is empty.

* void affine_image (Variable var, const Linear_ Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())
Assigns to xthis the affine image of xthis under the function mapping variable var to the affine
expression specified by expr and denominator.

* void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())
Assigns to xt his the affine preimage of *t his under the function mapping variable var to the affine
expression specified by expr and denominator.

* void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())
Assigns to *xt hi s the image of *t hi s with respect to the generalized affine relation var’ 1<
where X is the relation symbol encoded by relsym.

expr
denominator’

* void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xthis the preimage of xthis with respect to the generalized affine relation var’ >
8 p 8 14 8

d&, where X is the relation symbol encoded by relsym.
enominator

* void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)
Assigns to xt hi s the image of xt his with respect to the generalized affine relation hs' <i rhs, where
> is the relation symbol encoded by relsym.

* void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)
Assigns to xthis the preimage of xthis with respect to the generalized affine relation Ths' > ths,
where X is the relation symbol encoded by relsym.

* void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-

Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xt his the image of xt his with respect to the bounded affine relation % <

ub_expr
denominator*

var’ <

* void bounded_affine_preimage (Variable var, const Linear_Expression &Ib_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())
Assigns to xthis the preimage of xthis with respect to the bounded affine relation

var’ < T ub_expr
— denominator

1b_expr
denominator —

* void time_elapse_assign (const Pointset_Powerset &y)
Assigns to xt his the result of computing the time-elapse between xthis and y.

* void pairwise_reduce ()

Assign to xthis the result of (recursively) merging together the pairs of disjuncts whose upper-bound
is the same as their set-theoretical union.

¢ template<typename Widening >
void BGP99_extrapolation_assign (const Pointset_Powerset &y, Widening wf, unsigned max_-
disjuncts)
Assigns to xthis the result of applying the BGP99 extrapolation operator to *this and y, using the
widening function wt and the cardinality threshold max_dis juncts.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 354

¢ template<typename Cert , typename Widening >
void BHZ03_widening_assign (const Pointset_Powerset &y, Widening wf)

Assigns to xthis the result of computing the BHZ03-widening between xthis and y, using the widen-
ing function wf certified by the convergence certificate Cert.

Member Functions that May Modify the Dimension of the Vector Space

* Pointset_Powerset & operator= (const Pointset_Powerset &y)

The assignment operator (xthis and y can be dimension-incompatible).

* template<typename QH >
Pointset_Powerset & operator= (const Pointset_Powerset< QH > &y)

Conversion assignment: the type QH of the disjuncts in the source powerset is different from PSET
(xthis and y can be dimension-incompatible).

* void swap (Pointset_Powerset &y)
Swaps xthis with y.

* void add_space_dimensions_and_embed (dimension_type m)

Adds m new dimensions to the vector space containing xthis and embeds each disjunct in xthis in
the new space.

* void add_space_dimensions_and_project (dimension_type m)

Adds mnew dimensions to the vector space containing xt his without embedding the disjuncts in xthis
in the new space.

* void concatenate_assign (const Pointset_Powerset &y)

Assigns to xt his the concatenation of xthis and y.

* void remove_space_dimensions (const Variables_Set &to_be_removed)

Removes all the specified space dimensions.

* void remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher space dimensions so that the resulting space will have dimension new_—
dimension.

¢ template<typename Partial_Function >
void map_space_dimensions (const Partial_Function &pfunc)

Remaps the dimensions of the vector space according to a partial function.

* void expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

* void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)

Folds the space dimensions in t o_be_foldedinto var.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Pointset_Powerset<PSET> can handle.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 355

Related Functions
(Note that these are not member functions.)

* template<typename PSET >
Widening_Function< PSET > widen_fun_ref (void(PSET::x*wm)(const PSET &, unsigned x*))

Wraps a widening method into a function object.

¢ template<typename PSET , typename CSYS >
Limited_Widening_Function< PSET, CSYS > widen_fun_ref (void(PSET::xlwm)(const PSET &,
const CSYS &, unsigned), const CSYS &cs)

Wraps a limited widening method into a function object.

¢ template<typename PSET >
std::pair< PSET, Pointset_Powerset< NNC_Polyhedron > > linear_partition (const PSET &p,
const PSET &q)

Partitions g with respect to p.

* bool check containment (const NNC_Polyhedron &ph, const Pointset_ Powerset< NNC_-
Polyhedron > &ps)

Returns t rue if and only if the union of the NNC polyhedra in ps contains the NNC polyhedron ph.

* std::pair< Grid, Pointset_Powerset< Grid > > approximate_partition (const Grid &p, const Grid
&q, bool &finite_partition)

Partitions the grid g with respect to grid p if and only if such a partition is finite.

* bool check_containment (const Grid &ph, const Pointset_Powerset< Grid > &ps)

Returns t rue if and only if the union of the grids ps contains the grid g.

* template<typename PSET >
bool check_containment (const PSET &ph, const Pointset_Powerset< PSET > &ps)

Returns t rue if and only if the union of the objects in ps contains ph.
* template<>
bool check_containment (const C_Polyhedron &ph, const Pointset_Powerset< C_Polyhedron >
&ps)
11.40.1 Detailed Description
template<typename PSET > class Parma_Polyhedra_Library::Pointset_Powerset< PSET >

The powerset construction instantiated on PPL pointset domains.

Warning:

At present, the supported instantiations for the disjunct domain template PSET are the simple
pointset domains: C_Polyhedron, NNC_Polyhedron, Grid, Octagonal_Shape<T>,BD_-
Shape<T>, Box<T>.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 356

11.40.2 Constructor & Destructor Documentation

11.40.2.1 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset< PSET
>::Pointset_Powerset (dimension_type num_dimensions = 0, Degenerate_Element kind
=UNIVERSE) [inline, explicit]

Builds a universe (top) or empty (bottom) Pointset_Powerset.

Parameters:

num_dimensions The number of dimensions of the vector space enclosing the powerset;

kind Specifies whether the universe or the empty powerset has to be built.

11.40.2.2 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset< PSET
>::Pointset_Powerset (const Pointset_Powerset< PSET > & y, Complexity_Class
complexity = ANY_COMPLEXITY) [inline]

Ordinary copy-constructor. The complexity argument is ignored.

11.40.2.3 template<typename PSET > template<typename QH > Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::Pointset_Powerset (const Pointset_Powerset<
QH > &y, Complexity_Class complexity = ANY COMPLEXITY) [inline,
explicit]

Conversion constructor: the type QH of the disjuncts in the source powerset is different from PSET.

Parameters:

y The powerset to be used to build the new powerset.

complexity The maximal complexity of any algorithms used.

11.40.2.4 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset< PSET
>::Pointset_Powerset (const C_Polyhedron & ph, Complexity_Class complexity =
ANY COMPLEXITY) [inline, explicit]

Builds a pointset_powerset out of a closed polyhedron. Builds a powerset that is either empty (if the
polyhedron is found to be empty) or contains a single disjunct approximating the polyhedron; this must
only use algorithms that do not exceed the specified complexity. The powerset inherits the space dimension
of the polyhedron.

Parameters:

ph The closed polyhedron to be used to build the powerset.

complexity The maximal complexity of any algorithms used.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 357

Exceptions:

std::length_error Thrown if the space dimension of ph exceeds the maximum allowed space dimen-
sion.

11.40.2.5 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset< PSET
>::Pointset_Powerset (const NNC_Polyhedron & ph, Complexity_Class complexity =
ANY_ COMPLEXITY) [inline, explicit]

Builds a pointset_powerset out of an nnc polyhedron. Builds a powerset that is either empty (if the polyhe-
dron is found to be empty) or contains a single disjunct approximating the polyhedron; this must only use
algorithms that do not exceed the specified complexity. The powerset inherits the space dimension of the
polyhedron.

Parameters:

ph The closed polyhedron to be used to build the powerset.

complexity The maximal complexity of any algorithms used.

Exceptions:

std::length_error Thrown if the space dimension of ph exceeds the maximum allowed space dimen-
sion.

11.40.2.6 template<typename PSET > Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::Pointset_Powerset (const Grid & gr, Complexity_Class complexity =
ANY_ COMPLEXITY) [inline, explicit]

Builds a pointset_powerset out of a grid. If the grid is nonempty, builds a powerset containing a single
disjunct approximating the grid. Builds the empty powerset otherwise. The powerset inherits the space
dimension of the grid.

Parameters:

gr The grid to be used to build the powerset.

complexity This argument is ignored.

Exceptions:

std::length_error Thrown if the space dimension of gr exceeds the maximum allowed space dimen-
sion.

11.40.2.7 template<typename PSET > template<typename T > Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::Pointset_Powerset (const Octagonal_Shape< T
> & os, Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 358

Builds a pointset_powerset out of an octagonal shape. If the octagonal shape is nonempty, builds a powerset
containing a single disjunct approximating the octagonal shape. Builds the empty powerset otherwise. The
powerset inherits the space dimension of the octagonal shape.

Parameters:

os The octagonal shape to be used to build the powerset.

complexity This argument is ignored.

Exceptions:

std::length_error Thrown if the space dimension of os exceeds the maximum allowed space dimen-
sion.

11.40.2.8 template<typename PSET > template<typename T > Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::Pointset_Powerset (const BD_Shape< T > &
bds, Complexity_Class complexity = ANY COMPLEXITY) [inline, explicit]

Builds a pointset_powerset out of a bd shape. If the bd shape is nonempty, builds a powerset containing a
single disjunct approximating the bd shape. Builds the empty powerset otherwise. The powerset inherits
the space dimension of the bd shape.

Parameters:

bds The bd shape to be used to build the powerset.

complexity This argument is ignored.

Exceptions:

std::length_error Thrown if the space dimension of bdss exceeds the maximum allowed space di-
mension.

11.40.2.9 template<typename PSET > template<typename Interval > Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::Pointset_Powerset (const Box< Interval > &
box, Complexity_Class complexity = ANY_COMPLEXITY) [inline, explicit]

Builds a pointset_powerset out of a box. If the box is nonempty, builds a powerset containing a single
disjunct approximating the box. Builds the empty powerset otherwise. The powerset inherits the space
dimension of the box.

Parameters:

box The box to be used to build the powerset.
complexity This argument is ignored.
Exceptions:

std::length_error Thrown if the space dimension of box exceeds the maximum allowed space di-
mension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 359

11.40.3 Member Function Documentation

11.40.3.1 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::is_disjoint_from (const Pointset_Powerset< PSET > & y) const [inline]

Returns t rue if and only if *this and y are disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

11.40.3.2 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::constrains (Variable var) const [inline]

Returns t rue if and only if var is constrained in *this.
Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

Note:

A variable is constrained if there exists a non-redundant disjunct that is constraining the variable: this
definition relies on the powerset lattice structure and may be somewhat different from the geometric
intuition. For instance, variable x is constrained in the powerset

ps = {{z = 0}, {z < 0}},

even though ps is geometrically equal to the whole vector space.

11.40.3.3 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::bounds_from_above (const Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from above in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

11.40.3.4 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::bounds_from_below (const Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from below in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 360

11.40.3.5 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::maximize (const Linear_Expression & expr, Coefficient & sup_n, Coefficient
& sup_d, bool & maximum) const [inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value is computed.

Parameters:

expr The linear expression to be maximized subject to *this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

11.40.3.6 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::maximize (const Linear_Expression & expr, Coefficient & sup_n, Coefficient
& sup_d, bool & maximum, Generator & g) const [inline]

Returns true if and only if xthis is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to xthis;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If *this is empty or expr is not bounded from above, false isreturned and sup_n, sup_d, maximum
and g are left untouched.

11.40.3.7 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::minimize (const Linear_Expression & expr, Coefficient & inf_n, Coefficient &
inf_d, bool & minimum) const [inline]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 3061

Returns true if and only if xthis is not empty and expr is bounded from below in *this, in which
case the infimum value is computed.

Parameters:
expr The linear expression to be minimized subject to *this;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.
Exceptions:
std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

11.40.3.8 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::minimize (const Linear_Expression & expr, Coefficient & inf_n, Coefficient &
inf_d, bool & minimum, Generator & g) const [inline]

Returns t rue if and only if *this is not empty and expr is bounded from below in *this, in which
case the infimum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be minimized subject to *this;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, falseisreturnedand inf_n, inf_d, minimum
and g are left untouched.

11.40.3.9 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::geometrically_covers (const Pointset_Powerset< PSET > & y) const
[inline]

Returns t rue if and only if *t his geometrically covers v, i.e., if any point (in some element) of y is also
a point (of some element) of xthis.

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 362

Warning:

This may be really expensive!

11.40.3.10 template<typename PSET > bool Parma_Polyhedra_Library::Pointset Powerset<
PSET >::geometrically_equals (const Pointset_Powerset< PSET > & y) const
[inline]

Returns true if and only if *this is geometrically equal to vy, i.e., if (the elements of) xthis and y
contain the same set of points.

Exceptions:
std::invalid_argument Thrown if *this and y are dimension-incompatible.
Warning:

This may be really expensive!

11.40.3.11 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::contains (const Pointset_Powerset< PSET > & y) const [inline]

Returns t rue if and only if each disjunct of y is contained in a disjunct of xthis.

Exceptions:

std::invalid_argument Thrown if sthis and y are topology-incompatible or dimension-
incompatible.

11.40.3.12 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::strictly_contains (const Pointset_Powerset< PSET > & y) const [inline]

Returns t rue if and only if each disjunct of y is strictly contained in a disjunct of xthis.

Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.40.3.13 template<typename PSET > Poly_Con_Relation Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::relation_with (const Constraint & c) const
[inline]

Returns the relations holding between the powerset xthis and the constraint c.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 363

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible.

11.40.3.14 template<typename PSET > Poly_Gen_Relation Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::relation_with (const Generator & g) const
[inline]

Returns the relations holding between the powerset xthis and the generator g.

Exceptions:

std::invalid_argument Thrown if *this and generator g are dimension-incompatible.

11.40.3.15 template<typename PSET > Poly_Con_Relation Parma_Polyhedra_-
Library::Pointset_Powerset< PSET >::relation_with (const Congruence & cg) const
[inline]

Returns the relations holding between the powerset *this and the congruence c.

Exceptions:

std::invalid_argument Thrown if xthis and congruence c are dimension-incompatible.

11.40.3.16 template<typename PSET > int32_t Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::hash_code () const [inline]

Returns a 32-bit hash code for *this. If x and y are such that x == vy, then x.hash_code () ==
y.hash_code ().

11.40.3.17 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_disjunct (const PSET & ph) [inline]

Adds to ¥t his the disjunct ph.

Exceptions:

std::invalid_argument Thrown if *this and ph are dimension-incompatible.

11.40.3.18 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_constraint (const Constraint & ¢) [inline]

Intersects *t his with constraint c.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 304

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are topology-incompatible or dimension-
incompatible.

11.40.3.19 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::refine_with_constraint (const Constraint & ¢) [inline]

Use the constraint c to refine *this.
Parameters:

¢ The constraint to be used for refinement.
Exceptions:

std::invalid_argument Thrown if *this and c are dimension-incompatible.

11.40.3.20 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_constraint_and_minimize (const Constraint & ¢) [inline]

Intersects xt his with the constraint ¢, minimizing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if *this and c are topology-incompatible or dimension-
incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.40.3.21 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_constraints (const Constraint_System & ¢s) [inline]

Intersects *t his with the constraints in cs.
Parameters:

¢s The constraints to intersect with.
Exceptions:

std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 365

11.40.3.22 template<typename PSET > void Parma_Polyhedra_Library::Pointset Powerset<
PSET >::refine_with_constraints (const Constraint_System & ¢s) [inline]

Use the constraints in cs to refine xthis.

Parameters:

¢s The constraints to be used for refinement.

Exceptions:

std::invalid_argument Thrown if *this and cs are dimension-incompatible.

11.40.3.23 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_constraints_and_minimize (const Constraint_System & ¢s) [inline]

Intersects *this with the constraints in c¢s, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

c¢s The constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.
Deprecated

See A Note on the Implementation of the Operators.

11.40.3.24 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_congruence (const Congruence & ¢) [inline]

Intersects *t his with congruence c.

Exceptions:

std::invalid_argument Thrown if xthis and congruence c are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 366

11.40.3.25 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::refine_with_congruence (const Congruence & cg) [inline]

Use the congruence cg to refine xthis.

Parameters:

cg The congruence to be used for refinement.

Exceptions:

std::invalid_argument Thrown if *this and cg are dimension-incompatible.

11.40.3.26 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_congruence_and_minimize (const Congruence & ¢) [inline]

Intersects *this with the congruence ¢, minimizing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if xthis and c are topology-incompatible or dimension-
incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.40.3.27 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_congruences (const Congruence_System & cgs) [inline]

Intersects xthis with the congruences in cgs.

Parameters:

cgs The congruences to intersect with.

Exceptions:

std::invalid_argument Thrown if *this and cgs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 367

11.40.3.28 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::refine_with_congruences (const Congruence_System & cgs) [inline]

Use the congruences in cgs to refine *this.

Parameters:

cgs The congruences to be used for refinement.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

11.40.3.29 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::add_congruences_and_minimize (const Congruence_System & cs)
[inline]

Intersects xthis with the congruences in cs, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

¢s The congruences to intersect with.

Exceptions:

std::invalid_argument Thrown if *this and cs are topology-incompatible or dimension-
incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.40.3.30 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::unconstrain (Variable var) [inline]

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
xthis.

Parameters:

var The space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 368

11.40.3.31 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::unconstrain (const Variables_Set & to_be_unconstrained) [inline]

Computes the cylindrification of #this with respect to the set of space dimensions to_be_-
unconstrained, assigning the result to xthis.

Parameters:

to_be_unconstrained The set of space dimension that will be unconstrained.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.40.3.32 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::intersection_assign (const Pointset_Powerset< PSET > & y) [inline]

Assigns to xthis the intersection of xthis and y. The result is obtained by intersecting each disjunct in
xthis with each disjunct in y and collecting all these intersections.

11.40.3.33 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::intersection_assign_and_minimize (const Pointset_Powerset< PSET > & y)
[inline]

Assigns to xthis the intersection of *this and y. The result is obtained by intersecting each disjunct in
xthis with each disjunct in y, minimizing the result and collecting all these intersections.

Returns:

false if and only if the result is empty.

Deprecated

See A Note on the Implementation of the Operators.

11.40.3.34 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::difference_assign (const Pointset_Powerset< PSET > & y) [inline]

Assigns to *this an (a smallest) over-approximation as a powerset of the disjunct domain of the set-
theoretical difference of *this and y.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 369

11.40.3.35 template<typename PSET > bool Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::simplify_using context_assign (const Pointset_Powerset< PSET > & y)
[inline]

Assigns to xthis a meet-preserving simplification of xthis with respect to y. If false is returned, then
the intersection is empty.

Exceptions:

std::invalid_argument Thrown if sthis and y are topology-incompatible or dimension-
incompatible.

11.40.3.36 template<typename PSET > void Parma_Polyhedra_Library::Pointset Powerset<
PSET >::affine_image (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())
[inline]

Assigns to xthis the affine image of *this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is assigned;
expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.40.3.37 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::affine_preimage (Variable var, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one ())
[inline]

Assigns to xthis the affine preimage of xthis under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is assigned;
expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 370

11.40.3.38 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::generalized_affine_image (Variable var, Relation_Symbol relsym, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

expr

Assigns to ¥this the image of *this with respect to the generalized affine relation var’ a4 3 —"P——

where 1 is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol,
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of xthis or if *this is a C_Polyhedron
and relsym is a strict relation symbol.

11.40.3.39 template<typename PSET > void Parma_Polyhedra_Library::Pointset Powerset<
PSET >::generalized_affine_preimage (Variable var, Relation_Symbol relsym,
const Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to xthis the preimage of *this with respect to the generalized affine relation var’ <

expr . .
Tonominator» Where p is the relation symbol encoded by relsym.

Parameters:

var The left hand side variable of the generalized affine relation;
relsym The relation symbol;
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of xthis or if *this is a C_Polyhedron
and relsymis a strict relation symbol.

11.40.3.40 template<typename PSET > void Parma_Polyhedra_Library::Pointset Powerset<
PSET >::generalized_affine_image (const Linear_Expression & lks, Relation_Symbol
relsym, const Linear_Expression & rhs) [inline]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 371

Assigns to ¥t his the image of xthis with respect to the generalized affine relation lhs’ > rhs, where >
is the relation symbol encoded by relsym.

Parameters:

Ihs The left hand side affine expression;
relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with 1hs or rhs orif *this is
a C_Polyhedron and relsym is a strict relation symbol.

11.40.3.41 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::generalized_affine_preimage (const Linear_Expression & lhs,
Relation_Symbol relsym, const Linear_Expression & rhs) [inline]

Assigns to *t his the preimage of *t his with respect to the generalized affine relation lhs’ > rhs, where
b is the relation symbol encoded by relsym.

Parameters:
Ihs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with 1hs or rhs orif *this is
a C_Polyhedron and relsymis a strict relation symbol.

11.40.3.42 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::bounded_affine_image (Variable var, const Linear_Expression & Ib_expr,
const Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to xthis the image of xthis with respect to the bounded affine relation 5 ==P-— Iboxpr - yap/ <
enominator
ub_expr
denominator *
Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 372

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.40.3.43 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::bounded_affine_preimage (Variable var, const Linear_Expression & lb_expr,
const Linear_Expression & ub_expr, Coefficient_traits::const_reference denominator =
Coefficient_one()) [inline]

Assigns to xthis the preimage of *this with respect to the bounded affine relation m < var’ <

ub_expr
denominator *

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*xthis are dimension-incompatible or if var is not a space dimension of *this.

11.40.3.44 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::time_elapse_assign (const Pointset_Powerset< PSET > & y) [inline]

Assigns to xthis the result of computing the time-elapse between xthis and y. The result is obtained
by computing the pairwise time elapse of each disjunct in *this with each disjunct in y.

11.40.3.45 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::pairwise_reduce () [inline]

Assign to xthis the result of (recursively) merging together the pairs of disjuncts whose upper-bound is
the same as their set-theoretical union. On exit, for all the pairs P, Q of different disjuncts in xthis, we
have Pw Q # P U Q.

11.40.3.46 template<typename PSET > template<typename Widening > void Parma_-
Polyhedra_Library::Pointset_Powerset< PSET >::BGP99_extrapolation_assign (const
Pointset_Powerset< PSET > & y, Widening wf, unsigned max_disjuncts) [inline]

Assigns to xthis the result of applying the BGP99 extrapolation operator to *this and y, using the
widening function wf and the cardinality threshold max_disjuncts.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 373

Parameters:

y A powerset that must definitely entail xthis;

wf The widening function to be used on polyhedra objects. It is obtained from the corre-
sponding widening method by using the helper function Parma_Polyhedra_Library::widen_-
fun_ref. Legal values are, e.g., widen_fun_ref (&§Polyhedron::H79_widening_ -
assign) andwiden_fun_ref (&Polyhedron::limited_H79_extrapolation_-—
assign, cs);

max_disjuncts The maximum number of disjuncts occurring in the powerset xthis before starting
the computation. If this number is exceeded, some of the disjuncts in *this are collapsed (i.e.,
joined together).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

For a description of the extrapolation operator, see [BGP99] and [BHZ03b].

11.40.3.47 template<typename PSET > template<typename Cert , typename Widening > void
Parma_Polyhedra_Library::Pointset_Powerset< PSET >::BHZ03_widening_assign
(const Pointset_Powerset< PSET > & y, Widening wf) [inline]

Assigns to xthis the result of computing the BHZ03-widening between *this and y, using the widening
function wf certified by the convergence certificate Cert.

Parameters:

y The finite powerset computed in the previous iteration step. It must definitely entail xthis;

wf The widening function to be used on disjuncts. It is obtained from the correspond-
ing widening method by using the helper function widen_fun_ref. Legal values
are, e.g., widen_fun_ref (&Polyhedron: :H79_widening_assign) and widen_-
fun_ref (&§Polyhedron::limited_H79_extrapolation_assign, cs).

Exceptions:

std::invalid_argument Thrown if *this and y are dimension-incompatible.

Warning:

In order to obtain a proper widening operator, the template parameter Cert should be a finite con-
vergence certificate for the base-level widening function wf; otherwise, an extrapolation operator is
obtained. For a description of the methods that should be provided by Cert, see BHRZ03_Certificate
or H79_Certificate.

11.40.3.48 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::concatenate_assign (const Pointset_Powerset< PSET > & y) [inline]

Assigns to xthis the concatenation of xthis and y. The result is obtained by computing the pairwise
concatenation of each disjunct in xt his with each disjunct in y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 374

11.40.3.49 template<typename PSET > void Parma_Polyhedra_Library::Pointset Powerset<
PSET >::remove_space_dimensions (const Variables_Set & fo_be_removed)
[inline]

Removes all the specified space dimensions.

Parameters:

to_be_removed The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.40.3.50 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::remove_higher_space_dimensions (dimension_type new_dimension)
[inline]

Removes the higher space dimensions so that the resulting space will have dimension new_dimension.

Exceptions:

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of xthis.

11.40.3.51 template<typename PSET > template<typename Partial_Function > void
Parma_Polyhedra_Library::Pointset_Powerset< PSET >::map_space_dimensions
(const Partial_Function & pfunc) [inline]

Remaps the dimensions of the vector space according to a partial function. See also Polyhedron::map_-
space_dimensions.

11.40.3.52 template<typename PSET > void Parma_Polyhedra_Library::Pointset Powerset<
PSET >::expand_space_dimension (Variable var, dimension_type m) [inline]

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated,;

m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 375

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

If xthis has space dimension n, with n > 0, and var has space dimension k < n, then the k-th space
dimension is expanded to m new space dimensions n,n+ 1,...,n+m — 1.

11.40.3.53 template<typename PSET > void Parma_Polyhedra_Library::Pointset_Powerset<
PSET >::fold_space_dimensions (const Variables_Set & to_be_folded, Variable var)
[inline]

Folds the space dimensions in to_be_folded into var.

Parameters:
to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_—
folded.

If xthis has space dimension n, with n > 0, var has space dimension k£ < n, to_be_foldedis a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

11.40.4 Friends And Related Function Documentation

11.40.4.1 template<typename PSET > Widening_Function< PSET > widen_fun_ref
(void(PSET::x)(const PSET &, unsigned x) wm) [related]

Wraps a widening method into a function object.

Parameters:

wm The widening method.

11.40.4.2 template<typename PSET , typename CSYS > Limited_Widening Function< PSET,
CSYS > widen_fun_ref (void(PSET::x)(const PSET &, const CSYS &, unsigned x) Ilwm,
const CSYS & ¢s) [related]

Wraps a limited widening method into a function object.

Parameters:

Iwm The limited widening method.

¢s The constraint system limiting the widening.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.40 Parma_Polyhedra_Library::Pointset_ Powerset< PSET > Class Template Reference 376

11.40.4.3 template<typename PSET > std::pair< PSET, Pointset_Powerset< NNC_Polyhedron >
> linear_partition (const PSET & p, const PSET & q) [related]

Partitions g with respect to p. Let p and g be two polyhedra. The function returns an object r of type
std::pair<PSET, Pointset_Powerset<NNC_Polyhedron> > such that

e r.first is the intersection of p and g;
e r.second has the property that all its elements are pairwise disjoint and disjoint from p;

* the set-theoretical union of r.first with all the elements of r.second gives g (i.e., r is the
representation of a partition of g).

11.40.4.4 template<typename PSET > std::pair< Grid, Pointset_Powerset< Grid > >
approximate_partition (const Grid & p, const Grid & ¢, bool & finite_partition)
[related]

Partitions the grid g with respect to grid p if and only if such a partition is finite. Let p and g be two
grids. The function returns an object r of type std: :pair<PSET, Pointset_Powerset<Grid>
> such that

e r.first is the intersection of p and q;

o If there is a finite partition of g wrt p the Boolean finite_partition is set to true and
r.second has the property that all its elements are pairwise disjoint and disjoint from p and the
set-theoretical union of r. first with all the elements of r.second gives g (i.e., r is the repre-
sentation of a partition of q).

* Otherwise the Boolean finite_partition is set to false and the singleton set that contains g is
stored in r . secondr.

11.40.4.5 template<typename PSET > bool check_containment (const PSET & ph, const
Pointset_Powerset< PSET > & ps) [related]

Returns t rue if and only if the union of the objects in ps contains ph.

Note:

It is assumed that the template parameter PSET can be converted without precision loss into an NNC_-
Polyhedron; otherwise, an incorrect result might be obtained.

11.40.4.6 bool check_containment (const C_Polyhedron & ph, const Pointset_Powerset<
C_Polyhedron > & ps) [related]

The documentation for this class was generated from the following file:

* ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.41 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference 377

11.41 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference

The relation between a polyhedron and a constraint.

#include <ppl.hh>

Public Member Functions

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xthis.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xt his.

* void print () const

Prints xthisto std: :cerr using operator<<.

* bool implies (const Poly_Con_Relation &y) const

True if and only if xt his implies y.

bool OK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

* static Poly_Con_Relation nothing ()

The assertion that says nothing.

* static Poly_Con_Relation is_disjoint ()

The polyhedron and the set of points satisfying the constraint are disjoint.

« static Poly_Con_Relation strictly_intersects ()

The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

« static Poly_Con_Relation is_included ()

The polyhedron is included in the set of points satisfying the constraint.

* static Poly_Con_Relation saturates ()

The polyhedron is included in the set of points saturating the constraint.

Friends

* Poly_Con_Relation operator&& (const Poly_Con_Relation &x, const Poly_Con_Relation &y)

Yields the logical conjunction of x and y.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.42 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference 378

11.41.1 Detailed Description

The relation between a polyhedron and a constraint. This class implements conjunctions of assertions on
the relation between a polyhedron and a constraint.

11.41.2 Friends And Related Function Documentation

11.41.2.1 Poly_Gen_Relation operator&& (const Poly_Con_Relation & x, const
Poly_Con_Relation & y) [friend]

Yields the logical conjunction of x and y.

The documentation for this class was generated from the following file:

* ppl.hh

11.42 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference

The relation between a polyhedron and a generator.

#include <ppl.hh>

Public Member Functions

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerrusing operator<<.

* bool implies (const Poly_Gen_Relation &y) const

True if and only if xt his implies y.

bool OK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

* static Poly_Gen_Relation nothing ()

The assertion that says nothing.

* static Poly_Gen_Relation subsumes ()

Adding the generator would not change the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 379

11.42.1 Detailed Description

The relation between a polyhedron and a generator. This class implements conjunctions of assertions on
the relation between a polyhedron and a generator.

The documentation for this class was generated from the following file:

* ppl.hh

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference

The base class for convex polyhedra.
#include <ppl.hh>
Inherited by Parma_Polyhedra_Library::C_Polyhedron, and Parma_Polyhedra_Library::NNC_-

Polyhedron.
Public Types

* typedef Coefficient coefficient_type

The numeric type of coefficients.

Public Member Functions
Member Functions that Do Not Modify the Polyhedron

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing *this.

* dimension_type affine_dimension () const

Returns O, if xt his is empty; otherwise, returns the affine dimension of xthis.

* const Constraint_System & constraints () const

Returns the system of constraints.

* const Constraint_System & minimized_constraints () const

Returns the system of constraints, with no redundant constraint.

* const Generator_System & generators () const

Returns the system of generators.

* const Generator_System & minimized_generators () const

Returns the system of generators, with no redundant generator.

» Congruence_System congruences () const

Returns a system of (equality) congruences satisfied by xt his.

* Congruence_System minimized_congruences () const

Returns a system of (equality) congruences satisfied by xthis, with no redundant congruences and
having the same affine dimension as xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 380

* Grid_Generator_System grid_generators () const

Returns a universe system of grid generators.

* Grid_Generator_System minimized_grid_generators () const

Returns a universe system of grid generators.

* Poly_Con_Relation relation_with (const Constraint &c) const

Returns the relations holding between the polyhedron xt his and the constraint c.

* Poly_Gen_Relation relation_with (const Generator &g) const

Returns the relations holding between the polyhedron xt his and the generator g.

* Poly_Con_Relation relation_with (const Congruence &cg) const

Returns the relations holding between the polyhedron xt his and the congruence c.

* bool is_empty () const
Returns t rue if and only if xt his is an empty polyhedron.

* bool is_universe () const

Returns t rue if and only if xt his is a universe polyhedron.

* bool is_topologically_closed () const

Returns t rue if and only if xt his is a topologically closed subset of the vector space.

* bool is_disjoint_from (const Polyhedron &y) const

Returns true if and only if ¥t his and y are disjoint.

¢ bool is_discrete () const

Returns t rue if and only if xt his is discrete.

* bool is_bounded () const

Returns t rue if and only if ¥t hi s is a bounded polyhedron.

* bool contains_integer_point () const

Returns t rue if and only if xt his contains at least one integer point.

* bool constrains (Variable var) const

Returns t rue if and only if var is constrained in xthis.

* bool bounds_from_above (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded from above in xthis.

* bool bounds_from_below (const Linear_Expression &expr) const

Returns t rue if and only if expr is bounded from below in xthis.

* bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum) const

Returns t rue if and only if xt his is not empty and expr is bounded from above in xt his, in which
case the supremum value is computed.

* bool maximize (const Linear_Expression &expr, Coefficient &sup_n, Coefficient &sup_d, bool
&maximum, Generator &g) const

Returns true if and only if xt his is not empty and expr is bounded from above in xthis, in which
case the supremum value and a point where expr reaches it are computed.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 381

* bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum) const

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value is computed.

* bool minimize (const Linear_Expression &expr, Coefficient &inf_n, Coefficient &inf_d, bool
&minimum, Generator &g) const

Returns t rue if and only if xt his is not empty and expr is bounded from below in xthis, in which
case the infimum value and a point where expr reaches it are computed.

* bool contains (const Polyhedron &y) const

Returns t rue if and only if xt his contains y.

* bool strictly_contains (const Polyhedron &y) const

Returns t rue if and only if xt hi s strictly contains y.

* bool OK (bool check_not_empty=false) const

Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Polyhedron

 void add_constraint (const Constraint &c)

Adds a copy of constraint c to the system of constraints of xt his (without minimizing the result).

¢ bool add_constraint_and_minimize (const Constraint &c)

Adds a copy of constraint c to the system of constraints of xt his, minimizing the result.

* void add_generator (const Generator &g)

Adds a copy of generator g to the system of generators of xt his (without minimizing the result).

* bool add_generator_and_minimize (const Generator &g)

Adds a copy of generator g to the system of generators of xt his, minimizing the result.

* void add_congruence (const Congruence &cg)
Adds a copy of congruence cg to xthis, if cg can be exactly represented by a polyhedron.

* bool add_congruence_and_minimize (const Congruence &cg)

Adds a copy of congruence cgto xthis, if cg can be exactly represented by a polyhedron, minimizing
the result.

* void add_constraints (const Constraint_System &cs)

Adds a copy of the constraints in cs to the system of constraints of xthis (without minimizing the
result).

* void add_recycled_constraints (Constraint_System &cs)

Adds the constraints in cs to the system of constraints of *t his (without minimizing the result).

* bool add_constraints_and_minimize (const Constraint_System &cs)

Adds a copy of the constraints in cs to the system of constraints of xt his, minimizing the result.

* bool add_recycled_constraints_and_minimize (Constraint_System &cs)

Adds the constraints in cs to the system of constraints of xt his, minimizing the result.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 382

* void add_generators (const Generator_System &gs)

Adds a copy of the generators in gs to the system of generators of xt hi s (without minimizing the result).

* void add_recycled_generators (Generator_System &gs)

Adds the generators in gs to the system of generators of xt his (without minimizing the result).

* bool add_generators_and_minimize (const Generator_System &gs)

Adds a copy of the generators in gs to the system of generators of xt his, minimizing the result.

* bool add_recycled_generators_and_minimize (Generator_System &gs)

Adds the generators in gs to the system of generators of xt his, minimizing the result.

* void add_congruences (const Congruence_System &cgs)

Adds a copy of the congruences in cgs to ¥xthis, if all the congruences can be exactly represented by
a polyhedron.

* bool add_congruences_and_minimize (const Congruence_System &cgs)

Adds a copy of the congruences in cgs to xthis, if all the congruences can be exactly represented by
a polyhedron, minimizing the result.

* void add_recycled_congruences (Congruence_System &cgs)

Adds the congruences in cgs to xthis, if all the congruences can be exactly represented by a polyhe-
dron.

* bool add_recycled_congruences_and_minimize (Congruence_System &cgs)

Adds the congruences in cgs to xthis, if all the congruences can be exactly represented by a polyhe-
dron, minimizing the result.

* void refine_with_constraint (const Constraint &c)

Uses a copy of constraint c to refine xthis.

* void refine_with_congruence (const Congruence &cg)

Uses a copy of congruence cg to refine xthis.

* void refine_with_constraints (const Constraint_System &cs)

Uses a copy of the constraints in cs to refine xthis.

* void refine_with_congruences (const Congruence_System &cgs)

Uses a copy of the congruences in cgs to refine xthis.

* void unconstrain (Variable var)

Computes the cylindrification of xthis with respect to space dimension var, assigning the result to
*this.

¢ void unconstrain (const Variables_Set &to_be_unconstrained)

Computes the cylindrification of xthis with respect to the set of space dimensions to_be_ -
unconstrained, assigning the result to xthis.

* void intersection_assign (const Polyhedron &y)
Assigns to xthis the intersection of xthis and y. The result is not guaranteed to be minimized.

* bool intersection_assign_and_minimize (const Polyhedron &y)

Assigns to xt his the intersection of xt his and y, minimizing the result.

* void poly_hull_assign (const Polyhedron &y)
Assigns to xt his the poly-hull of xthis and y. The result is not guaranteed to be minimized.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 383

* bool poly_hull_assign_and_minimize (const Polyhedron &y)
Assigns to xthis the poly-hull of xt his and y, minimizing the result.

* void upper_bound_assign (const Polyhedron &y)
Same as poly_hull_assign(y).

* void poly_difference_assign (const Polyhedron &y)

Assigns to xthis the poly-difference of xthis and y. The result is not guaranteed to be minimized.

* void difference_assign (const Polyhedron &y)

Same as poly_difference_assign(y).

* bool simplify_using_context_assign (const Polyhedron &y)
Assigns to xthis a meet-preserving simplification of xt his with respect to y. If false is returned,
then the intersection is empty.

* void affine_image (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to xthis the affine image of xthis under the function mapping variable var to the affine
expression specified by expr and denominator.

* void affine_preimage (Variable var, const Linear_Expression &expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())
Assigns to xthis the affine preimage of xt his under the function mapping variable var to the affine
expression specified by expr and denominator.

* void generalized_affine_image (Variable var, Relation_Symbol relsym, const Linear_Expression
&expr, Coefficient_traits::const_reference denominator=Coefficient_one())
Assigns to xt his the image of xt hi s with respect to the generalized affine relation var’ 1<
where X is the relation symbol encoded by relsym.

expr
denominator’

* void generalized_affine_preimage (Variable var, Relation_Symbol relsym, const Linear_-
Expression &expr, Coefficient_traits::const_reference denominator=Coefficient_one())
Assigns to xthis the preimage of xthis with respect to the generalized affine relation var’ <

d#, where X is the relation symbol encoded by relsym.
enominator

* void generalized_affine_image (const Linear_Expression &lhs, Relation_Symbol relsym, const
Linear_Expression &rhs)
Assigns to xt his the image of xt his with respect to the generalized affine relation hs’ > rhs, where
> is the relation symbol encoded by relsym.

» void generalized_affine_preimage (const Linear_Expression &lhs, Relation_Symbol relsym,
const Linear_Expression &rhs)
Assigns to xthis the preimage of xthis with respect to the generalized affine relation lhs' > rhs,
where] is the relation symbol encoded by relsym.

* void bounded_affine_image (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xt his the image of xt his with respect to the bounded affine relation ﬁ < var’ <
ub_expr

denominator*

* void bounded_affine_preimage (Variable var, const Linear_Expression &lb_expr, const Linear_-
Expression &ub_expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to xthis the preimage of xthis with respect to the bounded affine relation % <

/
var’ < ub-expr ub_expr
— denominator

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 384

* void time_elapse_assign (const Polyhedron &y)

Assigns to xt his the result of computing the time-elapse between xthis and y.

* void topological_closure_assign ()

Assigns to xthis its topological closure.

» void BHRZ03_widening_assign (const Polyhedron &y, unsigned *tp=0)
Assigns to xt his the result of computing the BHRZ03-widening between xthis and y.

* void limited_BHRZ03_extrapolation_assign (const Polyhedron &y, const Constraint_System
&cs, unsigned *tp=0)
Assigns to xthis the result of computing the limited extrapolation between xthis and y using the
BHRZ03-widening operator.

* void bounded_BHRZO03_extrapolation_assign (const Polyhedron &y, const Constraint_System
&cs, unsigned *tp=0)
Assigns to xthis the result of computing the bounded extrapolation between xthis and y using the
BHRZ03-widening operator.

* void H79_widening_assign (const Polyhedron &y, unsigned *tp=0)
Assigns to xt his the result of computing the H79_widening between xthis and y.

* void widening_assign (const Polyhedron &y, unsigned *tp=0)

Same as H79_widening_assign(y, tp).

* void limited_H79_extrapolation_assign (const Polyhedron &y, const Constraint_System &cs, un-
signed xtp=0)
Assigns to xthis the result of computing the limited extrapolation between xthis and y using the
H79-widening operator.

* void bounded_H79_extrapolation_assign (const Polyhedron &y, const Constraint_System &cs,
unsigned xtp=0)
Assigns to xthis the result of computing the bounded extrapolation between xthis and y using the
H79-widening operator.

Member Functions that May Modify the Dimension of the Vector Space

* void add_space_dimensions_and_embed (dimension_type m)

Adds m new space dimensions and embeds the old polyhedron in the new vector space.

* void add_space_dimensions_and_project (dimension_type m)

Adds m new space dimensions to the polyhedron and does not embed it in the new vector space.

* void concatenate_assign (const Polyhedron &y)

Assigns to xt his the concatenation of xt his and y, taken in this order.

* void remove_space_dimensions (const Variables_Set &to_be_removed)

Removes all the specified dimensions from the vector space.

* void remove_higher_space_dimensions (dimension_type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 385

¢ template<typename Partial_Function >
void map_space_dimensions (const Partial_Function &pfunc)

Remaps the dimensions of the vector space according to a partial function.

* void expand_space_dimension (Variable var, dimension_type m)

Creates m copies of the space dimension corresponding to var.

* void fold_space_dimensions (const Variables_Set &to_be_folded, Variable var)
Folds the space dimensions in t o_be_foldedinto var.

Miscellaneous Member Functions

* ~Polyhedron ()

Destructor.

* void swap (Polyhedron &y)

Swaps xthis with polyhedron y. (xthis and y can be dimension-incompatible.).

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

* void ascii_dump (std::ostream &s) const
Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerr using operator<<.

* bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets
xthis accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const
Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

¢ int32_t hash_code () const
Returns a 32-bit hash code for xt his.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension all kinds of Polyhedron can handle.

* static bool can_recycle_constraint_systems ()

Returns t rue indicating that this domain has methods that can recycle constraints.

e static void initialize ()

Initializes the class.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 386

e static void finalize ()

Finalizes the class.

* static bool can_recycle_congruence_systems ()

Returns false indicating that this domain cannot recycle congruences.

Protected Member Functions

* Polyhedron (Topology topol, dimension_type num_dimensions, Degenerate_Element kind)

Builds a polyhedron having the specified properties.

* Polyhedron (const Polyhedron &y, Complexity_Class complexity=ANY_COMPLEXITY)

Ordinary copy-constructor.

* Polyhedron (Topology topol, const Constraint_System &cs)

Builds a polyhedron from a system of constraints.

* Polyhedron (Topology topol, Constraint_System &cs, Recycle_Input dummy)

Builds a polyhedron recycling a system of constraints.

* Polyhedron (Topology topol, const Generator_System &gs)

Builds a polyhedron from a system of generators.

* Polyhedron (Topology topol, Generator_System &gs, Recycle_Input dummy)

Builds a polyhedron recycling a system of generators.

¢ template<typename Interval >
Polyhedron (Topology topol, const Box< Interval > &box, Complexity_Class complexity=ANY_-
COMPLEXITY)

Builds a polyhedron from a box.

* Polyhedron & operator= (const Polyhedron &y)

The assignment operator. (xthis and y can be dimension-incompatible.).

11.43.1 Detailed Description

The base class for convex polyhedra. An object of the class Polyhedron represents a convex polyhedron in
the vector space R".

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
Section Representations of Convex Polyhedra) and it is always possible to obtain either representation.
That is, if we know the system of constraints, we can obtain from this the system of generators that define
the same polyhedron and vice versa. These systems can contain redundant members: in this case we say
that they are not in the minimal form.

Two key attributes of any polyhedron are its topological kind (recording whether it is a C_Polyhedron or
an NNC_Polyhedron object) and its space dimension (the dimension n € N of the enclosing vector space):

* all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 387

* most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see Section Representations of Convex
Polyhedra);

* the topology of a polyhedron cannot be changed; rather, there are constructors for each of the two
derived classes that will build a new polyhedron with the topology of that class from another poly-
hedron from either class and any topology;

* the only ways in which the space dimension of a polyhedron can be changed are:

— explicit calls to operators provided for that purpose;

— standard copy, assignment and swap operators.

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedron R, again either closed or NNC.

In all the examples it is assumed that variables x and y are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1

The following code builds a polyhedron corresponding to a square in R?, given as a system of con-
straints:

Constraint_System cs;
cs.insert (x >= 0);
cs.insert (x <= 3);
cs.insert (y >= 0);
cs.insert (y <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

Generator_System gs;
gs.insert (point (0xx + Oxy
gs.insert (point (0xx + 3xy
gs.insert (point (3xx + Oxy
gs.insert (point (3xx + 3xy
C_Polyhedron ph(gs);

)
)
)
)

Example 2

The following code builds an unbounded polyhedron corresponding to a half-strip in R?, given as a
system of constraints:

Constraint_System cs;
cs.insert (x >= 0);
cs.insert(x -y <= 0);
cs.insert(x -y + 1 >= 0);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

Generator_System gs;
gs.insert (point (0xx + 0*y));
gs.insert (point (0xx + y));
gs.insert (ray(x - y));
C_Polyhedron ph(gs);

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 388

Example 3

The following code builds the polyhedron corresponding to a half-plane by adding a single constraint
to the universe polyhedron in R?:

C_Polyhedron ph(2);
ph.add_constraint (y >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the space R? and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, EMPTY);
ph.add_generator (point (0*xx + 0x*y));
ph.add_generator (ray(y));
ph.add_generator (line(x));

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowski’s sum would be an empty polyhedron. To avoid subtle errors related to the
minimization process, it is required that the first generator inserted in an empty polyhedron is a point
(otherwise, an exception is thrown).

Example 4

The following code shows the use of the function add_space_dimensions_and_embed:

C_Polyhedron ph(1l);
ph.add_constraint (x == 2);
ph.add_space_dimensions_and_embed (1) ;

We build the universe polyhedron in the 1-dimension space R. Then we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singleton set {2} C R. After the last line
of code, the resulting polyhedron is

{(Q,y)T€R2|yER}.

Example 5§

The following code shows the use of the function add_space_dimensions_and_project:

C_Polyhedron ph(1l);
ph.add_constraint (x == 2);
ph.add_space_dimensions_and_project (1) ;

The first two lines of code are the same as in Example 4 for add_space_dimensions_and_ -
embed. After the last line of code, the resulting polyhedron is the singleton set {(2, O)T} C R2

Example 6

The following code shows the use of the function affine_image:

C_Polyhedron ph(2, EMPTY);
ph.add_generator (point (0*x + 0xy));
ph.add_generator (point (0*x + 3x%y));
ph.add_generator (point (3*xx + 0xy));
ph.add_generator (point (3*x + 3*y));
Linear_Expression expr = x + 4;
ph.affine_image (x, expr);

In this example the starting polyhedron is a square in R2, the considered variable is = and the affine
expression is + 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variable x is x + y:

Linear_Expression expr = x + y;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 389

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line — y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expression y:

Linear_Expression expr = y;

the resulting polyhedron is a diagonal of the square.

Example 7

The following code shows the use of the function affine_preimage:

C_Polyhedron ph(2);

ph.add_constraint (x >= 0
ph.add_constraint (x <= 3
ph.add_constraint (y >= 0
ph.add_constraint (y <= 3
Linear_Expression expr =

4
X + 4;
ph.affine_preimage (x, expr

)i

In this example the starting polyhedron, var and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation for x is x + y

Linear_Expression expr = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line = + y. Instead, if we do not use an invertible transformation for the
same variable x, for example, the affine expression y:

Linear_Expression expr = y;

the resulting polyhedron is a line that corresponds to the y axis.

Example 8

For this example we use also the variables:

Variable z (2);
Variable w(3);

The following code shows the use of the function remove_space_dimensions:

Generator_System gs;

gs.insert (point (3xx + y +0%z + 2+%w));
C_Polyhedron ph(gs);

Variables_Set to_be_removed;
to_be_removed.insert (y);
to_be_removed.insert (z);
ph.remove_space_dimensions (to_be_removed) ;

The starting polyhedron is the singleton set {(37 1,0, 2)T} C R*, while the resulting polyhedron

is {(3, 2)T} C R2. Be careful when removing space dimensions incrementally: since dimensions

are automatically renamed after each application of the remove_space_dimensions operator,
unexpected results can be obtained. For instance, by using the following code we would obtain a
different result:

set<Variable> to_be_removedl;
to_be_removedl.insert (y);
ph.remove_space_dimensions (to_be_removedl) ;
set<Variable> to_be_removed2;
to_be_removed2.insert (z);
ph.remove_space_dimensions (to_be_removed?2);

In this case, the result is the polyhedron {(3, O)T} C R?: when removing the set of dimensions
to_be_removed2 we are actually removing variable w of the original polyhedron. For the same
reason, the operator remove_space_dimensions is not idempotent: removing twice the same
non-empty set of dimensions is never the same as removing them just once.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 390

11.43.2 Constructor & Destructor Documentation

11.43.2.1 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology fopol, dimension_type
num_dimensions, Degenerate_Element kind) [protected]

Builds a polyhedron having the specified properties.

Parameters:

topol The topology of the polyhedron;
num_dimensions The number of dimensions of the vector space enclosing the polyhedron;

kind Specifies whether the universe or the empty polyhedron has to be built.

11.43.2.2 Parma_Polyhedra_Library::Polyhedron::Polyhedron (const Polyhedron & y,
Complexity_Class complexity = ANY_COMPLEXITY) [protected]

Ordinary copy-constructor. The complexity argument is ignored.

11.43.2.3 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology fopol, const
Constraint_System & ¢s) [protected]

Builds a polyhedron from a system of constraints. The polyhedron inherits the space dimension of the
constraint system.

Parameters:

topol The topology of the polyhedron;

¢s The system of constraints defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the topology of cs is incompatible with topol.

11.43.2.4 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol,
Constraint_System & cs, Recycle_Input dummy) [protected]

Builds a polyhedron recycling a system of constraints. The polyhedron inherits the space dimension of the
constraint system.

Parameters:

topol The topology of the polyhedron;

¢s The system of constraints defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 391

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::invalid_argument Thrown if the topology of cs is incompatible with topol.

11.43.2.5 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology fopol, const
Generator_System & gs) [protected]

Builds a polyhedron from a system of generators. The polyhedron inherits the space dimension of the
generator system.
Parameters:

topol The topology of the polyhedron;
gs The system of generators defining the polyhedron.

Exceptions:

std::invalid_argument Thrown if the topology of gs is incompatible with t opo1l, or if the system of
generators is not empty but has no points.

11.43.2.6 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol,
Generator_System & gs, Recycle_Input dummy) [protected]

Builds a polyhedron recycling a system of generators. The polyhedron inherits the space dimension of the
generator system.

Parameters:

topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declared const because its data-
structures may be recycled to build the polyhedron.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:

std::invalid_argument Thrown if the topology of gs is incompatible with t opo1l, or if the system of
generators is not empty but has no points.

11.43.2.7 template<typename Interval > Parma_Polyhedra_Library::Polyhedron::Polyhedron
(Topology topol, const Box< Interval > & box, Complexity_Class complexity =
ANY_ COMPLEXITY) [inline, protected]

Builds a polyhedron from a box. This will use an algorithm whose complexity is polynomial and build the
smallest polyhedron with topology topol containing box.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 392

Parameters:

topol The topology of the polyhedron;
box The box representing the polyhedron to be built;
complexity This argument is ignored.

11.43.3 Member Function Documentation

11.43.3.1 Poly_Con_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const
Constraint & c) const

Returns the relations holding between the polyhedron *this and the constraint c.

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible.

11.43.3.2 Poly_Gen_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const
Generator & g) const

Returns the relations holding between the polyhedron xthis and the generator g.

Exceptions:

std::invalid_argument Thrown if xthis and generator g are dimension-incompatible.

11.43.3.3 Poly_Con_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const
Congruence & cg) const

Returns the relations holding between the polyhedron xthis and the congruence c.

Exceptions:

std::invalid_argument Thrown if *this and congruence c are dimension-incompatible.

11.43.3.4 bool Parma_Polyhedra_Library::Polyhedron::is_disjoint_from (const Polyhedron & y)
const

Returns t rue if and only if *this and y are disjoint.

Exceptions:

std::invalid_argument Thrown if x and y are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 393

11.43.3.5 bool Parma_Polyhedra_Library::Polyhedron::constrains (Variable var) const

Returns t rue if and only if var is constrained in *this.

Exceptions:

std::invalid_argument Thrown if var is not a space dimension of xthis.

11.43.3.6 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_above (const
Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from above in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

11.43.3.7 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_below (const
Linear_Expression & expr) const [inline]

Returns t rue if and only if expr is bounded from below in *this.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

11.43.3.8 bool Parma_Polyhedra_Library::Polyhedron::maximize (const Linear_Expression &
expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum) const [inline]

Returns t rue if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value is computed.
Parameters:

expr The linear expression to be maximized subject to *this;
sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d and
maximum are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 394

11.43.3.9 bool Parma_Polyhedra_Library::Polyhedron::maximize (const Linear_Expression &
expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum, Generator & g)
const [inline]

Returns true if and only if *this is not empty and expr is bounded from above in *this, in which
case the supremum value and a point where expr reaches it are computed.

Parameters:

expr The linear expression to be maximized subject to xthis;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

g When maximization succeeds, will be assigned the point or closure point where expr reaches its
supremum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from above, false is returned and sup_n, sup_d, maximum
and g are left untouched.

11.43.3.10 bool Parma_Polyhedra_Library::Polyhedron::minimize (const Linear_Expression &
expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum) const [inline]

Returns t rue if and only if *this is not empty and expr is bounded from below in *xthis, in which
case the infimum value is computed.

Parameters:

expr The linear expression to be minimized subject to xthis;
inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, false is returned and inf_n, inf_d and
minimum are left untouched.

11.43.3.11 bool Parma_Polyhedra_Library::Polyhedron::minimize (const Linear_Expression &
expr, Coefficient & inf _n, Coefficient & inf_d, bool & minimum, Generator & g) const
[inline]

Returns true if and only if xthis is not empty and expr is bounded from below in *this, in which
case the infimum value and a point where expr reaches it are computed.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 395

Parameters:

expr The linear expression to be minimized subject to xthis;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

g When minimization succeeds, will be assigned a point or closure point where expr reaches its
infimum value.

Exceptions:

std::invalid_argument Thrown if expr and *this are dimension-incompatible.

If xthis is empty or expr is not bounded from below, falseisreturnedand inf_n, inf_d,minimum
and g are left untouched.

11.43.3.12 bool Parma_Polyhedra_Library::Polyhedron::contains (const Polyhedron & y) const

Returns t rue if and only if *this contains y.

Exceptions:

std::invalid_argument Thrown if *this and y are topology-incompatible or dimension-
incompatible.

11.43.3.13 bool Parma_Polyhedra_Library::Polyhedron::strictly_contains (const Polyhedron & y)
const [inline]

Returns t rue if and only if *this strictly contains y.

Exceptions:

std::invalid_argument Thrown if sthis and y are topology-incompatible or dimension-
incompatible.

11.43.3.14 bool Parma_Polyhedra_Library::Polyhedron::OK (bool check_not_empty = false)
const

Checks if all the invariants are satisfied.

Returns:
true if and only if *this satisfies all the invariants and either check_not_empty is false or
*this is not empty.

Parameters:

check_not_empty true if and only if, in addition to checking the invariants, *this must be checked
to be not empty.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 396

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are written on std: : cerr in case invariants are violated. This is
useful for the purpose of debugging the library.

11.43.3.15 void Parma_Polyhedra_Library::Polyhedron::add_constraint (const Constraint & c)

Adds a copy of constraint c to the system of constraints of xthis (without minimizing the result).

Parameters:

¢ The constraint that will be added to the system of constraints of xthis.

Exceptions:

std::invalid_argument Thrown if xthis and constraint c are topology-incompatible or dimension-
incompatible.

11.43.3.16 bool Parma_Polyhedra_Library::Polyhedron::add_constraint_and_minimize (const
Constraint & ¢)

Adds a copy of constraint c to the system of constraints of *this, minimizing the result.

Parameters:

¢ The constraint that will be added to the system of constraints of xthis.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if xthis and constraint c are topology-incompatible or dimension-
incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.43.3.17 void Parma_Polyhedra_Library::Polyhedron::add_generator (const Generator & g)

Adds a copy of generator g to the system of generators of xthis (without minimizing the result).

Exceptions:

std::invalid_argument Thrown if xthis and generator g are topology-incompatible or dimension-
incompatible, or if *this is an empty polyhedron and g is not a point.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 397

11.43.3.18 bool Parma_Polyhedra_Library::Polyhedron::add_generator_and_minimize (const
Generator & g)

Adds a copy of generator g to the system of generators of *this, minimizing the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if xthis and generator g are topology-incompatible or dimension-
incompatible, or if xthis is an empty polyhedron and g is not a point.

Deprecated

See A Note on the Implementation of the Operators.

11.43.3.19 void Parma_Polyhedra_Library::Polyhedron::add_congruence (const Congruence &
cg)

Adds a copy of congruence cg to *this, if cg can be exactly represented by a polyhedron.

Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible, of if cg is
a proper congruence which is neither a tautology, nor a contradiction.

11.43.3.20 bool Parma_Polyhedra_Library::Polyhedron::add_congruence_and_minimize (const
Congruence & cg) [inline]

Adds a copy of congruence cg to *this, if cg can be exactly represented by a polyhedron, minimizing
the result.

Returns:

false if and only if the result is empty.

Exceptions:

std::invalid_argument Thrown if xthis and congruence cg are dimension-incompatible, of if cg is
a proper congruence which is neither a tautology, nor a contradiction.

Deprecated

See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 398

11.43.3.21 void Parma_Polyhedra_Library::Polyhedron::add_constraints (const
Constraint_System & cs)

Adds a copy of the constraints in cs to the system of constraints of xthis (without minimizing the result).

Parameters:

¢s Contains the constraints that will be added to the system of constraints of xthis.

Exceptions:

std::invalid_argument Thrown if %this and cs are topology-incompatible or dimension-
incompatible.

11.43.3.22 void Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints
(Constraint_System & cs)

Adds the constraints in cs to the system of constraints of *t his (without minimizing the result).

Parameters:

c¢s The constraint system to be added to *this. The constraints in cs may be recycled.

Exceptions:

std::invalid_argument Thrown if *this and cs are topology-incompatible or dimension-
incompatible.

Warning:

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

11.43.3.23 bool Parma_Polyhedra_Library::Polyhedron::add_constraints_and_minimize (const
Constraint_System & cs)

Adds a copy of the constraints in cs to the system of constraints of xthis, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

¢s Contains the constraints that will be added to the system of constraints of xthis.

Exceptions:

std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 399

Deprecated

See A Note on the Implementation of the Operators.

11.43.3.24 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints_and_-
minimize (Constraint_System & cs)

Adds the constraints in cs to the system of constraints of *this, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:
¢s The constraint system to be added to xthis. The constraints in cs may be recycled.
Exceptions:

std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

Warning:

The only assumption that can be made on cs upon successful or exceptional return is that it can be
safely destroyed.

Deprecated

See A Note on the Implementation of the Operators.

11.43.3.25 void Parma_Polyhedra_Library::Polyhedron::add_generators (const
Generator_System & gs)

Adds a copy of the generators in gs to the system of generators of *this (without minimizing the result).
Parameters:

gs Contains the generators that will be added to the system of generators of xthis.
Exceptions:

std::invalid_argument Thrown if *this and gs are topology-incompatible or dimension-
incompatible, or if *this is empty and the system of generators gs is not empty, but has no
points.

11.43.3.26 void Parma_Polyhedra_Library::Polyhedron::add_recycled_generators
(Generator_System & gs)

Adds the generators in gs to the system of generators of *this (without minimizing the result).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 400

Parameters:

gs The generator system to be added to *this. The generators in gs may be recycled.

Exceptions:

std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or if *this is empty and the system of generators gs is not empty, but has no
points.

Warning:

The only assumption that can be made on gs upon successful or exceptional return is that it can be
safely destroyed.

11.43.3.27 bool Parma_Polyhedra_Library::Polyhedron::add_generators_and_minimize (const
Generator_System & gs)

Adds a copy of the generators in gs to the system of generators of *this, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

gs Contains the generators that will be added to the system of generators of xthis.

Exceptions:

std::invalid_argument Thrown if *this and gs are topology-incompatible or dimension-
incompatible, or if *this is empty and the the system of generators gs is not empty, but has no
points.

Deprecated

See A Note on the Implementation of the Operators.

11.43.3.28 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_generators_and_minimize
(Generator_System & gs)

Adds the generators in gs to the system of generators of *this, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:

gs The generator system to be added to *this. The generators in gs may be recycled.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 401

Exceptions:

std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or if *this is empty and the the system of generators gs is not empty, but has no
points.

Warning:

The only assumption that can be made on gs upon successful or exceptional return is that it can be
safely destroyed.

Deprecated

See A Note on the Implementation of the Operators.

11.43.3.29 void Parma_Polyhedra_Library::Polyhedron::add_congruences (const
Congruence_System & cgs)

Adds a copy of the congruences in cgs to *this, if all the congruences can be exactly represented by a
polyhedron.

Parameters:
cgs The congruences to be added.

Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, of if there exists in
cgs a proper congruence which is neither a tautology, nor a contradiction.

11.43.3.30 bool Parma_Polyhedra_Library::Polyhedron::add_congruences_and_minimize (const
Congruence_System & c¢gs) [inline]

Adds a copy of the congruences in cgs to *this, if all the congruences can be exactly represented by a
polyhedron, minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:
cgs The congruences to be added.
Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, of if there exists in
cgs a proper congruence which is neither a tautology, nor a contradiction

Deprecated

See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 402

11.43.3.31 void Parma_Polyhedra_Library::Polyhedron::add_recycled_congruences
(Congruence_System & cgs) [inline]

Adds the congruences in cgs to *this, if all the congruences can be exactly represented by a polyhedron.

Parameters:
cgs The congruences to be added. Its elements may be recycled.
Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible, of if there exists in
cgs a proper congruence which is neither a tautology, nor a contradiction

Warning:

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

11.43.3.32 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_congruences_and_-
minimize (Congruence_System & cgs) [inline]

Adds the congruences in cgs to ¥t his, if all the congruences can be exactly represented by a polyhedron,
minimizing the result.

Returns:

false if and only if the result is empty.

Parameters:
cgs The congruences to be added. Its elements may be recycled.
Exceptions:

std::invalid_argument Thrown if xthis and cgs are dimension-incompatible, of if there exists in
cgs a proper congruence which is neither a tautology, nor a contradiction

Warning:

The only assumption that can be made on cgs upon successful or exceptional return is that it can be
safely destroyed.

Deprecated

See A Note on the Implementation of the Operators.

11.43.3.33 void Parma_Polyhedra_Library::Polyhedron::refine_with_constraint (const Constraint
& ¢)

Uses a copy of constraint ¢ to refine xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 403

Exceptions:

std::invalid_argument Thrown if *this and constraint ¢ are dimension-incompatible.

11.43.3.34 void Parma_Polyhedra_Library::Polyhedron::refine_with_congruence (const
Congruence & cg)

Uses a copy of congruence cg to refine xthis.

Exceptions:

std::invalid_argument Thrown if *this and congruence cg are dimension-incompatible.

11.43.3.35 void Parma_Polyhedra_Library::Polyhedron::refine_with_constraints (const
Constraint_System & cs)

Uses a copy of the constraints in c¢s to refine xthis.

Parameters:

¢s Contains the constraints used to refine the system of constraints of xthis.

Exceptions:

std::invalid_argument Thrown if xthis and cs are dimension-incompatible.

11.43.3.36 void Parma_Polyhedra_Library::Polyhedron::refine_with_congruences (const
Congruence_System & cgs)

Uses a copy of the congruences in cgs to refine xthis.

Parameters:

cgs Contains the congruences used to refine the system of constraints of xthis.

Exceptions:

std::invalid_argument Thrown if *this and cgs are dimension-incompatible.

11.43.3.37 void Parma_Polyhedra_Library::Polyhedron::unconstrain (Variable var)

Computes the cylindrification of *this with respect to space dimension var, assigning the result to
xthis.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 404

Parameters:
var The space dimension that will be unconstrained.
Exceptions:

std::invalid_argument Thrown if var is not a space dimension of *this.

11.43.3.38 void Parma_Polyhedra_Library::Polyhedron::unconstrain (const Variables_Set &
to_be_unconstrained)

Computes the cylindrification of *this with respect to the set of space dimensions to_be_-
unconstrained, assigning the result to xthis.

Parameters:
to_be_unconstrained The set of space dimension that will be unconstrained.
Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

11.43.3.39 void Parma_Polyhedra_Library::Polyhedron::intersection_assign (const Polyhedron &
y)

Assigns to xthis the intersection of xthis and y. The result is not guaranteed to be minimized.

Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.43.3.40 bool Parma_Polyhedra_Library::Polyhedron::intersection_assign_and_minimize
(const Polyhedron & y)

Assigns to xthis the intersection of xthis and y, minimizing the result.
Returns:

false if and only if the result is empty.
Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

Deprecated

See A Note on the Implementation of the Operators.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 405

11.43.3.41 void Parma_Polyhedra_Library::Polyhedron::poly_hull_assign (const Polyhedron & y)

Assigns to xthis the poly-hull of xthis and y. The result is not guaranteed to be minimized.

Exceptions:

std::invalid_argument Thrown if sthis and y are topology-incompatible or dimension-
incompatible.

11.43.3.42 bool Parma_Polyhedra_Library::Polyhedron::poly_hull_assign_and_minimize (const
Polyhedron & y)

Assigns to xthis the poly-hull of *this and y, minimizing the result.
Returns:

false if and only if the result is empty.
Exceptions:

std::invalid_argument Thrown if *this and y are topology-incompatible or dimension-
incompatible.

Deprecated

See A Note on the Implementation of the Operators.

11.43.3.43 void Parma_Polyhedra_Library::Polyhedron::poly_difference_assign (const
Polyhedron & y)

Assigns to xthis the poly-difference of xthis and y. The result is not guaranteed to be minimized.

Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.43.3.44 bool Parma_Polyhedra_Library::Polyhedron::simplify_using_context_assign (const
Polyhedron & y)

Assigns to xthis a meet-preserving simplification of xt his with respect to y. If false is returned, then
the intersection is empty.

Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 406

11.43.3.45 void Parma_Polyhedra_Library::Polyhedron::affine_image (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to xthis the affine image of *this under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is assigned;
expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.43.3.46 void Parma_Polyhedra_Library::Polyhedron::affine_preimage (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_reference denominator =
Coefficient_one())

Assigns to xthis the affine preimage of xthis under the function mapping variable var to the affine
expression specified by expr and denominator.

Parameters:

var The variable to which the affine expression is substituted;
expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of *this.

11.43.3.47 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image
(Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

expr

Assigns to ¥this the image of *this with respect to the generalized affine relation var’ pq g —"P——

where i< is the relation symbol encoded by relsym.
Parameters:

var The left hand side variable of the generalized affine relation;

relsym The relation symbol;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 407

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of xthis or if *this is a C_Polyhedron
and relsymis a strict relation symbol.

11.43.3.48 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_preimage
(Variable var, Relation_Symbol relsym, const Linear_Expression & expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to *this the preimage of *xthis with respect to the generalized affine relation var’ <

d%, where 1< is the relation symbol encoded by relsym.
enominator

Parameters:
var The left hand side variable of the generalized affine relation;
relsym The relation symbol,
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if expr and *this are dimension-
incompatible or if var is not a space dimension of xthis or if *this is a C_Polyhedron
and relsymis a strict relation symbol.

11.43.3.49 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs)

Assigns to *this the image of xthis with respect to the generalized affine relation lhs’ i rhs, where
is the relation symbol encoded by relsym.
Parameters:

Ihs The left hand side affine expression;
relsym The relation symbol,

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with 1hs or rhs orif *this is
a C_Polyhedron and relsym is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 408

11.43.3.50 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_preimage (const
Linear_Expression & lhs, Relation_Symbol relsym, const Linear_Expression & rhs)

Assigns to xthis the preimage of ¥t his with respect to the generalized affine relation lhs’ > rhs, where
< is the relation symbol encoded by relsym.

Parameters:

Ihs The left hand side affine expression;
relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions:

std::invalid_argument Thrown if xthis is dimension-incompatible with 1hs or rhs orif *this is
a C_Polyhedron and relsym is a strict relation symbol.

11.43.3.51 void Parma_Polyhedra_Library::Polyhedron::bounded_affine_image (Variable
var, const Linear_Expression & Ib_expr, const Linear_Expression & ub_expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to *this the image of xthis with respect to the bounded affine relation % < var’ <

ub_expr
denominator *

Parameters:

var The variable updated by the affine relation;
Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
*this are dimension-incompatible or if var is not a space dimension of *this.

11.43.3.52 void Parma_Polyhedra_Library::Polyhedron::bounded_affine_preimage (Variable
var, const Linear_Expression & Ib_expr, const Linear_Expression & ub_expr,
Coefficient_traits::const_reference denominator = Coefficient_one())

Assigns to xthis the preimage of *this with respect to the bounded affine relation dlb-& <var’ <
enominator
ub_expr
denominator *
Parameters:

var The variable updated by the affine relation;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 409

Ib_expr The numerator of the lower bounding affine expression;
ub_expr The numerator of the upper bounding affine expression;

denominator The (common) denominator for the lower and upper bounding affine expressions (op-
tional argument with default value 1).

Exceptions:

std::invalid_argument Thrown if denominator is zero or if 1b_expr (resp., ub_expr) and
xthis are dimension-incompatible or if var is not a space dimension of *this.

11.43.3.53 void Parma_Polyhedra_Library::Polyhedron::time_elapse_assign (const Polyhedron &
y)

Assigns to xthis the result of computing the time-elapse between sthis and y.

Exceptions:

std::invalid_argument Thrown if sthis and y are topology-incompatible or dimension-
incompatible.

11.43.3.54 void Parma_Polyhedra_Library::Polyhedron::BHRZ03_widening_assign (const
Polyhedron & y, unsigned x fp = 0)

Assigns to xthis the result of computing the BHRZ03-widening between *this and y.

Parameters:

y A polyhedron that must be contained in *this;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).
Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.43.3.55 void Parma_Polyhedra_Library::Polyhedron::limited_ BHRZ03_extrapolation_assign
(const Polyhedron & y, const Constraint_System & cs, unsigned * fp = 0)

Assigns to *this the result of computing the limited extrapolation between *this and y using the
BHRZ03-widening operator.

Parameters:

y A polyhedron that must be contained in xthis;

¢s The system of constraints used to improve the widened polyhedron;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 410

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if xthis, y and cs are topology-incompatible or dimension-
incompatible.

11.43.3.56 void Parma_Polyhedra_Library::Polyhedron::bounded_BHRZ(03_extrapolation_-
assign (const Polyhedron & y, const Constraint_System & cs, unsigned * fp =
0)

Assigns to xthis the result of computing the bounded extrapolation between *this and y using the
BHRZ03-widening operator.

Parameters:

y A polyhedron that must be contained in xthis;
¢s The system of constraints used to improve the widened polyhedron;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if xthis, y and cs are topology-incompatible or dimension-
incompatible.

11.43.3.57 void Parma_Polyhedra_Library::Polyhedron::H79_widening_assign (const Polyhedron
& y, unsigned * tp = 0)

Assigns to xthis the result of computing the H79_widening between «this and y.

Parameters:

y A polyhedron that must be contained in xthis;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if sthis and y are topology-incompatible or dimension-
incompatible.

11.43.3.58 void Parma_Polyhedra_Library::Polyhedron::limited_H?79_extrapolation_assign
(const Polyhedron & y, const Constraint_System & cs, unsigned * tp = 0)

Assigns to xthis the result of computing the limited extrapolation between *xthis and y using the H79-
widening operator.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 411

Parameters:

y A polyhedron that must be contained in *this;
¢s The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if xthis, y and cs are topology-incompatible or dimension-
incompatible.

11.43.3.59 void Parma_Polyhedra_Library::Polyhedron::bounded_H79_extrapolation_assign
(const Polyhedron & y, const Constraint_System & cs, unsigned * tp = 0)

Assigns to xthis the result of computing the bounded extrapolation between xthis and y using the
H79-widening operator.

Parameters:

y A polyhedron that must be contained in *this;
¢s The system of constraints used to improve the widened polyhedron;

fp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying the widening with tokens delay technique).

Exceptions:

std::invalid_argument Thrown if xthis, y and cs are topology-incompatible or dimension-
incompatible.

11.43.3.60 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_embed
(dimension_type m)

Adds m new space dimensions and embeds the old polyhedron in the new vector space.

Parameters:

m The number of dimensions to add.
Exceptions:

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are not
constrained. For instance, when starting from the polyhedron P C R? and adding a third space dimension,
the result will be the polyhedron

{(J:,y,z)T eR? ‘ (z,y)T € 77}.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 412

11.43.3.61 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_project
(dimension_type m)

Adds m new space dimensions to the polyhedron and does not embed it in the new vector space.

Parameters:

m The number of space dimensions to add.

Exceptions:
std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed

dimension max_space_dimension ().

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are all
constrained to be equal to 0. For instance, when starting from the polyhedron P C R? and adding a third
space dimension, the result will be the polyhedron

{(x,y,O)T e R3 | (z,y)" e 77}.

11.43.3.62 void Parma_Polyhedra_Library::Polyhedron::concatenate_assign (const Polyhedron &
y)

Assigns to xthis the concatenation of *this and y, taken in this order.

Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible.

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension ().

11.43.3.63 void Parma_Polyhedra_Library::Polyhedron::remove_space_dimensions (const
Variables_Set & to_be_removed)

Removes all the specified dimensions from the vector space.

Parameters:

to_be_removed The set of Variable objects corresponding to the space dimensions to be removed.

Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with one of the Variable objects
contained in to_be_removed.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 413

11.43.3.64 void Parma_Polyhedra_Library::Polyhedron::remove_higher_space_dimensions
(dimension_type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension new_ -
dimension.

Exceptions:

std::invalid_argument Thrown if new_dimensions is greater than the space dimension of xthis.

11.43.3.65 template<typename Partial_Function > void Parma_Polyhedra_-
Library::Polyhedron::map_space_dimensions (const Partial_Function & pfunc)
[inline]

Remaps the dimensions of the vector space according to a partial function.

Parameters:

pfunc The partial function specifying the destiny of each space dimension.
The template class Partial_Function must provide the following methods.
bool has_empty_codomain () const

returns true if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). The has_empty_codomain () method will always be called before the methods below.
However, if has_empty_codomain () returns t rue, none of the functions below will be called.

dimension_type max_in_codomain () const

returns the maximum value that belongs to the codomain of the partial function. The max_in_-—
codomain () method is called at most once.

bool maps (dimension_type i, dimension_type& j) const

Let f be the represented function and k be the value of i. If f is defined in k, then f(k) is assigned to
j and true is returned. If f is undefined in &, then false is returned. This method is called at most n
times, where n is the dimension of the vector space enclosing the polyhedron.

The result is undefined if pfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

11.43.3.66 void Parma_Polyhedra_Library::Polyhedron::expand_space_dimension (Variable var,
dimension_type m)

Creates m copies of the space dimension corresponding to var.

Parameters:

var The variable corresponding to the space dimension to be replicated;

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.43 Parma_Polyhedra_Library::Polyhedron Class Reference 414

m The number of replicas to be created.

Exceptions:

std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if adding m new space dimensions would cause the vector space to exceed
dimension max_space_dimension ().

If xthis has space dimension n, with n > 0, and var has space dimension k < n, then the k-th space
dimension is expanded to m new space dimensions n,n+ 1,...,n+m — 1.

11.43.3.67 void Parma_Polyhedra_Library::Polyhedron::fold_space_dimensions (const
Variables_Set & fo_be_folded, Variable var)

Folds the space dimensions in to_be_folded into var.

Parameters:

to_be_folded The set of Variable objects corresponding to the space dimensions to be folded;
var The variable corresponding to the space dimension that is the destination of the folding operation.
Exceptions:

std::invalid_argument Thrown if *this is dimension-incompatible with var or with one of the
Variable objects contained in to_be_folded. Also thrown if var is contained in to_be_ -
folded.

If xthis has space dimension n, with n > 0, var has space dimension k£ < n, to_be_foldedis a set
of variables whose maximum space dimension is also less than or equal to n, and var is not a member of
to_be_folded, then the space dimensions corresponding to variables in to_be_folded are folded
into the k-th space dimension.

11.43.3.68 void Parma_Polyhedra_Library::Polyhedron::swap (Polyhedron & y) [inline]

Swaps *xthis with polyhedron y. (xthis and y can be dimension-incompatible.).

Exceptions:

std::invalid_argument Thrown if x and y are topology-incompatible.

11.43.3.69 int32_t Parma_Polyhedra_Library::Polyhedron::hash_code () const [inline]

Returns a 32-bit hash code for *this. If x and y are such that x == vy, then x.hash_code () ==
y.hash_code ().

The documentation for this class was generated from the following file:

* ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.44 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 415

11.44 Parma_Polyhedra_Library::Powerset< D > Class Template Reference

The powerset construction on a base-level domain.

#include <ppl.hh>

Public Types

* typedef iterator_to_const< Sequence > iterator

Alias for a read-only bidirectional iterator on the disjuncts of a Powerset element.

* typedef const_iterator_to_const< Sequence > const_iterator

A bidirectional const_iterator on the disjuncts of a Powerset element.

* typedef std::reverse_iterator< iterator > reverse_iterator

The reverse iterator type built from Powerset: :iterator.

* typedef std::reverse_iterator<< const_iterator > const_reverse_iterator

The reverse iterator type built from Powerset::const_iterator.

Public Member Functions
Constructors and Destructor

* Powerset ()

Default constructor: builds the bottom of the powerset constraint system (i.e., the empty powerset).

* Powerset (const Powerset &y)

Copy constructor.

e Powerset (const D &d)

If d is not bottom, builds a powerset containing only d. Builds the empty powerset otherwise.

* ~Powerset ()

Destructor.

Member Functions that Do Not Modify the Powerset Object

* bool definitely_entails (const Powerset &y) const

Returns true if xt his definitely entails y. Returns false if xthis may not entail y (i.e., if xthis
does not entail y or if entailment could not be decided).

* bool is_top () const

Returns t rue if and only if xt hi s is the top element of the powerset constraint system (i.e., it represents
the universe).

¢ bool is_bottom () const

Returns true if and only if xthis is the bottom element of the powerset constraint system (i.e., it
represents the empty set).

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.44 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 416

* memory_size_type total_memory_in_bytes () const

Returns a lower bound to the total size in bytes of the memory occupied by xt his.

* memory_size_type external_memory_in_bytes () const

Returns a lower bound to the size in bytes of the memory managed by xthis.

¢ bool OK (bool disallow_bottom=false) const

Checks if all the invariants are satisfied.

Member Functions for the Direct Manipulation of Disjuncts

* void omega_reduce () const

Drops from the sequence of disjuncts in xthis all the non-maximal elements so that xthis is non-
redundant.

* size_type size () const

Returns the number of disjuncts.

* bool empty () const

Returns t rue if and only if there are no disjuncts in xthis.

* iterator begin ()

Returns an iterator pointing to the first disjunct, if xt his is not empty; otherwise, returns the past-the-
end iterator.

e iterator end ()

Returns the past-the-end iterator.

* const_iterator begin () const

Returns a const_iterator pointing to the first disjunct, if xthis is not empty; otherwise, returns the
past-the-end const_iterator.

 const_iterator end () const

Returns the past-the-end const_iterator.

* reverse_iterator rbegin ()

Returns a reverse_iterator pointing to the last disjunct, if xthis is not empty; otherwise, returns the
before-the-start reverse_iterator.

e reverse_iterator rend ()

Returns the before-the-start reverse_iterator.

* const_reverse_iterator rbegin () const

Returns a const_reverse_iterator pointing to the last disjunct, if xt his is not empty; otherwise, returns
the before-the-start const_reverse_iterator.

¢ const_reverse_iterator rend () const

Returns the before-the-start const_reverse_iterator.

* void add_disjunct (const D &d)
Adds to xthis the disjunct d.

* iterator drop_disjunct (iterator position)

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.44 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 417

Drops the disjunct in xthis pointed to by position, returning an iterator to the disjunct following
position.

* void drop_disjuncts (iterator first, iterator last)

Drops all the disjuncts from first to last (excluded).

¢ void clear ()

Drops all the disjuncts, making xthis an empty powerset.

Member Functions that May Modify the Powerset Object

* Powerset & operator= (const Powerset &y)

The assignment operator.

* void swap (Powerset &y)
Swaps xthis with y.

* void least_upper_bound_assign (const Powerset &y)
Assigns to xthis the least upper bound of *xthis and y.

* void upper_bound_assign (const Powerset &y)
Assigns to xthis an upper bound of xthis and y.

* bool upper_bound_assign_if_exact (const Powerset &y)

Assigns to xthis the least upper bound of xthis and y and returns t rue.

* void meet_assign (const Powerset &y)

Assigns to xthis the meet of xthis and y.

* void collapse ()

If xthis is not empty (i.e., it is not the bottom element), it is reduced to a singleton obtained by comput-
ing an upper-bound of all the disjuncts.

Protected Types

¢ typedef std::list< D > Sequence

A powerset is implemented as a sequence of elements.

* typedef Sequence::iterator Sequence_iterator

Alias for the low-level iterator on the disjuncts.

* typedef Sequence::const_iterator Sequence_const_iterator

Alias for the low-level const_iterator on the disjuncts.

Protected Member Functions

* bool is_omega_reduced () const

Returns t rue if and only if xt his does not contain non-maximal elements.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.44 Parma_Polyhedra_Library::Powerset< D > Class Template Reference

418

* void collapse (unsigned max_disjuncts)

Upon return, xthis will contain at most max_dis juncts elements; the set of disjuncts in positions

greater than or equal to max_dis juncts, will be replaced at that position by their upper-bound.

* iterator add_non_bottom_disjunct_preserve_reduction (const D &d, iterator first, iterator last)

Adds to xt his the disjunct d, assuming d is not the bottom element and ensuring partial Omega-reduction.

* void add_non_bottom_disjunct_preserve_reduction (const D &d)

Adds to xthis the disjunct d, assuming d is not the bottom element and preserving Omega-reduction.

* template<typename Binary_Operator_Assign >
void pairwise_apply_assign (const Powerset &y, Binary_Operator_Assign op_assign)

Assigns to xt his the result of applying op_assign pairwise to the elements in xthis and y.

Protected Attributes

* Sequence sequence

The sequence container holding powerset’s elements.

¢ bool reduced

If true, xthis is Omega-reduced.

11.44.1 Detailed Description

template<typename D> class Parma_Polyhedra_Library::Powerset< D >

The powerset construction on a base-level domain. This class offers a generic implementation of a powerset

domain as defined in Section The Powerset Construction.

Besides invoking the available methods on the disjuncts of a Powerset, this class also provides bidirectional
iterators that allow for a direct inspection of these disjuncts. For a consistent handling of Omega-reduction,
all the iterators are read-only, meaning that the disjuncts cannot be overwritten. Rather, by using the class
iterator, itis possible to drop one or more disjuncts (possibly so as to later add back modified versions).
As an example of iterator usage, the following template function drops from powerset ps all the disjuncts

that would have become redundant by the addition of an external element d.

template <typename D>
void
drop_subsumed (Powerset<D>& ps, const D& d) {
for (typename Powerset<D>::iterator i = ps.begin(),
ps_end = ps.end(), i != ps_end;)
if (i->definitely_entails(d))
i = ps.drop_disjunct (i) ;
else
++1;

The template class D must provide the following methods.

memory_size_type total_memory_in_bytes () const

Returns a lower bound on the total size in bytes of the memory occupied by the instance of D.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.44 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 419

bool is_top() const

Returns t rue if and only if the instance of D is the top element of the domain.
bool is_bottom() const

Returns t rue if and only if the instance of D is the bottom element of the domain.
bool definitely_entails(const D& y) const

Returns true if the instance of D definitely entails y. Returns false if the instance may not entail y
(i.e., if the instance does not entail y or if entailment could not be decided).

void upper_bound_assign (const D& vy)

Assigns to the instance of D an upper bound of the instance and y.
void meet_assign(const D& y)

Assigns to the instance of D the meet of the instance and y.

bool OK() const

Returns t rue if the instance of D is in a consistent state, else returns false.

The following operators on the template class D must be defined.
operator<<(std::ostreams s, const D& x)

Writes a textual representation of the instance of D on s.
operator==(const D& x, const D& y)

Returns t rue if and only if x and y are equivalent D’s.

operator!=(const D& x, const D& y)

Returns t rue if and only if x and y are different D’s.

11.44.2 Member Typedef Documentation

11.44.2.1 template<typename D> typedef std::list<D> Parma_Polyhedra_Library::Powerset< D
>::Sequence [protected]

A powerset is implemented as a sequence of elements. The particular sequence employed must support
efficient deletion in any position and efficient back insertion.

11.44.2.2 template<typename D> typedef iterator_to_const<Sequence>
Parma_Polyhedra_Library::Powerset< D >::iterator

Alias for a read-only bidirectional iterator on the disjuncts of a Powerset element. By using this it-
erator type, the disjuncts cannot be overwritten, but they can be removed using methods drop_-
disjunct (iterator position) and drop_disjuncts (iterator first, iterator
last), while still ensuring a correct handling of Omega-reduction.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.44 Parma_Polyhedra_Library::Powerset< D > Class Template Reference 420

11.44.3 Member Function Documentation

11.44.3.1 template<typename D > void Parma_Polyhedra_Library::Powerset< D
>::omega_reduce () const [inline]

Drops from the sequence of disjuncts in xthis all the non-maximal elements so that xthis is non-
redundant. This method is declared const because, even though Omega-reduction may change the syn-
tactic representation of xthis, its semantics will be unchanged.

11.44.3.2 template<typename D > void Parma_Polyhedra_Library::Powerset< D
>::upper_bound_assign (const Powerset< D > & y) [inline]

Assigns to xthis an upper bound of xthis and y. The result will be the least upper bound of *this
and y.

11.44.3.3 template<typename D > bool Parma_Polyhedra_Library::Powerset< D
>::upper_bound_assign_if_exact (const Powerset< D > & y) [inline]

Assigns to xthis the least upper bound of *this and y and returns t rue.

Exceptions:

std::invalid_argument Thrown if xthis and y are dimension-incompatible.

11.44.3.4 template<typename D> Powerset< D >::iterator Parma_Polyhedra_-
Library::Powerset< D >::add_non_bottom_disjunct_preserve_reduction (const D & d,
iterator first, iterator last) [inline, protected]

Adds to *this the disjunct d, assuming d is not the bottom element and ensuring partial Omega-reduction.
If d is not the bottom element and is not Omega-redundant with respect to elements in positions between
first and last, all elements in these positions that would be made Omega-redundant by the addition
of d are dropped and d is added to the reduced sequence. If xthis is reduced before an invocation of this
method, it will be reduced upon successful return from the method.

11.44.3.5 template<typename D> void Parma_Polyhedra_Library::Powerset< D
>::add_non_bottom_disjunct_preserve_reduction (const D & d) [inline,
protected]

Adds to xthis the disjunct d, assuming d is not the bottom element and preserving Omega-reduction. If
*xthis is reduced before an invocation of this method, it will be reduced upon successful return from the
method.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.45 Parma_Polyhedra_Library::Recycle_Input Struct Reference 421

11.44.3.6 template<typename D > template<typename Binary_Operator_Assign > void
Parma_Polyhedra_Library::Powerset< D >::pairwise_apply_assign (const Powerset<
D > &y, Binary_Operator_Assign op_assign) [inline, protected]

Assigns to *this the result of applying op_assign pairwise to the elements in *this and y. The
elements of the powerset result are obtained by applying op_assign to each pair of elements whose
components are drawn from *this and y, respectively.

The documentation for this class was generated from the following file:

e ppl.hh

11.45 Parma_Polyhedra_Library::Recycle_Input Struct Reference

A tag class.
#include <ppl.hh>

11.45.1 Detailed Description

A tag class. Tag class to distinguish those constructors that recycle the data structures of their arguments,
instead of taking a copy.

The documentation for this struct was generated from the following file:

* ppl.hh

11.46 Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > Class Template
Reference

This class provides the reduction method for the Smash_Product domain.

#include <ppl.hh>

Public Member Functions

¢ Smash_Reduction ()

Default constructor.

¢ void product_reduce (D1 &d1, D2 &d2)

The smash reduction operator for propagating emptiness between the domain elements d1 and d2.

¢ ~Smash_Reduction ()

Destructor.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.47 Parma_Polyhedra_Library::Throwable Class Reference 422

11.46.1 Detailed Description

template<typename D1, typename D2> class Parma_Polyhedra_Library::Smash_Reduction< D1,
D2 >

This class provides the reduction method for the Smash_Product domain. The reduction classes are used

to instantiate the Partially_Reduced_Product domain. This class propagates emptiness between its compo-
nents.

11.46.2 Member Function Documentation
11.46.2.1 template<typename D1 , typename D2 > void Parma_Polyhedra_-

Library::Smash_Reduction< D1, D2 >::product_reduce (D1 & d1I, D2 & d2)
[inline]

The smash reduction operator for propagating emptiness between the domain elements d1 and d2. If either
of the the domain elements d1 or d2 is empty then the other is also set empty.

Parameters:

d1 A pointset domain element;

d2 A pointset domain element;

The documentation for this class was generated from the following file:

* ppl.hh

11.47 Parma_Polyhedra_Library::Throwable Class Reference

User objects the PPL can throw.

#include <ppl.hh>

Public Member Functions

e virtual void throw_me () const =0

Throws the user defined exception object.

e virtual ~Throwable ()

Virtual destructor.

11.47.1 Detailed Description

User objects the PPL can throw. This abstract base class should be instantiated by those users willing to
provide a polynomial upper bound to the time spent by any invocation of a library operator.

The documentation for this class was generated from the following file:

* ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.48 Parma_Polyhedra_Library::Variable Class Reference 423

11.48 Parma_Polyhedra_Library::Variable Class Reference

A dimension of the vector space.

#include <ppl.hh>

Classes

* struct Compare

Binary predicate defining the total ordering on variables.

Public Types

* typedef void output_function_type (std::ostream &s, const Variable &v)
Type of output functions.

Public Member Functions

* Variable (dimension_type 1)

Builds the variable corresponding to the Cartesian axis of index 1.

* dimension_type id () const

Returns the index of the Cartesian axis associated to the variable.

* dimension_type space_dimension () const

Returns the dimension of the vector space enclosing xt his.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

bool OK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Variable can handle.

* static void set_output_function (output_function_type *p)

Sets the output function to be used for printing Variable objects.

* static output_function_type * get_output_function ()

Returns the pointer to the current output function.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.48 Parma_Polyhedra_Library::Variable Class Reference 424

Related Functions
(Note that these are not member functions.)

¢ bool less (Variable v, Variable w)

Defines a total ordering on variables.

11.48.1 Detailed Description

A dimension of the vector space. An object of the class Variable represents a dimension of the space,
that is one of the Cartesian axes. Variables are used as basic blocks in order to build more complex
linear expressions. Each variable is identified by a non-negative integer, representing the index of the
corresponding Cartesian axis (the first axis has index 0). The space dimension of a variable is the dimension
of the vector space made by all the Cartesian axes having an index less than or equal to that of the considered
variable; thus, if a variable has index i, its space dimension is ¢ + 1.

Note that the “meaning” of an object of the class Variable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,

in the following example the linear expressions el and e2 are equivalent, since the two variables x and z
denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z (0);
Linear_Expression el = x + y;
Linear_Expression e2 =y + z;

11.48.2 Constructor & Destructor Documentation

11.48.2.1 Parma_Polyhedra_Library::Variable::Variable (dimension_type i) [inline,
explicit]

Builds the variable corresponding to the Cartesian axis of index i.

Exceptions:

std::length_error Thrown if i+1 exceeds Variable: :max_space_dimension ().

11.48.3 Member Function Documentation

11.48.3.1 dimension_type Parma_Polyhedra_Library::Variable::space_dimension () const
[inline]

Returns the dimension of the vector space enclosing xthis. The returned value is id () +1.

11.48.4 Friends And Related Function Documentation

11.48.4.1 bool less (Variable v, Variable w) [related]

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.49 Parma_Polyhedra_Library::Variables_Set Class Reference 425

Defines a total ordering on variables.

The documentation for this class was generated from the following file:

e ppl.hh

11.49 Parma_Polyhedra_Library::Variables_Set Class Reference

An std::set of variables’ indexes.

#include <ppl.hh>

Public Member Functions

¢ Variables_Set ()

Builds the empty set of variable indexes.

» Variables_Set (const Variable &vV)

Builds the singleton set of indexes containing v.1id (),.

¢ Variables_Set (const Variable &v, const Variable &w)

Builds the set of variables’s indexes in the range from v.id () to w.id ().

» dimension_type space_dimension () const

Returns the dimension of the smallest vector space enclosing all the variables whose indexes are in the set.

¢ void insert (Variable v)

Inserts the index of variavle v into the set.

¢ bool ascii_load (std::istream &s)

Loads from s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets xthis
accordingly. Returns t rue if successful, false otherwise.

* memory_size_type total_memory_in_bytes () const

Returns the total size in bytes of the memory occupied by xthis.

* memory_size_type external_memory_in_bytes () const

Returns the size in bytes of the memory managed by xthis.

¢ bool OK () const

Checks if all the invariants are satisfied.

* void ascii_dump () const

Writes to std: : cerr an ASCII representation of xt his.

¢ void ascii_dump (std::ostream &s) const

Writes to s an ASCII representation of xthis.

* void print () const

Prints xthisto std: :cerr using operator<<.

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.49 Parma_Polyhedra_Library::Variables_Set Class Reference 426

Static Public Member Functions

* static dimension_type max_space_dimension ()

Returns the maximum space dimension a Variables_Set can handle.

11.49.1 Detailed Description

An std::set of variables’ indexes.

11.49.2 Constructor & Destructor Documentation

11.49.2.1 Parma_Polyhedra_Library::Variables_Set::Variables_Set (const Variable & v, const
Variable & w)

Builds the set of variables’s indexes in the range from v.id () tow.id (). If v.id() <= w.id(),
this constructor builds the set of variables’ indexes v.id (), v.id () +1, ..., w.id (). The empty set it
built otherwise.

The documentation for this class was generated from the following file:

e ppl.hh

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index

abandon_expensive_computations

PPL_CXX _interface, 69

abs_assign

Parma_Polyhedra_Library::Checked_Number,
156

add_congruence

Parma_Polyhedra_Library::BD_Shape, 93
Parma_Polyhedra_Library::Box, 125
Parma_Polyhedra_Library::Grid, 231
Parma_Polyhedra_Library::Octagonal_Shape,

306
Parma_Polyhedra_Library::

Reduced_Product, 336
Parma_Polyhedra_Library::

Powerset, 364
Parma_Polyhedra_Library::

add_congruence_and_minimize

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Powerset, 365
Parma_Polyhedra_Library::

add_congruences

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
306
Parma_Polyhedra_Library::
Reduced_Product, 336

Partially_-
Pointset_-
Polyhedron, 396
BD_Shape, 93

Grid, 231
Pointset_-

Polyhedron, 396
BD_Shape, 95
Box, 126

Grid, 232
Octagonal_Shape,

Partially_-

Powerset, 362

Parma_Polyhedra_Library::
add_constraint_and_minimize

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

Powerset, 363

Parma_Polyhedra_Library::
add_constraints

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

283

Parma_Polyhedra_Library::

306
Parma_Polyhedra_Library

Polyhedron, 395
BD_Shape, 93
Grid, 234
Pointset_-

Polyhedron, 395

BD_Shape, 94
Box, 125
Grid, 234
MIP_Problem,

Octagonal_Shape,

::Partially_-

Reduced_Product, 337

Parma_Polyhedra_Library
Powerset, 363

Parma_Polyhedra_Library::
add_constraints_and_minimize

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

Powerset, 364

Parma_Polyhedra_Library::
add_disjunct
Parma_Polyhedra_Library::

Powerset, 362

::Pointset_-
Polyhedron, 396
BD_Shape, 94
Grid, 234
Pointset_-

Polyhedron, 397

Pointset_-

Parma_Polyhedra_Library::Pointset_-
Powerset, 365
Parma_Polyhedra_Library::Polyhedron, 400

add_generator
Parma_Polyhedra_Library::Polyhedron, 395
add_generator_and_minimize

add_congruences_and_minimize

Parma_Polyhedra_Library::

Parma_Polyhedra_Library::BD_Shape, 96 add_generators
Parma_Polyhedra_Library::Grid, 233 Parma_Polyhedra_Library::Polyhedron, 398
Parma_Polyhedra_Library::Pointset_- add_generators_and_minimize

Powerset, 366
Parma_Polyhedra_Library::

add_constraint

Polyhedron, 400

Parma_Polyhedra_Library::
add_grid_generator
Parma_Polyhedra_Library::Grid, 231

Parma_Polyhedra_Library::BD_Shape, 92 add_grid_generator_and_minimize
Parma_Polyhedra_Library::Box, 124 Parma_Polyhedra_Library::Grid, 232
Parma_Polyhedra_Library::Grid, 233 add_grid_generators
Parma_Polyhedra_Library::MIP_Problem, Parma_Polyhedra_Library::Grid, 237

282
Parma_Polyhedra_Library::

305
Parma_Polyhedra_Library::

Reduced_Product, 335
Parma_Polyhedra_Library::

Octagonal_Shape,
Partially_-

Pointset_-

add_grid_generators_and_minimize
Parma_Polyhedra_Library::Grid, 237
add_mul_assign

Parma_Polyhedra_Library::Checked_Number,

156
add_non_bottom_disjunct_preserve_reduction

Polyhedron, 395

Polyhedron, 399

INDEX

428

Parma_Polyhedra_Library::Powerset, 419
add_recycled_congruences
Parma_Polyhedra_Library::BD_Shape, 96
Parma_Polyhedra_Library::Box, 126
Parma_Polyhedra_Library::Grid, 232
Parma_Polyhedra_Library::Octagonal_Shape,
307
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 337
Parma_Polyhedra_Library::Polyhedron, 400
add_recycled_congruences_and_minimize
Parma_Polyhedra_Library::BD_Shape, 96
Parma_Polyhedra_Library::Grid, 233
Parma_Polyhedra_Library::Polyhedron, 401
add_recycled_constraints
Parma_Polyhedra_Library::BD_Shape, 94
Parma_Polyhedra_Library::Box, 125
Parma_Polyhedra_Library::Grid, 235
Parma_Polyhedra_Library::Octagonal_Shape,
306
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 338
Parma_Polyhedra_Library::Polyhedron, 397
add_recycled_constraints_and_minimize
Parma_Polyhedra_Library::BD_Shape, 95
Parma_Polyhedra_Library::Grid, 235
Parma_Polyhedra_Library::Polyhedron, 398
add_recycled_generators
Parma_Polyhedra_Library::Polyhedron, 398
add_recycled_generators_and_minimize
Parma_Polyhedra_Library::Polyhedron, 399
add_recycled_grid_generators
Parma_Polyhedra_Library::Grid, 237
add_recycled_grid_generators_and_minimize
Parma_Polyhedra_Library::Grid, 238
add_space_dimensions_and_embed
Parma_Polyhedra_Library::BD_Shape, 107
Parma_Polyhedra_Library::Box, 135
Parma_Polyhedra_Library::Grid, 246
Parma_Polyhedra_Library::MIP_Problem,
282
Parma_Polyhedra_Library::Octagonal_Shape,
316
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 344
Parma_Polyhedra_Library::Polyhedron, 410
add_space_dimensions_and_project
Parma_Polyhedra_Library::BD_Shape, 107
Parma_Polyhedra_Library::Box, 135
Parma_Polyhedra_Library::Grid, 247
Parma_Polyhedra_Library::Octagonal_Shape,
316
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 344

Parma_Polyhedra_Library::Polyhedron, 410
add_to_integer_space_dimensions
Parma_Polyhedra_Library::MIP_Problem,
282
add_unit_rows_and_columns
Parma_Polyhedra_Library::Congruence_-
System, 174
affine_image
Parma_Polyhedra_Library::BD_Shape, 100
Parma_Polyhedra_Library::Box, 130
Parma_Polyhedra_Library::Grid, 241
Parma_Polyhedra_Library::Octagonal_Shape,
310
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 340
Parma_Polyhedra_Library::Pointset_-
Powerset, 368
Parma_Polyhedra_Library::Polyhedron, 404
affine_preimage
Parma_Polyhedra_Library::BD_Shape, 100
Parma_Polyhedra_Library::Box, 130
Parma_Polyhedra_Library::Grid, 241
Parma_Polyhedra_Library::Octagonal_Shape,
310
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 340
Parma_Polyhedra_Library::Pointset_-
Powerset, 368
Parma_Polyhedra_Library::Polyhedron, 405
ANY_COMPLEXITY
PPL_CXX interface, 68
approximate_partition
Parma_Polyhedra_Library::Pointset_-
Powerset, 375
ascii_load
Parma_Polyhedra_Library::Generator_-
System, 210
Parma_Polyhedra_Library::Grid_Generator_-
System, 262
assign_r
Parma_Polyhedra_Library::Checked_Number,
154

banner
Parma_Polyhedra_Library, 75
BD_Shape
Parma_Polyhedra_Library::BD_Shape, 86-88
BGP99_extrapolation_assign
Parma_Polyhedra_Library::Pointset_-
Powerset, 371
BHMZ05_widening_assign
Parma_Polyhedra_Library::BD_Shape, 104
Parma_Polyhedra_Library::Octagonal_Shape,
314

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

429

BHRZ03_widening_assign

Parma_Polyhedra_Library::

BHZ03_widening_assign

Parma_Polyhedra_Library::

Powerset, 372
bounded_affine_image

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

312

Parma_Polyhedra_Library::

Reduced_Product, 34
Parma_Polyhedra_Library
Powerset, 370
Parma_Polyhedra_Library
bounded_affine_preimage
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
313
Parma_Polyhedra_Library
Reduced_Product, 34
Parma_Polyhedra_Library
Powerset, 371
Parma_Polyhedra_Library

Polyhedron, 408

Pointset_-

BD_Shape, 102
Box, 132

Grid, 243
Octagonal_Shape,

Partially_-
3
::Pointset_-

::Polyhedron, 407

::BD_Shape, 103
::Box, 133

::Grid, 244
::Octagonal_Shape,

::Partially_-
3

::Pointset_-

::Polyhedron, 407

bounded_BHRZ03_extrapolation_assign

Parma_Polyhedra_Library

::Polyhedron, 409

bounded_H79_extrapolation_assign

Parma_Polyhedra_Library::
bounds_from_above
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
303
Parma_Polyhedra_Library::
Reduced_Product, 333
Parma_Polyhedra_Library::
Powerset, 358
Parma_Polyhedra_Library::
bounds_from_below
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
303
Parma_Polyhedra_Library::
Reduced_Product, 333
Parma_Polyhedra_Library::
Powerset, 358
Parma_Polyhedra_Library::
Box

Polyhedron, 410
BD_Shape, 89
Box, 122

Grid, 227
Octagonal_Shape,
Partially_-
Pointset_-
Polyhedron, 392
BD_Shape, 89
Box, 122

Grid, 227
Octagonal_Shape,
Partially_-

Pointset_-

Polyhedron, 392

Parma_Polyhedra_Library::

C++ Language Interface, 60
C_Polyhedron

Parma_Polyhedra_Library::

141-144
CC76_extrapolation_assign

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

314
CC76_narrowing_assign

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

315
CC76_widening_assign

Parma_Polyhedra_Library::

ceil_assign

Parma_Polyhedra_Library::

155
check_containment

Parma_Polyhedra_Library::

Powerset, 375
classify

Parma_Polyhedra_Library::

153
clear

Parma_Polyhedra_Library::

282
CLOSURE_POINT

Parma_Polyhedra_Library::

closure_point

Parma_Polyhedra_Library::

cmp

Parma_Polyhedra_Library::

158
Coefficient
PPL_CXX _interface, 66
coefficient

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

257
coefficient_swap

Parma_Polyhedra_Library::

257
coherent_index

Parma_Polyhedra_Library::

319
compare

Parma_Polyhedra_Library::

Certificate, 110

Box, 118-121

C_Polyhedron,

BD_Shape, 104
Octagonal_Shape,

BD_Shape, 105
Box, 134
Octagonal_Shape,

Box, 133, 134

Checked_Number,

Pointset_-

Checked_Number,

MIP_Problem,

Generator, 201
Generator, 201

Checked_Number,

Congruence, 168
Constraint, 184
Generator, 202
Grid_Generator,

Grid_Generator,

Octagonal_Shape,

BHRZ03_-

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

430

Parma_Polyhedra_Library::
251
Parma_Polyhedra_Library::
263
Complexity_Class
PPL_CXX_interface, 68
concatenate_assign
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
316
Parma_Polyhedra_Library::
Reduced_Product, 345
Parma_Polyhedra_Library::
Powerset, 372
Parma_Polyhedra_Library::
Congruence
Parma_Polyhedra_Library::
Congruence_System
Parma_Polyhedra_Library::
System, 173
congruence_widening_assign
Parma_Polyhedra_Library::
constrains
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
303
Parma_Polyhedra_Library::
Reduced_Product, 332
Parma_Polyhedra_Library::
Powerset, 358
Parma_Polyhedra_Library::
Constraint
Parma_Polyhedra_Library::
construct
Parma_Polyhedra_Library::
154
contains
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
302
Parma_Polyhedra_Library::
Reduced_Product, 335
Parma_Polyhedra_Library::
Powerset, 361
Parma_Polyhedra_Library::
Control_Parameter Name
Parma_Polyhedra_Library::
280

Grid_Certificate,

H79_Certificate,

BD_Shape, 107
Box, 135

Grid, 247
Octagonal_Shape,
Partially_-
Pointset_-
Polyhedron, 411

Congruence, 167

Congruence_-

Grid, 244
BD_Shape, 92
Box, 121

Grid, 227
Octagonal_Shape,
Partially_-
Pointset_-
Polyhedron, 391
Constraint, 184
Checked_Number,
BD_Shape, 91
Box, 124

Grid, 230
Octagonal_Shape,
Partially_-
Pointset_-

Polyhedron, 394

MIP_Problem,

Control_Parameter_Value
Parma_Polyhedra_Library
280

Degenerate_Element
PPL_CXX interface, 67

difference_assign
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library

310

Parma_Polyhedra_Library

Powerset, 367
dimension_type
PPL_CXX interface, 66
div_assign

Parma_Polyhedra_Library::

divisor

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

257

EMPTY
PPL_CXX interface, 67
empty_intersection_assign

Parma_Polyhedra_Library::

EQUAL
PPL_CXX _interface, 68
EQUALITY

Parma_Polyhedra_Library::

euclidean_distance_assign

Parma_Polyhedra_Library::

evaluate_objective_function

Parma_Polyhedra_Library::

283
exact_div_assign

Parma_Polyhedra_Library::

157
expand_space_dimension

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

318

Parma_Polyhedra_Library::
Reduced_Product, 346
Parma_Polyhedra_Library:

Powerset, 373

Parma_Polyhedra_Library:

external_memory_in_bytes

:MIP_Problem,

:BD_Shape, 100
:Box, 129

:Grid, 240
:Octagonal_Shape,

:Partially_-
Reduced_Product, 340

Parma_Polyhedra_Library::Pointset_-

Interval, 267

Generator, 202
Grid_Generator,

Interval, 266

Constraint, 184
Generator, 204

MIP_Problem,

Checked_Number,

BD_Shape, 108
Box, 137

Grid, 249
Octagonal_Shape,

Partially_-

:Pointset_-

:Polyhedron, 412

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

431

Parma_Polyhedra_Library::
154

feasible_point
Parma_Polyhedra_Library::
284
floor_assign
Parma_Polyhedra_Library::
155
fold_space_dimensions
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
318
Parma_Polyhedra_Library::
Reduced_Product, 346
Parma_Polyhedra_Library::
Powerset, 374
Parma_Polyhedra_Library::
fpu_check_inexact
Parma_Polyhedra_Library,

ged_assign
Parma_Polyhedra_Library::
156
gedext_assign
Parma_Polyhedra_Library::
156
generalized_affine_image
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
311
Parma_Polyhedra_Library::
Reduced_Product, 341
Parma_Polyhedra_Library::
Powerset, 368, 369
Parma_Polyhedra_Library::
406
generalized_affine_preimage
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
312,313
Parma_Polyhedra_Library::
Reduced_Product, 341
Parma_Polyhedra_Library::
Powerset, 369, 370
Parma_Polyhedra_Library::
generator_widening_assign
Parma_Polyhedra_Library::

Checked_Number,

MIP_Problem,

Checked_Number,

BD_Shape, 109
Box, 137

Grid, 249
Octagonal_Shape,

Partially_-
Pointset_-
Polyhedron, 413

76

Checked_Number,

Checked_Number,

BD_Shape, 101
Box, 131, 132
Grid, 241, 242
Octagonal_Shape,

Partially_-
, 342
Pointset_-

Polyhedron,
BD_Shape, 102
Box, 131, 132
Grid, 242, 243
Octagonal_Shape,
Partially_-

, 342

Pointset_-

Polyhedron, 406

Grid, 245

405,

geometrically_covers

Parma_Polyhedra_Library::

Powerset, 360
geometrically_equals

Parma_Polyhedra_Library::

Powerset, 361
get_covering_box

Parma_Polyhedra_Library::

get_interval

Parma_Polyhedra_Library::

get_lower_bound

Parma_Polyhedra_Library::

get_upper_bound

Parma_Polyhedra_Library::

GREATER_OR_EQUAL
PPL_CXX_interface, 68
GREATER_THAN
PPL_CXX _interface, 68
Grid

Parma_Polyhedra_Library::

grid_line

Parma_Polyhedra_Library::

256
grid_point

Parma_Polyhedra_Library::

256

H79_widening_assign

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

has_nontrivial_weakening

Parma_Polyhedra_Library::

hash_code

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

319

Parma_Polyhedra_Library::
Reduced_Product, 347
Parma_Polyhedra_Library:

Powerset, 362

Parma_Polyhedra_Library:

input

Parma_Polyhedra_Library:

159
insert

Parma_Polyhedra_Library:

System, 173, 174

Parma_Polyhedra_Library:

System, 262
intersection_assign

Parma_Polyhedra_Library:
Parma_Polyhedra_Library:

Pointset_-

Pointset_-

Grid, 230
Box, 138
Box, 138

Box, 138

Grid, 222-226

Grid_Generator,

Grid_Generator,

BD_Shape, 106
Polyhedron, 409

Determinate, 194
BD_Shape, 109
Grid, 249
Octagonal_Shape,

Partially_-

:Pointset_-

:Polyhedron, 413

:Checked_Number,

:Congruence_-

:Grid_Generator_-

:BD_Shape, 98
:Box, 129

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

432

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
309
Parma_Polyhedra_Library::
Reduced_Product, 339
Parma_Polyhedra_Library::
Powerset, 367
Parma_Polyhedra_Library::

Grid, 239
Octagonal_Shape,

Partially_-
Pointset_-

Polyhedron, 403

intersection_assign_and_minimize

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Powerset, 367
Parma_Polyhedra_Library::
is_discrete
Parma_Polyhedra_Library::
is_disjoint_from
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
302
Parma_Polyhedra_Library::
Reduced_Product, 332
Parma_Polyhedra_Library::
Powerset, 358
Parma_Polyhedra_Library::
is_equality
Parma_Polyhedra_Library::
is_equivalent_to
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
257
is_inconsistent
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
is_infinity
Parma_Polyhedra_Library::
154
is_integer
Parma_Polyhedra_Library::
154
is_minus_infinity
Parma_Polyhedra_Library::
153
is_not_a_number
Parma_Polyhedra_Library::
153
is_plus_infinity
Parma_Polyhedra_Library::
153
is_proper_congruence
Parma_Polyhedra_Library::

BD_Shape, 99
Grid, 239
Pointset_-
Polyhedron, 403
Grid, 227
BD_Shape, 91
Box, 124

Grid, 227
Octagonal_Shape,
Partially_-
Pointset_-
Polyhedron, 391
Congruence, 168
Constraint, 185

Generator, 202
Grid_Generator,

Congruence, 168

Constraint, 185

Checked_Number,

Checked_Number,

Checked_Number,

Checked_Number,

Checked_Number,

Congruence, 168

is_satisfiable

Parma_Polyhedra_Library::
283

is_tautological
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

is_topologically_closed
Parma_Polyhedra_Library::

iterator
Parma_Polyhedra_Library::

MIP_Problem,
Congruence, 168
Constraint, 185
Grid, 227

Powerset, 418

I_infinity_distance_assign

Parma_Polyhedra_Library::Generator, 205,
206
lem_assign
Parma_Polyhedra_Library::Checked_Number,
157

less
Parma_Polyhedra_Library::
LESS_OR_EQUAL
PPL_CXX _interface, 68
LESS_THAN
PPL_CXX interface, 68
limited_ BHMZ05_extrapolation_assign
Parma_Polyhedra_Library::BD_Shape, 105
Parma_Polyhedra_Library::Octagonal_Shape,
315
limited_ BHRZ03_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron, 408
limited_CC76_extrapolation_assign
Parma_Polyhedra_Library::BD_Shape, 105
Parma_Polyhedra_Library::Box, 134
Parma_Polyhedra_Library::Octagonal_Shape,
315
limited_congruence_extrapolation_assign
Parma_Polyhedra_Library::Grid, 245
limited_extrapolation_assign
Parma_Polyhedra_Library::Grid, 246
limited_generator_extrapolation_assign
Parma_Polyhedra_Library::Grid, 246
limited_H79_extrapolation_assign
Parma_Polyhedra_Library::BD_Shape, 106
Parma_Polyhedra_Library::Polyhedron, 409
LINE
Parma_Polyhedra_Library::Generator, 201
Parma_Polyhedra_Library::Grid_Generator,
256

Variable, 423

line
Parma_Polyhedra_Library::Generator, 201
Linear_Expression
Parma_Polyhedra_Library::Linear_-
Expression, 272, 273
linear_partition

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

433

Parma_Polyhedra_Library
Powerset, 374

map_space_dimensions
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
317
Parma_Polyhedra_Library
Reduced_Product, 34
Parma_Polyhedra_Library
Powerset, 373
Parma_Polyhedra_Library
MAXIMIZATION
PPL_CXX _interface, 68
maximize
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
303, 304
Parma_Polyhedra_Library
Reduced_Product, 33
Parma_Polyhedra_Library
Powerset, 358, 359
Parma_Polyhedra_Library
memory_size_type
PPL_CXX _interface, 66
MINIMIZATION
PPL_CXX _interface, 68
minimize
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
Parma_Polyhedra_Library
304, 305
Parma_Polyhedra_Library

::Pointset_-

::BD_Shape, 108
::Box, 136

::Grid, 248
::Octagonal_Shape,

::Partially_-
5
::Pointset_-

::Polyhedron, 412

::BD_Shape, 89
::Box, 122

::Grid, 228
::Octagonal_Shape,

::Partially_-
3
::Pointset_-

::Polyhedron, 392

::BD_Shape, 90
::Box, 123

::Grid, 229
::Octagonal_Shape,

:Partially_-

Reduced_Product, 334

Parma_Polyhedra_Library
Powerset, 359, 360
Parma_Polyhedra_Library
MIP_Problem
Parma_Polyhedra_Library
280, 281
MIP_Problem_Status
PPL_CXX _interface, 68
mul_assign
Parma_Polyhedra_Library

neg_assign
Parma_Polyhedra_Library
155, 156
NNC_Polyhedron

::Pointset_-
::Polyhedron, 393

::MIP_Problem,

::Interval, 267

::Checked_Number,

Parma_Polyhedra_Library::

286-289
NONSTRICT_INEQUALITY

Parma_Polyhedra_Library::

normalize

Parma_Polyhedra_Library::

NOT_EQUAL
PPL_CXX interface, 68

Octagonal_Shape

Parma_Polyhedra_Library::

299-301
OK

Parma_Polyhedra_Library::

System, 210

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

System, 262

Parma_Polyhedra_Library::

omega_reduce

Parma_Polyhedra_Library::

operator<

Parma_Polyhedra_Library::

158

Parma_Polyhedra_Library::

188
operator<<

Parma_Polyhedra_Library::

159

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::

258
operator<=

Parma_Polyhedra_Library::

158

Parma_Polyhedra_Library::

188
operator>

Parma_Polyhedra_Library::

158

Parma_Polyhedra_Library::

operator>>

Parma_Polyhedra_Library::

161
operator>=

Parma_Polyhedra_Library::

157

Parma_Polyhedra_Library::

operatorx

Parma_Polyhedra_Library::

Expression, 274, 275
operators=

NNC_Polyhedron,

Constraint, 184

Congruence, 169

Octagonal_Shape,

Generator_-

Grid, 230
Grid_Generator_-

Polyhedron, 394
Powerset, 419
Checked_Number,

Constraint, 187,

Checked_Number,
Constraint, 188
Generator, 206
Grid_Generator,

Checked_Number,

Constraint, 186—

Checked_Number,
Constraint, 187

Checked_Number,

Checked_Number,
Constraint, 186

Linear_-

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

434

Parma_Polyhedra_Library::Linear_-
Expression, 276
operator+
Parma_Polyhedra_Library::
155
Parma_Polyhedra_Library::
Expression, 273, 276
operator+=
Parma_Polyhedra_Library::
Expression, 275
operator-
Parma_Polyhedra_Library::
Expression, 274
operator-=
Parma_Polyhedra_Library::
Expression, 275, 276
operator/
Parma_Polyhedra_Library::
operator/=
Parma_Polyhedra_Library::
operator==
Parma_Polyhedra_Library::
157
Parma_Polyhedra_Library::
186
operator%=
Parma_Polyhedra_Library::
operator&&
Parma_Polyhedra_Library::
Relation, 377
optimal_value
Parma_Polyhedra_Library::
284
Optimization_Mode
PPL_CXX interface, 68
OPTIMIZED_MIP_PROBLEM
PPL_CXX_interface, 68
optimizing_point
Parma_Polyhedra_Library::MIP_Problem,

Checked_Number,

Linear_-

Linear_-

Linear_-

Linear_-

Congruence, 169
Congruence, 168
Checked_Number,

Constraint, 185,

Congruence, 169

Poly_Con_-

MIP_Problem,

284
output
Parma_Polyhedra_Library::Checked_Number,
158

pairwise_apply_assign
Parma_Polyhedra_Library::Powerset, 419
pairwise_reduce
Parma_Polyhedra_Library::Pointset_-
Powerset, 371
PARAMETER
Parma_Polyhedra_Library::Grid_Generator,
256
parameter

Parma_Polyhedra_Library::Grid_Generator,
256
Parma_Polyhedra_Library::Constraint
EQUALITY, 184
NONSTRICT_INEQUALITY, 184
STRICT_INEQUALITY, 184
Parma_Polyhedra_Library::Generator
CLOSURE_POINT, 201
LINE, 201
POINT, 201
RAY, 201
Parma_Polyhedra_Library::Grid_Generator
LINE, 256
PARAMETER, 256
POINT, 256
Parma_Polyhedra_Library::MIP_Problem
PRICING, 280
PRICING_STEEPEST_EDGE_EXACT, 280
PRICING_STEEPEST_EDGE_FLOAT, 280
PRICING_TEXTBOOK, 280
Parma_Polyhedra_Library, 69
banner, 75
fpu_check_inexact, 76
restore_pre_PPL_rounding, 76
set_rational_sqrt_precision_parameter, 76
set_rounding_for_PPL, 75
Parma_Polyhedra_Library::BD_Shape, 78
add_congruence, 93
add_congruence_and_minimize, 93
add_congruences, 95
add_congruences_and_minimize, 96
add_constraint, 92
add_constraint_and_minimize, 93
add_constraints, 94
add_constraints_and_minimize, 94
add_recycled_congruences, 96
add_recycled_congruences_and_minimize, 96
add_recycled_constraints, 94
add_recycled_constraints_and_minimize, 95
add_space_dimensions_and_embed, 107
add_space_dimensions_and_project, 107
affine_image, 100
affine_preimage, 100
BD_Shape, 86-88
BHMZO05_widening_assign, 104
bounded_affine_image, 102
bounded_affine_preimage, 103
bounds_from_above, 89
bounds_from_below, 89
CC76_extrapolation_assign, 104
CC76_narrowing_assign, 105
concatenate_assign, 107
constrains, 92
contains, 91

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

435

difference_assign, 100
expand_space_dimension, 108
fold_space_dimensions, 109
generalized_affine_image, 101
generalized_affine_preimage, 102
H79_widening_assign, 106

hash_code, 109

intersection_assign, 98
intersection_assign_and_minimize, 99
is_disjoint_from, 91
limited_BHMZ05_extrapolation_assign, 105
limited_CC76_extrapolation_assign, 105
limited_H79_extrapolation_assign, 106
map_space_dimensions, 108
maximize, 89

minimize, 90

refine_with_congruence, 97
refine_with_congruences, 97
refine_with_constraint, 97
refine_with_constraints, 97
relation_with, 91, 92
remove_higher_space_dimensions, 108
remove_space_dimensions, 107
simplify_using_context_assign, 100
strictly_contains, 91
time_elapse_assign, 103

unconstrain, 98

upper_bound_assign, 99
upper_bound_assign_and_minimize, 99
upper_bound_assign_if_exact, 99

constrains, 121

contains, 124

difference_assign, 129
expand_space_dimension, 137
fold_space_dimensions, 137
generalized_affine_image, 131, 132
generalized_affine_preimage, 131, 132
get_interval, 138

get_lower_bound, 138
get_upper_bound, 138
intersection_assign, 129
is_disjoint_from, 124
limited_CC76_extrapolation_assign, 134
map_space_dimensions, 136
maximize, 122

minimize, 123

propagate_constraint, 128
propagate_constraints, 128
refine_with_congruence, 127
refine_with_congruences, 127
refine_with_constraint, 126
refine_with_constraints, 127
relation_with, 121
remove_higher_space_dimensions, 136
remove_space_dimensions, 136
set_interval, 138
simplify_using_context_assign, 130
strictly_contains, 124
time_elapse_assign, 133

unconstrain, 128

Parma_Polyhedra_Library::BHRZ03_Certificate, upper_bound_assign, 129
110 upper_bound_assign_if_exact, 129
compare, 110 Parma_Polyhedra_Library::C_Polyhedron, 139
Parma_Polyhedra_Library::BHRZ03_- C_Polyhedron, 141-144
Certificate::Compare, 162 poly_hull_assign_if_exact, 144
Parma_Polyhedra_Library::Box, 111 Parma_Polyhedra_Library::Checked_Number, 145

add_congruence, 125

add_congruences, 126

add_constraint, 124

add_constraints, 125
add_recycled_congruences, 126
add_recycled_constraints, 125
add_space_dimensions_and_embed, 135
add_space_dimensions_and_project, 135
affine_image, 130

affine_preimage, 130
bounded_affine_image, 132
bounded_affine_preimage, 133
bounds_from_above, 122
bounds_from_below, 122

Box, 118-121

CC76_narrowing_assign, 134
CC76_widening_assign, 133, 134
concatenate_assign, 135

abs_assign, 156
add_mul_assign, 156
assign_r, 154
ceil_assign, 155
classify, 153

cmp, 158

construct, 154
exact_div_assign, 157
external_memory_in_bytes, 154
floor_assign, 155
gcd_assign, 156
gcdext_assign, 156
input, 159

is_infinity, 154
is_integer, 154
is_minus_infinity, 153
is_not_a_number, 153
is_plus_infinity, 153

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

436

lem_assign, 157

neg_assign, 155, 156

operator<(, 158

operator<<, 159

operator<=, 158

operator>, 158

operator>>, 161

operator>=, 157

operator+, 155

operator==, 157

output, 158

raw_value, 161

sgn, 158

sqrt_assign, 157

sub_mul_assign, 156

swap, 161

total_memory_in_bytes, 154

trunc_assign, 155
Parma_Polyhedra_Library::Congruence, 163

coefficient, 168

Congruence, 167

is_equality, 168

is_inconsistent, 168

is_proper_congruence, 168

is_tautological, 168

normalize, 169

operator/, 169

operator/=, 168

operator%=, 169

sign_normalize, 169

strong_normalize, 169
Parma_Polyhedra_Library::Congruence_System,

170

add_unit_rows_and_columns, 174

Congruence_System, 173

insert, 173, 174
Parma_Polyhedra_Library::Congruence_-

System::const_iterator, 177

Parma_Polyhedra_Library::Constraint, 179

coefficient, 184

Constraint, 184

is_equivalent_to, 185

is_inconsistent, 185

is_tautological, 185

operator<, 187, 188

operator< <, 188

operator<=, 186—188

operator>, 187

operator>=, 186

operator==, 185, 186

Type, 184
Parma_Polyhedra_Library::Constraint_System, 188

swap, 191

Parma_Polyhedra_Library::Constraint_-
System::const_iterator, 174
Parma_Polyhedra_Library::Constraints_Reduction,
191
product_reduce, 192
Parma_Polyhedra_Library::Determinate, 192
has_nontrivial_weakening, 194
Parma_Polyhedra_Library::Domain_Product, 194
Parma_Polyhedra_Library::From_Covering_Box,
195
Parma_Polyhedra_Library::Generator, 195
closure_point, 201
coefficient, 202
divisor, 202
euclidean_distance_assign, 204
is_equivalent_to, 202
I_infinity_distance_assign, 205, 206
line, 201
operator< <, 206
point, 201
ray, 201
rectilinear_distance_assign, 202, 203
Type, 200
Parma_Polyhedra_Library::Generator_System, 206
ascii_load, 210
OK, 210
Parma_Polyhedra_Library::Generator_-
System::const_iterator, 175
Parma_Polyhedra_Library::GMP_Integer, 210
rem_assign, 211
Parma_Polyhedra_Library::Grid, 211
add_congruence, 231
add_congruence_and_minimize, 231
add_congruences, 232
add_congruences_and_minimize, 233
add_constraint, 233
add_constraint_and_minimize, 234
add_constraints, 234
add_constraints_and_minimize, 234
add_grid_generator, 231
add_grid_generator_and_minimize, 232
add_grid_generators, 237
add_grid_generators_and_minimize, 237
add_recycled_congruences, 232
add_recycled_congruences_and_minimize,
233
add_recycled_constraints, 235
add_recycled_constraints_and_minimize, 235
add_recycled_grid_generators, 237
add_recycled_grid_generators_and_minimize,
238
add_space_dimensions_and_embed, 246
add_space_dimensions_and_project, 247
affine_image, 241

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

437

affine_preimage, 241
bounded_affine_image, 243
bounded_affine_preimage, 244
bounds_from_above, 227
bounds_from_below, 227
concatenate_assign, 247
congruence_widening_assign, 244
constrains, 227
contains, 230
difference_assign, 240
expand_space_dimension, 249
fold_space_dimensions, 249
generalized_affine_image, 241, 242
generalized_affine_preimage, 242, 243
generator_widening_assign, 245
get_covering_box, 230
Grid, 222-226
hash_code, 249
intersection_assign, 239
intersection_assign_and_minimize, 239
is_discrete, 227
is_disjoint_from, 227
is_topologically_closed, 227
limited_congruence_extrapolation_assign, 245
limited_extrapolation_assign, 246
limited_generator_extrapolation_assign, 246
map_space_dimensions, 248
maximize, 228
minimize, 229
OK, 230
refine_with_congruence, 236
refine_with_congruences, 236
refine_with_constraint, 236
refine_with_constraints, 237
remove_higher_space_dimensions, 248
remove_space_dimensions, 247
simplify_using_context_assign, 240
strictly_contains, 230
time_elapse_assign, 244
unconstrain, 238, 239
upper_bound_assign, 240
upper_bound_assign_and_minimize, 240
upper_bound_assign_if_exact, 240
widening_assign, 245
Parma_Polyhedra_Library::Grid_Certificate, 250
compare, 251
Parma_Polyhedra_Library::Grid_-
Certificate::Compare, 163
Parma_Polyhedra_Library::Grid_Generator, 251
coefficient, 257
coefficient_swap, 257
divisor, 257
grid_line, 256
grid_point, 256

is_equivalent_to, 257
operator< <, 258
parameter, 256
Type, 256
Parma_Polyhedra_Library::Grid_Generator_-
System, 258
ascii_load, 262
insert, 262
OK, 262
Parma_Polyhedra_Library::Grid_Generator_-
System::const_iterator, 178

Parma_Polyhedra_Library::H79_Certificate, 262

compare, 263
Parma_Polyhedra_Library::H79_-
Certificate::Compare, 162
Parma_Polyhedra_Library::Interval, 264
div_assign, 267
empty_intersection_assign, 266
mul_assign, 267
refine_existential, 266
refine_universal, 266
simplify_using_context_assign, 266
Parma_Polyhedra_Library::10_Operators, 76
wrap_string, 77
Parma_Polyhedra_Library::Is_Checked, 267
Parma_Polyhedra_Library::Is_Checked <
Checked_Number< T, P > >, 267
Parma_Polyhedra_Library::Is_Native_Or_-
Checked, 268

Parma_Polyhedra_Library::Linear_Expression,

Linear_Expression, 272, 273

operatorsx, 274, 275

operators=, 276

operator+, 273, 276

operator+=, 275

operator-, 274

operator-=, 275, 276
Parma_Polyhedra_Library::MIP_Problem, 276

add_constraint, 282

add_constraints, 283

add_space_dimensions_and_embed, 282

add_to_integer_space_dimensions, 282

clear, 282

Control_Parameter_Name, 280

Control_Parameter Value, 280

evaluate_objective_function, 283

feasible_point, 284

is_satisfiable, 283

MIP_Problem, 280, 281

optimal_value, 284

optimizing_point, 284

set_objective_function, 283

solve, 283

268

Parma_Polyhedra_Library::NNC_Polyhedron, 285

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 438

NNC_Polyhedron, 286-289 Parma_Polyhedra_Library::Partially_Reduced_-
poly_hull_assign_if_exact, 290 Product, 319
Parma_Polyhedra_Library::No_Reduction, 290 add_congruence, 336
product_reduce, 291 add_congruences, 336
Parma_Polyhedra_Library::Octagonal_Shape, 291 add_constraint, 335
add_congruence, 306 add_constraints, 337
add_congruences, 306 add_recycled_congruences, 337
add_constraint, 305 add_recycled_constraints, 338
add_constraints, 306 add_space_dimensions_and_embed, 344
add_recycled_congruences, 307 add_space_dimensions_and_project, 344
add_recycled_constraints, 306 affine_image, 340
add_space_dimensions_and_embed, 316 affine_preimage, 340
add_space_dimensions_and_project, 316 bounded_affine_image, 343
affine_image, 310 bounded_affine_preimage, 343
affine_preimage, 310 bounds_from_above, 333
BHMZ05_widening_assign, 314 bounds_from_below, 333
bounded_affine_image, 312 concatenate_assign, 345
bounded_affine_preimage, 313 constrains, 332
bounds_from_above, 303 contains, 335
bounds_from_below, 303 difference_assign, 340
CC76_extrapolation_assign, 314 expand_space_dimension, 346
CC76_narrowing_assign, 315 fold_space_dimensions, 346
coherent_index, 319 generalized_affine_image, 341, 342
concatenate_assign, 316 generalized_affine_preimage, 341, 342
constrains, 303 hash_code, 347
contains, 302 intersection_assign, 339
difference_assign, 310 is_disjoint_from, 332
expand_space_dimension, 318 map_space_dimensions, 345
fold_space_dimensions, 318 maximize, 333
generalized_affine_image, 311 minimize, 334
generalized_affine_preimage, 312, 313 Partially_Reduced_Product, 327-332
hash_code, 319 refine_with_congruence, 336
intersection_assign, 309 refine_with_congruences, 337
is_disjoint_from, 302 refine_with_constraint, 336
limited_ BHMZ05_extrapolation_assign, 315 refine_with_constraints, 338
limited_CC76_extrapolation_assign, 315 remove_higher_space_dimensions, 345
map_space_dimensions, 317 remove_space_dimensions, 345
maximize, 303, 304 strictly_contains, 335
minimize, 304, 305 time_elapse_assign, 343
Octagonal_Shape, 299-301 unconstrain, 338, 339
refine_with_congruence, 307 upper_bound_assign, 339
refine_with_congruences, 308 upper_bound_assign_if_exact, 340
refine_with_constraint, 307 widening_assign, 344
refine_with_constraints, 308 Parma_Polyhedra_Library::Pointset_Powerset, 347
relation_with, 302, 303 add_congruence, 364
remove_higher_space_dimensions, 317 add_congruence_and_minimize, 365
remove_space_dimensions, 317 add_congruences, 365
simplify_using_context_assign, 310 add_congruences_and_minimize, 366
strictly_contains, 302 add_constraint, 362
time_elapse_assign, 313 add_constraint_and_minimize, 363
unconstrain, 308, 309 add_constraints, 363
upper_bound_assign, 309 add_constraints_and_minimize, 364
upper_bound_assign_if_exact, 309 add_disjunct, 362

affine_image, 368

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

439

affine_preimage, 368
approximate_partition, 375
BGP99_extrapolation_assign, 371
BHZ03_widening_assign, 372
bounded_affine_image, 370
bounded_affine_preimage, 371
bounds_from_above, 358
bounds_from_below, 358
check_containment, 375
concatenate_assign, 372
constrains, 358
contains, 361
difference_assign, 367
expand_space_dimension, 373
fold_space_dimensions, 374
generalized_affine_image, 368, 369
generalized_affine_preimage, 369, 370
geometrically_covers, 360
geometrically_equals, 361
hash_code, 362
intersection_assign, 367
intersection_assign_and_minimize, 367
is_disjoint_from, 358
linear_partition, 374
map_space_dimensions, 373
maximize, 358, 359
minimize, 359, 360
pairwise_reduce, 371
Pointset_Powerset, 355-357
refine_with_congruence, 364
refine_with_congruences, 365
refine_with_constraint, 363
refine_with_constraints, 363
relation_with, 361, 362
remove_higher_space_dimensions, 373
remove_space_dimensions, 372
simplify_using_context_assign, 367
strictly_contains, 361
time_elapse_assign, 371
unconstrain, 366
widen_fun_ref, 374
Parma_Polyhedra_Library::Poly_Con_Relation,
376
operator&&, 377
Parma_Polyhedra_Library::Poly_Gen_Relation,
377
Parma_Polyhedra_Library::Polyhedron, 378
add_congruence, 396
add_congruence_and_minimize, 396
add_congruences, 400
add_congruences_and_minimize, 400
add_constraint, 395
add_constraint_and_minimize, 395
add_constraints, 396

add_constraints_and_minimize, 397
add_generator, 395
add_generator_and_minimize, 395
add_generators, 398
add_generators_and_minimize, 399
add_recycled_congruences, 400
add_recycled_congruences_and_minimize,
401
add_recycled_constraints, 397
add_recycled_constraints_and_minimize, 398
add_recycled_generators, 398
add_recycled_generators_and_minimize, 399
add_space_dimensions_and_embed, 410
add_space_dimensions_and_project, 410
affine_image, 404
affine_preimage, 405
BHRZ03_widening_assign, 408
bounded_affine_image, 407
bounded_affine_preimage, 407
bounded_BHRZ03_extrapolation_assign, 409
bounded_H79_extrapolation_assign, 410
bounds_from_above, 392
bounds_from_below, 392
concatenate_assign, 411
constrains, 391
contains, 394
expand_space_dimension, 412
fold_space_dimensions, 413
generalized_affine_image, 405, 406
generalized_affine_preimage, 406
H79_widening_assign, 409
hash_code, 413
intersection_assign, 403
intersection_assign_and_minimize, 403
is_disjoint_from, 391
limited_ BHRZ03_extrapolation_assign, 408
limited_H79_extrapolation_assign, 409
map_space_dimensions, 412
maximize, 392
minimize, 393
OK, 394
poly_difference_assign, 404
poly_hull_assign, 403
poly_hull_assign_and_minimize, 404
Polyhedron, 389, 390
refine_with_congruence, 402
refine_with_congruences, 402
refine_with_constraint, 401
refine_with_constraints, 402
relation_with, 391
remove_higher_space_dimensions, 411
remove_space_dimensions, 411
simplify_using_context_assign, 404
strictly_contains, 394

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

440

swap, 413
time_elapse_assign, 408
unconstrain, 402, 403
Parma_Polyhedra_Library::Powerset, 414
add_non_bottom_disjunct_preserve_-
reduction, 419
iterator, 418
omega_reduce, 419
pairwise_apply_assign, 419
Sequence, 418
upper_bound_assign, 419
upper_bound_assign_if_exact, 419
Parma_Polyhedra_Library::Recycle_Input, 420
Parma_Polyhedra_Library::Smash_Reduction, 420
product_reduce, 421
Parma_Polyhedra_Library::Throwable, 421
Parma_Polyhedra_Library::Variable, 422
less, 423
space_dimension, 423
Variable, 423
Parma_Polyhedra_Library::Variable::Compare, 162
Parma_Polyhedra_Library::Variables_Set, 424
Variables_Set, 425
Partially_Reduced_Product
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 327-332
POINT
Parma_Polyhedra_Library::Generator, 201
Parma_Polyhedra_Library::Grid_Generator,
256
point
Parma_Polyhedra_Library::Generator, 201
Pointset_Powerset
Parma_Polyhedra_Library::Pointset_-
Powerset, 355-357
poly_difference_assign
Parma_Polyhedra_Library::Polyhedron, 404
poly_hull_assign
Parma_Polyhedra_Library::Polyhedron, 403
poly_hull_assign_and_minimize
Parma_Polyhedra_Library::Polyhedron, 404
poly_hull_assign_if_exact
Parma_Polyhedra_Library::C_Polyhedron,
144
Parma_Polyhedra_Library::NNC_Polyhedron,
290
Polyhedron
Parma_Polyhedra_Library::Polyhedron,
390
POLYNOMIAL_COMPLEXITY
PPL_CXX interface, 68
PPL_CXX interface
ANY_COMPLEXITY, 68
EMPTY, 67

389,

EQUAL, 68
GREATER_OR_EQUAL, 68
GREATER_THAN, 68
LESS_OR_EQUAL, 68
LESS_THAN, 68
MAXIMIZATION, 68
MINIMIZATION, 68
NOT_EQUAL, 68
OPTIMIZED_MIP_PROBLEM, 68
POLYNOMIAL_COMPLEXITY, 68
ROUND_DOWN, 67
ROUND_IGNORE, 67
ROUND_NOT_NEEDED, 67
ROUND_UP, 67
SIMPLEX_COMPLEXITY, 68
UNBOUNDED_MIP_PROBLEM, 68
UNFEASIBLE_MIP_PROBLEM, 68
UNIVERSE, 67
V_CVT_STR_UNK, 67
V_DIV_ZERO, 67
V_EQ, 66
V_GE, 67
V_GT, 66
V_INF_ADD_INF, 67
V_INF_DIV_INF, 67
V_INF_MOD, 67
V_INF_MUL_ZERO, 67
V_INF_SUB_INF, 67
V_LE, 67
V_LGE, 67
V_LT, 66
V_MOD_ZERO, 67
V_NE, 66
V_NEG_OVERFLOW, 67
V_POS_OVERFLOW, 67
V_SQRT_NEG, 67
V_UNKNOWN_NEG_OVERFLOW, 67
V_UNKNOWN_POS_OVERFLOW, 67
V_UNORD_COMP, 67
VC_MINUS_INFINITY, 67
VC_NAN, 67
VC_NORMAL, 66
VC_PLUS_INFINITY, 67
PPL_CXX_interface
abandon_expensive_computations, 69
Coefficient, 66
Complexity_Class, 68
Degenerate_Element, 67
dimension_type, 66
memory_size_type, 66
MIP_Problem_Status, 68
Optimization_Mode, 68
PPL_VERSION, 65
PPL_VERSION_MAIJOR, 65

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

441

PPL_VERSION_MINOR, 65
PPL_VERSION_REVISION, 65
Relation_Symbol, 67
Result, 66
Rounding_Dir, 67
PPL_VERSION
PPL_CXX _interface, 65
PPL_VERSION_MAJOR
PPL_CXX interface, 65
PPL_VERSION_MINOR
PPL_CXX _interface, 65
PPL_VERSION_REVISION
PPL_CXX interface, 65
PRICING
Parma_Polyhedra_Library::MIP_Problem,
280
PRICING_STEEPEST_EDGE_EXACT
Parma_Polyhedra_Library::MIP_Problem,
280
PRICING_STEEPEST_EDGE_FLOAT
Parma_Polyhedra_Library::MIP_Problem,
280
PRICING_TEXTBOOK
Parma_Polyhedra_Library::MIP_Problem,
280
product_reduce
Parma_Polyhedra_Library::Constraints_-
Reduction, 192
Parma_Polyhedra_Library::No_Reduction,
2901
Parma_Polyhedra_Library::
421
propagate_constraint
Parma_Polyhedra_Library::Box, 128
propagate_constraints
Parma_Polyhedra_Library::Box, 128

raw_value

Parma_Polyhedra_Library::Checked_Number,

161
RAY
Parma_Polyhedra_Library::Generator, 201
ray
Parma_Polyhedra_Library::Generator, 201
rectilinear_distance_assign
Parma_Polyhedra_Library::Generator,
203
refine_existential
Parma_Polyhedra_Library::Interval, 266
refine_universal
Parma_Polyhedra_Library::Interval, 266
refine_with_congruence
Parma_Polyhedra_Library::BD_Shape, 97
Parma_Polyhedra_Library::Box, 127

Smash_Reduction,

202,

Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
307
Parma_Polyhedra_Library::
Reduced_Product, 336
Parma_Polyhedra_Library::
Powerset, 364
Parma_Polyhedra_Library::
refine_with_congruences
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
308
Parma_Polyhedra_Library::
Reduced_Product, 337
Parma_Polyhedra_Library::
Powerset, 365
Parma_Polyhedra_Library::
refine_with_constraint
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
307
Parma_Polyhedra_Library::
Reduced_Product, 336
Parma_Polyhedra_Library::
Powerset, 363
Parma_Polyhedra_Library::
refine_with_constraints
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
308
Parma_Polyhedra_Library::
Reduced_Product, 338
Parma_Polyhedra_Library::
Powerset, 363
Parma_Polyhedra_Library::
Relation_Symbol
PPL_CXX_interface, 67
relation_with
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
302, 303
Parma_Polyhedra_Library::
Powerset, 361, 362
Parma_Polyhedra_Library::
rem_assign
Parma_Polyhedra_Library::

Grid, 236
Octagonal_Shape,

Partially_-
Pointset_-
Polyhedron, 402
BD_Shape, 97
Box, 127

Grid, 236
Octagonal_Shape,
Partially_-
Pointset_-
Polyhedron, 402
BD_Shape, 97
Box, 126

Grid, 236
Octagonal_Shape,
Partially_-
Pointset_-
Polyhedron, 401
BD_Shape, 97
Box, 127

Grid, 237
Octagonal_Shape,
Partially_-

Pointset_-

Polyhedron, 402

BD_Shape, 91, 92
Box, 121

:Octagonal_Shape,

Pointset_-
Polyhedron, 391

GMP_Integer, 211

remove_higher_space_dimensions

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

442

Parma_Polyhedra_Library::BD_Shape, 108
Parma_Polyhedra_Library::Box, 136
Parma_Polyhedra_Library::Grid, 248
Parma_Polyhedra_Library::Octagonal_Shape,
317
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 345
Parma_Polyhedra_Library::Pointset_-
Powerset, 373
Parma_Polyhedra_Library::Polyhedron, 411
remove_space_dimensions
Parma_Polyhedra_Library::BD_Shape, 107
Parma_Polyhedra_Library::Box, 136
Parma_Polyhedra_Library::Grid, 247
Parma_Polyhedra_Library::Octagonal_Shape,
317
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 345
Parma_Polyhedra_Library::Pointset_-
Powerset, 372
Parma_Polyhedra_Library::Polyhedron, 411
restore_pre_PPL_rounding
Parma_Polyhedra_Library, 76
Result
PPL_CXX interface, 66
ROUND_DOWN
PPL_CXX _interface, 67
ROUND_IGNORE
PPL_CXX interface, 67
ROUND_NOT_NEEDED
PPL_CXX interface, 67
ROUND_UP
PPL_CXX_interface, 67
Rounding_Dir
PPL_CXX interface, 67

Sequence
Parma_Polyhedra_Library::Powerset, 418
set_interval
Parma_Polyhedra_Library::Box, 138
set_objective_function
Parma_Polyhedra_Library::MIP_Problem,
283
set_rational_sqrt_precision_parameter
Parma_Polyhedra_Library, 76
set_rounding_for_PPL
Parma_Polyhedra_Library, 75
sgn
Parma_Polyhedra_Library::Checked_Number,
158
sign_normalize
Parma_Polyhedra_Library::Congruence, 169
SIMPLEX_COMPLEXITY
PPL_CXX _interface, 68

simplify_using_context_assign
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
310
Parma_Polyhedra_Library::
Powerset, 367
Parma_Polyhedra_Library::
solve
Parma_Polyhedra_Library::
283
space_dimension
Parma_Polyhedra_Library::
sqrt_assign
Parma_Polyhedra_Library::
157
std, 77
STRICT_INEQUALITY
Parma_Polyhedra_Library::
strictly_contains
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
302
Parma_Polyhedra_Library::
Reduced_Product, 335
Parma_Polyhedra_Library::
Powerset, 361
Parma_Polyhedra_Library::
strong_normalize
Parma_Polyhedra_Library::
sub_mul_assign
Parma_Polyhedra_Library::
156
swap
Parma_Polyhedra_Library::
161
Parma_Polyhedra_Library::
System, 191
Parma_Polyhedra_Library::

time_elapse_assign
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
313
Parma_Polyhedra_Library::
Reduced_Product, 343
Parma_Polyhedra_Library::
Powerset, 371

BD_Shape, 100
Box, 130

Grid, 240
Interval, 266
Octagonal_Shape,
Pointset_-

Polyhedron, 404

MIP_Problem,

Variable, 423

Checked_Number,

Constraint, 184
BD_Shape, 91
Box, 124

Grid, 230
Octagonal_Shape,
Partially_-
Pointset_-
Polyhedron, 394

Congruence, 169

Checked_Number,

Checked_Number,
Constraint_-
Polyhedron, 413
BD_Shape, 103
Box, 133

Grid, 244
Octagonal_Shape,

Partially_-

Pointset_-

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

443

Parma_Polyhedra_Library::Polyhedron, 408
total_memory_in_bytes
Parma_Polyhedra_Library::Checked_Number,
154
trunc_assign
Parma_Polyhedra_Library::Checked_Number,
155
Type
Parma_Polyhedra_Library::Constraint, 184
Parma_Polyhedra_Library::Generator, 200
Parma_Polyhedra_Library::Grid_Generator,
256

UNBOUNDED_MIP_PROBLEM
PPL_CXX _interface, 68
unconstrain
Parma_Polyhedra_Library::BD_Shape, 98
Parma_Polyhedra_Library::Box, 128
Parma_Polyhedra_Library::Grid, 238, 239
Parma_Polyhedra_Library::Octagonal_Shape,
308, 309
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 338, 339
Parma_Polyhedra_Library::Pointset_-
Powerset, 366
Parma_Polyhedra_Library::Polyhedron,
403
UNFEASIBLE_MIP_PROBLEM
PPL_CXX _interface, 68
UNIVERSE
PPL_CXX _interface, 67
upper_bound_assign
Parma_Polyhedra_Library::BD_Shape, 99
Parma_Polyhedra_Library::Box, 129
Parma_Polyhedra_Library::Grid, 240
Parma_Polyhedra_Library::Octagonal_Shape,
309
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 339
Parma_Polyhedra_Library::Powerset, 419
upper_bound_assign_and_minimize
Parma_Polyhedra_Library::BD_Shape, 99
Parma_Polyhedra_Library::Grid, 240
upper_bound_assign_if_exact
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
Parma_Polyhedra_Library::
309
Parma_Polyhedra_Library::
Reduced_Product, 340
Parma_Polyhedra_Library::Powerset, 419

402,

BD_Shape, 99
Box, 129

Grid, 240
Octagonal_Shape,

Partially_-

V_CVT_STR_UNK

PPL_CXX _interface, 67
V_DIV_ZERO

PPL_CXX interface, 67
V_EQ

PPL_CXX_interface, 66
V_GE

PPL_CXX _interface, 67
V_GT

PPL_CXX interface, 66
V_INF_ADD_INF

PPL_CXX _interface, 67
V_INF_DIV_INF

PPL_CXX interface, 67
V_INF_MOD

PPL_CXX interface, 67
V_INF_MUL_ZERO

PPL_CXX _interface, 67
V_INF_SUB_INF

PPL_CXX interface, 67
V_LE

PPL_CXX_interface, 67
V_LGE

PPL_CXX _interface, 67
V_LT

PPL_CXX interface, 66
V_MOD_ZERO

PPL_CXX _interface, 67
V_NE

PPL_CXX interface, 66
V_NEG_OVERFLOW

PPL_CXX interface, 67
V_POS_OVERFLOW

PPL_CXX_interface, 67
V_SQRT_NEG

PPL_CXX interface, 67
V_UNKNOWN_NEG_OVERFLOW

PPL_CXX_interface, 67
V_UNKNOWN_POS_OVERFLOW

PPL_CXX _interface, 67
V_UNORD_COMP

PPL_CXX interface, 67
Variable

Parma_Polyhedra_Library::Variable, 423
Variables_Set

Parma_Polyhedra_Library::Variables_Set, 425
VC_MINUS_INFINITY

PPL_CXX interface, 67
VC_NAN

PPL_CXX _interface, 67
VC_NORMAL

PPL_CXX interface, 66
VC_PLUS_INFINITY

PPL_CXX_interface, 67

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 444

widen_fun_ref
Parma_Polyhedra_Library::Pointset_-
Powerset, 374
widening_assign
Parma_Polyhedra_Library::Grid, 245
Parma_Polyhedra_Library::Partially_-
Reduced_Product, 344
wrap_string
Parma_Polyhedra_Library::10_Operators, 77

The Parma Polyhedra Library User’s Manual (version 0.10.2). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	General Information on the PPL
	The Main Features
	Upward Approximation
	Convex Polyhedra
	Representations of Convex Polyhedra
	Operations on Convex Polyhedra
	Intervals and Boxes
	Weakly-Relational Shapes
	Rational Grids
	Operations on Rational Grids
	The Powerset Construction
	Operations on the Powerset Construction
	The Pointset Powerset Domain
	Using the Library
	Bibliography

	GNU General Public License
	GNU Free Documentation License
	Deprecated List
	Module Index
	Modules

	Namespace Index
	Namespace List

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Module Documentation
	C++ Language Interface

	Namespace Documentation
	Parma_Polyhedra_Library Namespace Reference
	Parma_Polyhedra_Library::IO_Operators Namespace Reference
	std Namespace Reference

	Class Documentation
	Parma_Polyhedra_Library::BD_Shape< T > Class Template Reference
	Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference
	Parma_Polyhedra_Library::Box< ITV > Class Template Reference
	Parma_Polyhedra_Library::C_Polyhedron Class Reference
	Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference
	Parma_Polyhedra_Library::Variable::Compare Struct Reference
	Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference
	Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference
	Parma_Polyhedra_Library::Grid_Certificate::Compare Struct Reference
	Parma_Polyhedra_Library::Congruence Class Reference
	Parma_Polyhedra_Library::Congruence_System Class Reference
	Parma_Polyhedra_Library::Constraint_System::const_iterator Class Reference
	Parma_Polyhedra_Library::Generator_System::const_iterator Class Reference
	Parma_Polyhedra_Library::Congruence_System::const_iterator Class Reference
	Parma_Polyhedra_Library::Grid_Generator_System::const_iterator Class Reference
	Parma_Polyhedra_Library::Constraint Class Reference
	Parma_Polyhedra_Library::Constraint_System Class Reference
	Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Determinate< PSET > Class Template Reference
	Parma_Polyhedra_Library::Domain_Product< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::From_Covering_Box Struct Reference
	Parma_Polyhedra_Library::Generator Class Reference
	Parma_Polyhedra_Library::Generator_System Class Reference
	Parma_Polyhedra_Library::GMP_Integer Class Reference
	Parma_Polyhedra_Library::Grid Class Reference
	Parma_Polyhedra_Library::Grid_Certificate Class Reference
	Parma_Polyhedra_Library::Grid_Generator Class Reference
	Parma_Polyhedra_Library::Grid_Generator_System Class Reference
	Parma_Polyhedra_Library::H79_Certificate Class Reference
	Parma_Polyhedra_Library::Interval< Boundary, Info > Class Template Reference
	Parma_Polyhedra_Library::Is_Checked< T > Struct Template Reference
	Parma_Polyhedra_Library::Is_Checked< Checked_Number< T, P > > Struct Template Reference
	Parma_Polyhedra_Library::Is_Native_Or_Checked< T > Struct Template Reference
	Parma_Polyhedra_Library::Linear_Expression Class Reference
	Parma_Polyhedra_Library::MIP_Problem Class Reference
	Parma_Polyhedra_Library::NNC_Polyhedron Class Reference
	Parma_Polyhedra_Library::No_Reduction< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Octagonal_Shape< T > Class Template Reference
	Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R > Class Template Reference
	Parma_Polyhedra_Library::Pointset_Powerset< PSET > Class Template Reference
	Parma_Polyhedra_Library::Poly_Con_Relation Class Reference
	Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference
	Parma_Polyhedra_Library::Polyhedron Class Reference
	Parma_Polyhedra_Library::Powerset< D > Class Template Reference
	Parma_Polyhedra_Library::Recycle_Input Struct Reference
	Parma_Polyhedra_Library::Smash_Reduction< D1, D2 > Class Template Reference
	Parma_Polyhedra_Library::Throwable Class Reference
	Parma_Polyhedra_Library::Variable Class Reference
	Parma_Polyhedra_Library::Variables_Set Class Reference

