
The Parma Polyhedra Library
C Language Interface

User’s Manual∗

(version 0.11.1)

Roberto Bagnara†

Patricia M. Hill‡

Enea Zaffanella§

February 20, 2011

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification
of Reactive Systems”; MURST project “Abstract Interpretation: Design and Applications”; EPSRC project “Numerical Domains for
Software Analysis”; EPSRC project “Geometric Abstractions for Scalable Program Analyzers”.
†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‡hill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

Copyright © 2001–2010 Roberto Bagnara (bagnara@cs.unipr.it).

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library site:

http://www.cs.unipr.it/ppl/

Contents
1 Main Page 1

2 GNU General Public License 2

3 GNU Free Documentation License 12

4 Module Index 17
4.1 Modules . 17

5 Class Index 17
5.1 Class List . 17

6 Module Documentation 18
6.1 C Language Interface . 18
6.2 Library Initialization and Finalization . 19
6.3 Version Checking . 20
6.4 Error Handling . 21
6.5 Handling . 23
6.6 Library Datatypes . 24

7 Class Documentation 32
7.1 ppl_Artificial_Parameter_Sequence_const_iterator_tag Interface Reference 32
7.2 ppl_Artificial_Parameter_tag Interface Reference . 33
7.3 ppl_Coefficient_tag Interface Reference . 34
7.4 ppl_Congruence_System_const_iterator_tag Interface Reference 36
7.5 ppl_Congruence_System_tag Interface Reference . 37
7.6 ppl_Congruence_tag Interface Reference . 39
7.7 ppl_Constraint_System_const_iterator_tag Interface Reference 40
7.8 ppl_Constraint_System_tag Interface Reference . 41
7.9 ppl_Constraint_tag Interface Reference . 43
7.10 ppl_Generator_System_const_iterator_tag Interface Reference 45
7.11 ppl_Generator_System_tag Interface Reference . 46
7.12 ppl_Generator_tag Interface Reference . 47

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/

1 Main Page 1

7.13 ppl_Grid_Generator_System_const_iterator_tag Interface Reference 49
7.14 ppl_Grid_Generator_System_tag Interface Reference . 50
7.15 ppl_Grid_Generator_tag Interface Reference . 52
7.16 ppl_Linear_Expression_tag Interface Reference . 53
7.17 ppl_MIP_Problem_tag Interface Reference . 56
7.18 ppl_PIP_Decision_Node_tag Interface Reference . 60
7.19 ppl_PIP_Problem_tag Interface Reference . 61
7.20 ppl_PIP_Solution_Node_tag Interface Reference . 65
7.21 ppl_PIP_Tree_Node_tag Interface Reference . 67
7.22 ppl_Pointset_Powerset_C_Polyhedron_const_iterator_tag Interface Reference 68
7.23 ppl_Pointset_Powerset_C_Polyhedron_iterator_tag Interface Reference 69
7.24 ppl_Pointset_Powerset_C_Polyhedron_tag Interface Reference 71
7.25 ppl_Polyhedron_tag Interface Reference . 72

1 Main Page

All the declarations needed for using the PPL’s C interface (preprocessor symbols, data types, variables and
functions) are collected in the header file ppl_c.h. This file, which is designed to work with pre-ANSI
and ANSI C compilers as well as C99 and C++ compilers, should be included, either directly or via some
other header file, with the directive

#include <ppl_c.h>

If this directive does not work, then your compiler is unable to find the file ppl_c.h. So check that the
library is installed (if it is not installed, you may want to make install, perhaps with root privileges)
in the right place (if not you may want to reconfigure the library using the appropriate pathname for the
--prefix option); and that your compiler knows where it is installed (if not you should add the path to
the directory where ppl_c.h is located to the compiler’s include file search path; this is usually done with
the -I option).

The name space of the PPL’s C interface is PPL_∗ for preprocessor symbols, enumeration values and
variables; and ppl_∗ for data types and function names. The interface systematically uses opaque data
types (generic pointers that completely hide the internal representations from the client code) and provides
all required access functions. By using just the interface, the client code can exploit all the functionalities
of the library yet avoid directly manipulating the library’s data structures. The advantages are that (1)
applications do not depend on the internals of the library (these may change from release to release), and
(2) the interface invariants can be thoroughly checked (by the access functions).

Note

All functions taking as input argument an opaque pointer datatype assume that such an argument is
actually referring to a valid PPL object. For instance, a function with an argument having type ppl_-
MIP_Problem_t will expect a valid MIP_Problem object, previously initialized by calling, e.g.,
ppl_new_MIP_Problem. If that is not the case (e.g., if a null pointer is passed in), the behavior is
undefined.

The PPL’s C interface is initialized by means of the ppl_initialize function. This function must be
called before using any other interface of the library. The application can release the resources allocated
by the library by calling the ppl_finalize function. After this function is called no other interface of
the library may be used until the interface is re-initialized using ppl_initialize.

Any application using the PPL should make sure that only the intended version(s) of the library are ever
used. The version used can be checked at compile-time thanks to the macros PPL_VERSION_MAJOR,
PPL_VERSION_MINOR, PPL_VERSION_REVISION and PPL_VERSION_BETA, which give, respec-
tively major, minor, revision and beta numbers of the PPL version. This is an example of their use:

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 2

#if PPL_VERSION_MAJOR == 0 && PPL_VERSION_MINOR < 6
error "PPL version 0.6 or following is required"
#endif

Compile-time checking, however, is not normally enough, particularly in an environment where there is dy-
namic linking. Run-time checking can be performed by means of the functions ppl_version_major,
ppl_version_minor, ppl_version_revision, and ppl_version_beta. The PPL’s C inter-
face also provides functions ppl_version, returning character string containing the full version number,
and ppl_banner, returning a string that, in addition, provides (pointers to) other useful information for
the library user.

All programs using the PPL’s C interface must link with the following libraries: libppl_c (PPL’s C
interface), libppl (PPL’s core), libgmpxx (GMP’s C++ interface), and libgmp (GMP’s library core).
On most Unix-like systems, this is done by adding -lppl_c, -lppl, -lgmpxx, and -lgmp to the
compiler’s or linker’s command line. For example:

gcc myprogram.o -lppl_c -lppl -lgmpxx -lgmp

If this does not work, it means that your compiler/linker is not finding the libraries where it expects. Again,
this could be because you forgot to install the library or you installed it in a non-standard location. In the
latter case you will need to use the appropriate options (usually -L) and, if you use shared libraries, some
sort of run-time path selection mechanisms. Consult your compiler’s documentation for details. Notice
that the PPL is built using Libtool and an application can exploit this fact to significantly simplify the
linking phase. See Libtool’s documentation for details. Those working under Linux can find a lot of useful
information on how to use program libraries (including static, shared, and dynamically loaded libraries) in
the Program Library HOWTO.

For examples on how to use the functions provided by the C interface, you are referred to the direc-
tory demos/ppl_lpsol/ in the source distribution. It contains a Mixed Integer (Linear) Programming
solver written in C. In order to use this solver you will need to install GLPK (the GNU Linear Programming
Kit): this is used to read linear programs in MPS format.

2 GNU General Public License

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program--to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/software/libtool/
http://www.dwheeler.com/program-library/
http://www.gnu.org/software/glpk/
http://fsf.org/
http://www.cs.unipr.it/ppl/

2 GNU General Public License 3

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to
the recipients the same freedoms that you received. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed,
so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 4

convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized stan-
dards body, or, in the case of interfaces specified for a particular programming language, one that is widely
used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which
are not part of the work. For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevo-
cable provided the stated conditions are met. This License explicitly affirms your unlimited permission to
run the unmodified Program. The output from running a covered work is covered by this License only if
the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works for you must do so exclusively on
your behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicens-
ing is not allowed; section 10 makes it unnecessary.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 5

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit operation or modification of the work as a
means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply
to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

• b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifies the requirement in section 4 to “keep
intact all notices”.

• c) You must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission
if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however,
if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work
need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 6

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customar-
ily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the Cor-
responding Source. This alternative is allowed only occasionally and noncommercially, and only if
you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may
be on a different server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the Corresponding
Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as
a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for incor-
poration into a dwelling. In determining whether a product is a consumer product, doubtful cases shall
be resolved in favor of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of the particular user
or of the way in which the particular user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because modifica-
tion has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 7

is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must
be in a format that is publicly documented (and with an implementation available to the public in source
code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that material
or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of sec-
tion 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by
this License along with a term that is a further restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that the further restriction
does not survive such relicensing or conveying.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 8

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a
statement of the additional terms that apply to those files, or a notice indicating where to find the applicable
terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets
of one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 9

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent li-
cense for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowl-
edge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use
of the covered work in a country, would infringe one or more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party based
on the extent of your activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to
infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 10

that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely from conveying
the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single com-
bined work, and to convey the resulting work. The terms of this License will continue to apply to the part
which is the covered work, but the special requirements of the GNU Affero General Public License, section
13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 GNU General Public License 11

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive
mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public
License. Of course, your program’s commands might be different; for a GUI interface, you would use an
“about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see http://www.gnu.org/licenses/.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 12

The GNU General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU Lesser General Public License instead of
this License. But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

3 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 13

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 14

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 15

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

3 GNU Free Documentation License 16

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/
http://www.cs.unipr.it/ppl/

4 Module Index 17

"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

4 Module Index

4.1 Modules

Here is a list of all modules:

C Language Interface 18

Library Initialization and Finalization 19

Version Checking 20

Error Handling 21

Handling 23

Library Datatypes 24

5 Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ppl_Artificial_Parameter_Sequence_const_iterator_tag (Types and functions for iterating
on PIP artificial parameters) 32

ppl_Artificial_Parameter_tag (Types and functions for PIP artificial parameters) 33

ppl_Coefficient_tag (Types and functions for coefficients) 34

ppl_Congruence_System_const_iterator_tag (Types and functions for iterating on congru-
ence systems) 36

ppl_Congruence_System_tag (Types and functions for congruence systems) 37

ppl_Congruence_tag (Types and functions for congruences) 39

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6 Module Documentation 18

ppl_Constraint_System_const_iterator_tag (Types and functions for iterating on constraint
systems) 40

ppl_Constraint_System_tag (Types and functions for constraint systems) 41

ppl_Constraint_tag (Types and functions for constraints) 43

ppl_Generator_System_const_iterator_tag (Types and functions for iterating on generator
systems) 45

ppl_Generator_System_tag (Types and functions for generator systems) 46

ppl_Generator_tag (Types and functions for generators) 47

ppl_Grid_Generator_System_const_iterator_tag (Types and functions for iterating on grid
generator systems) 49

ppl_Grid_Generator_System_tag (Types and functions for grid generator systems) 50

ppl_Grid_Generator_tag (Types and functions for grid generators) 52

ppl_Linear_Expression_tag (Types and functions for linear expressions) 53

ppl_MIP_Problem_tag (Types and functions for MIP problems) 56

ppl_PIP_Decision_Node_tag (Types and functions for PIP decision nodes) 60

ppl_PIP_Problem_tag (Types and functions for PIP problems) 61

ppl_PIP_Solution_Node_tag (Types and functions for PIP solution nodes) 65

ppl_PIP_Tree_Node_tag (Types and functions for generic PIP tree nodes) 67

ppl_Pointset_Powerset_C_Polyhedron_const_iterator_tag (Types and functions for iterat-
ing on the disjuncts of a const ppl_Pointset_Powerset_C_Polyhedron_tag) 68

ppl_Pointset_Powerset_C_Polyhedron_iterator_tag (Types and functions for iterating on
the disjuncts of a ppl_Pointset_Powerset_C_Polyhedron_tag) 69

ppl_Pointset_Powerset_C_Polyhedron_tag (Types and functions for the Pointset_Powerset
of C_Polyhedron objects) 71

ppl_Polyhedron_tag (Types and functions for the domains of C and NNC convex polyhedra) 72

6 Module Documentation

6.1 C Language Interface

The Parma Polyhedra Library comes equipped with an interface for the C language.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.2 Library Initialization and Finalization 19

6.2 Library Initialization and Finalization

Functions

• int ppl_initialize (void)
Initializes the Parma Polyhedra Library. This function must be called before any other function.

• int ppl_finalize (void)
Finalizes the Parma Polyhedra Library. This function must be called after any other function.

• int ppl_set_rounding_for_PPL (void)
Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.

• int ppl_restore_pre_PPL_rounding (void)
Sets the FPU rounding mode as it was before initialization of the PPL.

• int ppl_irrational_precision (unsigned ∗p)
Writes to p the precision parameter used for irrational calculations.

• int ppl_set_irrational_precision (unsigned p)
Sets the precision parameter used for irrational calculations.

6.2.1 Detailed Description

Functions for initialization/finalization of the library, as well as setting/resetting of floating-point rounding
mode.

6.2.2 Function Documentation

6.2.2.1 int ppl_initialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

Returns

PPL_ERROR_INVALID_ARGUMENT if the library was already initialized.

6.2.2.2 int ppl_finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

Returns

PPL_ERROR_INVALID_ARGUMENT if the library was already finalized.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 Version Checking 20

6.2.2.3 int ppl_set_rounding_for_PPL (void)

Sets the FPU rounding mode so that the PPL abstractions based on floating point numbers work correctly.

This is performed automatically at initialization-time. Calling this function is needed only if restore_pre_-
PPL_rounding() has been previously called.

6.2.2.4 int ppl_restore_pre_PPL_rounding (void)

Sets the FPU rounding mode as it was before initialization of the PPL.

After calling this function it is absolutely necessary to call set_rounding_for_PPL() before using any PPL
abstractions based on floating point numbers. This is performed automatically at finalization-time.

6.2.2.5 int ppl_set_irrational_precision (unsigned p)

Sets the precision parameter used for irrational calculations.

If p is less than or equal to INT_MAX, sets the precision parameter used for irrational calculations to p.
Then, in the irrational calculations returning an unbounded rational, (e.g., when computing a square root),
the lesser between numerator and denominator will be limited to 2∗∗p.

6.3 Version Checking

Defines

• #define PPL_VERSION "0.11.1"
A string containing the PPL version.

• #define PPL_VERSION_MAJOR 0
The major number of the PPL version.

• #define PPL_VERSION_MINOR 11
The minor number of the PPL version.

• #define PPL_VERSION_REVISION 1
The revision number of the PPL version.

• #define PPL_VERSION_BETA 0
The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

Functions

• int ppl_version_major (void)
Returns the major number of the PPL version.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Error Handling 21

• int ppl_version_minor (void)
Returns the minor number of the PPL version.

• int ppl_version_revision (void)
Returns the revision number of the PPL version.

• int ppl_version_beta (void)
Returns the beta number of the PPL version.

• int ppl_version (const char ∗∗p)
Writes to ∗p a pointer to a character string containing the PPL version.

• int ppl_banner (const char ∗∗p)
Writes to ∗p a pointer to a character string containing the PPL banner.

6.3.1 Detailed Description

Symbolic constants and functions related to library version checking.

6.3.2 Define Documentation

6.3.2.1 #define PPL_VERSION "0.11.1"

A string containing the PPL version.

Let M and m denote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSION is M "." m if both PPL_VERSION_REVISION (r) and
PPL_VERSION_BETA (b)are zero, M "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zero, M "." m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zero, M "." m "." r "pre" b if neither PPL_VERSION_REVISION
nor PPL_VERSION_BETA are zero.

6.3.3 Function Documentation

6.3.3.1 int ppl_banner (const char ∗∗ p)

Writes to ∗p a pointer to a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

6.4 Error Handling

Enumerations

• enum ppl_enum_error_code {

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Error Handling 22

PPL_ERROR_OUT_OF_MEMORY, PPL_ERROR_INVALID_ARGUMENT, PPL_ERROR_DOMAIN_-
ERROR, PPL_ERROR_LENGTH_ERROR,

PPL_ARITHMETIC_OVERFLOW, PPL_STDIO_ERROR, PPL_ERROR_INTERNAL_ERROR, PPL_-
ERROR_UNKNOWN_STANDARD_EXCEPTION,

PPL_ERROR_UNEXPECTED_ERROR, PPL_TIMEOUT_EXCEPTION, PPL_ERROR_LOGIC_-
ERROR }

Defines the error codes that any function may return.

Functions

• int ppl_set_error_handler (void(∗h)(enum ppl_enum_error_code code, const char ∗description))
Installs the user-defined error handler pointed at by h.

6.4.1 Detailed Description

Symbolic constants and functions related to error reporting/handling.

6.4.2 Enumeration Type Documentation

6.4.2.1 enum ppl_enum_error_code

Defines the error codes that any function may return.

Enumerator:

PPL_ERROR_OUT_OF_MEMORY The virtual memory available to the process has been exhausted.

PPL_ERROR_INVALID_ARGUMENT A function has been invoked with an invalid argument.

PPL_ERROR_DOMAIN_ERROR A function has been invoked outside its domain of definition.

PPL_ERROR_LENGTH_ERROR The construction of an object that would exceed its maximum
permitted size was attempted.

PPL_ARITHMETIC_OVERFLOW An arithmetic overflow occurred and the computation was con-
sequently interrupted. This can only happen in library’s incarnations using bounded integers as
coefficients.

PPL_STDIO_ERROR An error occurred during a C input/output operation. A more precise indica-
tion of what went wrong is available via errno.

PPL_ERROR_INTERNAL_ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL_ERROR_UNKNOWN_STANDARD_EXCEPTION A standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL_ERROR_UNEXPECTED_ERROR A totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

PPL_TIMEOUT_EXCEPTION An exception has been raised by the PPL as a timeout previously
set by the user has expired.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 Handling 23

PPL_ERROR_LOGIC_ERROR The client program attempted to use the PPL in a way that violates
its internal logic. This happens, for instance, when the client attempts to use the timeout facilities
on a system that does not support them.

6.4.3 Function Documentation

6.4.3.1 int ppl_set_error_handler (void(∗)(enum ppl_enum_error_code code, const char
∗description) h)

Installs the user-defined error handler pointed at by h.

The error handler takes an error code and a textual description that gives further information about the
actual error. The C string containing the textual description is read-only and its existence is not guaranteed
after the handler has returned.

6.5 Handling

Functions

• int ppl_set_timeout (unsigned time)
Sets the timeout for computations whose completion could require an exponential amount of time.

• int ppl_reset_timeout (void)
Resets the timeout time so that the computation is not interrupted.

• int ppl_set_deterministic_timeout (unsigned weight)
Sets a threshold for computations whose completion could require an exponential amount of time.

• int ppl_reset_deterministic_timeout (void)
Resets the deterministic timeout so that the computation is not interrupted.

6.5.1 Detailed Description

Functions for setting and resetting timeouts.

6.5.2 Function Documentation

6.5.2.1 int ppl_set_timeout (unsigned time)

Sets the timeout for computations whose completion could require an exponential amount of time.

Parameters
time The number of hundreths of seconds. It must be strictly greater than zero.

Computations taking exponential time will be interrupted some time after time hundreths of seconds have
elapsed since the call to the timeout setting function. If the computation is interrupted that way, the inter-

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Library Datatypes 24

rupted function will return error code PPL_TIMEOUT_EXCEPTION. Otherwise, if the computation com-
pletes without being interrupted, then the timeout should be reset by calling ppl_reset_timeout().

6.5.2.2 int ppl_set_deterministic_timeout (unsigned weight)

Sets a threshold for computations whose completion could require an exponential amount of time.

Parameters
weight The maximum computational weight allowed. It must be strictly greater than zero.

Computations taking exponential time will be interrupted some time after reaching the weight complexity
threshold. If the computation is interrupted that way, the interrupted function will return error code PPL_-
TIMEOUT_EXCEPTION. Otherwise, if the computation completes without being interrupted, then the
deterministic timeout should be reset by calling ppl_reset_deterministic_timeout().

Note

This "timeout" checking functionality is said to be deterministic because it is not based on actual
elapsed time. Its behavior will only depend on (some of the) computations performed in the PPL li-
brary and it will be otherwise independent from the computation environment (CPU, operating system,
compiler, etc.).

Warning

The weight mechanism is under alpha testing. In particular, there is still no clear relation between
the weight threshold and the actual computational complexity. As a consequence, client applications
should be ready to reconsider the tuning of these weight thresholds when upgrading to newer version
of the PPL.

6.6 Library Datatypes

Typedefs for the library datatypes and related symbolic constants.

Typedefs

• typedef size_t ppl_dimension_type
An unsigned integral type for representing space dimensions.

• typedef const char ∗ ppl_io_variable_output_function_type (ppl_dimension_type var)
The type of output functions used for printing variables.

• typedef struct ppl_Coefficient_tag ∗ ppl_Coefficient_t
Opaque pointer.

• typedef struct ppl_Coefficient_tag const ∗ ppl_const_Coefficient_t
Opaque pointer to const object.

• typedef struct ppl_Linear_Expression_tag ∗ ppl_Linear_Expression_t

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Library Datatypes 25

Opaque pointer.

• typedef struct ppl_Linear_Expression_tag const ∗ ppl_const_Linear_Expression_t
Opaque pointer to const object.

• typedef struct ppl_Constraint_tag ∗ ppl_Constraint_t
Opaque pointer.

• typedef struct ppl_Constraint_tag const ∗ ppl_const_Constraint_t
Opaque pointer to const object.

• typedef struct ppl_Constraint_System_tag ∗ ppl_Constraint_System_t
Opaque pointer.

• typedef struct ppl_Constraint_System_tag const ∗ ppl_const_Constraint_System_t
Opaque pointer to const object.

• typedef struct ppl_Constraint_System_const_iterator_tag ∗ ppl_Constraint_System_const_iterator_t

Opaque pointer.

• typedef struct ppl_Constraint_System_const_iterator_tag const ∗ ppl_const_Constraint_System_-
const_iterator_t

Opaque pointer to const object.

• typedef struct ppl_Generator_tag ∗ ppl_Generator_t
Opaque pointer.

• typedef struct ppl_Generator_tag const ∗ ppl_const_Generator_t
Opaque pointer to const object.

• typedef struct ppl_Generator_System_tag ∗ ppl_Generator_System_t
Opaque pointer.

• typedef struct ppl_Generator_System_tag const ∗ ppl_const_Generator_System_t
Opaque pointer to const object.

• typedef struct ppl_Generator_System_const_iterator_tag ∗ ppl_Generator_System_const_iterator_t
Opaque pointer.

• typedef struct ppl_Generator_System_const_iterator_tag const ∗ ppl_const_Generator_System_const_-
iterator_t

Opaque pointer to const object.

• typedef struct ppl_Congruence_tag ∗ ppl_Congruence_t
Opaque pointer.

• typedef struct ppl_Congruence_tag const ∗ ppl_const_Congruence_t
Opaque pointer to const object.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Library Datatypes 26

• typedef struct ppl_Congruence_System_tag ∗ ppl_Congruence_System_t
Opaque pointer.

• typedef struct ppl_Congruence_System_tag const ∗ ppl_const_Congruence_System_t
Opaque pointer to const object.

• typedef struct ppl_Congruence_System_const_iterator_tag ∗ ppl_Congruence_System_const_iterator_-
t

Opaque pointer.

• typedef struct ppl_Congruence_System_const_iterator_tag const ∗ ppl_const_Congruence_System_-
const_iterator_t

Opaque pointer to const object.

• typedef struct ppl_Grid_Generator_tag ∗ ppl_Grid_Generator_t
Opaque pointer.

• typedef struct ppl_Grid_Generator_tag const ∗ ppl_const_Grid_Generator_t
Opaque pointer to const object.

• typedef struct ppl_Grid_Generator_System_tag ∗ ppl_Grid_Generator_System_t
Opaque pointer.

• typedef struct ppl_Grid_Generator_System_tag const ∗ ppl_const_Grid_Generator_System_t
Opaque pointer to const object.

• typedef struct ppl_Grid_Generator_System_const_iterator_tag ∗ ppl_Grid_Generator_System_const_-
iterator_t

Opaque pointer.

• typedef struct ppl_Grid_Generator_System_const_iterator_tag const ∗ ppl_const_Grid_Generator_-
System_const_iterator_t

Opaque pointer to const object.

• typedef struct ppl_MIP_Problem_tag ∗ ppl_MIP_Problem_t
Opaque pointer.

• typedef struct ppl_MIP_Problem_tag const ∗ ppl_const_MIP_Problem_t
Opaque pointer to const object.

• typedef struct ppl_PIP_Problem_tag ∗ ppl_PIP_Problem_t
Opaque pointer.

• typedef struct ppl_PIP_Problem_tag const ∗ ppl_const_PIP_Problem_t
Opaque pointer to const object.

• typedef struct ppl_PIP_Tree_Node_tag ∗ ppl_PIP_Tree_Node_t
Opaque pointer.

• typedef struct ppl_PIP_Tree_Node_tag const ∗ ppl_const_PIP_Tree_Node_t

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Library Datatypes 27

Opaque pointer to const object.

• typedef struct ppl_PIP_Decision_Node_tag ∗ ppl_PIP_Decision_Node_t
Opaque pointer.

• typedef struct ppl_PIP_Decision_Node_tag const ∗ ppl_const_PIP_Decision_Node_t
Opaque pointer to const object.

• typedef struct ppl_PIP_Solution_Node_tag ∗ ppl_PIP_Solution_Node_t
Opaque pointer.

• typedef struct ppl_PIP_Solution_Node_tag const ∗ ppl_const_PIP_Solution_Node_t
Opaque pointer to const object.

• typedef struct ppl_Artificial_Parameter_tag ∗ ppl_Artificial_Parameter_t
Opaque pointer.

• typedef struct ppl_Artificial_Parameter_tag const ∗ ppl_const_Artificial_Parameter_t
Opaque pointer to const object.

• typedef struct ppl_Artificial_Parameter_Sequence_tag ∗ ppl_Artificial_Parameter_Sequence_t
Opaque pointer.

• typedef struct ppl_Artificial_Parameter_Sequence_tag const ∗ ppl_const_Artificial_Parameter_Sequence_-
t

Opaque pointer to const object.

• typedef struct ppl_Artificial_Parameter_Sequence_const_iterator_tag ∗ ppl_Artificial_Parameter_-
Sequence_const_iterator_t

Opaque pointer.

• typedef struct ppl_Artificial_Parameter_Sequence_const_iterator_tag const ∗ ppl_const_Artificial_-
Parameter_Sequence_const_iterator_t

Opaque pointer to const object.

• typedef struct ppl_Polyhedron_tag ∗ ppl_Polyhedron_t
Opaque pointer.

• typedef struct ppl_Polyhedron_tag const ∗ ppl_const_Polyhedron_t
Opaque pointer to const object.

• typedef struct ppl_Pointset_Powerset_C_Polyhedron_tag ∗ ppl_Pointset_Powerset_C_Polyhedron_t

Opaque pointer.

• typedef struct ppl_Pointset_Powerset_C_Polyhedron_tag const ∗ ppl_const_Pointset_Powerset_C_-
Polyhedron_t

Opaque pointer to const object.

• typedef struct ppl_Pointset_Powerset_C_Polyhedron_iterator_tag ∗ ppl_Pointset_Powerset_C_Polyhedron_-
iterator_t

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Library Datatypes 28

Opaque pointer.

• typedef struct ppl_Pointset_Powerset_C_Polyhedron_iterator_tag const ∗ ppl_const_Pointset_Powerset_-
C_Polyhedron_iterator_t

Opaque pointer to const object.

• typedef struct ppl_Pointset_Powerset_C_Polyhedron_const_iterator_tag ∗ ppl_Pointset_Powerset_-
C_Polyhedron_const_iterator_t

Opaque pointer.

• typedef struct ppl_Pointset_Powerset_C_Polyhedron_const_iterator_tag const ∗ ppl_const_Pointset_-
Powerset_C_Polyhedron_const_iterator_t

Opaque pointer to const object.

Enumerations

• enum ppl_enum_Constraint_Type {

PPL_CONSTRAINT_TYPE_LESS_THAN, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL, PPL_-
CONSTRAINT_TYPE_EQUAL, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL,

PPL_CONSTRAINT_TYPE_GREATER_THAN }
Describes the relations represented by a constraint.

• enum ppl_enum_Generator_Type { PPL_GENERATOR_TYPE_LINE, PPL_GENERATOR_TYPE_-
RAY, PPL_GENERATOR_TYPE_POINT, PPL_GENERATOR_TYPE_CLOSURE_POINT }

Describes the different kinds of generators.

• enum ppl_enum_Grid_Generator_Type { PPL_GRID_GENERATOR_TYPE_LINE, PPL_GRID_-
GENERATOR_TYPE_PARAMETER, PPL_GRID_GENERATOR_TYPE_POINT }

Describes the different kinds of grid generators.

• enum ppl_enum_Bounded_Integer_Type_Width {

PPL_BITS_8, PPL_BITS_16, PPL_BITS_32, PPL_BITS_64,

PPL_BITS_128 }
Widths of bounded integer types.

• enum ppl_enum_Bounded_Integer_Type_Representation { PPL_UNSIGNED, PPL_SIGNED_2_-
COMPLEMENT }

Representation of bounded integer types.

• enum ppl_enum_Bounded_Integer_Type_Overflow { PPL_OVERFLOW_WRAPS, PPL_OVERFLOW_-
UNDEFINED, PPL_OVERFLOW_IMPOSSIBLE }

Overflow behavior of bounded integer types.

Functions

• int ppl_max_space_dimension (ppl_dimension_type ∗m)
Writes to m the maximum space dimension this library can handle.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Library Datatypes 29

• int ppl_not_a_dimension (ppl_dimension_type ∗m)
Writes to m a value that does not designate a valid dimension.

• int ppl_io_print_variable (ppl_dimension_type var)
Pretty-prints var to stdout.

• int ppl_io_fprint_variable (FILE ∗stream, ppl_dimension_type var)
Pretty-prints var to the given output stream.

• int ppl_io_asprint_variable (char ∗∗strp, ppl_dimension_type var)
Pretty-prints var to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_io_set_variable_output_function (ppl_io_variable_output_function_type ∗p)
Sets the output function to be used for printing variables to p.

• int ppl_io_get_variable_output_function (ppl_io_variable_output_function_type ∗∗pp)
Writes a pointer to the current variable output function to pp.

• char ∗ ppl_io_wrap_string (const char ∗src, unsigned indent_depth, unsigned preferred_first_line_-
length, unsigned preferred_line_length)

Utility function for the wrapping of lines of text.

Variables

• unsigned int PPL_COMPLEXITY_CLASS_POLYNOMIAL
Code of the worst-case polynomial complexity class.

• unsigned int PPL_COMPLEXITY_CLASS_SIMPLEX
Code of the worst-case exponential but typically polynomial complexity class.

• unsigned int PPL_COMPLEXITY_CLASS_ANY
Code of the universal complexity class.

• unsigned int PPL_POLY_CON_RELATION_IS_DISJOINT
Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

• unsigned int PPL_POLY_CON_RELATION_STRICTLY_INTERSECTS
Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

• unsigned int PPL_POLY_CON_RELATION_IS_INCLUDED
Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

• unsigned int PPL_POLY_CON_RELATION_SATURATES
Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

• unsigned int PPL_POLY_GEN_RELATION_SUBSUMES
Individual bit saying that adding the generator would not change the polyhedron.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Library Datatypes 30

6.6.1 Detailed Description

Typedefs for the library datatypes and related symbolic constants. The datatypes provided by the library
should be manipulated by means of the corresponding opaque pointer types and the functions working on
them.

Note

To simplify the detection of common programming mistakes, we provide both pointer-to-const and
pointer-to-nonconst opaque pointers, with implicit conversions mapping each pointer-to-nonconst to
the corresponding pointer-to-const when needed. The user of the C interface is therefore recommended
to adopt the pointer-to-const type whenever read-only access is meant.

6.6.2 Typedef Documentation

6.6.2.1 typedef const char∗ ppl_io_variable_output_function_type(ppl_dimension_type var)

The type of output functions used for printing variables.

An output function for variables must write a textual representation for var to a character buffer, null-
terminate it, and return a pointer to the beginning of the buffer. In case the operation fails, 0 should be
returned and perhaps errno should be set in a meaningful way. The library does nothing with the buffer,
besides printing its contents.

6.6.3 Enumeration Type Documentation

6.6.3.1 enum ppl_enum_Constraint_Type

Describes the relations represented by a constraint.

Enumerator:

PPL_CONSTRAINT_TYPE_LESS_THAN The constraint is of the form e < 0.
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL The constraint is of the form e ≤ 0.
PPL_CONSTRAINT_TYPE_EQUAL The constraint is of the form e = 0.
PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL The constraint is of the form e ≥ 0.
PPL_CONSTRAINT_TYPE_GREATER_THAN The constraint is of the form e > 0.

6.6.3.2 enum ppl_enum_Generator_Type

Describes the different kinds of generators.

Enumerator:

PPL_GENERATOR_TYPE_LINE The generator is a line.
PPL_GENERATOR_TYPE_RAY The generator is a ray.
PPL_GENERATOR_TYPE_POINT The generator is a point.
PPL_GENERATOR_TYPE_CLOSURE_POINT The generator is a closure point.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.6 Library Datatypes 31

6.6.3.3 enum ppl_enum_Grid_Generator_Type

Describes the different kinds of grid generators.

Enumerator:

PPL_GRID_GENERATOR_TYPE_LINE The grid generator is a line.

PPL_GRID_GENERATOR_TYPE_PARAMETER The grid generator is a parameter.

PPL_GRID_GENERATOR_TYPE_POINT The grid generator is a point.

6.6.3.4 enum ppl_enum_Bounded_Integer_Type_Width

Widths of bounded integer types.

Enumerator:

PPL_BITS_8 8 bits.

PPL_BITS_16 16 bits.

PPL_BITS_32 32 bits.

PPL_BITS_64 64 bits.

PPL_BITS_128 128 bits.

6.6.3.5 enum ppl_enum_Bounded_Integer_Type_Representation

Representation of bounded integer types.

Enumerator:

PPL_UNSIGNED Unsigned binary.

PPL_SIGNED_2_COMPLEMENT Signed binary where negative values are represented by the
two’s complement of the absolute value.

6.6.3.6 enum ppl_enum_Bounded_Integer_Type_Overflow

Overflow behavior of bounded integer types.

Enumerator:

PPL_OVERFLOW_WRAPS On overflow, wrapping takes place. This means that, for a w-bit bounded
integer, the computation happens modulo 2w.

PPL_OVERFLOW_UNDEFINED On overflow, the result is undefined. This simply means that the
result of the operation resulting in an overflow can take any value.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 Class Documentation 32

Note

Even though something more serious can happen in the system being analyzed ---due to,
e.g., C’s undefined behavior---, here we are only concerned with the results of arithmetic
operations. It is the responsibility of the analyzer to ensure that other manifestations of
undefined behavior are conservatively approximated.

PPL_OVERFLOW_IMPOSSIBLE Overflow is impossible. This is for the analysis of languages
where overflow is trapped before it affects the state, for which, thus, any indication that an over-
flow may have affected the state is necessarily due to the imprecision of the analysis.

6.6.4 Function Documentation

6.6.4.1 char∗ ppl_io_wrap_string (const char ∗ src, unsigned indent_depth, unsigned
preferred_first_line_length, unsigned preferred_line_length)

Utility function for the wrapping of lines of text.

Parameters
src The source string holding the text to wrap.

indent_depth The indentation depth.
preferred_-
first_line_-

length

The preferred length for the first line of text.

preferred_-
line_length

The preferred length for all the lines but the first one.

Returns

The wrapped string in a malloc-allocated buffer.

7 Class Documentation

7.1 ppl Artificial Parameter Sequence const iterator tag Interface Reference

Types and functions for iterating on PIP artificial parameters.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Artificial_Parameter_Sequence_const_iterator (ppl_Artificial_Parameter_Sequence_-
const_iterator_t ∗papit)

Builds a new ‘const iterator’ and writes a handle to it at address papit.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 ppl_Artificial_Parameter_tag Interface Reference 33

• int ppl_new_Artificial_Parameter_Sequence_const_iterator_from_Artificial_Parameter_Sequence_-
const_iterator (ppl_Artificial_Parameter_Sequence_const_iterator_t ∗papit, ppl_const_Artificial_-
Parameter_Sequence_const_iterator_t apit)

Builds a const iterator that is a copy of apit; writes a handle for the newly created const iterator at
address papit.

• int ppl_assign_Artificial_Parameter_Sequence_const_iterator_from_Artificial_Parameter_Sequence_-
const_iterator (ppl_Artificial_Parameter_Sequence_const_iterator_t dst, ppl_const_Artificial_Parameter_-
Sequence_const_iterator_t src)

Assigns a copy of the const iterator src to dst.

• int ppl_delete_Artificial_Parameter_Sequence_const_iterator (ppl_const_Artificial_Parameter_Sequence_-
const_iterator_t apit)

Invalidates the handle apit: this makes sure the corresponding resources will eventually be released.

Dereferencing, Incrementing and Equality Testing

• int ppl_Artificial_Parameter_Sequence_const_iterator_dereference (ppl_const_Artificial_Parameter_-
Sequence_const_iterator_t apit, ppl_const_Artificial_Parameter_t ∗pap)

Dereference apit writing a const handle to the resulting artificial parameter at address pap.

• int ppl_Artificial_Parameter_Sequence_const_iterator_increment (ppl_Artificial_Parameter_Sequence_-
const_iterator_t apit)

Increment apit so that it "points" to the next artificial parameter.

• int ppl_Artificial_Parameter_Sequence_const_iterator_equal_test (ppl_const_Artificial_Parameter_-
Sequence_const_iterator_t x, ppl_const_Artificial_Parameter_Sequence_const_iterator_t y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are
different.

7.1.1 Detailed Description

Types and functions for iterating on PIP artificial parameters.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.2 ppl Artificial Parameter tag Interface Reference

Types and functions for PIP artificial parameters.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

• int ppl_Artificial_Parameter_get_Linear_Expression (ppl_const_Artificial_Parameter_t ap, ppl_Linear_-
Expression_t le)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 ppl_Coefficient_tag Interface Reference 34

Copies into le the linear expression in artificial parameter ap.

• int ppl_Artificial_Parameter_coefficient (ppl_const_Artificial_Parameter_t ap, ppl_dimension_type
var, ppl_Coefficient_t n)

Copies into n the coefficient of variable var in the artificial parameter ap.

• int ppl_Artificial_Parameter_get_inhomogeneous_term (ppl_const_Artificial_Parameter_t ap, ppl_-
Coefficient_t n)

Copies into n the inhomogeneous term of the artificial parameter ap.

• int ppl_Artificial_Parameter_denominator (ppl_const_Artificial_Parameter_t ap, ppl_Coefficient_t
n)

Copies into n the denominator in artificial parameter ap.

Input/Output Functions

• int ppl_io_print_Artificial_Parameter (ppl_const_Artificial_Parameter_t x)
Prints x to stdout.

• int ppl_io_fprint_Artificial_Parameter (FILE ∗stream, ppl_const_Artificial_Parameter_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Artificial_Parameter (char ∗∗strp, ppl_const_Artificial_Parameter_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Artificial_Parameter_ascii_dump (ppl_const_Artificial_Parameter_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Artificial_Parameter_ascii_load (ppl_Artificial_Parameter_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.2.1 Detailed Description

Types and functions for PIP artificial parameters. The types and functions for PIP artificial parameters
provide an interface towards Artificial_Parameter.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.3 ppl Coefficient tag Interface Reference

Types and functions for coefficients.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 ppl_Coefficient_tag Interface Reference 35

Constructors, Assignment and Destructor

• int ppl_new_Coefficient (ppl_Coefficient_t ∗pc)
Creates a new coefficient with value 0 and writes a handle for the newly created coefficient at address
pc.

• int ppl_new_Coefficient_from_mpz_t (ppl_Coefficient_t ∗pc, mpz_t z)
Creates a new coefficient with the value given by the GMP integer z and writes a handle for the newly
created coefficient at address pc.

• int ppl_new_Coefficient_from_Coefficient (ppl_Coefficient_t ∗pc, ppl_const_Coefficient_t c)
Builds a coefficient that is a copy of c; writes a handle for the newly created coefficient at address pc.

• int ppl_assign_Coefficient_from_mpz_t (ppl_Coefficient_t dst, mpz_t z)
Assign to dst the value given by the GMP integer z.

• int ppl_assign_Coefficient_from_Coefficient (ppl_Coefficient_t dst, ppl_const_Coefficient_t src)
Assigns a copy of the coefficient src to dst.

• int ppl_delete_Coefficient (ppl_const_Coefficient_t c)
Invalidates the handle c: this makes sure the corresponding resources will eventually be released.

Read-Only Accessor Functions

• int ppl_Coefficient_to_mpz_t (ppl_const_Coefficient_t c, mpz_t z)
Sets the value of the GMP integer z to the value of c.

• int ppl_Coefficient_OK (ppl_const_Coefficient_t c)
Returns a positive integer if c is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if c is broken. Useful for debugging purposes.

• int ppl_Coefficient_is_bounded (void)
Returns a positive integer if coefficients are bounded; returns 0 otherwise.

• int ppl_Coefficient_min (mpz_t min)
Returns a positive integer if coefficients are bounded, in which case min is set to their minimum value;
returns 0 otherwise.

• int ppl_Coefficient_max (mpz_t max)
Returns a positive integer if coefficients are bounded, in which case max is set to their maximum value;
returns 0 otherwise.

I/O Functions

• int ppl_io_print_Coefficient (ppl_const_Coefficient_t x)
Prints x to stdout.

• int ppl_io_fprint_Coefficient (FILE ∗stream, ppl_const_Coefficient_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Coefficient (char ∗∗strp, ppl_const_Coefficient_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 ppl_Congruence_System_const_iterator_tag Interface Reference 36

7.3.1 Detailed Description

Types and functions for coefficients. The types and functions for coefficients provide an interface towards
Coefficient. Depending on configuration, the PPL coefficients may be implemented by the unbounded
precision integers provided by GMP (default), or by bounded precision integers (with checks for overflows).

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.4 ppl Congruence System const iterator tag Interface Reference

Types and functions for iterating on congruence systems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Congruence_System_const_iterator (ppl_Congruence_System_const_iterator_t ∗pcit)

Builds a new ‘const iterator’ and writes a handle to it at address pcit.

• int ppl_new_Congruence_System_const_iterator_from_Congruence_System_const_iterator (ppl_-
Congruence_System_const_iterator_t ∗pcit, ppl_const_Congruence_System_const_iterator_t cit)

Builds a const iterator that is a copy of cit; writes a handle for the newly created const iterator at
address pcit.

• int ppl_assign_Congruence_System_const_iterator_from_Congruence_System_const_iterator (ppl_-
Congruence_System_const_iterator_t dst, ppl_const_Congruence_System_const_iterator_t src)

Assigns a copy of the const iterator src to dst.

• int ppl_delete_Congruence_System_const_iterator (ppl_const_Congruence_System_const_iterator_-
t cit)

Invalidates the handle cit: this makes sure the corresponding resources will eventually be released.

Dereferencing, Incrementing and Equality Testing

• int ppl_Congruence_System_const_iterator_dereference (ppl_const_Congruence_System_const_-
iterator_t cit, ppl_const_Congruence_t ∗pc)

Dereference cit writing a const handle to the resulting congruence at address pc.

• int ppl_Congruence_System_const_iterator_increment (ppl_Congruence_System_const_iterator_-
t cit)

Increment cit so that it "points" to the next congruence.

• int ppl_Congruence_System_const_iterator_equal_test (ppl_const_Congruence_System_const_-
iterator_t x, ppl_const_Congruence_System_const_iterator_t y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are
different.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.5 ppl_Congruence_System_tag Interface Reference 37

7.4.1 Detailed Description

Types and functions for iterating on congruence systems. The types and functions for congruence systems
iterators provide read-only access to the elements of a congruence system by interfacing Congruence_-
System::const_iterator.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.5 ppl Congruence System tag Interface Reference

Types and functions for congruence systems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Congruence_System (ppl_Congruence_System_t ∗pcs)
Builds an empty system of congruences and writes a handle to it at address pcs.

• int ppl_new_Congruence_System_zero_dim_empty (ppl_Congruence_System_t ∗pcs)
Builds a zero-dimensional, unsatisfiable congruence system and writes a handle to it at address pcs.

• int ppl_new_Congruence_System_from_Congruence (ppl_Congruence_System_t ∗pcs, ppl_const_-
Congruence_t c)

Builds the singleton congruence system containing only a copy of congruence c; writes a handle for the
newly created system at address pcs.

• int ppl_new_Congruence_System_from_Congruence_System (ppl_Congruence_System_t ∗pcs,
ppl_const_Congruence_System_t cs)

Builds a congruence system that is a copy of cs; writes a handle for the newly created system at address
pcs.

• int ppl_assign_Congruence_System_from_Congruence_System (ppl_Congruence_System_t dst,
ppl_const_Congruence_System_t src)

Assigns a copy of the congruence system src to dst.

• int ppl_delete_Congruence_System (ppl_const_Congruence_System_t cs)
Invalidates the handle cs: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Congruence System

• int ppl_Congruence_System_space_dimension (ppl_const_Congruence_System_t cs, ppl_dimension_-
type ∗m)

Writes to m the dimension of the vector space enclosing cs.

• int ppl_Congruence_System_empty (ppl_const_Congruence_System_t cs)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.5 ppl_Congruence_System_tag Interface Reference 38

Returns a positive integer if cs contains no (non-trivial) congruence; returns 0 otherwise.

• int ppl_Congruence_System_begin (ppl_const_Congruence_System_t cs, ppl_Congruence_System_-
const_iterator_t cit)

Assigns to cit a const iterator "pointing" to the beginning of the congruence system cs.

• int ppl_Congruence_System_end (ppl_const_Congruence_System_t cs, ppl_Congruence_System_-
const_iterator_t cit)

Assigns to cit a const iterator "pointing" past the end of the congruence system cs.

• int ppl_Congruence_System_OK (ppl_const_Congruence_System_t cs)
Returns a positive integer if cs is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if cs is broken. Useful for debugging purposes.

Functions that May Modify the Congruence System

• int ppl_Congruence_System_clear (ppl_Congruence_System_t cs)
Removes all the congruences from the congruence system cs and sets its space dimension to 0.

• int ppl_Congruence_System_insert_Congruence (ppl_Congruence_System_t cs, ppl_const_Congruence_-
t c)

Inserts a copy of the congruence c into cs; the space dimension is increased, if necessary.

Input/Output Functions

• int ppl_io_print_Congruence_System (ppl_const_Congruence_System_t x)
Prints x to stdout.

• int ppl_io_fprint_Congruence_System (FILE ∗stream, ppl_const_Congruence_System_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Congruence_System (char ∗∗strp, ppl_const_Congruence_System_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Congruence_System_ascii_dump (ppl_const_Congruence_System_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Congruence_System_ascii_load (ppl_Congruence_System_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.5.1 Detailed Description

Types and functions for congruence systems. The types and functions for congruence systems provide an
interface towards Congruence_System.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.6 ppl_Congruence_tag Interface Reference 39

7.6 ppl Congruence tag Interface Reference

Types and functions for congruences.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Congruence (ppl_Congruence_t ∗pc, ppl_const_Linear_Expression_t le, ppl_const_-
Coefficient_t m)

Creates the new congruence le = 0 (mod m) and writes a handle for it at address pc. The space
dimension of the new congruence is equal to the space dimension of le.

• int ppl_new_Congruence_zero_dim_false (ppl_Congruence_t ∗pc)
Creates the unsatisfiable (zero-dimension space) congruence 0 = 1 (mod 0) and writes a handle for it
at address pc.

• int ppl_new_Congruence_zero_dim_integrality (ppl_Congruence_t ∗pc)
Creates the true (zero-dimension space) congruence 0 = 1 (mod 1), also known as integrality congru-
ence. A handle for the newly created congruence is written at address pc.

• int ppl_new_Congruence_from_Congruence (ppl_Congruence_t ∗pc, ppl_const_Congruence_t c)

Builds a congruence that is a copy of c; writes a handle for the newly created congruence at address
pc.

• int ppl_assign_Congruence_from_Congruence (ppl_Congruence_t dst, ppl_const_Congruence_t
src)

Assigns a copy of the congruence src to dst.

• int ppl_delete_Congruence (ppl_const_Congruence_t c)
Invalidates the handle c: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Congruence

• int ppl_Congruence_space_dimension (ppl_const_Congruence_t c, ppl_dimension_type ∗m)
Writes to m the space dimension of c.

• int ppl_Congruence_coefficient (ppl_const_Congruence_t c, ppl_dimension_type var, ppl_Coefficient_-
t n)

Copies into n the coefficient of variable var in congruence c.

• int ppl_Congruence_inhomogeneous_term (ppl_const_Congruence_t c, ppl_Coefficient_t n)
Copies into n the inhomogeneous term of congruence c.

• int ppl_Congruence_modulus (ppl_const_Congruence_t c, ppl_Coefficient_t m)
Copies into m the modulus of congruence c.

• int ppl_Congruence_OK (ppl_const_Congruence_t c)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.7 ppl_Constraint_System_const_iterator_tag Interface Reference 40

Returns a positive integer if c is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if c is broken. Useful for debugging purposes.

Input/Output Functions

• int ppl_io_print_Congruence (ppl_const_Congruence_t x)
Prints x to stdout.

• int ppl_io_fprint_Congruence (FILE ∗stream, ppl_const_Congruence_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Congruence (char ∗∗strp, ppl_const_Congruence_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Congruence_ascii_dump (ppl_const_Congruence_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Congruence_ascii_load (ppl_Congruence_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.6.1 Detailed Description

Types and functions for congruences. The types and functions for congruences provide an interface towards
Congruence.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.7 ppl Constraint System const iterator tag Interface Reference

Types and functions for iterating on constraint systems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Constraint_System_const_iterator (ppl_Constraint_System_const_iterator_t ∗pcit)
Builds a new ‘const iterator’ and writes a handle to it at address pcit.

• int ppl_new_Constraint_System_const_iterator_from_Constraint_System_const_iterator (ppl_Constraint_-
System_const_iterator_t ∗pcit, ppl_const_Constraint_System_const_iterator_t cit)

Builds a const iterator that is a copy of cit; writes a handle for the newly created const iterator at
address pcit.

• int ppl_assign_Constraint_System_const_iterator_from_Constraint_System_const_iterator (ppl_-
Constraint_System_const_iterator_t dst, ppl_const_Constraint_System_const_iterator_t src)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 ppl_Constraint_System_tag Interface Reference 41

Assigns a copy of the const iterator src to dst.

• int ppl_delete_Constraint_System_const_iterator (ppl_const_Constraint_System_const_iterator_-
t cit)

Invalidates the handle cit: this makes sure the corresponding resources will eventually be released.

Dereferencing, Incrementing and Equality Testing

• int ppl_Constraint_System_const_iterator_dereference (ppl_const_Constraint_System_const_iterator_-
t cit, ppl_const_Constraint_t ∗pc)

Dereference cit writing a const handle to the resulting constraint at address pc.

• int ppl_Constraint_System_const_iterator_increment (ppl_Constraint_System_const_iterator_t cit)

Increment cit so that it "points" to the next constraint.

• int ppl_Constraint_System_const_iterator_equal_test (ppl_const_Constraint_System_const_iterator_-
t x, ppl_const_Constraint_System_const_iterator_t y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are
different.

7.7.1 Detailed Description

Types and functions for iterating on constraint systems. The types and functions for constraint sys-
tems iterators provide read-only access to the elements of a constraint system by interfacing Constraint_-
System::const_iterator.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.8 ppl Constraint System tag Interface Reference

Types and functions for constraint systems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Constraint_System (ppl_Constraint_System_t ∗pcs)
Builds an empty system of constraints and writes a handle to it at address pcs.

• int ppl_new_Constraint_System_zero_dim_empty (ppl_Constraint_System_t ∗pcs)
Builds a zero-dimensional, unsatisfiable constraint system and writes a handle to it at address pcs.

• int ppl_new_Constraint_System_from_Constraint (ppl_Constraint_System_t ∗pcs, ppl_const_Constraint_-
t c)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.8 ppl_Constraint_System_tag Interface Reference 42

Builds the singleton constraint system containing only a copy of constraint c; writes a handle for the
newly created system at address pcs.

• int ppl_new_Constraint_System_from_Constraint_System (ppl_Constraint_System_t ∗pcs, ppl_-
const_Constraint_System_t cs)

Builds a constraint system that is a copy of cs; writes a handle for the newly created system at address
pcs.

• int ppl_assign_Constraint_System_from_Constraint_System (ppl_Constraint_System_t dst, ppl_-
const_Constraint_System_t src)

Assigns a copy of the constraint system src to dst.

• int ppl_delete_Constraint_System (ppl_const_Constraint_System_t cs)
Invalidates the handle cs: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Constraint System

• int ppl_Constraint_System_space_dimension (ppl_const_Constraint_System_t cs, ppl_dimension_-
type ∗m)

Writes to m the dimension of the vector space enclosing cs.

• int ppl_Constraint_System_empty (ppl_const_Constraint_System_t cs)
Returns a positive integer if cs contains no (non-trivial) constraint; returns 0 otherwise.

• int ppl_Constraint_System_has_strict_inequalities (ppl_const_Constraint_System_t cs)
Returns a positive integer if cs contains any (non-trivial) strict inequality; returns 0 otherwise.

• int ppl_Constraint_System_begin (ppl_const_Constraint_System_t cs, ppl_Constraint_System_-
const_iterator_t cit)

Assigns to cit a const iterator "pointing" to the beginning of the constraint system cs.

• int ppl_Constraint_System_end (ppl_const_Constraint_System_t cs, ppl_Constraint_System_const_-
iterator_t cit)

Assigns to cit a const iterator "pointing" past the end of the constraint system cs.

• int ppl_Constraint_System_OK (ppl_const_Constraint_System_t cs)
Returns a positive integer if cs is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if cs is broken. Useful for debugging purposes.

Functions that May Modify the Constraint System

• int ppl_Constraint_System_clear (ppl_Constraint_System_t cs)
Removes all the constraints from the constraint system cs and sets its space dimension to 0.

• int ppl_Constraint_System_insert_Constraint (ppl_Constraint_System_t cs, ppl_const_Constraint_-
t c)

Inserts a copy of the constraint c into cs; the space dimension is increased, if necessary.

Input/Output Functions

• int ppl_io_print_Constraint_System (ppl_const_Constraint_System_t x)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.9 ppl_Constraint_tag Interface Reference 43

Prints x to stdout.

• int ppl_io_fprint_Constraint_System (FILE ∗stream, ppl_const_Constraint_System_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Constraint_System (char ∗∗strp, ppl_const_Constraint_System_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Constraint_System_ascii_dump (ppl_const_Constraint_System_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Constraint_System_ascii_load (ppl_Constraint_System_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.8.1 Detailed Description

Types and functions for constraint systems. The types and functions for constraint systems provide an
interface towards Constraint_System.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.9 ppl Constraint tag Interface Reference

Types and functions for constraints.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Constraint (ppl_Constraint_t ∗pc, ppl_const_Linear_Expression_t le, enum ppl_-
enum_Constraint_Type rel)

Creates the new constraint ‘le rel 0’ and writes a handle for it at address pc. The space dimension of
the new constraint is equal to the space dimension of le.

• int ppl_new_Constraint_zero_dim_false (ppl_Constraint_t ∗pc)
Creates the unsatisfiable (zero-dimension space) constraint 0 = 1 and writes a handle for it at address
pc.

• int ppl_new_Constraint_zero_dim_positivity (ppl_Constraint_t ∗pc)
Creates the true (zero-dimension space) constraint 0 ≤ 1, also known as positivity constraint. A handle
for the newly created constraint is written at address pc.

• int ppl_new_Constraint_from_Constraint (ppl_Constraint_t ∗pc, ppl_const_Constraint_t c)
Builds a constraint that is a copy of c; writes a handle for the newly created constraint at address pc.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.9 ppl_Constraint_tag Interface Reference 44

• int ppl_assign_Constraint_from_Constraint (ppl_Constraint_t dst, ppl_const_Constraint_t src)
Assigns a copy of the constraint src to dst.

• int ppl_delete_Constraint (ppl_const_Constraint_t c)
Invalidates the handle c: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Constraint

• int ppl_Constraint_space_dimension (ppl_const_Constraint_t c, ppl_dimension_type ∗m)
Writes to m the space dimension of c.

• int ppl_Constraint_type (ppl_const_Constraint_t c)
Returns the type of constraint c.

• int ppl_Constraint_coefficient (ppl_const_Constraint_t c, ppl_dimension_type var, ppl_Coefficient_-
t n)

Copies into n the coefficient of variable var in constraint c.

• int ppl_Constraint_inhomogeneous_term (ppl_const_Constraint_t c, ppl_Coefficient_t n)
Copies into n the inhomogeneous term of constraint c.

• int ppl_Constraint_OK (ppl_const_Constraint_t c)
Returns a positive integer if c is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if c is broken. Useful for debugging purposes.

Input/Output Functions

• int ppl_io_print_Constraint (ppl_const_Constraint_t x)
Prints x to stdout.

• int ppl_io_fprint_Constraint (FILE ∗stream, ppl_const_Constraint_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Constraint (char ∗∗strp, ppl_const_Constraint_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Constraint_ascii_dump (ppl_const_Constraint_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Constraint_ascii_load (ppl_Constraint_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.9.1 Detailed Description

Types and functions for constraints. The types and functions for constraints provide an interface towards
Constraint.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.10 ppl_Generator_System_const_iterator_tag Interface Reference 45

7.10 ppl Generator System const iterator tag Interface Reference

Types and functions for iterating on generator systems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Generator_System_const_iterator (ppl_Generator_System_const_iterator_t ∗pgit)
Builds a new ‘const iterator’ and writes a handle to it at address pgit.

• int ppl_new_Generator_System_const_iterator_from_Generator_System_const_iterator (ppl_Generator_-
System_const_iterator_t ∗pgit, ppl_const_Generator_System_const_iterator_t git)

Builds a const iterator that is a copy of git; writes a handle for the newly created const iterator at
address pgit.

• int ppl_assign_Generator_System_const_iterator_from_Generator_System_const_iterator (ppl_-
Generator_System_const_iterator_t dst, ppl_const_Generator_System_const_iterator_t src)

Assigns a copy of the const iterator src to dst.

• int ppl_delete_Generator_System_const_iterator (ppl_const_Generator_System_const_iterator_t
git)

Invalidates the handle git: this makes sure the corresponding resources will eventually be released.

Dereferencing, Incrementing and Equality Testing

• int ppl_Generator_System_const_iterator_dereference (ppl_const_Generator_System_const_iterator_-
t git, ppl_const_Generator_t ∗pg)

Dereference git writing a const handle to the resulting generator at address pg.

• int ppl_Generator_System_const_iterator_increment (ppl_Generator_System_const_iterator_t git)

Increment git so that it "points" to the next generator.

• int ppl_Generator_System_const_iterator_equal_test (ppl_const_Generator_System_const_iterator_-
t x, ppl_const_Generator_System_const_iterator_t y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are
different.

7.10.1 Detailed Description

Types and functions for iterating on generator systems. The types and functions for generator systems itera-
tors provide read-only access to the elements of a generator system by interfacing Generator_System::const_-
iterator.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.11 ppl_Generator_System_tag Interface Reference 46

7.11 ppl Generator System tag Interface Reference

Types and functions for generator systems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Generator_System (ppl_Generator_System_t ∗pgs)
Builds an empty system of generators and writes a handle to it at address pgs.

• int ppl_new_Generator_System_from_Generator (ppl_Generator_System_t ∗pgs, ppl_const_Generator_-
t g)

Builds the singleton generator system containing only a copy of generator g; writes a handle for the
newly created system at address pgs.

• int ppl_new_Generator_System_from_Generator_System (ppl_Generator_System_t ∗pgs, ppl_-
const_Generator_System_t gs)

Builds a generator system that is a copy of gs; writes a handle for the newly created system at address
pgs.

• int ppl_assign_Generator_System_from_Generator_System (ppl_Generator_System_t dst, ppl_-
const_Generator_System_t src)

Assigns a copy of the generator system src to dst.

• int ppl_delete_Generator_System (ppl_const_Generator_System_t gs)
Invalidates the handle gs: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Generator System

• int ppl_Generator_System_space_dimension (ppl_const_Generator_System_t gs, ppl_dimension_-
type ∗m)

Writes to m the dimension of the vector space enclosing gs.

• int ppl_Generator_System_empty (ppl_const_Generator_System_t gs)
Returns a positive integer if gs contains no generators; returns 0 otherwise.

• int ppl_Generator_System_begin (ppl_const_Generator_System_t gs, ppl_Generator_System_-
const_iterator_t git)

Assigns to git a const iterator "pointing" to the beginning of the generator system gs.

• int ppl_Generator_System_end (ppl_const_Generator_System_t gs, ppl_Generator_System_const_-
iterator_t git)

Assigns to git a const iterator "pointing" past the end of the generator system gs.

• int ppl_Generator_System_OK (ppl_const_Generator_System_t gs)
Returns a positive integer if gs is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if gs is broken. Useful for debugging purposes.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.12 ppl_Generator_tag Interface Reference 47

Functions that May Modify the Generator System

• int ppl_Generator_System_clear (ppl_Generator_System_t gs)
Removes all the generators from the generator system gs and sets its space dimension to 0.

• int ppl_Generator_System_insert_Generator (ppl_Generator_System_t gs, ppl_const_Generator_-
t g)

Inserts a copy of the generator g into gs; the space dimension is increased, if necessary.

Input/Output Functions

• int ppl_io_print_Generator_System (ppl_const_Generator_System_t x)
Prints x to stdout.

• int ppl_io_fprint_Generator_System (FILE ∗stream, ppl_const_Generator_System_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Generator_System (char ∗∗strp, ppl_const_Generator_System_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Generator_System_ascii_dump (ppl_const_Generator_System_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Generator_System_ascii_load (ppl_Generator_System_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.11.1 Detailed Description

Types and functions for generator systems. The types and functions for generator systems provide an
interface towards Generator_System.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.12 ppl Generator tag Interface Reference

Types and functions for generators.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Generator (ppl_Generator_t ∗pg, ppl_const_Linear_Expression_t le, enum ppl_enum_-
Generator_Type t, ppl_const_Coefficient_t d)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.12 ppl_Generator_tag Interface Reference 48

Creates a new generator of direction le and type t. If the generator to be created is a point or a closure
point, the divisor d is applied to le. For other types of generators d is simply disregarded. A handle for
the new generator is written at address pg. The space dimension of the new generator is equal to the
space dimension of le.

• int ppl_new_Generator_zero_dim_point (ppl_Generator_t ∗pg)
Creates the point that is the origin of the zero-dimensional space R0. Writes a handle for the new
generator at address pg.

• int ppl_new_Generator_zero_dim_closure_point (ppl_Generator_t ∗pg)
Creates, as a closure point, the point that is the origin of the zero-dimensional space R0. Writes a handle
for the new generator at address pg.

• int ppl_new_Generator_from_Generator (ppl_Generator_t ∗pg, ppl_const_Generator_t g)
Builds a generator that is a copy of g; writes a handle for the newly created generator at address pg.

• int ppl_assign_Generator_from_Generator (ppl_Generator_t dst, ppl_const_Generator_t src)
Assigns a copy of the generator src to dst.

• int ppl_delete_Generator (ppl_const_Generator_t g)
Invalidates the handle g: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Generator

• int ppl_Generator_space_dimension (ppl_const_Generator_t g, ppl_dimension_type ∗m)
Writes to m the space dimension of g.

• int ppl_Generator_type (ppl_const_Generator_t g)
Returns the type of generator g.

• int ppl_Generator_coefficient (ppl_const_Generator_t g, ppl_dimension_type var, ppl_Coefficient_-
t n)

Copies into n the coefficient of variable var in generator g.

• int ppl_Generator_divisor (ppl_const_Generator_t g, ppl_Coefficient_t n)
If g is a point or a closure point assigns its divisor to n.

• int ppl_Generator_OK (ppl_const_Generator_t g)
Returns a positive integer if g is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if g is broken. Useful for debugging purposes.

Input/Output Functions

• int ppl_io_print_Generator (ppl_const_Generator_t x)
Prints x to stdout.

• int ppl_io_fprint_Generator (FILE ∗stream, ppl_const_Generator_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Generator (char ∗∗strp, ppl_const_Generator_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.13 ppl_Grid_Generator_System_const_iterator_tag Interface Reference 49

• int ppl_Generator_ascii_dump (ppl_const_Generator_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Generator_ascii_load (ppl_Generator_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.12.1 Detailed Description

Types and functions for generators. The types and functions for generators provide an interface towards
Generator.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.13 ppl Grid Generator System const iterator tag Interface Reference

Types and functions for iterating on grid generator systems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Grid_Generator_System_const_iterator (ppl_Grid_Generator_System_const_iterator_-
t ∗pgit)

Builds a new ‘const iterator’ and writes a handle to it at address pgit.

• int ppl_new_Grid_Generator_System_const_iterator_from_Grid_Generator_System_const_iterator
(ppl_Grid_Generator_System_const_iterator_t ∗pgit, ppl_const_Grid_Generator_System_const_-
iterator_t git)

Builds a const iterator that is a copy of git; writes a handle for the newly created const iterator at
address pgit.

• int ppl_assign_Grid_Generator_System_const_iterator_from_Grid_Generator_System_const_iterator
(ppl_Grid_Generator_System_const_iterator_t dst, ppl_const_Grid_Generator_System_const_iterator_-
t src)

Assigns a copy of the const iterator src to dst.

• int ppl_delete_Grid_Generator_System_const_iterator (ppl_const_Grid_Generator_System_const_-
iterator_t git)

Invalidates the handle git: this makes sure the corresponding resources will eventually be released.

Dereferencing, Incrementing and Equality Testing

• int ppl_Grid_Generator_System_const_iterator_dereference (ppl_const_Grid_Generator_System_-
const_iterator_t git, ppl_const_Grid_Generator_t ∗pg)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.14 ppl_Grid_Generator_System_tag Interface Reference 50

Dereference git writing a const handle to the resulting grid generator at address pg.

• int ppl_Grid_Generator_System_const_iterator_increment (ppl_Grid_Generator_System_const_-
iterator_t git)

Increment git so that it "points" to the next grid generator.

• int ppl_Grid_Generator_System_const_iterator_equal_test (ppl_const_Grid_Generator_System_-
const_iterator_t x, ppl_const_Grid_Generator_System_const_iterator_t y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are
different.

7.13.1 Detailed Description

Types and functions for iterating on grid generator systems. The types and functions for grid generator
systems iterators provide read-only access to the elements of a grid generator system by interfacing Grid_-
Generator_System::const_iterator.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.14 ppl Grid Generator System tag Interface Reference

Types and functions for grid generator systems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Grid_Generator_System (ppl_Grid_Generator_System_t ∗pgs)
Builds an empty system of grid generators and writes a handle to it at address pgs.

• int ppl_new_Grid_Generator_System_from_Grid_Generator (ppl_Grid_Generator_System_t ∗pgs,
ppl_const_Grid_Generator_t g)

Builds the singleton grid generator system containing only a copy of generator g; writes a handle for
the newly created system at address pgs.

• int ppl_new_Grid_Generator_System_from_Grid_Generator_System (ppl_Grid_Generator_System_-
t ∗pgs, ppl_const_Grid_Generator_System_t gs)

Builds a grid generator system that is a copy of gs; writes a handle for the newly created system at
address pgs.

• int ppl_assign_Grid_Generator_System_from_Grid_Generator_System (ppl_Grid_Generator_System_-
t dst, ppl_const_Grid_Generator_System_t src)

Assigns a copy of the grid generator system src to dst.

• int ppl_delete_Grid_Generator_System (ppl_const_Grid_Generator_System_t gs)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.14 ppl_Grid_Generator_System_tag Interface Reference 51

Invalidates the handle gs: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Grid Generator System

• int ppl_Grid_Generator_System_space_dimension (ppl_const_Grid_Generator_System_t gs, ppl_-
dimension_type ∗m)

Writes to m the dimension of the vector space enclosing gs.

• int ppl_Grid_Generator_System_empty (ppl_const_Grid_Generator_System_t gs)
Returns a positive integer if gs contains no generator; returns 0 otherwise.

• int ppl_Grid_Generator_System_begin (ppl_const_Grid_Generator_System_t gs, ppl_Grid_Generator_-
System_const_iterator_t git)

Assigns to git a const iterator "pointing" to the beginning of the grid generator system gs.

• int ppl_Grid_Generator_System_end (ppl_const_Grid_Generator_System_t gs, ppl_Grid_Generator_-
System_const_iterator_t git)

Assigns to git a const iterator "pointing" past the end of the grid generator system gs.

• int ppl_Grid_Generator_System_OK (ppl_const_Grid_Generator_System_t gs)
Returns a positive integer if gs is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if gs is broken. Useful for debugging purposes.

Functions that May Modify the Grid Generator System

• int ppl_Grid_Generator_System_clear (ppl_Grid_Generator_System_t gs)
Removes all the generators from the grid generator system gs and sets its space dimension to 0.

• int ppl_Grid_Generator_System_insert_Grid_Generator (ppl_Grid_Generator_System_t gs, ppl_-
const_Grid_Generator_t g)

Inserts a copy of the grid generator g into gs; the space dimension is increased, if necessary.

Input/Output Functions

• int ppl_io_print_Grid_Generator_System (ppl_const_Grid_Generator_System_t x)
Prints x to stdout.

• int ppl_io_fprint_Grid_Generator_System (FILE ∗stream, ppl_const_Grid_Generator_System_t
x)

Prints x to the given output stream.

• int ppl_io_asprint_Grid_Generator_System (char ∗∗strp, ppl_const_Grid_Generator_System_t x)

Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Grid_Generator_System_ascii_dump (ppl_const_Grid_Generator_System_t x, FILE ∗stream)

Dumps an ascii representation of x on stream.

• int ppl_Grid_Generator_System_ascii_load (ppl_Grid_Generator_System_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.15 ppl_Grid_Generator_tag Interface Reference 52

7.14.1 Detailed Description

Types and functions for grid generator systems. The types and functions for grid generator systems provide
an interface towards Grid_Generator_System.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.15 ppl Grid Generator tag Interface Reference

Types and functions for grid generators.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Grid_Generator (ppl_Grid_Generator_t ∗pg, ppl_const_Linear_Expression_t le, enum
ppl_enum_Grid_Generator_Type t, ppl_const_Coefficient_t d)

Creates a new grid generator of direction le and type t. If the grid generator to be created is a point or
a parameter, the divisor d is applied to le. If it is a line, d is simply disregarded. A handle for the new
grid generator is written at address pg. The space dimension of the new grid generator is equal to the
space dimension of le.

• int ppl_new_Grid_Generator_zero_dim_point (ppl_Grid_Generator_t ∗pg)
Creates the point that is the origin of the zero-dimensional space R0. Writes a handle for the new grid
generator at address pg.

• int ppl_new_Grid_Generator_from_Grid_Generator (ppl_Grid_Generator_t ∗pg, ppl_const_Grid_-
Generator_t g)

Builds a grid generator that is a copy of g; writes a handle for the newly created grid generator at
address pg.

• int ppl_assign_Grid_Generator_from_Grid_Generator (ppl_Grid_Generator_t dst, ppl_const_Grid_-
Generator_t src)

Assigns a copy of the grid generator src to dst.

• int ppl_delete_Grid_Generator (ppl_const_Grid_Generator_t g)
Invalidates the handle g: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Grid Generator

• int ppl_Grid_Generator_space_dimension (ppl_const_Grid_Generator_t g, ppl_dimension_type
∗m)

Writes to m the space dimension of g.

• int ppl_Grid_Generator_type (ppl_const_Grid_Generator_t g)
Returns the type of grid generator g.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.16 ppl_Linear_Expression_tag Interface Reference 53

• int ppl_Grid_Generator_coefficient (ppl_const_Grid_Generator_t g, ppl_dimension_type var, ppl_-
Coefficient_t n)

Copies into n the coefficient of variable var in grid generator g.

• int ppl_Grid_Generator_divisor (ppl_const_Grid_Generator_t g, ppl_Coefficient_t n)
If g is a point or a parameter assigns its divisor to n.

• int ppl_Grid_Generator_OK (ppl_const_Grid_Generator_t g)
Returns a positive integer if g is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if g is broken. Useful for debugging purposes.

Input/Output Functions

• int ppl_io_print_Grid_Generator (ppl_const_Grid_Generator_t x)
Prints x to stdout.

• int ppl_io_fprint_Grid_Generator (FILE ∗stream, ppl_const_Grid_Generator_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Grid_Generator (char ∗∗strp, ppl_const_Grid_Generator_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Grid_Generator_ascii_dump (ppl_const_Grid_Generator_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Grid_Generator_ascii_load (ppl_Grid_Generator_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.15.1 Detailed Description

Types and functions for grid generators. The types and functions for grid generators provide an interface
towards Grid_Generator.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.16 ppl Linear Expression tag Interface Reference

Types and functions for linear expressions.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Constructors, Assignment and Destructor

• int ppl_new_Linear_Expression (ppl_Linear_Expression_t ∗ple)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.16 ppl_Linear_Expression_tag Interface Reference 54

Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes a
handle for the new linear expression at address ple.

• int ppl_new_Linear_Expression_with_dimension (ppl_Linear_Expression_t ∗ple, ppl_dimension_-
type d)

Creates a new linear expression corresponding to the constant 0 in a d-dimensional space; writes a
handle for the new linear expression at address ple.

• int ppl_new_Linear_Expression_from_Linear_Expression (ppl_Linear_Expression_t ∗ple, ppl_-
const_Linear_Expression_t le)

Builds a linear expression that is a copy of le; writes a handle for the newly created linear expression
at address ple.

• int ppl_new_Linear_Expression_from_Constraint (ppl_Linear_Expression_t ∗ple, ppl_const_Constraint_-
t c)

Builds a linear expression corresponding to constraint c; writes a handle for the newly created linear
expression at address ple.

• int ppl_new_Linear_Expression_from_Generator (ppl_Linear_Expression_t ∗ple, ppl_const_Generator_-
t g)

Builds a linear expression corresponding to generator g; writes a handle for the newly created linear
expression at address ple.

• int ppl_new_Linear_Expression_from_Congruence (ppl_Linear_Expression_t ∗ple, ppl_const_-
Congruence_t c)

Builds a linear expression corresponding to congruence c; writes a handle for the newly created linear
expression at address ple.

• int ppl_new_Linear_Expression_from_Grid_Generator (ppl_Linear_Expression_t ∗ple, ppl_const_-
Grid_Generator_t g)

Builds a linear expression corresponding to grid generator g; writes a handle for the newly created
linear expression at address ple.

• int ppl_assign_Linear_Expression_from_Linear_Expression (ppl_Linear_Expression_t dst, ppl_-
const_Linear_Expression_t src)

Assigns a copy of the linear expression src to dst.

• int ppl_delete_Linear_Expression (ppl_const_Linear_Expression_t le)
Invalidates the handle le: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Linear Expression

• int ppl_Linear_Expression_space_dimension (ppl_const_Linear_Expression_t le, ppl_dimension_-
type ∗m)

Writes to m the space dimension of le.

• int ppl_Linear_Expression_coefficient (ppl_const_Linear_Expression_t le, ppl_dimension_type
var, ppl_Coefficient_t n)

Copies into n the coefficient of variable var in the linear expression le.

• int ppl_Linear_Expression_inhomogeneous_term (ppl_const_Linear_Expression_t le, ppl_Coefficient_-
t n)

Copies into n the inhomogeneous term of linear expression le.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.16 ppl_Linear_Expression_tag Interface Reference 55

• int ppl_Linear_Expression_OK (ppl_const_Linear_Expression_t le)
Returns a positive integer if le is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if le is broken. Useful for debugging purposes.

• int ppl_Linear_Expression_is_zero (ppl_const_Linear_Expression_t le)
Returns true if and only if ∗this is 0.

• int ppl_Linear_Expression_all_homogeneous_terms_are_zero (ppl_const_Linear_Expression_t le)

Returns true if and only if all the homogeneous terms of ∗this are 0.

Functions that May Modify the Linear Expression

• int ppl_Linear_Expression_add_to_coefficient (ppl_Linear_Expression_t le, ppl_dimension_type
var, ppl_const_Coefficient_t n)

Adds n to the coefficient of variable var in the linear expression le. The space dimension is set to be
the maximum between var + 1 and the old space dimension.

• int ppl_Linear_Expression_add_to_inhomogeneous (ppl_Linear_Expression_t le, ppl_const_Coefficient_-
t n)

Adds n to the inhomogeneous term of the linear expression le.

• int ppl_add_Linear_Expression_to_Linear_Expression (ppl_Linear_Expression_t dst, ppl_const_-
Linear_Expression_t src)

Adds the linear expression src to dst.

• int ppl_subtract_Linear_Expression_from_Linear_Expression (ppl_Linear_Expression_t dst, ppl_-
const_Linear_Expression_t src)

Subtracts the linear expression src from dst.

• int ppl_multiply_Linear_Expression_by_Coefficient (ppl_Linear_Expression_t le, ppl_const_Coefficient_-
t n)

Multiply the linear expression dst by n.

Input/Output Functions

• int ppl_io_print_Linear_Expression (ppl_const_Linear_Expression_t x)
Prints x to stdout.

• int ppl_io_fprint_Linear_Expression (FILE ∗stream, ppl_const_Linear_Expression_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Linear_Expression (char ∗∗strp, ppl_const_Linear_Expression_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_Linear_Expression_ascii_dump (ppl_const_Linear_Expression_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Linear_Expression_ascii_load (ppl_Linear_Expression_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.17 ppl_MIP_Problem_tag Interface Reference 56

7.16.1 Detailed Description

Types and functions for linear expressions. The types and functions for linear expression provide an inter-
face towards Linear_Expression.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.17 ppl MIP Problem tag Interface Reference

Types and functions for MIP problems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Symbolic Constants

• int PPL_OPTIMIZATION_MODE_MAXIMIZATION
Code of the "maximization" optimization mode.

• int PPL_OPTIMIZATION_MODE_MINIMIZATION
Code of the "minimization" optimization mode.

• int PPL_MIP_PROBLEM_STATUS_UNFEASIBLE
Code of the "unfeasible MIP problem" status.

• int PPL_MIP_PROBLEM_STATUS_UNBOUNDED
Code of the "unbounded MIP problem" status.

• int PPL_MIP_PROBLEM_STATUS_OPTIMIZED
Code of the "optimized MIP problem" status.

• int PPL_MIP_PROBLEM_CONTROL_PARAMETER_NAME_PRICING
Code for the MIP problem’s "pricing" control parameter name.

• int PPL_MIP_PROBLEM_CONTROL_PARAMETER_PRICING_TEXTBOOK
Code of MIP problem’s "textbook" pricing method.

• int PPL_MIP_PROBLEM_CONTROL_PARAMETER_PRICING_STEEPEST_EDGE_EXACT

Code of MIP problem’s "exact steepest-edge" pricing method.

• int PPL_MIP_PROBLEM_CONTROL_PARAMETER_PRICING_STEEPEST_EDGE_FLOAT
Code of MIP problem’s "float steepest-edge" pricing method.

Constructors, Assignment and Destructor

• int ppl_new_MIP_Problem_from_space_dimension (ppl_MIP_Problem_t ∗pmip, ppl_dimension_-
type d)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.17 ppl_MIP_Problem_tag Interface Reference 57

Builds a trivial MIP problem of dimension d and writes a handle to it at address pmip.

• int ppl_new_MIP_Problem (ppl_MIP_Problem_t ∗pmip, ppl_dimension_type d, ppl_const_Constraint_-
System_t cs, ppl_const_Linear_Expression_t le, int m)

Builds a MIP problem of space dimension d having feasible region cs, objective function le and opti-
mization mode m; writes a handle to it at address pmip.

• int ppl_new_MIP_Problem_from_MIP_Problem (ppl_MIP_Problem_t ∗pmip, ppl_const_MIP_-
Problem_t mip)

Builds a MIP problem that is a copy of mip; writes a handle for the newly created system at address
pmip.

• int ppl_assign_MIP_Problem_from_MIP_Problem (ppl_MIP_Problem_t dst, ppl_const_MIP_-
Problem_t src)

Assigns a copy of the MIP problem src to dst.

• int ppl_delete_MIP_Problem (ppl_const_MIP_Problem_t mip)
Invalidates the handle mip: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the MIP_Problem

• int ppl_MIP_Problem_space_dimension (ppl_const_MIP_Problem_t mip, ppl_dimension_type ∗m)

Writes to m the dimension of the vector space enclosing mip.

• int ppl_MIP_Problem_number_of_integer_space_dimensions (ppl_const_MIP_Problem_t mip, ppl_-
dimension_type ∗m)

Writes to m the number of integer space dimensions of mip.

• int ppl_MIP_Problem_integer_space_dimensions (ppl_const_MIP_Problem_t mip, ppl_dimension_-
type ds[])

Writes in the first positions of the array ds all the integer space dimensions of problem mip. If the array
is not big enough to hold all of the integer space dimensions, the behavior is undefined.

• int ppl_MIP_Problem_number_of_constraints (ppl_const_MIP_Problem_t mip, ppl_dimension_-
type ∗m)

Writes to m the number of constraints defining the feasible region of mip.

• int ppl_MIP_Problem_constraint_at_index (ppl_const_MIP_Problem_t mip, ppl_dimension_type
i, ppl_const_Constraint_t ∗pc)

Writes at address pc a const handle to the i-th constraint defining the feasible region of the MIP
problem mip.

• int ppl_MIP_Problem_objective_function (ppl_const_MIP_Problem_t mip, ppl_const_Linear_-
Expression_t ∗ple)

Writes a const handle to the linear expression defining the objective function of the MIP problem mip at
address ple.

• int ppl_MIP_Problem_optimization_mode (ppl_const_MIP_Problem_t mip)
Returns the optimization mode of the MIP problem mip.

• int ppl_MIP_Problem_OK (ppl_const_MIP_Problem_t mip)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.17 ppl_MIP_Problem_tag Interface Reference 58

Returns a positive integer if mip is well formed, i.e., if it satisfies all its implementation invariants;
returns 0 and perhaps makes some noise if mip is broken. Useful for debugging purposes.

Functions that May Modify the MIP_Problem

• int ppl_MIP_Problem_clear (ppl_MIP_Problem_t mip)
Resets the MIP problem to be a trivial problem of space dimension 0.

• int ppl_MIP_Problem_add_space_dimensions_and_embed (ppl_MIP_Problem_t mip, ppl_dimension_-
type d)

Adds d new dimensions to the space enclosing the MIP problem mip and to mip itself.

• int ppl_MIP_Problem_add_to_integer_space_dimensions (ppl_MIP_Problem_t mip, ppl_dimension_-
type ds[], size_t n)

Sets the space dimensions that are specified in first n positions of the array ds to be integer dimensions
of problem mip. The presence of duplicates in ds is a waste but an innocuous one.

• int ppl_MIP_Problem_add_constraint (ppl_MIP_Problem_t mip, ppl_const_Constraint_t c)
Modifies the feasible region of the MIP problem mip by adding a copy of the constraint c.

• int ppl_MIP_Problem_add_constraints (ppl_MIP_Problem_t mip, ppl_const_Constraint_System_-
t cs)

Modifies the feasible region of the MIP problem mip by adding a copy of the constraints in cs.

• int ppl_MIP_Problem_set_objective_function (ppl_MIP_Problem_t mip, ppl_const_Linear_Expression_-
t le)

Sets the objective function of the MIP problem mip to a copy of le.

• int ppl_MIP_Problem_set_optimization_mode (ppl_MIP_Problem_t mip, int mode)
Sets the optimization mode of the MIP problem mip to mode.

Computing the Solution of the MIP_Problem

• int ppl_MIP_Problem_is_satisfiable (ppl_const_MIP_Problem_t mip)
Returns a positive integer if mip is satisfiable; returns 0 otherwise.

• int ppl_MIP_Problem_solve (ppl_const_MIP_Problem_t mip)
Solves the MIP problem mip, returning an exit status.

• int ppl_MIP_Problem_evaluate_objective_function (ppl_const_MIP_Problem_t mip, ppl_const_-
Generator_t g, ppl_Coefficient_t num, ppl_Coefficient_t den)

Evaluates the objective function of mip on point g.

• int ppl_MIP_Problem_feasible_point (ppl_const_MIP_Problem_t mip, ppl_const_Generator_t ∗pg)

Writes a const handle to a feasible point for the MIP problem mip at address pg.

• int ppl_MIP_Problem_optimizing_point (ppl_const_MIP_Problem_t mip, ppl_const_Generator_-
t ∗pg)

Writes a const handle to an optimizing point for the MIP problem mip at address pg.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.17 ppl_MIP_Problem_tag Interface Reference 59

• int ppl_MIP_Problem_optimal_value (ppl_const_MIP_Problem_t mip, ppl_Coefficient_t num,
ppl_Coefficient_t den)

Returns the optimal value for mip.

Querying/Setting Control Parameters

• int ppl_MIP_Problem_get_control_parameter (ppl_const_MIP_Problem_t mip, int name)
Returns the value of control parameter name in problem mip.

• int ppl_MIP_Problem_set_control_parameter (ppl_MIP_Problem_t mip, int value)
Sets control parameter value in problem mip.

• int ppl_MIP_Problem_total_memory_in_bytes (ppl_const_MIP_Problem_t mip, size_t ∗sz)
Writes into ∗sz the size in bytes of the memory occupied by mip.

• int ppl_MIP_Problem_external_memory_in_bytes (ppl_const_MIP_Problem_t mip, size_t ∗sz)
Writes into ∗sz the size in bytes of the memory managed by mip.

Input/Output Functions

• int ppl_io_print_MIP_Problem (ppl_const_MIP_Problem_t x)
Prints x to stdout.

• int ppl_io_fprint_MIP_Problem (FILE ∗stream, ppl_const_MIP_Problem_t x)
Prints x to the given output stream.

• int ppl_io_asprint_MIP_Problem (char ∗∗strp, ppl_const_MIP_Problem_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_MIP_Problem_ascii_dump (ppl_const_MIP_Problem_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_MIP_Problem_ascii_load (ppl_MIP_Problem_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.17.1 Detailed Description

Types and functions for MIP problems. The types and functions for MIP problems provide an interface
towards MIP_Problem.

7.17.2 Friends And Related Function Documentation

7.17.2.1 int ppl_MIP_Problem_solve (ppl_const_MIP_Problem_t mip) [related]

Solves the MIP problem mip, returning an exit status.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.18 ppl_PIP_Decision_Node_tag Interface Reference 60

Returns

PPL_MIP_PROBLEM_STATUS_UNFEASIBLE if the MIP problem is not satisfiable; PPL_MIP_-
PROBLEM_STATUS_UNBOUNDED if the MIP problem is satisfiable but there is no finite bound to the
value of the objective function; PPL_MIP_PROBLEM_STATUS_OPTIMIZED if the MIP problem
admits an optimal solution.

7.17.2.2 int ppl_MIP_Problem_evaluate_objective_function (ppl_const_MIP_Problem_t mip,
ppl_const_Generator_t g, ppl_Coefficient_t num, ppl_Coefficient_t den) [related]

Evaluates the objective function of mip on point g.

Parameters
mip The MIP problem defining the objective function;

g The generator on which the objective function will be evaluated;
num Will be assigned the numerator of the objective function value;
den Will be assigned the denominator of the objective function value;

7.17.2.3 int ppl_MIP_Problem_optimal_value (ppl_const_MIP_Problem_t mip,
ppl_Coefficient_t num, ppl_Coefficient_t den) [related]

Returns the optimal value for mip.

Parameters
mip The MIP problem;
num Will be assigned the numerator of the optimal value;
den Will be assigned the denominator of the optimal value.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.18 ppl PIP Decision Node tag Interface Reference

Types and functions for PIP decision nodes.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

• int ppl_PIP_Decision_Node_get_child_node (ppl_const_PIP_Decision_Node_t pip_dec, int b, ppl_-
const_PIP_Tree_Node_t ∗pip_tree)

Writes to pip_tree a const pointer to either the true branch (if b is not zero) or the false branch (if b is
zero) of pip_dec.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.19 ppl_PIP_Problem_tag Interface Reference 61

Input/Output Functions

• int ppl_io_print_PIP_Decision_Node (ppl_const_PIP_Decision_Node_t x)
Prints x to stdout.

• int ppl_io_fprint_PIP_Decision_Node (FILE ∗stream, ppl_const_PIP_Decision_Node_t x)
Prints x to the given output stream.

• int ppl_io_asprint_PIP_Decision_Node (char ∗∗strp, ppl_const_PIP_Decision_Node_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_PIP_Decision_Node_ascii_dump (ppl_const_PIP_Decision_Node_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_PIP_Decision_Node_ascii_load (ppl_PIP_Decision_Node_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.18.1 Detailed Description

Types and functions for PIP decision nodes. The types and functions for decision nodes provide an interface
towards PIP_Decision_Node.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.19 ppl PIP Problem tag Interface Reference

Types and functions for PIP problems.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

Symbolic Constants

• int PPL_PIP_PROBLEM_STATUS_UNFEASIBLE
Code of the "unfeasible PIP problem" status.

• int PPL_PIP_PROBLEM_STATUS_OPTIMIZED
Code of the "optimized PIP problem" status.

• int PPL_PIP_PROBLEM_CONTROL_PARAMETER_NAME_CUTTING_STRATEGY
Code for the PIP problem’s "cutting strategy" control parameter name.

• int PPL_PIP_PROBLEM_CONTROL_PARAMETER_NAME_PIVOT_ROW_STRATEGY
Code for the PIP problem’s "pivot row strategy" control parameter name.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.19 ppl_PIP_Problem_tag Interface Reference 62

• int PPL_PIP_PROBLEM_CONTROL_PARAMETER_CUTTING_STRATEGY_FIRST
Code of PIP problem’s "first" cutting strategy.

• int PPL_PIP_PROBLEM_CONTROL_PARAMETER_CUTTING_STRATEGY_DEEPEST
Code of PIP problem’s "deepest" cutting strategy.

• int PPL_PIP_PROBLEM_CONTROL_PARAMETER_CUTTING_STRATEGY_ALL
Code of PIP problem’s "all" cutting strategy.

• int PPL_PIP_PROBLEM_CONTROL_PARAMETER_PIVOT_ROW_STRATEGY_FIRST
Code of PIP problem’s "first" pivot row strategy.

• int PPL_PIP_PROBLEM_CONTROL_PARAMETER_PIVOT_ROW_STRATEGY_MAX_COLUMN

Code of PIP problem’s "max column" pivot row strategy.

Constructors, Assignment and Destructor

• int ppl_new_PIP_Problem_from_space_dimension (ppl_PIP_Problem_t ∗ppip, ppl_dimension_-
type d)

Builds a trivial PIP problem of dimension d and writes a handle to it at address ppip.

• int ppl_new_PIP_Problem_from_PIP_Problem (ppl_PIP_Problem_t ∗ppip, ppl_const_PIP_Problem_-
t pip)

Builds a PIP problem that is a copy of pip; writes a handle for the newly created problem at address
ppip.

• int ppl_assign_PIP_Problem_from_PIP_Problem (ppl_PIP_Problem_t dst, ppl_const_PIP_Problem_-
t src)

Assigns a copy of the PIP problem src to dst.

• int ppl_new_PIP_Problem_from_constraints (ppl_PIP_Problem_t ∗ppip, ppl_dimension_type d,
ppl_Constraint_System_const_iterator_t first, ppl_Constraint_System_const_iterator_t last, size_-
t n, ppl_dimension_type ds[])

Builds a PIP problem having space dimension d from the sequence of constraints in the range [first, last);
the n dimensions whose indices occur in ds are interpreted as parameters.

• int ppl_delete_PIP_Problem (ppl_const_PIP_Problem_t pip)
Invalidates the handle pip: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the PIP_Problem

• int ppl_PIP_Problem_space_dimension (ppl_const_PIP_Problem_t pip, ppl_dimension_type ∗m)

Writes to m the dimension of the vector space enclosing pip.

• int ppl_PIP_Problem_number_of_parameter_space_dimensions (ppl_const_PIP_Problem_t pip,
ppl_dimension_type ∗m)

Writes to m the number of parameter space dimensions of pip.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.19 ppl_PIP_Problem_tag Interface Reference 63

• int ppl_PIP_Problem_parameter_space_dimensions (ppl_const_PIP_Problem_t pip, ppl_dimension_-
type ds[])

Writes in the first positions of the array ds all the parameter space dimensions of problem pip. If the
array is not big enough to hold all of the parameter space dimensions, the behavior is undefined.

• int ppl_PIP_Problem_get_big_parameter_dimension (ppl_const_PIP_Problem_t pip, ppl_dimension_-
type ∗pd)

Writes into ∗pd the big parameter dimension of PIP problem pip.

• int ppl_PIP_Problem_number_of_constraints (ppl_const_PIP_Problem_t pip, ppl_dimension_type
∗m)

Writes to m the number of constraints defining the feasible region of pip.

• int ppl_PIP_Problem_constraint_at_index (ppl_const_PIP_Problem_t pip, ppl_dimension_type i,
ppl_const_Constraint_t ∗pc)

Writes at address pc a const handle to the i-th constraint defining the feasible region of the PIP
problem pip.

• int ppl_PIP_Problem_total_memory_in_bytes (ppl_const_PIP_Problem_t pip, size_t ∗sz)
Writes into ∗sz the size in bytes of the memory occupied by pip.

• int ppl_PIP_Problem_external_memory_in_bytes (ppl_const_PIP_Problem_t pip, size_t ∗sz)
Writes into ∗sz the size in bytes of the memory managed by pip.

• int ppl_PIP_Problem_OK (ppl_const_PIP_Problem_t pip)
Returns a positive integer if pip is well formed, i.e., if it satisfies all its implementation invariants;
returns 0 and perhaps makes some noise if pip is broken. Useful for debugging purposes.

Functions that May Modify the PIP_Problem

• int ppl_PIP_Problem_clear (ppl_PIP_Problem_t pip)
Resets the PIP problem to be a trivial problem of space dimension 0.

• int ppl_PIP_Problem_add_space_dimensions_and_embed (ppl_PIP_Problem_t pip, ppl_dimension_-
type pip_vars, ppl_dimension_type pip_params)

Adds pip_vars + pip_params new space dimensions and embeds the PIP problem pip in the
new vector space.

• int ppl_PIP_Problem_add_to_parameter_space_dimensions (ppl_PIP_Problem_t pip, ppl_dimension_-
type ds[], size_t n)

Sets the space dimensions that are specified in first n positions of the array ds to be parameter dimen-
sions of problem pip. The presence of duplicates in ds is a waste but an innocuous one.

• int ppl_PIP_Problem_set_big_parameter_dimension (ppl_PIP_Problem_t pip, ppl_dimension_-
type d)

Sets the big parameter dimension of PIP problem pip to d.

• int ppl_PIP_Problem_add_constraint (ppl_PIP_Problem_t pip, ppl_const_Constraint_t c)
Modifies the feasible region of the PIP problem pip by adding a copy of the constraint c.

• int ppl_PIP_Problem_add_constraints (ppl_PIP_Problem_t pip, ppl_const_Constraint_System_t
cs)

Modifies the feasible region of the PIP problem pip by adding a copy of the constraints in cs.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.19 ppl_PIP_Problem_tag Interface Reference 64

Computing and Printing the Solution of the PIP_Problem

• int ppl_PIP_Problem_is_satisfiable (ppl_const_PIP_Problem_t pip)
Returns a positive integer if pip is satisfiable and an optimal solution can be found; returns 0 otherwise.

• int ppl_PIP_Problem_solve (ppl_const_PIP_Problem_t pip)
Solves the PIP problem pip, returning an exit status.

• int ppl_PIP_Problem_solution (ppl_const_PIP_Problem_t pip, ppl_const_PIP_Tree_Node_t ∗pip_-
tree)

Writes to pip_tree a solution for pip, if it exists.

• int ppl_PIP_Problem_optimizing_solution (ppl_const_PIP_Problem_t pip, ppl_const_PIP_Tree_-
Node_t ∗pip_tree)

Writes to pip_tree an optimizing solution for pip, if it exists.

Querying/Setting Control Parameters

• int ppl_PIP_Problem_get_control_parameter (ppl_const_PIP_Problem_t pip, int name)
Returns the value of control parameter name in problem pip.

• int ppl_PIP_Problem_set_control_parameter (ppl_PIP_Problem_t pip, int value)
Sets control parameter value in problem pip.

Input/Output Functions

• int ppl_io_print_PIP_Problem (ppl_const_PIP_Problem_t x)
Prints x to stdout.

• int ppl_io_fprint_PIP_Problem (FILE ∗stream, ppl_const_PIP_Problem_t x)
Prints x to the given output stream.

• int ppl_io_asprint_PIP_Problem (char ∗∗strp, ppl_const_PIP_Problem_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_PIP_Problem_ascii_dump (ppl_const_PIP_Problem_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_PIP_Problem_ascii_load (ppl_PIP_Problem_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.19.1 Detailed Description

Types and functions for PIP problems. The types and functions for PIP problems provide an interface
towards PIP_Problem.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.20 ppl_PIP_Solution_Node_tag Interface Reference 65

7.19.2 Friends And Related Function Documentation

7.19.2.1 int ppl_PIP_Problem_space_dimension (ppl_const_PIP_Problem_t pip,
ppl_dimension_type ∗ m) [related]

Writes to m the dimension of the vector space enclosing pip.

The vector space dimensions includes both the problem variables and the problem parameters, but they do
not include the artificial parameters.

7.19.2.2 int ppl_PIP_Problem_add_space_dimensions_and_embed (ppl_PIP_Problem_t pip,
ppl_dimension_type pip_vars, ppl_dimension_type pip_params) [related]

Adds pip_vars + pip_params new space dimensions and embeds the PIP problem pip in the new
vector space.

Parameters
pip The PIP problem to be embedded in the new vector space.

pip_vars The number of space dimensions to add that are interpreted as PIP problem variables (i.e.,
non parameters). These are added before adding the pip_params parameters.

pip_params The number of space dimensions to add that are interpreted as PIP problem parameters. These
are added after having added the pip_vars problem variables.

The new space dimensions will be those having the highest indexes in the new PIP problem; they are
initially unconstrained.

7.19.2.3 int ppl_PIP_Problem_solve (ppl_const_PIP_Problem_t pip) [related]

Solves the PIP problem pip, returning an exit status.

Returns

PPL_PIP_PROBLEM_STATUS_UNFEASIBLE if the PIP problem is not satisfiable; PPL_PIP_-
PROBLEM_STATUS_OPTIMIZED if the PIP problem admits an optimal solution.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.20 ppl PIP Solution Node tag Interface Reference

Types and functions for PIP solution nodes.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.20 ppl_PIP_Solution_Node_tag Interface Reference 66

• int ppl_PIP_Solution_Node_get_parametric_values (ppl_const_PIP_Solution_Node_t pip_sol, ppl_-
dimension_type var, ppl_const_Linear_Expression_t ∗le)

Writes to le a const pointer to the parametric expression of the values of variable var in solution node
pip_sol.

Input/Output Functions

• int ppl_io_print_PIP_Solution_Node (ppl_const_PIP_Solution_Node_t x)
Prints x to stdout.

• int ppl_io_fprint_PIP_Solution_Node (FILE ∗stream, ppl_const_PIP_Solution_Node_t x)
Prints x to the given output stream.

• int ppl_io_asprint_PIP_Solution_Node (char ∗∗strp, ppl_const_PIP_Solution_Node_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_PIP_Solution_Node_ascii_dump (ppl_const_PIP_Solution_Node_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_PIP_Solution_Node_ascii_load (ppl_PIP_Solution_Node_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.20.1 Detailed Description

Types and functions for PIP solution nodes. The types and functions for solution nodes provide an interface
towards PIP_Solution_Node.

7.20.2 Friends And Related Function Documentation

7.20.2.1 int ppl_PIP_Solution_Node_get_parametric_values (ppl_const_PIP_Solution_Node_t
pip_sol, ppl_dimension_type var, ppl_const_Linear_Expression_t ∗ le) [related]

Writes to le a const pointer to the parametric expression of the values of variable var in solution node
pip_sol.

The linear expression assigned to le will only refer to (problem or artificial) parameters.

Parameters
pip_sol The solution tree node.

var The variable which is queried about.
le The returned expression for variable var.

Returns

PPL_ERROR_INVALID_ARGUMENT Returned if var is dimension-incompatible with ∗this or
if var is a problem parameter.

The documentation for this interface was generated from the following file:

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.21 ppl_PIP_Tree_Node_tag Interface Reference 67

• ppl_c_header.h

7.21 ppl PIP Tree Node tag Interface Reference

Types and functions for generic PIP tree nodes.

#include <ppl_c_header.h>

Related Functions

(Note that these are not member functions.)

• int ppl_PIP_Tree_Node_as_solution (ppl_const_PIP_Tree_Node_t spip_tree, ppl_const_PIP_Solution_-
Node_t ∗dpip_tree)

Writes to dpip_tree the solution node if spip_tree is a solution node, and 0 otherwise.

• int ppl_PIP_Tree_Node_as_decision (ppl_const_PIP_Tree_Node_t spip_tree, ppl_const_PIP_Decision_-
Node_t ∗dpip_tree)

Writes to dpip_tree the decision node if spip_tree is a decision node, and 0 otherwise.

• int ppl_PIP_Tree_Node_get_constraints (ppl_const_PIP_Tree_Node_t pip_tree, ppl_const_Constraint_-
System_t ∗pcs)

Writes to pcs the local system of parameter constraints at the pip tree node pip_tree.

• int ppl_PIP_Tree_Node_OK (ppl_const_PIP_Tree_Node_t pip)
Returns a positive integer if pip_tree is well formed, i.e., if it satisfies all its implementation invariants;
returns 0 and perhaps makes some noise if pip_tree is broken. Useful for debugging purposes.

• int ppl_PIP_Tree_Node_number_of_artificials (ppl_const_PIP_Tree_Node_t pip_tree, ppl_dimension_-
type ∗m)

Writes to m the number of elements in the artificial parameter sequence in the pip tree node pip_tree.

• int ppl_PIP_Tree_Node_begin (ppl_const_PIP_Tree_Node_t pip_tree, ppl_Artificial_Parameter_Sequence_-
const_iterator_t pit)

Assigns to pit a const iterator "pointing" to the beginning of the artificial parameter sequence in the pip
tree node pip_tree.

• int ppl_PIP_Tree_Node_end (ppl_const_PIP_Tree_Node_t pip_tree, ppl_Artificial_Parameter_Sequence_-
const_iterator_t pit)

Assigns to pit a const iterator "pointing" to the end of the artificial parameter sequence in the pip tree
node pip_tree.

Input/Output Functions

• int ppl_io_print_PIP_Tree_Node (ppl_const_PIP_Tree_Node_t x)
Prints x to stdout.

• int ppl_io_fprint_PIP_Tree_Node (FILE ∗stream, ppl_const_PIP_Tree_Node_t x)
Prints x to the given output stream.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.22 ppl_Pointset_Powerset_C_Polyhedron_const_iterator_tag Interface Reference 68

• int ppl_io_asprint_PIP_Tree_Node (char ∗∗strp, ppl_const_PIP_Tree_Node_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

• int ppl_PIP_Tree_Node_ascii_dump (ppl_const_PIP_Tree_Node_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_PIP_Tree_Node_ascii_load (ppl_PIP_Tree_Node_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

7.21.1 Detailed Description

Types and functions for generic PIP tree nodes. The types and functions for tree nodes provide an interface
towards PIP_Tree_Node.

The documentation for this interface was generated from the following file:

• ppl_c_header.h

7.22 ppl Pointset Powerset C Polyhedron const iterator tag Interface Reference

Types and functions for iterating on the disjuncts of a const ppl_Pointset_Powerset_C_Polyhedron_tag.

Related Functions

(Note that these are not member functions.)

Construction, Initialization and Destruction

• int ppl_new_Pointset_Powerset_C_Polyhedron_const_iterator (ppl_Pointset_Powerset_C_Polyhedron_-
const_iterator_t ∗pit)

Builds a new ‘const iterator’ and writes a handle to it at address pit.

• int ppl_new_Pointset_Powerset_C_Polyhedron_const_iterator_from_const_iterator (ppl_Pointset_-
Powerset_C_Polyhedron_const_iterator_t ∗pit, ppl_const_Pointset_Powerset_C_Polyhedron_const_-
iterator_t y)

Builds a copy of y and writes a handle to it at address pit.

• int ppl_Pointset_Powerset_C_Polyhedron_const_iterator_begin (ppl_const_Pointset_Powerset_-
C_Polyhedron_t ps, ppl_Pointset_Powerset_C_Polyhedron_const_iterator_t psit)

Assigns to psit a const iterator "pointing" to the beginning of the sequence of disjuncts of ps.

• int ppl_Pointset_Powerset_C_Polyhedron_const_iterator_end (ppl_const_Pointset_Powerset_C_-
Polyhedron_t ps, ppl_Pointset_Powerset_C_Polyhedron_const_iterator_t psit)

Assigns to psit a const iterator "pointing" past the end of the sequence of disjuncts of ps.

• int ppl_delete_Pointset_Powerset_C_Polyhedron_const_iterator (ppl_const_Pointset_Powerset_-
C_Polyhedron_const_iterator_t it)

Invalidates the handle it: this makes sure the corresponding resources will eventually be released.

Dereferencing, Increment, Decrement and Equality Testing

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.23 ppl_Pointset_Powerset_C_Polyhedron_iterator_tag Interface Reference 69

• int ppl_Pointset_Powerset_C_Polyhedron_const_iterator_dereference (ppl_const_Pointset_Powerset_-
C_Polyhedron_const_iterator_t it, ppl_const_Polyhedron_t ∗d)

Dereferences it writing a const handle to the resulting disjunct at address d.

• int ppl_Pointset_Powerset_C_Polyhedron_const_iterator_increment (ppl_Pointset_Powerset_C_-
Polyhedron_const_iterator_t it)

Increments it so that it "points" to the next disjunct.

• int ppl_Pointset_Powerset_C_Polyhedron_const_iterator_decrement (ppl_Pointset_Powerset_C_-
Polyhedron_const_iterator_t it)

Decrements it so that it "points" to the previous disjunct.

• int ppl_Pointset_Powerset_C_Polyhedron_const_iterator_equal_test (ppl_const_Pointset_Powerset_-
C_Polyhedron_const_iterator_t x, ppl_const_Pointset_Powerset_C_Polyhedron_const_iterator_t
y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are
different.

7.22.1 Detailed Description

Types and functions for iterating on the disjuncts of a const ppl_Pointset_Powerset_C_Polyhedron_tag.

7.22.2 Friends And Related Function Documentation

7.22.2.1 int ppl_Pointset_Powerset_C_Polyhedron_const_iterator_dereference (
ppl_const_Pointset_Powerset_C_Polyhedron_const_iterator_t it, ppl_const_Polyhedron_t
∗ d) [related]

Dereferences it writing a const handle to the resulting disjunct at address d.

Warning

On exit, the disjunct d is still owned by the powerset object: any function call on the owning powerset
object may invalidate it. Moreover, d should not be deleted directly: its resources will be released
when deleting the owning powerset.

The documentation for this interface was generated from the following file:

• C_interface.dox

7.23 ppl Pointset Powerset C Polyhedron iterator tag Interface Reference

Types and functions for iterating on the disjuncts of a ppl_Pointset_Powerset_C_Polyhedron_tag.

Related Functions

(Note that these are not member functions.)

Construction, Initialization and Destruction

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.23 ppl_Pointset_Powerset_C_Polyhedron_iterator_tag Interface Reference 70

• int ppl_new_Pointset_Powerset_C_Polyhedron_iterator (ppl_Pointset_Powerset_C_Polyhedron_-
iterator_t ∗pit)

Builds a new ‘iterator’ and writes a handle to it at address pit.

• int ppl_new_Pointset_Powerset_C_Polyhedron_iterator_from_iterator (ppl_Pointset_Powerset_-
C_Polyhedron_iterator_t ∗pit, ppl_const_Pointset_Powerset_C_Polyhedron_iterator_t y)

Builds a copy of y and writes a handle to it at address pit.

• int ppl_Pointset_Powerset_C_Polyhedron_iterator_begin (ppl_Pointset_Powerset_C_Polyhedron_-
t ps, ppl_Pointset_Powerset_C_Polyhedron_iterator_t psit)

Assigns to psit an iterator "pointing" to the beginning of the sequence of disjuncts of ps.

• int ppl_Pointset_Powerset_C_Polyhedron_iterator_end (ppl_Pointset_Powerset_C_Polyhedron_t
ps, ppl_Pointset_Powerset_C_Polyhedron_iterator_t psit)

Assigns to psit an iterator "pointing" past the end of the sequence of disjuncts of ps.

• int ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (ppl_const_Pointset_Powerset_C_Polyhedron_-
iterator_t it)

Invalidates the handle it: this makes sure the corresponding resources will eventually be released.

Dereferencing, Increment, Decrement and Equality Testing

• int ppl_Pointset_Powerset_C_Polyhedron_iterator_dereference (ppl_const_Pointset_Powerset_C_-
Polyhedron_iterator_t it, ppl_const_Polyhedron_t ∗d)

Dereferences it writing a const handle to the resulting disjunct at address d.

• int ppl_Pointset_Powerset_C_Polyhedron_iterator_increment (ppl_Pointset_Powerset_C_Polyhedron_-
iterator_t it)

Increments it so that it "points" to the next disjunct.

• int ppl_Pointset_Powerset_C_Polyhedron_iterator_decrement (ppl_Pointset_Powerset_C_Polyhedron_-
iterator_t it)

Decrements it so that it "points" to the previous disjunct.

• int ppl_Pointset_Powerset_C_Polyhedron_iterator_equal_test (ppl_const_Pointset_Powerset_C_-
Polyhedron_iterator_t x, ppl_const_Pointset_Powerset_C_Polyhedron_iterator_t y)

Returns a positive integer if the iterators corresponding to x and y are equal; returns 0 if they are
different.

7.23.1 Detailed Description

Types and functions for iterating on the disjuncts of a ppl_Pointset_Powerset_C_Polyhedron_tag.

7.23.2 Friends And Related Function Documentation

7.23.2.1 int ppl_Pointset_Powerset_C_Polyhedron_iterator_dereference (
ppl_const_Pointset_Powerset_C_Polyhedron_iterator_t it, ppl_const_Polyhedron_t ∗ d)
[related]

Dereferences it writing a const handle to the resulting disjunct at address d.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.24 ppl_Pointset_Powerset_C_Polyhedron_tag Interface Reference 71

Note

Even though it is an non-const iterator, dereferencing it results in a handle to a const disjunct. This
is because mutable iterators are meant to allow for the modification of the sequence of disjuncts (e.g.,
by dropping elements), while preventing direct modifications of the disjuncts they point to.

Warning

On exit, the disjunct d is still owned by the powerset object: any function call on the owning powerset
object may invalidate it. Moreover, d should not be deleted directly: its resources will be released
when deleting the owning powerset.

The documentation for this interface was generated from the following file:

• C_interface.dox

7.24 ppl Pointset Powerset C Polyhedron tag Interface Reference

Types and functions for the Pointset_Powerset of C_Polyhedron objects.

Related Functions

(Note that these are not member functions.)

Ad Hoc Functions for Pointset_Powerset domains

• int ppl_Pointset_Powerset_C_Polyhedron_omega_reduce (ppl_const_Pointset_Powerset_C_Polyhedron_-
t ps)

Drops from the sequence of disjuncts in ps all the non-maximal elements so that ps is non-redundant.

• int ppl_Pointset_Powerset_C_Polyhedron_size (ppl_const_Pointset_Powerset_C_Polyhedron_t ps,
size_t ∗sz)

Writes to sz the number of disjuncts in ps.

• int ppl_Pointset_Powerset_C_Polyhedron_geometrically_covers_Pointset_Powerset_C_Polyhedron
(ppl_const_Pointset_Powerset_C_Polyhedron_t x, ppl_const_Pointset_Powerset_C_Polyhedron_-
t y)

Returns a positive integer if powerset x geometrically covers powerset y; returns 0 otherwise.

• int ppl_Pointset_Powerset_C_Polyhedron_geometrically_equals_Pointset_Powerset_C_Polyhedron
(ppl_const_Pointset_Powerset_C_Polyhedron_t x, ppl_const_Pointset_Powerset_C_Polyhedron_-
t y)

Returns a positive integer if powerset x is geometrically equal to powerset y; returns 0 otherwise.

• int ppl_Pointset_Powerset_C_Polyhedron_add_disjunct (ppl_Pointset_Powerset_C_Polyhedron_-
t ps, ppl_const_Polyhedron_t d)

Adds to ps a copy of disjunct d.

• int ppl_Pointset_Powerset_C_Polyhedron_drop_disjunct (ppl_Pointset_Powerset_C_Polyhedron_-
t ps, ppl_const_Pointset_Powerset_C_Polyhedron_iterator_t cit, ppl_Pointset_Powerset_C_Polyhedron_-
iterator_t it)

Drops from ps the disjunct pointed to by cit, assigning to it an iterator to the disjunct following cit.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 72

• int ppl_Pointset_Powerset_C_Polyhedron_drop_disjuncts (ppl_Pointset_Powerset_C_Polyhedron_-
t ps, ppl_const_Pointset_Powerset_C_Polyhedron_iterator_t first, ppl_const_Pointset_Powerset_-
C_Polyhedron_iterator_t last)

Drops from ps all the disjuncts from first to last (excluded).

• int ppl_Pointset_Powerset_C_Polyhedron_pairwise_reduce (ppl_Pointset_Powerset_C_Polyhedron_-
t ps)

Modifies ps by (recursively) merging together the pairs of disjuncts whose upper-bound is the same as
their set-theoretical union.

7.24.1 Detailed Description

Types and functions for the Pointset_Powerset of C_Polyhedron objects. The powerset domains can be
instantiated by taking as a base domain any fixed semantic geometric description (C and NNC polyhedra,
BD and octagonal shapes, boxes and grids). An element of the powerset domain represents a disjunctive
collection of base objects (its disjuncts), all having the same space dimension.

Besides the functions that are available in all semantic geometric descriptions (whose documentation is not
repeated here), the powerset domain also provides several ad hoc functions. In particular, the iterator types
allow for the examination and manipulation of the collection of disjuncts.

7.24.2 Friends And Related Function Documentation

7.24.2.1 int ppl_Pointset_Powerset_C_Polyhedron_size (ppl_const_Pointset_Powerset_C_-
Polyhedron_t ps, size_t ∗ sz) [related]

Writes to sz the number of disjuncts in ps.

Note

If present, Omega-redundant elements will be counted too.

The documentation for this interface was generated from the following file:

• C_interface.dox

7.25 ppl Polyhedron tag Interface Reference

Types and functions for the domains of C and NNC convex polyhedra.

Related Functions

(Note that these are not member functions.)

Constructors and Assignment for C_Polyhedron

• int ppl_new_C_Polyhedron_from_space_dimension (ppl_Polyhedron_t ∗pph, ppl_dimension_-
type d, int empty)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 73

Builds a C polyhedron of dimension d and writes an handle to it at address pph. If empty is different
from zero, the newly created polyhedron will be empty; otherwise, it will be a universe polyhedron.

• int ppl_new_C_Polyhedron_from_C_Polyhedron (ppl_Polyhedron_t ∗pph, ppl_const_Polyhedron_-
t ph)

Builds a C polyhedron that is a copy of ph; writes a handle for the newly created polyhedron at address
pph.

• int ppl_new_C_Polyhedron_from_C_Polyhedron_with_complexity (ppl_Polyhedron_t ∗pph, ppl_-
const_Polyhedron_t ph, int complexity)

Builds a C polyhedron that is a copy of ph; writes a handle for the newly created polyhedron at address
pph.

• int ppl_new_C_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗pph, ppl_const_Constraint_-
System_t cs)

Builds a new C polyhedron from the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_C_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗pph, ppl_Constraint_-
System_t cs)

Builds a new C polyhedron recycling the system of constraints cs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_new_C_Polyhedron_from_Congruence_System (ppl_Polyhedron_t ∗pph, ppl_const_Congruence_-
System_t cs)

Builds a new C polyhedron from the system of congruences cs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_C_Polyhedron_recycle_Congruence_System (ppl_Polyhedron_t ∗pph, ppl_Congruence_-
System_t cs)

Builds a new C polyhedron recycling the system of congruences cs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_assign_C_Polyhedron_from_C_Polyhedron (ppl_Polyhedron_t dst, ppl_const_Polyhedron_-
t src)

Assigns a copy of the C polyhedron src to the C polyhedron dst.

Constructors and Assignment for NNC_Polyhedron

• int ppl_new_NNC_Polyhedron_from_space_dimension (ppl_Polyhedron_t ∗pph, ppl_dimension_-
type d, int empty)

Builds an NNC polyhedron of dimension d and writes an handle to it at address pph. If empty is differ-
ent from zero, the newly created polyhedron will be empty; otherwise, it will be a universe polyhedron.

• int ppl_new_NNC_Polyhedron_from_NNC_Polyhedron (ppl_Polyhedron_t ∗pph, ppl_const_Polyhedron_-
t ph)

Builds an NNC polyhedron that is a copy of ph; writes a handle for the newly created polyhedron at
address pph.

• int ppl_new_NNC_Polyhedron_from_NNC_Polyhedron_with_complexity (ppl_Polyhedron_t ∗pph,
ppl_const_Polyhedron_t ph, int complexity)

Builds an NNC polyhedron that is a copy of ph; writes a handle for the newly created polyhedron at
address pph.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 74

• int ppl_new_NNC_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗pph, ppl_const_-
Constraint_System_t cs)

Builds a new NNC polyhedron from the system of constraints cs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗pph, ppl_Constraint_-
System_t cs)

Builds a new NNC polyhedron recycling the system of constraints cs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_Congruence_System (ppl_Polyhedron_t ∗pph, ppl_const_-
Congruence_System_t cs)

Builds a new NNC polyhedron from the system of congruences cs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_recycle_Congruence_System (ppl_Polyhedron_t ∗pph, ppl_Congruence_-
System_t cs)

Builds a new NNC polyhedron recycling the system of congruences cs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_assign_NNC_Polyhedron_from_NNC_Polyhedron (ppl_Polyhedron_t dst, ppl_const_Polyhedron_-
t src)

Assigns a copy of the NNC polyhedron src to the NNC polyhedron dst.

Constructors Behaving as Conversion Operators
Besides the conversions listed here below, the library also provides conversion operators that build
a semantic geometric description starting from any other semantic geometric description (e.g., ppl_-
new_Grid_from_C_Polyhedron, ppl_new_C_Polyhedron_from_BD_Shape_mpq_class, etc.). Clearly,
the conversion operators are only available if both the source and the target semantic geometric de-
scriptions have been enabled when configuring the library. The conversions also taking as argument a
complexity class sometimes provide non-trivial precision/efficiency trade-offs.

• int ppl_new_C_Polyhedron_from_NNC_Polyhedron (ppl_Polyhedron_t ∗pph, ppl_const_Polyhedron_-
t ph)

Builds a C polyhedron that is a copy of the topological closure of the NNC polyhedron ph; writes a
handle for the newly created polyhedron at address pph.

• int ppl_new_C_Polyhedron_from_NNC_Polyhedron_with_complexity (ppl_Polyhedron_t ∗pph,
ppl_const_Polyhedron_t ph, int complexity)

Builds a C polyhedron that approximates NNC_Polyhedron ph, using an algorithm whose complexity
does not exceed complexity; writes a handle for the newly created polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_C_Polyhedron (ppl_Polyhedron_t ∗pph, ppl_const_Polyhedron_-
t ph)

Builds an NNC polyhedron that is a copy of the C polyhedron ph; writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_C_Polyhedron_with_complexity (ppl_Polyhedron_t ∗pph,
ppl_const_Polyhedron_t ph, int complexity)

Builds an NNC polyhedron that approximates C_Polyhedron ph, using an algorithm whose complexity
does not exceed complexity; writes a handle for the newly created polyhedron at address pph.

Destructor for (C or NNC) Polyhedra

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 75

• int ppl_delete_Polyhedron (ppl_const_Polyhedron_t ph)
Invalidates the handle ph: this makes sure the corresponding resources will eventually be released.

Functions that Do Not Modify the Polyhedron

• int ppl_Polyhedron_space_dimension (ppl_const_Polyhedron_t ph, ppl_dimension_type ∗m)
Writes to m the dimension of the vector space enclosing ph.

• int ppl_Polyhedron_affine_dimension (ppl_const_Polyhedron_t ph, ppl_dimension_type ∗m)
Writes to m the affine dimension of ph (not to be confused with the dimension of its enclosing vector
space) or 0, if ph is empty.

• int ppl_Polyhedron_relation_with_Constraint (ppl_const_Polyhedron_t ph, ppl_const_Constraint_-
t c)

Checks the relation between the polyhedron ph and the constraint c.

• int ppl_Polyhedron_relation_with_Generator (ppl_const_Polyhedron_t ph, ppl_const_Generator_-
t g)

Checks the relation between the polyhedron ph and the generator g.

• int ppl_Polyhedron_get_constraints (ppl_const_Polyhedron_t ph, ppl_const_Constraint_System_-
t ∗pcs)

Writes a const handle to the constraint system defining the polyhedron ph at address pcs.

• int ppl_Polyhedron_get_congruences (ppl_const_Polyhedron_t ph, ppl_const_Congruence_System_-
t ∗pcs)

Writes at address pcs a const handle to a system of congruences approximating the polyhedron ph.

• int ppl_Polyhedron_get_minimized_constraints (ppl_const_Polyhedron_t ph, ppl_const_Constraint_-
System_t ∗pcs)

Writes a const handle to the minimized constraint system defining the polyhedron ph at address pcs.

• int ppl_Polyhedron_get_minimized_congruences (ppl_const_Polyhedron_t ph, ppl_const_Congruence_-
System_t ∗pcs)

Writes at address pcs a const handle to a system of minimized congruences approximating the polyhe-
dron ph.

• int ppl_Polyhedron_is_empty (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is empty; returns 0 if ph is not empty.

• int ppl_Polyhedron_is_universe (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is a universe polyhedron; returns 0 if it is not.

• int ppl_Polyhedron_is_bounded (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is bounded; returns 0 if ph is unbounded.

• int ppl_Polyhedron_contains_integer_point (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph contains at least one integer point; returns 0 otherwise.

• int ppl_Polyhedron_is_topologically_closed (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is topologically closed; returns 0 if ph is not topologically closed.

• int ppl_Polyhedron_is_discrete (ppl_const_Polyhedron_t ph)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 76

Returns a positive integer if ph is a discrete set; returns 0 if ph is not a discrete set.

• int ppl_Polyhedron_constrains (ppl_Polyhedron_t ph, ppl_dimension_type var)
Returns a positive integer if ph constrains var; returns 0 if ph does not constrain var.

• int ppl_Polyhedron_bounds_from_above (ppl_const_Polyhedron_t ph, ppl_const_Linear_Expression_-
t le)

Returns a positive integer if le is bounded from above in ph; returns 0 otherwise.

• int ppl_Polyhedron_bounds_from_below (ppl_const_Polyhedron_t ph, ppl_const_Linear_Expression_-
t le)

Returns a positive integer if le is bounded from below in ph; returns 0 otherwise.

• int ppl_Polyhedron_maximize_with_point (ppl_const_Polyhedron_t ph, ppl_const_Linear_Expression_-
t le, ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d, int ∗pmaximum, ppl_Generator_t point)

Returns a positive integer if ph is not empty and le is bounded from above in ph, in which case the
supremum value and a point where le reaches it are computed.

• int ppl_Polyhedron_maximize (ppl_const_Polyhedron_t ph, ppl_const_Linear_Expression_t le,
ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d, int ∗pmaximum)

The same as ppl_Polyhedron_maximize_with_point, but without the output argument for the location
where the supremum value is reached.

• int ppl_Polyhedron_minimize_with_point (ppl_const_Polyhedron_t ph, ppl_const_Linear_Expression_-
t le, ppl_Coefficient_t inf_n, ppl_Coefficient_t inf_d, int ∗pminimum, ppl_Generator_t point)

Returns a positive integer if ph is not empty and le is bounded from below in ph, in which case the
infimum value and a point where le reaches it are computed.

• int ppl_Polyhedron_minimize_with_point (ppl_const_Polyhedron_t ph, ppl_const_Linear_Expression_-
t le, ppl_Coefficient_t inf_n, ppl_Coefficient_t inf_d, int ∗pminimum)

The same as ppl_Polyhedron_minimize_with_point, but without the output argument for the location
where the infimum value is reached.

• int ppl_Polyhedron_contains_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_Polyhedron_t y)

Returns a positive integer if x contains or is equal to y; returns 0 if it does not.

• int ppl_Polyhedron_strictly_contains_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_Polyhedron_-
t y)

Returns a positive integer if x strictly contains y; returns 0 if it does not.

• int ppl_Polyhedron_is_disjoint_from_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_Polyhedron_-
t y)

Returns a positive integer if x and y are disjoint; returns 0 if they are not.

• int ppl_Polyhedron_equals_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_Polyhedron_t y)
Returns a positive integer if x and y are the same polyhedron; returns 0 if they are different.

• int ppl_Polyhedron_OK (ppl_const_Polyhedron_t ph)
Returns a positive integer if ph is well formed, i.e., if it satisfies all its implementation invariants; returns
0 and perhaps makes some noise if ph is broken. Useful for debugging purposes.

• int ppl_Polyhedron_external_memory_in_bytes (ppl_const_Polyhedron_t ph, size_t ∗sz)
Writes to sz a lower bound to the size in bytes of the memory managed by ph.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 77

• int ppl_Polyhedron_total_memory_in_bytes (ppl_const_Polyhedron_t ph, size_t ∗sz)
Writes to sz a lower bound to the size in bytes of the memory managed by ph.

Space Dimension Preserving Functions that May Modify the Polyhedron

• int ppl_Polyhedron_add_constraint (ppl_Polyhedron_t ph, ppl_const_Constraint_t c)
Adds a copy of the constraint c to the system of constraints of ph.

• int ppl_Polyhedron_add_congruence (ppl_Polyhedron_t ph, ppl_const_Congruence_t c)
Adds a copy of the congruence c to polyhedron of ph.

• int ppl_Polyhedron_add_constraints (ppl_Polyhedron_t ph, ppl_const_Constraint_System_t cs)
Adds a copy of the system of constraints cs to the system of constraints of ph.

• int ppl_Polyhedron_add_congruences (ppl_Polyhedron_t ph, ppl_const_Congruence_System_-
t cs)

Adds a copy of the system of congruences cs to the polyhedron ph.

• int ppl_Polyhedron_add_recycled_constraints (ppl_Polyhedron_t ph, ppl_Constraint_System_-
t cs)

Adds the system of constraints cs to the system of constraints of ph.

• int ppl_Polyhedron_add_recycled_congruences (ppl_Polyhedron_t ph, ppl_Congruence_System_-
t cs)

Adds the system of congruences cs to the polyhedron ph.

• int ppl_Polyhedron_refine_with_constraint (ppl_Polyhedron_t ph, ppl_const_Constraint_t c)
Refines ph using constraint c.

• int ppl_Polyhedron_refine_with_congruence (ppl_Polyhedron_t ph, ppl_const_Congruence_t c)
Refines ph using congruence c.

• int ppl_Polyhedron_refine_with_constraints (ppl_Polyhedron_t ph, ppl_const_Constraint_System_-
t cs)

Refines ph using the constraints in cs.

• int ppl_Polyhedron_refine_with_congruences (ppl_Polyhedron_t ph, ppl_const_Congruence_System_-
t cs)

Refines ph using the congruences in cs.

• int ppl_Polyhedron_intersection_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Intersects x with polyhedron y and assigns the result to x.

• int ppl_Polyhedron_upper_bound_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Assigns to x an upper bound of x and y.

• int ppl_Polyhedron_difference_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Same as ppl_Polyhedron_poly_difference_assign(x, y).

• int ppl_Polyhedron_simplify_using_context_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_-
t y)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 78

Assigns to x the meet-preserving simplification of x with respect to context y. Returns a positive integer
if x and y have a nonempty intersection; returns 0 if they are disjoint.

• int ppl_Polyhedron_time_elapse_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Assigns to x the time-elapse between the polyhedra x and y.

• int ppl_Polyhedron_topological_closure_assign (ppl_Polyhedron_t ph)
Assigns to ph its topological closure.

• int ppl_Polyhedron_unconstrain_space_dimension (ppl_Polyhedron_t ph, ppl_dimension_type var)

Modifies ph by unconstraining the space dimension var.

• int ppl_Polyhedron_unconstrain_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type
ds[], size_t n)

Modifies ph by unconstraining the space dimensions that are specified in the first n positions of the array
ds. The presence of duplicates in ds is a waste but an innocuous one.

• int ppl_Polyhedron_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_const_-
Linear_Expression_t le, ppl_const_Coefficient_t d)

Transforms the polyhedron ph, assigning an affine expression to the specified variable.

• int ppl_Polyhedron_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_const_-
Linear_Expression_t le, ppl_const_Coefficient_t d)

Transforms the polyhedron ph, substituting an affine expression to the specified variable.

• int ppl_Polyhedron_bounded_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type var, ppl_-
const_Linear_Expression_t lb, ppl_const_Linear_Expression_t ub, ppl_const_Coefficient_t d)

Assigns to ph the image of ph with respect to the generalized affine transfer relation lb
d
≤ var′ ≤ ub

d
.

• int ppl_Polyhedron_bounded_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_type var,
ppl_const_Linear_Expression_t lb, ppl_const_Linear_Expression_t ub, ppl_const_Coefficient_t
d)

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation lb
d
≤ var′ ≤ ub

d
.

• int ppl_Polyhedron_generalized_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type var,
enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t le, ppl_const_Coefficient_-
t d)

Assigns to ph the image of ph with respect to the generalized affine transfer relation var′ ./ le
d

, where
./ is the relation symbol encoded by relsym.

• int ppl_Polyhedron_generalized_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_type var,
enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t le, ppl_const_Coefficient_-
t d)

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation var′ ./ le
d

,
where ./ is the relation symbol encoded by relsym.

• int ppl_Polyhedron_generalized_affine_image_lhs_rhs (ppl_Polyhedron_t ph, ppl_const_Linear_-
Expression_t lhs, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t rhs)

Assigns to ph the image of ph with respect to the generalized affine transfer relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

• int ppl_Polyhedron_generalized_affine_preimage_lhs_rhs (ppl_Polyhedron_t ph, ppl_const_Linear_-
Expression_t lhs, enum ppl_enum_Constraint_Type relsym, ppl_const_Linear_Expression_t rhs)

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 79

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation lhs′ ./ rhs,
where ./ is the relation symbol encoded by relsym.

Functions that May Modify the Dimension of the Vector Space

• int ppl_Polyhedron_concatenate_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Seeing a polyhedron as a set of tuples (its points), assigns to x all the tuples that can be obtained by
concatenating, in the order given, a tuple of x with a tuple of y.

• int ppl_Polyhedron_add_space_dimensions_and_embed (ppl_Polyhedron_t ph, ppl_dimension_-
type d)

Adds d new dimensions to the space enclosing the polyhedron ph and to ph itself.

• int ppl_Polyhedron_add_space_dimensions_and_project (ppl_Polyhedron_t ph, ppl_dimension_-
type d)

Adds d new dimensions to the space enclosing the polyhedron ph.

• int ppl_Polyhedron_remove_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type ds[],
size_t n)

Removes from the vector space enclosing ph the space dimensions that are specified in first n positions
of the array ds. The presence of duplicates in ds is a waste but an innocuous one.

• int ppl_Polyhedron_remove_higher_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_-
type d)

Removes the higher dimensions from the vector space enclosing ph so that, upon successful return, the
new space dimension is d.

• int ppl_Polyhedron_map_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type maps[],
size_t n)

Remaps the dimensions of the vector space according to a partial function. This function is specified by
means of the maps array, which has n entries.

• int ppl_Polyhedron_expand_space_dimension (ppl_Polyhedron_t ph, ppl_dimension_type d, ppl_-
dimension_type m)

Expands the d-th dimension of the vector space enclosing ph to m new space dimensions.

• int ppl_Polyhedron_fold_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type ds[], size_-
t n, ppl_dimension_type d)

Modifies ph by folding the space dimensions contained in the first n positions of the array ds into
dimension d. The presence of duplicates in ds is a waste but an innocuous one.

Input/Output Functions

• int ppl_io_print_Polyhedron (ppl_const_Polyhedron_t x)
Prints x to stdout.

• int ppl_io_fprint_Polyhedron (FILE ∗stream, ppl_const_Polyhedron_t x)
Prints x to the given output stream.

• int ppl_io_asprint_Polyhedron (char ∗∗strp, ppl_const_Polyhedron_t x)
Prints x to a malloc-allocated string, a pointer to which is returned via strp.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 80

• int ppl_Polyhedron_ascii_dump (ppl_const_Polyhedron_t x, FILE ∗stream)
Dumps an ascii representation of x on stream.

• int ppl_Polyhedron_ascii_load (ppl_Polyhedron_t x, FILE ∗stream)
Loads an ascii representation of x from stream.

Ad Hoc Functions for (C or NNC) Polyhedra
The functions listed here below, being specific of the polyhedron domains, do not have a correspondence
in other semantic geometric descriptions.

• int ppl_new_C_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗pph, ppl_const_Generator_-
System_t gs)

Builds a new C polyhedron from the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_C_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗pph, ppl_Generator_-
System_t gs)

Builds a new C polyhedron recycling the system of generators gs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗pph, ppl_const_-
Generator_System_t gs)

Builds a new NNC polyhedron from the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

• int ppl_new_NNC_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗pph, ppl_Generator_-
System_t gs)

Builds a new NNC polyhedron recycling the system of generators gs and writes a handle for the newly
created polyhedron at address pph.

• int ppl_Polyhedron_get_generators (ppl_const_Polyhedron_t ph, ppl_const_Generator_System_t
∗pgs)

Writes a const handle to the generator system defining the polyhedron ph at address pgs.

• int ppl_Polyhedron_get_minimized_generators (ppl_const_Polyhedron_t ph, ppl_const_Generator_-
System_t ∗pgs)

Writes a const handle to the minimized generator system defining the polyhedron ph at address pgs.

• int ppl_Polyhedron_add_generator (ppl_Polyhedron_t ph, ppl_const_Generator_t g)
Adds a copy of the generator g to the system of generators of ph.

• int ppl_Polyhedron_add_generators (ppl_Polyhedron_t ph, ppl_const_Generator_System_t gs)
Adds a copy of the system of generators gs to the system of generators of ph.

• int ppl_Polyhedron_add_recycled_generators (ppl_Polyhedron_t ph, ppl_Generator_System_t gs)

Adds the system of generators gs to the system of generators of ph.

• int ppl_Polyhedron_poly_hull_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Assigns to x the poly-hull of x and y.

• int ppl_Polyhedron_poly_difference_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
Assigns to x the poly-difference of x and y.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 81

• int wrap_assign (ppl_Polyhedron_t ph, ppl_dimension_type ds[], size_t n, ppl_enum_Bounded_-
Integer_Type_Width w, ppl_enum_Bounded_Integer_Type_Representation r, ppl_enum_Bounded_-
Integer_Type_Overflow o, const ppl_const_Constraint_System_t ∗pcs, unsigned complexity_-
threshold, int wrap_individually)

Assigns to ph the polyhedron obtained from ph by "wrapping" the vector space defined by the first n
space dimensions in ds[].

• int ppl_Polyhedron_BHRZ03_widening_assign_with_tokens (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening
of x and y. If tp is not the null pointer, the widening with tokens delay technique is applied with ∗tp
available tokens.

• int ppl_Polyhedron_H79_widening_assign_with_tokens (ppl_Polyhedron_t x, ppl_const_Polyhedron_-
t y, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of
x and y. If tp is not the null pointer, the widening with tokens delay technique is applied with ∗tp
available tokens.

• int ppl_Polyhedron_BHRZ03_widening_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of
x and y.

• int ppl_Polyhedron_H79_widening_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_t y)
If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x
and y.

• int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_tokens (ppl_Polyhedron_t x, ppl_-
const_Polyhedron_t y, ppl_const_Constraint_System_t cs, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening
of x and y intersected with the constraints in cs that are satisfied by all the points of x. If tp is not the
null pointer, the widening with tokens delay technique is applied with ∗tp available tokens.

• int ppl_Polyhedron_limited_H79_extrapolation_assign_with_tokens (ppl_Polyhedron_t x, ppl_-
const_Polyhedron_t y, ppl_const_Constraint_System_t cs, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x
and y intersected with the constraints in cs that are satisfied by all the points of x. If tp is not the null
pointer, the widening with tokens delay technique is applied with ∗tp available tokens.

• int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_-
t y, ppl_const_Constraint_System_t cs)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of
x and y intersected with the constraints in cs that are satisfied by all the points of x.

• int ppl_Polyhedron_limited_H79_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_-
t y, ppl_const_Constraint_System_t cs)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x
and y intersected with the constraints in cs that are satisfied by all the points of x.

• int ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_tokens (ppl_Polyhedron_t x,
ppl_const_Polyhedron_t y, ppl_const_Constraint_System_t cs, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of
x and y intersected with the constraints in cs that are satisfied by all the points of x, further intersected

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 82

with all the constraints of the form ±v ≤ r and ±v < r, with r ∈ Q, that are satisfied by all the points
of x. If tp is not the null pointer, the widening with tokens delay technique is applied with ∗tp available
tokens.

• int ppl_Polyhedron_bounded_H79_extrapolation_assign_with_tokens (ppl_Polyhedron_t x, ppl_-
const_Polyhedron_t y, ppl_const_Constraint_System_t cs, unsigned ∗tp)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x
and y intersected with the constraints in cs that are satisfied by all the points of x, further intersected
with all the constraints of the form ±v ≤ r and ±v < r, with r ∈ Q, that are satisfied by all the points
of x. If tp is not the null pointer, the widening with tokens delay technique is applied with ∗tp available
tokens.

• int ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t y, ppl_const_Constraint_System_t cs)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the BHRZ03-widening of
x and y intersected with the constraints in cs that are satisfied by all the points of x, further intersected
with all the constraints of the form ±v ≤ r and ±v < r, with r ∈ Q, that are satisfied by all the points
of x.

• int ppl_Polyhedron_bounded_H79_extrapolation_assign (ppl_Polyhedron_t x, ppl_const_Polyhedron_-
t y, ppl_const_Constraint_System_t cs)

If the polyhedron y is contained in (or equal to) the polyhedron x, assigns to x the H79-widening of x
and y intersected with the constraints in cs that are satisfied by all the points of x, further intersected
with all the constraints of the form ±v ≤ r and ±v < r, with r ∈ Q, that are satisfied by all the points
of x.

7.25.1 Detailed Description

Types and functions for the domains of C and NNC convex polyhedra. The types and functions for convex
polyhedra provide a single interface for accessing both topologically closed (C) and not necessarily closed
(NNC) convex polyhedra. The distinction between C and NNC polyhedra need only be explicitly stated
when creating or assigning a polyhedron object, by means of one of the functions ppl_new_∗ and ppl_-
assign_∗.

Having a single datatype does not mean that C and NNC polyhedra can be freely interchanged: as spec-
ified in the main manual, most library functions require their arguments to be topologically and/or space-
dimension compatible.

7.25.2 Friends And Related Function Documentation

7.25.2.1 int ppl_new_C_Polyhedron_from_C_Polyhedron_with_complexity (ppl_Polyhedron_t ∗
pph, ppl_const_Polyhedron_t ph, int complexity) [related]

Builds a C polyhedron that is a copy of ph; writes a handle for the newly created polyhedron at address
pph.

Note

The complexity argument is ignored.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 83

7.25.2.2 int ppl_new_C_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗ pph,
ppl_const_Constraint_System_t cs) [related]

Builds a new C polyhedron from the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

7.25.2.3 int ppl_new_C_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗ pph,
ppl_Constraint_System_t cs) [related]

Builds a new C polyhedron recycling the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

Warning

This function modifies the constraint system referenced by cs: upon return, no assumption can be
made on its value.

7.25.2.4 int ppl_new_C_Polyhedron_from_Congruence_System (ppl_Polyhedron_t ∗ pph,
ppl_const_Congruence_System_t cs) [related]

Builds a new C polyhedron from the system of congruences cs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

7.25.2.5 int ppl_new_C_Polyhedron_recycle_Congruence_System (ppl_Polyhedron_t ∗ pph,
ppl_Congruence_System_t cs) [related]

Builds a new C polyhedron recycling the system of congruences cs and writes a handle for the newly
created polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

Warning

This function modifies the congruence system referenced by cs: upon return, no assumption can be
made on its value.

7.25.2.6 int ppl_new_NNC_Polyhedron_from_NNC_Polyhedron_with_complexity (
ppl_Polyhedron_t ∗ pph, ppl_const_Polyhedron_t ph, int complexity) [related]

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 84

Builds an NNC polyhedron that is a copy of ph; writes a handle for the newly created polyhedron at address
pph.

Note

The complexity argument is ignored.

7.25.2.7 int ppl_new_NNC_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗ pph,
ppl_const_Constraint_System_t cs) [related]

Builds a new NNC polyhedron from the system of constraints cs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

7.25.2.8 int ppl_new_NNC_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗ pph,
ppl_Constraint_System_t cs) [related]

Builds a new NNC polyhedron recycling the system of constraints cs and writes a handle for the newly
created polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

Warning

This function modifies the constraint system referenced by cs: upon return, no assumption can be
made on its value.

7.25.2.9 int ppl_new_NNC_Polyhedron_from_Congruence_System (ppl_Polyhedron_t ∗ pph,
ppl_const_Congruence_System_t cs) [related]

Builds a new NNC polyhedron from the system of congruences cs and writes a handle for the newly
created polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

7.25.2.10 int ppl_new_NNC_Polyhedron_recycle_Congruence_System (ppl_Polyhedron_t ∗ pph,
ppl_Congruence_System_t cs) [related]

Builds a new NNC polyhedron recycling the system of congruences cs and writes a handle for the newly
created polyhedron at address pph.

The new polyhedron will inherit the space dimension of cs.

Warning

This function modifies the congruence system referenced by cs: upon return, no assumption can be
made on its value.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 85

7.25.2.11 int ppl_new_C_Polyhedron_from_NNC_Polyhedron_with_complexity (
ppl_Polyhedron_t ∗ pph, ppl_const_Polyhedron_t ph, int complexity) [related]

Builds a C polyhedron that approximates NNC_Polyhedron ph, using an algorithm whose complexity does
not exceed complexity; writes a handle for the newly created polyhedron at address pph.

Note

The complexity argument, which can take values PPL_COMPLEXITY_CLASS_POLYNOMIAL, PPL_-
COMPLEXITY_CLASS_SIMPLEX and PPL_COMPLEXITY_CLASS_ANY, is ignored since the ex-
act constructor has polynomial complexity.

7.25.2.12 int ppl_new_NNC_Polyhedron_from_C_Polyhedron_with_complexity (
ppl_Polyhedron_t ∗ pph, ppl_const_Polyhedron_t ph, int complexity) [related]

Builds an NNC polyhedron that approximates C_Polyhedron ph, using an algorithm whose complexity
does not exceed complexity; writes a handle for the newly created polyhedron at address pph.

Note

The complexity argument, which can take values PPL_COMPLEXITY_CLASS_POLYNOMIAL, PPL_-
COMPLEXITY_CLASS_SIMPLEX and PPL_COMPLEXITY_CLASS_ANY, is ignored since the ex-
act constructor has polynomial complexity.

7.25.2.13 int ppl_Polyhedron_relation_with_Constraint (ppl_const_Polyhedron_t ph,
ppl_const_Constraint_t c) [related]

Checks the relation between the polyhedron ph and the constraint c.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (chosen among
PPL_POLY_CON_RELATION_IS_DISJOINT PPL_POLY_CON_RELATION_STRICTLY_INTERSECTS,
PPL_POLY_CON_RELATION_IS_INCLUDED, and PPL_POLY_CON_RELATION_SATURATES) that
describe the relation between ph and c.

7.25.2.14 int ppl_Polyhedron_relation_with_Generator (ppl_const_Polyhedron_t ph,
ppl_const_Generator_t g) [related]

Checks the relation between the polyhedron ph and the generator g.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (only PPL_POLY_-
GEN_RELATION_SUBSUMES, at present) that describe the relation between ph and g.

7.25.2.15 int ppl_Polyhedron_maximize_with_point (ppl_const_Polyhedron_t ph,
ppl_const_Linear_Expression_t le, ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d,
int ∗ pmaximum, ppl_Generator_t point) [related]

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 86

Returns a positive integer if ph is not empty and le is bounded from above in ph, in which case the
supremum value and a point where le reaches it are computed.

Parameters
ph The polyhedron constraining le;
le The linear expression to be maximized subject to ph;

sup_n Will be assigned the numerator of the supremum value;
sup_d Will be assigned the denominator of the supremum value;

pmaximum Will store 1 in this location if the supremum is also the maximum, will store 0 otherwise;
point Will be assigned the point or closure point where le reaches the extremum value.

If ph is empty or le is not bounded from above, 0 will be returned and sup_n, sup_d, ∗pmaximum and
point will be left untouched.

7.25.2.16 int ppl_Polyhedron_minimize_with_point (ppl_const_Polyhedron_t ph,
ppl_const_Linear_Expression_t le, ppl_Coefficient_t inf_n, ppl_Coefficient_t inf_d, int
∗ pminimum, ppl_Generator_t point) [related]

Returns a positive integer if ph is not empty and le is bounded from below in ph, in which case the
infimum value and a point where le reaches it are computed.

Parameters
ph The polyhedron constraining le;
le The linear expression to be minimized subject to ph;

inf_n Will be assigned the numerator of the infimum value;
inf_d Will be assigned the denominator of the infimum value;

pminimum Will store 1 in this location if the infimum is also the minimum, will store 0 otherwise;
point Will be assigned the point or closure point where le reaches the extremum value.

If ph is empty or le is not bounded from below, 0 will be returned and sup_n, sup_d, ∗pmaximum and
point will be left untouched.

7.25.2.17 int ppl_Polyhedron_equals_Polyhedron (ppl_const_Polyhedron_t x,
ppl_const_Polyhedron_t y) [related]

Returns a positive integer if x and y are the same polyhedron; returns 0 if they are different.

Note that x and y may be topology- and/or dimension-incompatible polyhedra: in those cases, the value 0
is returned.

7.25.2.18 int ppl_Polyhedron_add_recycled_constraints (ppl_Polyhedron_t ph,
ppl_Constraint_System_t cs) [related]

Adds the system of constraints cs to the system of constraints of ph.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 87

Warning

This function modifies the constraint system referenced by cs: upon return, no assumption can be
made on its value.

7.25.2.19 int ppl_Polyhedron_add_recycled_congruences (ppl_Polyhedron_t ph,
ppl_Congruence_System_t cs) [related]

Adds the system of congruences cs to the polyhedron ph.

Warning

This function modifies the congruence system referenced by cs: upon return, no assumption can be
made on its value.

7.25.2.20 int ppl_Polyhedron_upper_bound_assign (ppl_Polyhedron_t x,
ppl_const_Polyhedron_t y) [related]

Assigns to x an upper bound of x and y.

For the domain of polyhedra, this is the same as ppl_Polyhedron_poly_hull_assign(x, y).

7.25.2.21 int ppl_Polyhedron_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type var,
ppl_const_Linear_Expression_t le, ppl_const_Coefficient_t d) [related]

Transforms the polyhedron ph, assigning an affine expression to the specified variable.

Parameters
ph The polyhedron that is transformed;

var The variable to which the affine expression is assigned;
le The numerator of the affine expression;
d The denominator of the affine expression.

7.25.2.22 int ppl_Polyhedron_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_type var,
ppl_const_Linear_Expression_t le, ppl_const_Coefficient_t d) [related]

Transforms the polyhedron ph, substituting an affine expression to the specified variable.

Parameters
ph The polyhedron that is transformed;

var The variable to which the affine expression is substituted;
le The numerator of the affine expression;
d The denominator of the affine expression.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 88

7.25.2.23 int ppl_Polyhedron_bounded_affine_image (ppl_Polyhedron_t ph, ppl_dimension_type
var, ppl_const_Linear_Expression_t lb, ppl_const_Linear_Expression_t ub,
ppl_const_Coefficient_t d) [related]

Assigns to ph the image of ph with respect to the generalized affine transfer relation lb
d ≤ var′ ≤ ub

d .

Parameters
ph The polyhedron that is transformed;

var The variable bounded by the generalized affine transfer relation;
lb The numerator of the lower bounding affine expression;
ub The numerator of the upper bounding affine expression;

d The (common) denominator of the lower and upper bounding affine expressions.

7.25.2.24 int ppl_Polyhedron_bounded_affine_preimage (ppl_Polyhedron_t ph, ppl_dimension_-
type var, ppl_const_Linear_Expression_t lb, ppl_const_Linear_Expression_t ub,
ppl_const_Coefficient_t d) [related]

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation lb
d ≤ var′ ≤ ub

d .

Parameters
ph The polyhedron that is transformed;

var The variable bounded by the generalized affine transfer relation;
lb The numerator of the lower bounding affine expression;
ub The numerator of the upper bounding affine expression;

d The (common) denominator of the lower and upper bounding affine expressions.

7.25.2.25 int ppl_Polyhedron_generalized_affine_image (ppl_Polyhedron_t ph,
ppl_dimension_type var, enum ppl_enum_Constraint_Type relsym,
ppl_const_Linear_Expression_t le, ppl_const_Coefficient_t d) [related]

Assigns to ph the image of ph with respect to the generalized affine transfer relation var′ ./ le
d , where ./

is the relation symbol encoded by relsym.

Parameters
ph The polyhedron that is transformed;

var The left hand side variable of the generalized affine transfer relation;
relsym The relation symbol;

le The numerator of the right hand side affine expression;
d The denominator of the right hand side affine expression.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 89

7.25.2.26 int ppl_Polyhedron_generalized_affine_preimage (ppl_Polyhedron_t
ph, ppl_dimension_type var, enum ppl_enum_Constraint_Type relsym,
ppl_const_Linear_Expression_t le, ppl_const_Coefficient_t d) [related]

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation var′ ./ le
d , where

./ is the relation symbol encoded by relsym.

Parameters
ph The polyhedron that is transformed;

var The left hand side variable of the generalized affine transfer relation;
relsym The relation symbol;

le The numerator of the right hand side affine expression;
d The denominator of the right hand side affine expression.

7.25.2.27 int ppl_Polyhedron_generalized_affine_image_lhs_rhs (ppl_Polyhedron_t ph,
ppl_const_Linear_Expression_t lhs, enum ppl_enum_Constraint_Type relsym,
ppl_const_Linear_Expression_t rhs) [related]

Assigns to ph the image of ph with respect to the generalized affine transfer relation lhs′ ./ rhs, where ./
is the relation symbol encoded by relsym.

Parameters
ph The polyhedron that is transformed;
lhs The left hand side affine expression;

relsym The relation symbol;
rhs The right hand side affine expression.

7.25.2.28 int ppl_Polyhedron_generalized_affine_preimage_lhs_rhs (ppl_Polyhedron_t ph,
ppl_const_Linear_Expression_t lhs, enum ppl_enum_Constraint_Type relsym,
ppl_const_Linear_Expression_t rhs) [related]

Assigns to ph the preimage of ph with respect to the generalized affine transfer relation lhs′ ./ rhs, where
./ is the relation symbol encoded by relsym.

Parameters
ph The polyhedron that is transformed;
lhs The left hand side affine expression;

relsym The relation symbol;
rhs The right hand side affine expression.

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 90

7.25.2.29 int ppl_Polyhedron_map_space_dimensions (ppl_Polyhedron_t ph,
ppl_dimension_type maps[], size_t n) [related]

Remaps the dimensions of the vector space according to a partial function. This function is specified by
means of the maps array, which has n entries.

The partial function is defined on dimension i if i < n and maps[i] != ppl_not_a_dimension;
otherwise it is undefined on dimension i. If the function is defined on dimension i, then dimension i is
mapped onto dimension maps[i].

The result is undefined if maps does not encode a partial function with the properties described in the
specification of the mapping operator.

7.25.2.30 int ppl_new_C_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗ pph,
ppl_const_Generator_System_t gs) [related]

Builds a new C polyhedron from the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of gs.

7.25.2.31 int ppl_new_C_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗ pph,
ppl_Generator_System_t gs) [related]

Builds a new C polyhedron recycling the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of gs.

Warning

This function modifies the generator system referenced by gs: upon return, no assumption can be
made on its value.

7.25.2.32 int ppl_new_NNC_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗ pph,
ppl_const_Generator_System_t gs) [related]

Builds a new NNC polyhedron from the system of generators gs and writes a handle for the newly created
polyhedron at address pph.

The new polyhedron will inherit the space dimension of gs.

7.25.2.33 int ppl_new_NNC_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗ pph,
ppl_Generator_System_t gs) [related]

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 91

Builds a new NNC polyhedron recycling the system of generators gs and writes a handle for the newly
created polyhedron at address pph.

The new polyhedron will inherit the space dimension of gs.

Warning

This function modifies the generator system referenced by gs: upon return, no assumption can be
made on its value.

7.25.2.34 int ppl_Polyhedron_add_recycled_generators (ppl_Polyhedron_t ph,
ppl_Generator_System_t gs) [related]

Adds the system of generators gs to the system of generators of ph.

Warning

This function modifies the generator system referenced by gs: upon return, no assumption can be
made on its value.

7.25.2.35 int wrap_assign (ppl_Polyhedron_t ph, ppl_dimension_type ds[], size_t n, ppl_enum_-
Bounded_Integer_Type_Width w, ppl_enum_Bounded_Integer_Type_Representation r,
ppl_enum_Bounded_Integer_Type_Overflow o, const ppl_const_Constraint_System_t ∗
pcs, unsigned complexity_threshold, int wrap_individually) [related]

Assigns to ph the polyhedron obtained from ph by "wrapping" the vector space defined by the first n space
dimensions in ds[].

Parameters
ph The polyhedron that is transformed;

ds[] Specifies the space dimensions to be wrapped.
n The first n space dimensions in the array ds[] will be wrapped.
w The width of the bounded integer type corresponding to all the dimensions to be wrapped.
r The representation of the bounded integer type corresponding to all the dimensions to be

wrapped.
o The overflow behavior of the bounded integer type corresponding to all the dimensions to be

wrapped.
pcs Possibly null pointer to a constraint system whose space dimensions are the first n dimen-

sions in ds[]. If ∗pcs depends on variables not in vars, the behavior is undefined. When
non-null, the constraint system is assumed to represent the conditional or looping construct
guard with respect to which wrapping is performed. Since wrapping requires the computation
of upper bounds and due to non-distributivity of constraint refinement over upper bounds,
passing a constraint system in this way can be more precise than refining the result of the
wrapping operation with the constraints in cs.

complexity_-
threshold

A precision parameter where higher values result in possibly improved precision.

wrap_-
individually

Non-zero if the dimensions should be wrapped individually (something that results in much
greater efficiency to the detriment of precision).

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.25 ppl_Polyhedron_tag Interface Reference 92

The documentation for this interface was generated from the following file:

• C_interface.dox

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index
C Language Interface, 18

Datatypes
PPL_BITS_128, 31
PPL_BITS_16, 31
PPL_BITS_32, 31
PPL_BITS_64, 31
PPL_BITS_8, 31
PPL_CONSTRAINT_TYPE_EQUAL, 30
PPL_CONSTRAINT_TYPE_GREATER_OR_-

EQUAL, 30
PPL_CONSTRAINT_TYPE_GREATER_THAN,

30
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL,

30
PPL_CONSTRAINT_TYPE_LESS_THAN, 30
PPL_GENERATOR_TYPE_CLOSURE_POINT,

30
PPL_GENERATOR_TYPE_LINE, 30
PPL_GENERATOR_TYPE_POINT, 30
PPL_GENERATOR_TYPE_RAY, 30
PPL_GRID_GENERATOR_TYPE_LINE, 31
PPL_GRID_GENERATOR_TYPE_PARAMETER,

31
PPL_GRID_GENERATOR_TYPE_POINT, 31
PPL_OVERFLOW_IMPOSSIBLE, 32
PPL_OVERFLOW_UNDEFINED, 31
PPL_OVERFLOW_WRAPS, 31
PPL_SIGNED_2_COMPLEMENT, 31
PPL_UNSIGNED, 31
ppl_enum_Bounded_Integer_Type_Overflow, 31
ppl_enum_Bounded_Integer_Type_Representation,

31
ppl_enum_Bounded_Integer_Type_Width, 31
ppl_enum_Constraint_Type, 30
ppl_enum_Generator_Type, 30
ppl_enum_Grid_Generator_Type, 30
ppl_io_variable_output_function_type, 30
ppl_io_wrap_string, 32

Error
PPL_ARITHMETIC_OVERFLOW, 22
PPL_ERROR_DOMAIN_ERROR, 22
PPL_ERROR_INTERNAL_ERROR, 22
PPL_ERROR_INVALID_ARGUMENT, 22
PPL_ERROR_LENGTH_ERROR, 22
PPL_ERROR_LOGIC_ERROR, 22
PPL_ERROR_OUT_OF_MEMORY, 22
PPL_ERROR_UNEXPECTED_ERROR, 22
PPL_ERROR_UNKNOWN_STANDARD_EXCEPTION,

22

PPL_STDIO_ERROR, 22
PPL_TIMEOUT_EXCEPTION, 22
ppl_enum_error_code, 22
ppl_set_error_handler, 23

Error Handling, 21

Handling, 23

Init
ppl_finalize, 19
ppl_initialize, 19
ppl_restore_pre_PPL_rounding, 20
ppl_set_irrational_precision, 20
ppl_set_rounding_for_PPL, 19

Library Datatypes, 24
Library Initialization and Finalization, 19

PPL_ARITHMETIC_OVERFLOW
Error, 22

PPL_BITS_128
Datatypes, 31

PPL_BITS_16
Datatypes, 31

PPL_BITS_32
Datatypes, 31

PPL_BITS_64
Datatypes, 31

PPL_BITS_8
Datatypes, 31

PPL_CONSTRAINT_TYPE_EQUAL
Datatypes, 30

PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL
Datatypes, 30

PPL_CONSTRAINT_TYPE_GREATER_THAN
Datatypes, 30

PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL
Datatypes, 30

PPL_CONSTRAINT_TYPE_LESS_THAN
Datatypes, 30

PPL_ERROR_DOMAIN_ERROR
Error, 22

PPL_ERROR_INTERNAL_ERROR
Error, 22

PPL_ERROR_INVALID_ARGUMENT
Error, 22

PPL_ERROR_LENGTH_ERROR
Error, 22

PPL_ERROR_LOGIC_ERROR
Error, 22

PPL_ERROR_OUT_OF_MEMORY

INDEX 94

Error, 22
PPL_ERROR_UNEXPECTED_ERROR

Error, 22
PPL_ERROR_UNKNOWN_STANDARD_EXCEPTION

Error, 22
PPL_GENERATOR_TYPE_CLOSURE_POINT

Datatypes, 30
PPL_GENERATOR_TYPE_LINE

Datatypes, 30
PPL_GENERATOR_TYPE_POINT

Datatypes, 30
PPL_GENERATOR_TYPE_RAY

Datatypes, 30
PPL_GRID_GENERATOR_TYPE_LINE

Datatypes, 31
PPL_GRID_GENERATOR_TYPE_PARAMETER

Datatypes, 31
PPL_GRID_GENERATOR_TYPE_POINT

Datatypes, 31
PPL_OVERFLOW_IMPOSSIBLE

Datatypes, 32
PPL_OVERFLOW_UNDEFINED

Datatypes, 31
PPL_OVERFLOW_WRAPS

Datatypes, 31
PPL_SIGNED_2_COMPLEMENT

Datatypes, 31
PPL_STDIO_ERROR

Error, 22
PPL_TIMEOUT_EXCEPTION

Error, 22
PPL_UNSIGNED

Datatypes, 31
ppl_Artificial_Parameter_Sequence_const_iterator_-

tag, 32
ppl_Artificial_Parameter_tag, 33
ppl_banner

Version, 21
ppl_Coefficient_tag, 34
ppl_Congruence_System_const_iterator_tag, 36
ppl_Congruence_System_tag, 37
ppl_Congruence_tag, 39
ppl_Constraint_System_const_iterator_tag, 40
ppl_Constraint_System_tag, 41
ppl_Constraint_tag, 43
ppl_enum_Bounded_Integer_Type_Overflow

Datatypes, 31
ppl_enum_Bounded_Integer_Type_Representation

Datatypes, 31
ppl_enum_Bounded_Integer_Type_Width

Datatypes, 31
ppl_enum_Constraint_Type

Datatypes, 30
ppl_enum_error_code

Error, 22
ppl_enum_Generator_Type

Datatypes, 30
ppl_enum_Grid_Generator_Type

Datatypes, 30
ppl_finalize

Init, 19
ppl_Generator_System_const_iterator_tag, 45
ppl_Generator_System_tag, 46
ppl_Generator_tag, 47
ppl_Grid_Generator_System_const_iterator_tag, 49
ppl_Grid_Generator_System_tag, 50
ppl_Grid_Generator_tag, 52
ppl_initialize

Init, 19
ppl_io_variable_output_function_type

Datatypes, 30
ppl_io_wrap_string

Datatypes, 32
ppl_Linear_Expression_tag, 53
ppl_MIP_Problem_evaluate_objective_function

ppl_MIP_Problem_tag, 60
ppl_MIP_Problem_optimal_value

ppl_MIP_Problem_tag, 60
ppl_MIP_Problem_solve

ppl_MIP_Problem_tag, 59
ppl_MIP_Problem_tag, 56

ppl_MIP_Problem_evaluate_objective_function,
60

ppl_MIP_Problem_optimal_value, 60
ppl_MIP_Problem_solve, 59

ppl_new_C_Polyhedron_from_C_Polyhedron_with_-
complexity

ppl_Polyhedron_tag, 82
ppl_new_C_Polyhedron_from_Congruence_System

ppl_Polyhedron_tag, 83
ppl_new_C_Polyhedron_from_Constraint_System

ppl_Polyhedron_tag, 82
ppl_new_C_Polyhedron_from_Generator_System

ppl_Polyhedron_tag, 90
ppl_new_C_Polyhedron_from_NNC_Polyhedron_with_-

complexity
ppl_Polyhedron_tag, 84

ppl_new_C_Polyhedron_recycle_Congruence_System
ppl_Polyhedron_tag, 83

ppl_new_C_Polyhedron_recycle_Constraint_System
ppl_Polyhedron_tag, 83

ppl_new_C_Polyhedron_recycle_Generator_System
ppl_Polyhedron_tag, 90

ppl_new_NNC_Polyhedron_from_C_Polyhedron_with_-
complexity

ppl_Polyhedron_tag, 85
ppl_new_NNC_Polyhedron_from_Congruence_System

ppl_Polyhedron_tag, 84

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 95

ppl_new_NNC_Polyhedron_from_Constraint_System
ppl_Polyhedron_tag, 84

ppl_new_NNC_Polyhedron_from_Generator_System
ppl_Polyhedron_tag, 90

ppl_new_NNC_Polyhedron_from_NNC_Polyhedron_-
with_complexity

ppl_Polyhedron_tag, 83
ppl_new_NNC_Polyhedron_recycle_Congruence_System

ppl_Polyhedron_tag, 84
ppl_new_NNC_Polyhedron_recycle_Constraint_System

ppl_Polyhedron_tag, 84
ppl_new_NNC_Polyhedron_recycle_Generator_System

ppl_Polyhedron_tag, 90
ppl_PIP_Decision_Node_tag, 60
ppl_PIP_Problem_add_space_dimensions_and_embed

ppl_PIP_Problem_tag, 65
ppl_PIP_Problem_solve

ppl_PIP_Problem_tag, 65
ppl_PIP_Problem_space_dimension

ppl_PIP_Problem_tag, 65
ppl_PIP_Problem_tag, 61

ppl_PIP_Problem_add_space_dimensions_and_-
embed, 65

ppl_PIP_Problem_solve, 65
ppl_PIP_Problem_space_dimension, 65

ppl_PIP_Solution_Node_get_parametric_values
ppl_PIP_Solution_Node_tag, 66

ppl_PIP_Solution_Node_tag, 65
ppl_PIP_Solution_Node_get_parametric_values,

66
ppl_PIP_Tree_Node_tag, 67
ppl_Pointset_Powerset_C_Polyhedron_const_iterator_-

dereference
ppl_Pointset_Powerset_C_Polyhedron_const_-

iterator_tag, 69
ppl_Pointset_Powerset_C_Polyhedron_const_iterator_-

tag, 68
ppl_Pointset_Powerset_C_Polyhedron_const_-

iterator_dereference, 69
ppl_Pointset_Powerset_C_Polyhedron_iterator_dereference

ppl_Pointset_Powerset_C_Polyhedron_iterator_-
tag, 70

ppl_Pointset_Powerset_C_Polyhedron_iterator_tag,
69

ppl_Pointset_Powerset_C_Polyhedron_iterator_-
dereference, 70

ppl_Pointset_Powerset_C_Polyhedron_size
ppl_Pointset_Powerset_C_Polyhedron_tag, 72

ppl_Pointset_Powerset_C_Polyhedron_tag, 71
ppl_Pointset_Powerset_C_Polyhedron_size, 72

ppl_Polyhedron_add_recycled_congruences
ppl_Polyhedron_tag, 87

ppl_Polyhedron_add_recycled_constraints
ppl_Polyhedron_tag, 86

ppl_Polyhedron_add_recycled_generators
ppl_Polyhedron_tag, 91

ppl_Polyhedron_affine_image
ppl_Polyhedron_tag, 87

ppl_Polyhedron_affine_preimage
ppl_Polyhedron_tag, 87

ppl_Polyhedron_bounded_affine_image
ppl_Polyhedron_tag, 88

ppl_Polyhedron_bounded_affine_preimage
ppl_Polyhedron_tag, 88

ppl_Polyhedron_equals_Polyhedron
ppl_Polyhedron_tag, 86

ppl_Polyhedron_generalized_affine_image
ppl_Polyhedron_tag, 88

ppl_Polyhedron_generalized_affine_image_lhs_rhs
ppl_Polyhedron_tag, 89

ppl_Polyhedron_generalized_affine_preimage
ppl_Polyhedron_tag, 88

ppl_Polyhedron_generalized_affine_preimage_lhs_-
rhs

ppl_Polyhedron_tag, 89
ppl_Polyhedron_map_space_dimensions

ppl_Polyhedron_tag, 89
ppl_Polyhedron_maximize_with_point

ppl_Polyhedron_tag, 85
ppl_Polyhedron_minimize_with_point

ppl_Polyhedron_tag, 86
ppl_Polyhedron_relation_with_Constraint

ppl_Polyhedron_tag, 85
ppl_Polyhedron_relation_with_Generator

ppl_Polyhedron_tag, 85
ppl_Polyhedron_tag, 72

ppl_new_C_Polyhedron_from_C_Polyhedron_-
with_complexity, 82

ppl_new_C_Polyhedron_from_Congruence_System,
83

ppl_new_C_Polyhedron_from_Constraint_System,
82

ppl_new_C_Polyhedron_from_Generator_System,
90

ppl_new_C_Polyhedron_from_NNC_Polyhedron_-
with_complexity, 84

ppl_new_C_Polyhedron_recycle_Congruence_-
System, 83

ppl_new_C_Polyhedron_recycle_Constraint_System,
83

ppl_new_C_Polyhedron_recycle_Generator_System,
90

ppl_new_NNC_Polyhedron_from_C_Polyhedron_-
with_complexity, 85

ppl_new_NNC_Polyhedron_from_Congruence_-
System, 84

ppl_new_NNC_Polyhedron_from_Constraint_-
System, 84

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 96

ppl_new_NNC_Polyhedron_from_Generator_-
System, 90

ppl_new_NNC_Polyhedron_from_NNC_Polyhedron_-
with_complexity, 83

ppl_new_NNC_Polyhedron_recycle_Congruence_-
System, 84

ppl_new_NNC_Polyhedron_recycle_Constraint_-
System, 84

ppl_new_NNC_Polyhedron_recycle_Generator_-
System, 90

ppl_Polyhedron_add_recycled_congruences, 87
ppl_Polyhedron_add_recycled_constraints, 86
ppl_Polyhedron_add_recycled_generators, 91
ppl_Polyhedron_affine_image, 87
ppl_Polyhedron_affine_preimage, 87
ppl_Polyhedron_bounded_affine_image, 88
ppl_Polyhedron_bounded_affine_preimage, 88
ppl_Polyhedron_equals_Polyhedron, 86
ppl_Polyhedron_generalized_affine_image, 88
ppl_Polyhedron_generalized_affine_image_lhs_-

rhs, 89
ppl_Polyhedron_generalized_affine_preimage, 88
ppl_Polyhedron_generalized_affine_preimage_-

lhs_rhs, 89
ppl_Polyhedron_map_space_dimensions, 89
ppl_Polyhedron_maximize_with_point, 85
ppl_Polyhedron_minimize_with_point, 86
ppl_Polyhedron_relation_with_Constraint, 85
ppl_Polyhedron_relation_with_Generator, 85
ppl_Polyhedron_upper_bound_assign, 87
wrap_assign, 91

ppl_Polyhedron_upper_bound_assign
ppl_Polyhedron_tag, 87

ppl_restore_pre_PPL_rounding
Init, 20

ppl_set_deterministic_timeout
Timeout, 24

ppl_set_error_handler
Error, 23

ppl_set_irrational_precision
Init, 20

ppl_set_rounding_for_PPL
Init, 19

ppl_set_timeout
Timeout, 23

PPL_VERSION
Version, 21

Timeout
ppl_set_deterministic_timeout, 24
ppl_set_timeout, 23

Version
ppl_banner, 21

PPL_VERSION, 21
Version Checking, 20

wrap_assign
ppl_Polyhedron_tag, 91

The Parma Polyhedra Library C Language Interface User’s Manual (version 0.11.1). See http://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	Main Page
	GNU General Public License
	GNU Free Documentation License
	Module Index
	Modules

	Class Index
	Class List

	Module Documentation
	C Language Interface
	Library Initialization and Finalization
	Version Checking
	Error Handling
	Handling
	Library Datatypes

	Class Documentation
	ppl_Artificial_Parameter_Sequence_const_iterator_tag Interface Reference
	ppl_Artificial_Parameter_tag Interface Reference
	ppl_Coefficient_tag Interface Reference
	ppl_Congruence_System_const_iterator_tag Interface Reference
	ppl_Congruence_System_tag Interface Reference
	ppl_Congruence_tag Interface Reference
	ppl_Constraint_System_const_iterator_tag Interface Reference
	ppl_Constraint_System_tag Interface Reference
	ppl_Constraint_tag Interface Reference
	ppl_Generator_System_const_iterator_tag Interface Reference
	ppl_Generator_System_tag Interface Reference
	ppl_Generator_tag Interface Reference
	ppl_Grid_Generator_System_const_iterator_tag Interface Reference
	ppl_Grid_Generator_System_tag Interface Reference
	ppl_Grid_Generator_tag Interface Reference
	ppl_Linear_Expression_tag Interface Reference
	ppl_MIP_Problem_tag Interface Reference
	ppl_PIP_Decision_Node_tag Interface Reference
	ppl_PIP_Problem_tag Interface Reference
	ppl_PIP_Solution_Node_tag Interface Reference
	ppl_PIP_Tree_Node_tag Interface Reference
	ppl_Pointset_Powerset_C_Polyhedron_const_iterator_tag Interface Reference
	ppl_Pointset_Powerset_C_Polyhedron_iterator_tag Interface Reference
	ppl_Pointset_Powerset_C_Polyhedron_tag Interface Reference
	ppl_Polyhedron_tag Interface Reference

