The Parma Polyhedra Library
User’'s Manual
(version 0.4.2)

Roberto Bagnara
Patricia M. Hillt
Elisa Ricck
Enea Zaffanell&

based on previous work also by
Sara Bonini
Andrea Pescetti
Angela Stazzone
Tatiana Zold

October 4, 2002

*This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”.

Tbagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

Thill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.

Sericci@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

Yzaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

I zolo@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS

Copyright(©) 2001, 2002 Roberto Bagnara (bagnara@cs.unipr.it).
This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published byrfeSoftware Foundatipwith

no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitledSNU Free Documentation Licerise

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theee Software Foundatipeither version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section enti@dJ' GENERAL
PUBLIC LICENSE.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 Convex Polyhedra and the PPL 1
2 PPL Namespace Index 9
3 PPL Hierarchical Index 9
4 PPL Compound Index 10
5 PPL File Index 10
6 PPL Page Index 10
7 PPL Namespace Documentation 11
8 PPL Class Documentation 13
9 PPL File Documentation 50
10 PPL Page Documentation 72

1 Convex Polyhedra and the PPL

1.1 A Library for Convex Polyhedra

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of rational convex poly-
hedra. Informally, a rational convex polyhedron is a set of points (in sediEnensional vector space)

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.2 An Introduction to Convex Polyhedra

that satisfies a finite number of linear inequalities having rational coefficients. The domain of convex
polyhedra is employed in several systems for the analysis and verification of hardware and software com-
ponents, with applications spanning imperative, functional and logic programming languages, synchronous
languages and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not
meant to target a particular problem, the design of its interface has been largely influenced by the needs
of the above class of applications. That is the reason why the library implements a few operators that are
more or less specific to static analysis applications, while lacking some other operators that might be useful
when working, e.g., in the field of computational geometry.

The main features of the library are the following:

it is user friendly: you writex + 2xy + 5xz <= 7 when you mean it;

it is fully dynamic: available virtual memory is the only limitation to the dimension of anything;

it provides full support for the manipulation of convex polyhedra that are not topologically closed;
it is written in standard C++: meant to be portable;

it is exception-safe: never leaks resources or leaves invalid object fragments around;

it is rather efficient: and we hope to make it even more so;

it is thoroughly documented: perhaps not literate programming but close enough;

it is free software: distributed under the terms of the GNU General Public License.

In the following sections we describe the polyhedra and the different representations and operations sup-
ported by the PPL in more detail. For more information about the definitions and results stated here see:

e R. Bagnara, E. Ricci, E. Zaffanella and P. M. Hill - Possibly Not Closed Convex Polyhedra and the
Parma Polyhedra Library - Quaderno 286 - Department of Mathematics, University of Parma, Italy,
May 2002.

e K. Fukuda - Polyhedral Computation FAQ - Swiss Federal Institute of Technology, Lausanne and
Zurich, Switzerland, October 2000.

e G. L. Nemhauser and L. A. Wolsey - Integer and Combinatorial Optimization - Wiley Interscience
Series in Discrete Mathematics and Optimization, 1988.

e D. K. Wilde - A library for doing polyhedral operations - IRISA Publication interne n. 785, Decem-
ber 1993.

1.2 An Introduction to Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail.
Vectors, Matrices and Scalar Products

We denote byR" then-dimensional vector space on the field of real numBemsndowed with the standard
topology. The set of all non-negative reals is denoted®by For each € {0,...,n — 1}, v; denotes the

i-th component of the (column) vecter = (v,...,v,_1)T € R™. We denote by the vector ofR",
calledthe origin having all components equal to zero. A veato R™ can be also interpreted as a matrix

in R**! and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denotad by

Thescalar produciof v, w € R”, denotedv, w), is the real number
n—1
’UTU) = Z ViWws.
=0

For anyS;, Ss C R™, theMinkowski's sunof S; andSs is: S1 + S2 = {v1 + v2 | v1 € S1,v2 € 52 }.

Affine Hyperplanes and Half-spaces

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra

For each vectoa € R™ and scalab € R, wherea # 0, and for each relational operater € {=, >, >},
the linear constrainfa, «) > b defines:

¢ an affine hyperplane if it is an equality constraint, i.exdie {=};
e atopologically closed affine half-space if it is a non-strict inequality constraint, ire. gf{>};
e atopologically open affine half-space if it is a strict inequality constraint, i.e«, & {>}.

Note that each hyperplarde,) = b can be defined as the intersection of the two closed affine half-spaces
(a,x) > band(—a,x) > —b. Also note that, whem = 0, the constraint0, x) < b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vectdR%pace

the empty sep.

Convex Polyhedra

The setP C R™ is anot necessarily closed convex polyhed(dNC polyhedronfor short) if and only if
eitherP can be expressed as the intersection of a finite number of (open or closed) affine half-sdtes of
orn = 0andP = @. The set of all NNC polyhedra on the vector sp&ceis denotedP,,.

The setP € P, is aclosed convex polyhedrqolosed polyhedrorfor short) if and only if eithefP can be
expressed as the intersection of a finite number of closed affine half-spaRésoofn = 0 andP = @.
The set of all closed polyhedra on the vector sgates denotedCP,,.

When ordering NNC polyhedra by the set inclusion relation, the empty setd the vector spade™ are,
respectively, the smallest and the biggest elements oflhpdndCP,,. The vector spacR™ is also called
theuniversepolyhedron.

In theoretical termdP,, is alattice under set inclusion an@P,, is asub-latticeof P,,.
Bounded Polyhedra
An NNC polyhedrorP € P, is boundedf there exists &\ € R, such that

PC{xeR"|-A<z;<Aforj=0,....n—1}.

A bounded polyhedron is also callegalytope

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

Constraints representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequalitycmatraint

By definition, each polyhedroR® < P, is the set of solutions to eonstraint systerri.e., a finite number
of constraints. By using matrix notation, we have

P:{QBGRR|A1£B:b1,AQCE2b27A3£B>b3},

where, for alli € {1,2,3}, A; € R™ x R™ andb; € R™:, andm;,ms, m3 € N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.
Combinations and Hulls

Let S = {x1,...,zx} C R” be a finite set of vectors. For all scalaxs,...,\; € R, the vector
v = Z?zl Ajx; is said to be dinear combination of the vectors ifi. Such a combination is said to be

e apositive(or conic) combination, itvj € {1,...,k}: A\; € R,;

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra

o anaffinecombination, ifyF_ A; = 1;
e aconvexcombination, if it is both positive and affine.

We denote byinear.hull(S) (resp.conic.hull(S), affine.hull(S), convex.hull(.S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors.in

Let P,C C R", whereP U C = S. We denote byinc.hull(P, C') the set of all convex combinations of
the vectors inS such that\; > 0 for somex; € P (informally, we say that there exists a vector/othat
plays an active role in the convex combination). Note thathull(P, C') = nnc.hull(P, P U C) so that,
if C C P,

convex.hull(P) = nnc.hull(P, @) = nnc.hull(P, P) = nnc.hull(P, C).

It can be observed thainear.hull(S) is an affine space;onic.hull(S) is a topologically closed convex
cone,convex.hull(S) is a topologically closed polytope, angc.hull(P, C) is an NNC polytope.

Points, Closure Points, Rays and Lines
LetP € P, be an NNC polyhedron. Then

a vectorp € P is called gpointof P;

a vectore € R™ is called aclosure pointof P if it is a point of the topological closure 6?;

e avectorr € R", wherer # 0, is called aay (or direction of infinity) of P if P # @ andp+Ar € P,
for all pointsp € P and allA € R;

avectorl € R" is called dine of P if both I and—I are rays ofP.

A point of an NNC polyhedror? € P, is avertexif and only if it cannot be expressed as a convex
combination of any other pair of distinct pointsh A ray r of a polyhedrorP is anextreme rayif and
only if it cannot be expressed as a positive combination of any othewpaindr. of rays of P, where

T # Ary, v # Arg andr; # Arp for all A € R, (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

Generators Representation
Each NNC polyhedroP € P,, can be represented by finite sets of lidgsays R, points P and closure
pointsC of P. The 4-tupleg = (L, R, P, C) is said to be generator systerfor P, in the sense that

P = linear.hull(L) + conic.hull(R) 4+ nnc.hull(P, C),

where the symboH-’ denotes the Minkowski’s sum.

WhenP € CP, is a closed polyhedron, then it can be represented by finite sets ofllinesys R and
points P of P. In this case, the 3-tuplg = (L, R, P) is said to be generator systerfor P since we have

P = linear.hull(L) + conic.hull(R) 4 convex.hull(P).

Thus, in this case, every closure point/@is a point ofP.

For anyP € P, and generator systeéh= (L, R, P, C) for P, we haveP = g if and only if P = @. Also

P must contain all the vertices @ although® can be non-empty and have no vertices. In this casg, as
is necessarily non-empty, it must contain pointsfothat arenot vertices. For instance, the half-space of
R? corresponding to the single constrajnt 0 can be represented by the generator sysiem(L, R, P)
such thatl = {(1,0)"}, R = {(0,1)T}, andP = {(0,0)™}. Itis also worth noting that the only ray in
Ris notan extreme ray oP.

Minimized Representations

A constraints syster@ for an NNC polyhedrorP € P, is said to baninimizedif no proper subset af is
a constraint system fop.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra

Similarly, a generator systeth = (L, R, P, C') for an NNC polyhedrorP € P, is said to beminimized
if there does not exist a generator systém= (L', R’, P',C") # G for P such thatl’ C L, R’ C R,
P’ C PandC’ C C.

Double Description

Any NNC polyhedrornP can be described by using a constraint systera generator syste, or both

by means of thelouble description pair (DD pair}C, G). Thedouble description methad a collection

of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

Topologies and Topological-compatibility

As indicated above, when an NNC polyhedrBris necessarily closed, we can ignore the closure points
contained in its generator syste&fn= (L, R, P, C) (as every closure point is also a point) and represent

P by the triple(L, R, P). Similarly, P can be represented by a constraint system that has no strict in-
equalities. Thus a necessarily closed polyhedron can have a smaller representation than one that is not
necessarily closed. Moreover, operators restricted to work on closed polyhedra only can be implemented
more efficiently. For this reason the library provides two alternative “topological kinds” for a polyhedron,
NNCandC. We shall abuse terminology by referring to the topologcal kind of a polyhedrontapd®gy

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the followingtopological-compatibilityrules:

e polyhedra are tologically-compatible if and only if they have the same topology;

e all constraints except for strict constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

e strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if itis NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

Space Dimensions and Dimension-compatibility

The space dimensionf an NNC polyhedrorP? € P,, (resp., a C polyhedro® € CP,,) is the dimension
n € N of the corresponding vector spa&. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following spacdimension-compatibilityules:

e polyhedra are dimension-compatible if and only if they have the same space dimension;

e the constrain{a,) < b wherex € {=,>,>} anda,z € R™, is dimension-compatible with a
polyhedron having space dimensiorif and only if m < n;

¢ the generato € R™ is dimension-compatible with a polyhedron having space dimensiband
only if m < n;

e a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimensions of polyhedra can only be changed by explicit calls to operators provided for
that purpose.

Rational Polyhedra

An NNC polyhedron is calledational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.
Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedr®,, P> € P,,, theintersectionof P; andP,, defined as the set intersection
P1 NPy, is the biggest NNC polyhedron included in b@h andP,; similarly, theconvex polyhedral hull
(or poly-hull) of P; andP,, denoted byP; W Ps, is the smallest NNC polyhedron that includes bfth
andP,. The intersection and poly-hull of any pair of closed polyhedr@l#y, is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the rhgetgnd the
binaryjoin operators on the latticé®, andCP,,.

Convex Polyhedral Difference

For any pair of NNC polyhedr®,, P, € P,, theconvex polyhedral differendqer poly-differencé of P,
andP; is defined as the poly-hull of the set-theoretic differenc@pandP,.

In general, even thoudR;, P, € CP,, are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

Adding New Dimensions to the Vector Space

The library provides two operators for increasing the space dimension of an NNC polylfedrol?,,,
therefore transforming it into a new NNC polyhedréne P,,, wherem > n. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operatoembeddinghe polyhedrorP into the new vector space will return the polyhed@mlefined
by all and only the constraints definifigj(the variables corresponding to the added dimensions are uncon-
strained). For instance, when starting from a polyhed?ofi R? and adding a third dimension, the result
will be the polyhedron

Q= { (xo,l'l,l'Q)T € Rg ’ (.’Bo,l‘l)T epP }

In contrast, the operatq@rojectingthe polyhedrorP into the new vector space will return the polyhedron

Q whose constraint system, besides the constraints deffjngll include additional constraints on the

added dimensions. Namely, the corresponding variables are all constrained to be equal to 0. For instance,
when starting from a polyhedrgh C R? and adding a third dimension, the result will be the polyhedron

Q= {(20,21,0)" €R®| (wo,21)" €P}.

Removing Dimensions from the Vector Space

The library provides two operators for decreasing the space dimension of an NNC polyfedrdp,,
therefore transforming it into a new NNC polyhedr@ne P,,,, wherem < n.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra

Given a set of variables, there is an operator that will remove all the space dimensions corresponding to
the variables in this set. For instance, lettiige P4 be the singleton se{t(S, 1,0, 2)T} C R4, then after
invoking this operator with the set of variablgs;, 25 } the resulting polyhedron is

Q = {(3’ 2)T} g Rz'

Another operator removes from the vector space all the dimensions having an index greater than or equal
to m. For instance, lettin® € P, defined as before, by invoking this operator with= 2 the resulting
polyhedron will be

9={(B,1)"} CR%

Affine Images and Preimages

The function mapping : R™ — R™ is anaffine transformatiorif there exist a matrix4d € R™ x R™ and
a vectorb € R™ such that, for alle € R", we havep(x) = Az + b. If n = m, then the functionp is
said to bespace-dimension preservingVe denote by)(S) C R™ theimageunder¢ of the setS C R™;
similarly, we denote by ~1(S’) C R™ the preimageunder¢ of S’ C R™, that is the largest s&t C R"
such thatp(S) C 5.

Both P,, andCP,, are closed under the application of any space-dimension preserving affine image and
preimage operators.

The library provides two operators, one computes an affine image and the other an affine preimage of a
polyhedronP € P, for a given variabler;, and linear expressiof

n—1
Z a;x; + b.
i=0

This variable and expression determine the affine transformattbat is to be used by the operator. That
is, ¢ is the transformation defined by the matrix and vector

1 0 0 0 0 0 0

0 1 0 0 0 0 0
A= , b=

ay a1 ... Qg—1 G Qg1 ... Qp—1 b

o o0 ... 0 0 0 1 0

where theu; (resp.,b) occurs in the(k + 1)st row in A (resp., position irb). Thus¢ transforms any point
(70, ...,2,_1)T in the polyhedrorP to

T
(fﬂo, ey (Z:L;Olallz + b), . ,l‘n_1> .

The affine image operator computes the affine image ahderg. For instance, suppose the polyhedron
P to be transformed is the squareltd generated by the set of poin{$0,0)T, (0,3)T, (3,0)T, (3,3)T}.
Then, for example if the considered variablezisand the linear expressian + 2z, + 4 (so thatk = 0,

ap = 1l,a; = 2,b = 4), the affine image operator will translate to the parallelogranP; generated
by the set of point{ (4,0)", (10,3)T, (7,0)T, (13,3)™ } with height equal to the side of the square and
oblique sides parallel to the ling — 2z;. If the considered variable is as before (ile= 0) but the linear
expression ig; (so thatay = 0,a; = 1,b = 0), then the resulting polyhedrd®, is the positive diagonal
of the square.

The affine preimage operator computes the affine preimagewfders. For instance, suppose now that
we apply the affine preimage operator as given in the first example using variadhel linear expression

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra

o + 2x1 + 4 to the parallelograr®; ; then we get the original squaf® back. If, on the other hand, we
apply the affine preimage operator as given in the second example using vagianld linear expression
x1 10 P3, then the resulting polyhedron is a line that corresponds ta tfexes.

Observe that provided the coefficient of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

Relation-with Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

SupposeP is an NNC polyhedron an@ an arbitrary constraint system representfhgSuppose also that
¢ = ((a,x) > b) is a constraint with< € {=, >, >} and Q the set of points that satisfy The possible
relations betweef® andc are as follows.

e Pisdisjointfromcif P N Q = @; thatis, adding: to C gives us the empty polyhedron.

e P strictly intersects: if PN Q # @ andP N Q C P; that is, adding: to C gives us a non-empty
polyhedron strictly smaller thaR.

e Pisincludedin cif P C Q; thatis, adding: to C leavesP unchanged.

e P saturatesc if P C H, whereH is the hyperplane induced by constraini.e., the set of points
satisfying the equality constraiga,) = b; that is, adding the constraigt,) = b to C leavesP
unchanged.

The polyhedronP subsumethe generatoy if adding g to any generator system representipgloes not
changeP.

Widening Operators

The library provides widening operators for the domain of NNC polyhedra. These operators use a widen-
ing, we callH79-wideningwhich is based on that introduced in N. Halbwadbétermination automatique

de relations lirkaires \erifiees par les variables d’un programméhese de 8me cicle d’informatique,
Universié scientifique et iadicale de Grenoble, Grenoble, France, March 1979. This widening is also
described in N. Halbwachs, Y.-E. Proy, and P. Roumanoff, Verification of real-time systems using linear
relation analysisiFormal Methods in System Desijgil(2):157-185, 1997.

There are a few differences between the H79-widening and the widenings described in the cited paper. In
particular, the H79-widening of an NNC polyhedréne P, using the NNC polyhedro@ € P,,:

¢ allows for equalities inP andQ (the original definition is restricted to inequalities);
e does not requir@ andQ to be topologically closed;
e requires as a precondition th@tC P.

Time-Elapse Operator

Thetime-elaps@perator has been defined in N. Halbwachs and Y.-E. Proy and P. Roumanoff, Verification
of Real-Time Systems using Linear Relation AnalysisFémmal Methods in System Desidi(2):157—
185, 1997.

Actually, the time-elapse operator provided by the library is a slight generalization of that one, since it also
works on NNC polyhedra. For any two NNC polyhedraQ € P, the time-elapse betweéh and Q,
denotedP Q, is the smallest NNC polyhedron containing the set

{p+AgeR" |peP,ge QAER, }.

Note that, if?, Q@ € CP,, are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

Intervals, boxes and bounding boxes

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 PPL Namespace Index

An interval in R is a pair ofbounds calledlower andupper. Each bound can be either (&psed and
bounded (2) open and boundear (3) open and unboundedf the bound isboundedithen it has a value
in R. An n-dimensionaboxB in R™ is a sequence of intervals inR.

The polyhedrorP represents a bo® in R™ if P is described by a constraint systenif that consists of
one constraint for each bounded bound (lower and upper) in an intei#aliettinge; = (0,...,1,...,0)

be the vector ilR™ with 1 in thei'th position and zeros in every other position; if the lower bound of the
i'th interval in B is bounded, the corresponding constraint is definetease) < b, whereb is the value

of the bound andk is > if it is a closed bound ang if it is an open bound. Similarly, if the upper bound
of the'th interval in B is bounded, the corresponding constraint is define@asc) < b, whereb is the
value of the bound ansh is < if it is a closed bound ang if it is an open bound.

If every bound in the intervals defining a b#Xs either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

Thebounding boof an NNC polyhedrorP is the smallest-dimensional box containing.

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

2 PPL Namespace Index

2.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:
Parma_Polyhedra Library (The entire library is confined into this namespace) 11

std (The standard C++ namespace) 12

3 PPL Hierarchical Index

3.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Parma_Polyhedra_Library::Constraint 15
Parma_Polyhedra Library::From _Bounding_-Box 19
Parma_Polyhedra Library::Generator 20
Parma_Polyhedra_Library::LinExpression 25
Parma_Polyhedra_Library::Poly _Con_Relation 30
Parma_Polyhedra Library::Poly _Gen_ Relation 31
Parma_Polyhedra_ Library::Polyhedron 32

Parma_Polyhedra Library::C _Polyhedron 13

Parma_Polyhedra Library::NNC _Polyhedron 28

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 PPL Compound Index

10

Parma_Polyhedra_Library::Throwable

Parma_Polyhedra Library::Variable

4 PPL Compound Index

4.1 PPL Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:
Parma_Polyhedra Library::C _Polyhedron (A closed convex polyhedron)
Parma_Polyhedra Library::Constraint (A linear equality or inequality)
Parma_Polyhedra Library::From _Bounding_Box (A tag class)
Parma_Polyhedra Library::Generator (A line, ray, point or closure point)

Parma_Polyhedra Library::LinExpression (A linear expression)

49

49

13

15

19

20

25

Parma_Polyhedra_ Library::NNC _Polyhedron (A not necessarily closed convex polyhedron) 28

Parma_Polyhedra Library::Poly _Con_Relation (The relation between a polyhedron and a

constraint)

30

Parma_Polyhedra_ Library::Poly _Gen Relation (The relation between a polyhedron and a

generator)
Parma_Polyhedra_ Library::Polyhedron (The base class for convex polyhedra)
Parma_Polyhedra_Library::Throwable (User objects’ the PPL can throw)

Parma_Polyhedra_ Library::Variable (A dimension of the space)

5 PPL File Index

5.1 PPL File List
Here is a list of all documented files with brief descriptions:

ppl_c.h

6 PPL Page Index

6.1 PPL Related Pages

Here is a list of all related documentation pages:
Prolog Interface

GNU GENERAL PUBLIC LICENSE

31

32

49

49

50

72

84

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 PPL Namespace Documentation

GNU Free Documentation License

7 PPL Namespace Documentation

7.1 ParmaPolyhedra Library Namespace Reference

The entire library is confined into this namespace.

Compounds

e classVariable
A dimension of the space.

e classLinExpression
A linear expression.

e classConstraint
A linear equality or inequality.

e classGenerator
A line, ray, point or closure point.

e classPoly_Con_Relation
The relation between a polyhedron and a constraint.

e classPoly_Gen_Relation
The relation between a polyhedron and a generator.

e classPolyhedron
The base class for convex polyhedra.

e classC_Polyhedron
A closed convex polyhedron.

e classNNC_Polyhedron
A not necessarily closed convex polyhedron.

e classThrowable
User objects’ the PPL can throw.

e structFrom_Bounding_Box
Atag class.

Typedefs

o typedef mpzclassinteger

See the GMP’s manual available faitp://swox.com/gmp/

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

7.2 std Namespace Reference 12

Functions

e Generator line (constLinExpression &e)
Shorthand foiGenerator (p.20) Generator (p.20) line(const LinExpression& gp.12).

e Generator ray (constLinExpression &e)
Shorthand foiGenerator (p.20) Generator::ray (const LinExpression& g)p. 24).

e Generator point (constLinExpression &e=LinExpression::zero(), condhteger &d=Integer-
one())

Shorthand foiGenerator (p.20) point(const LinExpression& e, const Integer& @). 12).

e Generator closurepoint (const LinExpression &e=LinExpression::zero(), constinteger
&d=Integerone())

Shorthand forGenerator (p.20) Generator::closure_point(const LinExpression& e, const Integer& d)
(p.24).

Variables

e constThrowable xvolatile abandon exponentialcomputations

7.1.1 Detailed Description

The entire library is confined into this namespace.

7.1.2 Variable Documentation

7.1.2.1 const Throwable volatile Parma_Polyhedra_ Library::abandon _exponential computations

This pointer, which is initialized to zero, is repeatedly checked along any exponential computation path
in the library. When it is found nonzero the exception it points to is thrown. In other words, making this
pointer point to an exception (and leaving it in this state) ensures that the library will return control to the
client application, possibly by throwing the given exception, within a time that is a linear function of the
space dimension of the object (polyhedron, system of constraints or generators) of highest dimension on
which the library is operating upon.

Note:
The only sensible way to assign to this pointer is from within a signal handler or from a parallel thread.
For this reason, the library, apart from ensuring that the pointer is initially set to zero, never assigns to
it. In particular, it does not zero it again when the exception is thrown: it is the client’s responsibility
to do so.

7.2 std Namespace Reference

The standard C++ namespace.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8 PPL Class Documentation

13

7.2.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library templates swap() and gemp() (25.2.2, [lib.alg.swap]).

8 PPL Class Documentation

8.1 ParmaPolyhedra Library::C _Polyhedron Class Reference

A closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron .

Public Methods

e C_Polyhedron (sizet numdimensions=0DegenerateKind kind=UNIVERSE)
Builds either the universe or the empty C polyhedron.

e C_Polyhedron (ConSys &cs)
Builds a C polyhedron from a system of constraints.

e C_Polyhedron (GenSys &gs)
Builds a C polyhedron from a system of generators.

e C_Polyhedron (constNNC_Polyhedron &y)
Builds a C polyhedron from thdNC_Polyhedron (p.28) y.

o templatecclass Box- C_Polyhedron (const Box &box,From_Bounding_-Box dummy)
Builds a C polyhedron out of a generic, interval-based bounding box.

e C_Polyhedron (const CPolyhedron &y)
Ordinary copy-constructor.

e C_Polyhedron &operator= (const CPolyhedron &y)
The assignment operatokthis andy can be dimension-incompatible.).

e ~C_Polyhedron()
Destructor.

8.1.1 Detailed Description

A closed convex polyhedron.

An object of the clas€_Polyhedron (p.13) represents #&opologically closecdtonvex polyhedron in the
vector spac&”™.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 ParmaPolyhedra Library::C _Polyhedron Class Reference 14

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains atrict inequalityconstraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containicigsure point

Note:
Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all the
strict inequality constraints (resp., all the closure points). In contrast, when building a closed polyhe-
dron starting from an object of the claddlC_Polyhedron (p. 28), the precise topological closure test
will be performed.

8.1.2 Constructor & Destructor Documentation

8.1.2.1 ParmaPolyhedra Library::C _Polyhedron::C_Polyhedron (sizet hum_dimensions= 0, De-
generateKind kind = UNIVERSE) [explicit]

Builds either the universe or the empty C polyhedron.

Parameters:
num_dimensions The number of dimensions of the vector space enclosing the C polyhedron.

kind Specifies whether a universe or an empty C polyhedron should be built.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

8.1.2.2 ParmaPolyhedra Library::C _Polyhedron::C_Polyhedron (ConSys &cs)
Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not decleoedt because it can be
modified.
Exceptions:

std::invalid_argument thrown if the system of constraints contains strict inequalities.

8.1.2.3 ParmaPolyhedra Library::C _Polyhedron::C_Polyhedron (GenSys &g9
Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.
Parameters:

gs The system of generators defining the polyhedron. It is not declasest because it can be
modified.

Exceptions:
std::invalid_argument thrown if the system of generators is not empty but has no points, or if it
contains closure points.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 ParmaPolyhedra Library::Constraint Class Reference 15

8.1.2.4 ParmaPolyhedra Library::C _Polyhedron::C_Polyhedron (const NNCPolyhedron & V)
[explicit]

Builds a C polyhedron from thNC_Polyhedron (p.28) y.

Exceptions:
std::invalid_argument thrown if the polyhedroly is not topologically closed.

8.1.2.5 templatecclass Box- Parma_Polyhedra Library::C _Polyhedron::C_Polyhedron (const Box
& box, From_Bounding_Box dummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templateclass Box- Polyhedron::Polyhedron(Topology topol, const Box&
box) (p.40);

Parameters:
box The bounding box representing the polyhedron to be built.

dummy A dummy tag to syntactically differentiate this one from the other constructors.
Exceptions:

std::invalid_argument thrown if box has intervals that are not topologically closed (i.e., having some
finite but open bounds).

8.2 ParmaPolyhedra Library::Constraint Class Reference

A linear equality or inequality.

Public Types

o enumType { EQUALITY , NONSTRICT _INEQUALITY , STRICT _.INEQUALITY }
The constraint type.

Public Methods

e Constraint (const Constraint &c)
Ordinary copy-constructor.

~Constraint ()
Destructor.

Constraint &operator= (const Constraint &c)
Assignment operator.

sizet spacedimension() const
Returns the dimension of the vector space enclosihig .

Type type () const

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 ParmaPolyhedra Library::Constraint Class Reference

Returns the constraint type ethis

e boolis_equality () const
Returngrue if and only ifxthis is an equality constraint.

e boolis_inequality () const
Returngrue if and only ifxthis is an inequality constraint (either strict or non-strict).

e boolis_nonstrict_inequality () const
Returngrue if and only ifxthis is a non-strict inequality constraint.

e boolis_strict_inequality () const
Returngrue if and only ifxthis s a strict inequality constraint.

e constinteger & coefficient(Variable v) const
Returns the coefficient ofin xthis

e constinteger & inhomogeneousterm () const
Returns the inhomogeneous termxtifis

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Methods

e const Constraint &ero_dim false()
The unsatisfiable (zero-dimension space) constfaiat1.

e const Constraint &ero_dim _positivity ()
The true (zero-dimension space) constrdint 1, also known apositivity constraint

Friends

e classParma_Polyhedra_Library::Polyhedron
e Constraint Parma_Polyhedra Library::operator== (const LinExpression &el, const Lin-
Expression&e?2)

Returns the constrairgl = e2.

e ConstraintParma_Polyhedra_Library::operator== (constLinExpression &e, constinteger &n)
Returns the constrairg = n.

e ConstraintParma_Polyhedra_Library::operator==(constinteger &n, constLinExpression &e)
Returns the constraint = e.

e Constraint Parma_Polyhedra Library::operator >= (const LinExpression &el, const Lin-
Expression&e?2)

Returns the constrairgl >= e2.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 ParmaPolyhedra Library::Constraint Class Reference

e ConstraintParma_Polyhedra Library::operator >= (constLinExpression &e, constinteger &n)
Returns the constrairg >= n.

e ConstraintParma_Polyhedra_Library::operator >= (constinteger &n, constLinExpression &e)
Returns the constraint >= e.

e Constraint Parma_Polyhedra Library::operator <= (const LinExpression &el, const Lin-
Expression&e2)

Returns the constrairgl <= e2.

e ConstraintParma_Polyhedra Library::operator <= (constLinExpression &e, constinteger &n)
Returns the constrairg <= n.

e ConstraintParma_Polyhedra_Library::operator <= (constinteger &n, constLinExpression &e)
Returns the constraint <= e.

e Constraint Parma_Polyhedra Library::operator > (const LinExpression &el, const Lin-
Expression&e?2)

Returns the constrairgl > e2.

e ConstraintParma_Polyhedra_Library::operator > (constLinExpression &e, constinteger &n)
Returns the constrairg > n.

e ConstraintParma_Polyhedra_Library::operator > (constinteger &n, constLinExpression &e)
Returns the constraimt > e.

e Constraint Parma_Polyhedra Library::operator < (const LinExpression &el, const Lin-
Expression&e2)

Returns the constrairgl < e2.

e ConstraintParma_Polyhedra_Library::operator < (constLinExpression &e, constinteger &n)
Returns the constrairg < n.

e ConstraintParma_Polyhedra_Library::operator < (constinteger &n, constLinExpression &e)
Returns the constraint < e.

e ConstraintParma_Polyhedra_Library::operator >> (const Constraint &c, unsigned int offset)
Returns the constrairgt with variables renamed by addiraffset to their Cartesian axis identifier.

Related Functions
(Note that these are not member functions.)

e std::ostream &operator< < (std::ostream &s, const Constraint &c)
Output operator.

e void swap (ParmaPolyhedraLibrary::Constraint &x, Parm#olyhedraLibrary::Constraint &y)
Specializestd::swap

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 ParmaPolyhedra Library::Constraint Class Reference 18

8.2.1 Detailed Description

A linear equality or inequality.
An object of the clas€onstraint (p.15) is either:
e an equality:>""" ' a;z; + b= 0;

e anon-strict inequality> """ a;z; + b > 0; or
e astrictinequality>"""" a;z; + b > 0;

wheren is the dimension of the space; is the integer coefficient of variable; and b is the integer
inhomogeneous term.

How to build a constraint
Constraints are typically built by applying a relational operator to a pair of linear expressions. Avail-
able relational operators include equality={, non-strict inequalitiesX= and<=) and strict inequal-
ities (< and>). The space-dimension of a constraint is defined as the maximum space-dimension of
the arguments of its constructor.
In the following examples it is assumed that variabdeg andz are defined as follows:

Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constraiat + 5y — z = 0, having space-dimensich

Constraint eq_c(3*x + 5*y - z == 0);

The following code builds the (non-strict) inequality constrdint> 2y — 13, having space-dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);

The corresponding strict inequality constradnt > 2y — 13 is obtained as follows:
Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension sficean be specified as follows:
Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:
Constraint false_c1(LinExpression::zero() == 1);

Constraint false_c2(LinExpression::zero() >= 1);
Constraint false_c3(LinExpression::zero() > 0);

In constrast, the following code defines an unsatisfiable constraint having space-din3ension

Constraint false_c(0*z == 1);

How to inspect a constraint
Several methods are provided to examine a constraint and extract all the encoded information: its

space-dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 ParmaPolyhedra Library::From _Bounding_Box Struct Reference 19

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this case— 5y + 3z <= 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraiby + 3z > 4).
Constraint cl(x - 5%y + 3*z <= 4);
cout << "Constraint cl: " << ¢l << endl;
if (cl.is_equality())
cout << "Constraint ¢l is not an inequality." << endl;

else {
LinExpression e;
for (int i = cl.space_dimension() - 1; i >= 0; i-)

e += cl.coefficient(Variable(i)) * Variable(i);
e += cl.inhomogeneous_term();
Constraint c2 = cl.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c¢2 << endl

}
The actual output is the following:

Constraint c1: -A + 5*B - 3*C >= 4
Complement c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

8.2.2 Member Enumeration Documentation

8.2.2.1 enum ParmaPolyhedra Library::Constraint::Type

The constraint type.

Enumeration values:
EQUALITY The constraint is an equality.

NONSTRICT_INEQUALITY The constraint is a non-strict inequality.
STRICT _.INEQUALITY The constraint is a strict inequality.

8.2.3 Member Function Documentation

8.2.3.1 const Integer& ParmaPolyhedra_Library::Constraint::coefficient (Variable V) const

Returns the coefficient of in *this

Exceptions:
std::invalid_argument thrown if the index ofv is greater than or equal to the space-dimension of
«this

8.3 ParmaPolyhedra Library::From _Bounding_Box Struct Reference

A tag class.

8.3.1 Detailed Description

A tag class.

Tag class to differentiate the Polyhedron (p.13) andNNC_Polyhedron (p.28) constructors that build a
polyhedron out of a bounding box.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 ParmaPolyhedra Library::Generator Class Reference

20

8.4 ParmaPolyhedra Library::Generator Class Reference

A line, ray, point or closure point.

Public Types

e enumType { LINE , RAY, POINT, CLOSURE_POINT }
The generator type.

Public Methods

e Generator (const Generator &Q)
Ordinary copy-constructor.

e ~Generator ()
Destructor.

e Generator &perator= (const Generator &g)
Assignment operator.

e sizet spacedimension() const
Returns the dimension of the vector space enclosinig

e Type type() const
Returns the generator type sthis

e boolis_line () const
Returngrue if and only ifxthis is a line.

e boolis_ray () const
Returngrue if and only ifxthis is a ray.

e boolis_point () const
Returngrue if and only ifxthis is a point.

e boolis_closure point () const
Returngrue if and only ifxthis is a closure point.

e constinteger & coefficient(Variable v) const
Returns the coefficient fin xthis

e constinteger & divisor () const

If xthis is either a point or a closure point, returns its divisor.

e boolOK () const
Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

8.4 ParmaPolyhedra Library::Generator Class Reference 21

Static Public Methods

e Generatotine (constLinExpression &e)
Returns the line of directioa.

e Generatoray (constLinExpression &e)
Returns the ray of directioa.

e Generatorpoint (const LinExpression &e=LinExpression::zero(), condnteger &d=Integer-
one())

Returns the point a& / d.

e Generator closurepoint (const LinExpression &e=LinExpression::zero(), constinteger
&d=Integerone())

Returns the closure point at/ d.

e const Generator &ero_dim_point ()
Returns the origin of the zero-dimensional sp&e

e const Generator &ero_dim _closure_point ()
Returns, as a closure point, the origin of the zero-dimensional spéce

Friends

e classParma_Polyhedra_Library::Polyhedron
o std::ostream &arma_Polyhedra Library::operator << (std::ostream &s, const Generator &g)

Output operator.

Related Functions
(Note that these are not member functions.)

e void swap (ParmaPolyhedraLibrary::Generator &x, Parm&olyhedralLibrary::Generator &y)
Specializestd::swap

8.4.1 Detailed Description

A line, ray, point or closure point.

An object of the clas&enerator (p.20) is one of the following:

[} a“nel = (ao"..’an_l)T;
e arayr = (aoﬂ"'aan—l)T;
e apointp = (%, ..)T,

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 ParmaPolyhedra Library::Generator Class Reference 22

e aclosure point = (2, ..., =T,

wheren is the dimension of the space and, for points and closure pdaints) is the divisor.

A note on terminology.
As observed in SectioRepresentations of Convex Polyhedrdp. 3), there are cases when, in order
to represent a polyhedrdd using the generator systegh= (L, R, P, C'), we need to include in the
finite setP even points ofP that arenot vertices of P. This situation is even more frequent when
working with NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other
libraries use the word ‘vertex'.

How to build a generator.
Each type of generator is built by applying the corresponding funclioa (, ray , point orclo-
sure _point)to alinear expression, representing a direction in the space; the space-dimension of the
generator is defined as the space-dimension of the corresponding linear expression. Linear expressions
used to define a generator should be homogeneous (any constant term will be simply ignored). When
defining points and closure points, an optional Integer argument can be used as a adirnsoofor
all the coefficients occurring in the provided linear expression; the default value for this argument is 1.
In all the following examples it is assumed that variableg andz are defined as follows:

Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds a line with direction— y — z and having space-dimensién

Generator | = line(x - y - 2);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator | = line(x - y - z + 15);
By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator | = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the poigt = (1,0,2)T € R?:

Generator p = point(1*x + 0*y + 2*z);
The same effect can be obtained by using the following code:
Generator p = point(x + 2*z);
Similarly, the origin0 € R? can be defined using either one of the following lines of code:

Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 ParmaPolyhedra Library::Generator Class Reference 23

Note however that the following code would have defined a different point, naneliR?:
Generator origin2 = point(0*y);
The following two lines of code both define the only point having space-dimension zero, namely

0 € RO In the second case we exploit the fact that the first argument of the furpmtion is
optional.

Generator origin0 = Generator::zero_dim_point();

Generator origin0_alt = point();

Example 4
The pointp specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the funptamt (the divisor):

Generator p = point(2*x + 0%y + 4*z, 2);
Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-

nal) coordinates. For instance, the pajnt (—1.5,3.2,2.1)T € R? can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5
Closures points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure point (1,0,2)T € R? is defined by
Generator ¢ = closure_point(1*x + 0*y + 2*z);

For the particular case of the (only) closure point having space-dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

How to inspect a generator
Several methods are provided to examine a generator and extract all the encoded information: its
space-dimension, its type and the value of its integer coefficients.

Example 6
The following code shows how it is possible to access each single coefficient of a genergtbr. If
is a point having coordinat€s,, . .., a,_1)T, we construct the closure poig2 having coordinates
(a(), 2(11, ey (Z + l)ai, . ,nan,l)T

if (gl.is_point()) {
cout << "Point gl: " << gl << endl;
LinExpression e;
for (int i = gl.space_dimension() - 1; i >= 0; i--)
e += (i + 1) * gl.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, gl.divisor());
cout << "Closure point g2: " << g2 << endl;

}
else
cout << "Generator gl is not a point." << endl;

Therefore, for the point
Generator g1 = point(2*x - y + 3*z, 2);
we would obtain the following output:

Point gl: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the noti@oefficientith the notion
of coordinate these are equivalent only when the divisor of the (closure) pointis 1.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 ParmaPolyhedra Library::Generator Class Reference

24

8.4.2 Member Enumeration Documentation

8.4.2.1 enum ParmaPolyhedra Library::Generator::Type

The generator type.

Enumeration values:
LINE The generatoris aline.

RAY The generator is a ray.
POINT The generator is a point.
CLOSURE_POINT The generator is a closure point.

8.4.3 Member Function Documentation

8.4.3.1 Generator ParmaPolyhedra Library::Generator::line (const LinExpression & ¢€)
[static]

Returns the line of directioa.

Exceptions:

std::invalid_argument thrown if the homogeneous part efrepresents the origin of the vector space.

8.4.3.2 Generator ParmaPolyhedra Library::Generator::ray (const LinExpression & ¢€)
[static]

Returns the ray of directioa.

Exceptions:

std::invalid_argument thrown if the homogeneous part efrepresents the origin of the vector space.

8.4.3.3 Generator ParmaPolyhedra_Library::Generator::point (const LinExpression & e = Lin-
Expression::zero(), const Integer &d = Integer_one()) [static]

Returns the point & / d.
Bothe andd are optional arguments, with default valuesExpression::zero() (p.25) and Integerone(),
respectively.

Exceptions:
std::invalid_argument thrown if d is zero.

8.4.3.4 Generator ParmaPolyhedra Library::Generator::closure _point (const LinExpression & e
= LinExpression::zero(), const Integer &d = Integer_one()) [static]

Returns the closure point at/ d.
Bothe andd are optional arguments, with default valuesExpression::zero() (p.25) and Integerone(),
respectively.

Exceptions:
std::invalid_argument thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 ParmaPolyhedra Library::LinExpression Class Reference 25

8.4.3.5 const Integer& ParmaPolyhedra Library::Generator::coefficient (Variable v) const

Returns the coefficient of in *this

Exceptions:
std::invalid_argument thrown if the index ofv is greater than or equal to the space-dimension of
xthis

8.4.3.6 const Integer& ParmaPolyhedra Library::Generator::divisor () const
If xthis is either a point or a closure point, returns its divisor.
Exceptions:

std::invalid_argument thrown if xthis is neither a point nor a closure point.

8.5 ParmaPolyhedra Library::LinExpression Class Reference

A linear expression.

Public Methods

e LinExpression ()
Default constructor: returns a copy @fnExpression::zero() (p.25).

e LinExpression (const LinExpression &e)
Ordinary copy-constructor.

e virtual ~LinExpression ()
Destructor.

e LinExpression (constinteger &n)
Builds the linear expression corresponding to the inhomogeneousterm

e LinExpression (constVariable &v)
Builds the linear expression corresponding to the variahle

e LinExpression (constConstraint &c)
Builds the linear expression corresponding to constraint

e LinExpression (constGenerator &Q)

Builds the linear expression corresponding to generatgfor points and closure points, the divisor is not
copied).

e sizet spacedimension() const
Returns the dimension of the vector space enclosinig

Static Public Methods

e const LinExpression &ero ()
Returns the (zero-dimension space) constant 0.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 ParmaPolyhedra Library::LinExpression Class Reference 26

Friends

classParma_Polyhedra Library::Constraint

classParma_Polyhedra Library::Generator

classParma_Polyhedra Library::Polyhedron

LinExpression Parma_Polyhedra Library::operator+ (const LinExpression &el, const Lin-
Expression &e2)

Returns the linear expressi@l + e2.

e LinExpressionParma_Polyhedra Library::operator+ (constinteger &n, const LinExpression
&e)

Returns the linear expression+ e.

e LinExpressionParma_Polyhedra Library::operator+ (const LinExpression &e, conshteger
&n)

Returns the linear expressi@n+ n.

e LinExpressiorParma_Polyhedra Library::operator- (const LinExpression &e)
Returns the linear expressiore:

e LinExpression Parma_Polyhedra Library::operator- (const LinExpression &el, const Lin-
Expression &e2)

Returns the linear expressi@l - e2.

o LinExpressiorParma_Polyhedra Library::operator- (constinteger &n, const LinExpression &e)
Returns the linear expressiaon- e.

o LinExpressiorParma_Polyhedra Library::operator- (const LinExpression &e, conbiteger &n)
Returns the linear expressien- n.

o LinExpressionParma_Polyhedra Library::operator x* (constinteger &n, const LinExpression
&e)

Returns the linear expressionx e.

e LinExpressionParma_Polyhedra Library::operator x* (const LinExpression &e, conshteger
&n)

Returns the linear expressienx n.

e LinExpression & Parma Polyhedra Library::operator+= (LinExpression &el, const Lin-
Expression &e2)

Returns the linear expressi@l + e2 and assigns it t@1l.

e LinExpression &arma_Polyhedra Library::operator+= (LinExpression &e, consfariable &v)
Returns the linear expressi@n+ v and assigns it t@.

e LinExpression &Parma_Polyhedra Library::operator+= (LinExpression &e, condnteger &n)
Returns the linear expressi@+ n and assigns it t@.

e LinExpression & Parma_Polyhedra Library::operator-= (LinExpression &el, const Lin-
Expression &e2)

Returns the linear expressi@l - e2 and assigns it t@1.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 ParmaPolyhedra Library::LinExpression Class Reference

27

e LinExpression &Parma_Polyhedra Library::operator-= (LinExpression &e, constariable &v)
Returns the linear expressi@n- v and assigns it t@.

e LinExpression &Parma_Polyhedra Library::operator-= (LinExpression &e, condhteger &n)
Returns the linear expressi@n- n and assigns it t@.

Related Functions
(Note that these are not member functions.)

e void swap (ParmaPolyhedralibrary::LinExpression &x, Parm#olyhedralibrary::Lin-
Expression &y)

Specializestd::swap

8.5.1 Detailed Description

A linear expression.

An object of the claskinExpression (p.25) represents the linear expression

n—1
Z a;r; +b
i=0

wheren is the dimension of the space, eaghs the integer coefficient of thie -th variablex; andb is the
integer for the inhomogeneous term.

How to build a linear expression.
Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequal-
ities) and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to
provide a convenient interface for building complex linear expressions starting from simpler ones and
from objects of the classafariable (p.49) and Integer: available operators include unary negation,
binary addition and subtraction, as well as multiplication by an Integer. The space-dimension of a
linear expression is defined as the maximum space-dimension of the arguments used to build it: in par-
ticular, the space-dimension oMariable (p.49) x is defined ax.id()+1 , whereas all the objects
of the class Integer have space-dimension zero.

Example
The following code builds the linear expressibn— 2y — z + 14, having space-dimensidh

LinExpression e = 4*x - 2%y - z + 14;
Another way to build the same linear expression is:

LinExpression el = 4*x;
LinExpression e2 2*y;
LinExpression e3 = z;

LinExpression e = LinExpression(14);
e += el - e2 - e3;

Note thatel, e2 ande3 have space-dimension 1, 2 and 3, respectively; also, in the fourth line of
code,e is created with space-dimension zero and then extended to space-dimension 3.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.6 ParmaPolyhedra Library::NNC _Polyhedron Class Reference 28

8.5.2 Constructor & Destructor Documentation

8.5.2.1 ParmaPolyhedra Library::LinExpression::LinExpression (const Constraint & ¢) [ex-
plicit]
Builds the linear expression corresponding to consti@int

n—1

Given the constraint = (Zi:O a;x; + b > O), wherext € {=,>, >}, builds the linear expression

Z?:_()l a;x; + b. If ¢ is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

8.5.2.2 ParmaPolyhedra Library::LinExpression::LinExpression (const Generator & Q) [ex-
plicit]

Builds the linear expression corresponding to genemtdor points and closure points, the divisor is not
copied).

Given the generatay = (<2,. .., “’jT—l)T (where, for lines and rays, we hade= 1), builds the linear

expressionZ?:’O1 a;x;. The inhomogeneous term of the linear expression will always be @.idfa ray,
point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

8.6 ParmaPolyhedra Library::NNC _Polyhedron Class Reference

A not necessarily closed convex polyhedron.

InheritsParma_Polyhedra Library::Polyhedron .

Public Methods

e NNC_Polyhedron (sizet numdimensions=0DegenerateKind kind=UNIVERSE)
Builds either the universe or the empty NNC polyhedron.

¢ NNC_Polyhedron (ConSys &cs)
Builds a NNC polyhedron from a system of constraints.

o NNC_Polyhedron (GenSys &gs)
Builds a NNC polyhedron from a system of generators.

e NNC_Polyhedron (constC_Polyhedron &y)
Builds a NNC polyhedron from theé_Polyhedron (p.13) y.

o templatecclass Box>- NNC_Polyhedron (const Box &box,From _Bounding_Box dummy)
Builds an NNC polyhedron out of a generic, interval-based bounding box.

e NNC_Polyhedron (const NNCPolyhedron &y)
Ordinary copy-constructor.

¢ NNC_Polyhedron &operator= (const NNCPolyhedron &y)
The assignment operatokthis andy can be dimension-incompatible.).

e ~NNC_Polyhedron()

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.6 ParmaPolyhedra Library::NNC _Polyhedron Class Reference 29

Destructor.

8.6.1 Detailed Description

A not necessarily closed convex polyhedron.

An object of the clasBINC_Polyhedron (p.28) represents aot necessarily closedNC) convex polyhe-
dron in the vector spade™.

Note:
Since NNC polyhedra are a generalization of closed polyhedra, any object of th€ dRadghedron
(p.13) can be (explicitly) converted into an object of the claB$C_Polyhedron (p.28). The reason
for defining two different classes is that objects of the clad2olyhedron (p. 13) are characterized by
a more efficient implementation, requiring less time and memory resources.

8.6.2 Constructor & Destructor Documentation

8.6.2.1 ParmaPolyhedra Library::NNC _Polyhedron::NNC_Polyhedron (sizet num_dimensions=
0, DegenerateKind kind = UNIVERSE) [explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:
num_dimensions The number of dimensions of the vector space enclosing the NNC polyhedron.

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

8.6.2.2 ParmaPolyhedra Library::NNC _Polyhedron::NNC_Polyhedron (ConSys &c9)
Builds a NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declemadt because it can be
modified.

8.6.2.3 ParmaPolyhedra Library::NNC _Polyhedron::NNC_Polyhedron (GenSys &g9)
Builds a NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:

gs The system of generators defining the polyhedron. It is not declaoest because it can be
modified.

Exceptions:
std::invalid_argument thrown if the system of generators is not empty but has no points.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.7 ParmaPolyhedra Library::Poly _Con_Relation Class Reference 30

8.6.2.4 templatecclass Box> Parma_Polyhedra Library::NNC _Polyhedron::NNC_Polyhedron
(const Box & box, From_Bounding_Box dummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templateclass Box> Polyhedron::Polyhedron(Topology topol, const Box&
box) (p.40);

Parameters:
box The bounding box representing the polyhedron to be built.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

8.7 ParmaPolyhedra Library::Poly _Con_Relation Class Reference

The relation between a polyhedron and a constraint.

Public Methods

e boolimplies (const PolyCon Relation &y) const
True if and only if«this impliesy.

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Methods

¢ Poly_ConRelationnothing ()
The assertion that says nothing.

Poly_Con Relationis_disjoint ()
The polyhedron and the set of points satisfying the constraint are disjoint.

Poly_Con Relationstrictly _intersects()
The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

Poly_ConRelationis_included ()
The polyhedron is included in the set of points satisfying the constraint.

Poly_Con Relationsaturates()
The polyhedron is included in the set of points saturating the constraint.

Friends

e bool Parma_Polyhedra Library::operator==(const PolyConRelation &x, const PolyCon-
Relation &y)

True if and only ifx andy are logically equivalent.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.8 ParmalPolyhedra Library::Poly _Gen Relation Class Reference 31

e bool Parma_Polyhedra Library::operator!= (const PolyConRelation &x, const PolyCon-
Relation &y)

True if and only ifx andy are not logically equivalent.

e Poly_ConRelationParma_Polyhedra_Library::operator && (const PolyCon Relation &x, const
Poly_Con Relation &y)

Yields the logical conjunction of andy.

e Poly_ ConRelation Parma_Polyhedra Library::operator- (const PolyConRelation &x, const
Poly_Con Relation &y)

Yields the assertion with all the conjunctsxofhat are not iny.

e std::ostream &Parma_Polyhedra Library::operator << (std::ostream &s, const Palgon-
Relation &r)

Output operator.

8.7.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

8.8 ParmaPolyhedra Library::Poly _Gen Relation Class Reference

The relation between a polyhedron and a generator.

Public Methods

e boolimplies (const PolyGenRelation &y) const
True if and only if«this impliesy.

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Methods

e Poly_GenRelationnothing ()
The assertion that says nothing.

e Poly GenRelationsubsumesy)

Adding the generator would not change the polyhedron.

Friends

e bool Parma_Polyhedra Library::operator==(const PolyGenRelation &x, const PolyGen-
Relation &y)

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference

True if and only ifx andy are logically equivalent.

e bool Parma_Polyhedra Library::operator!= (const PolyGenRelation &%, const PolyGen-
Relation &y)

True if and only ifx andy are not logically equivalent.

e Poly GenRelationParma_Polyhedra_Library::operator && (const PolyGenRelation &x, const
Poly_GenRelation &y)

Yields the logical conjunction of andy.

e Poly_GenRelation Parma_Polyhedra Library::operator- (const PolyGenRelation &x, const
Poly_GenRelation &y)

Yields the assertion with all the conjunctsxofhat are not iny.

e std::ostream &Parma_Polyhedra Library::operator << (std::ostream &s, const Palgen-
Relation &r)

Output operator.

8.8.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

8.9 ParmaPolyhedra Library::Polyhedron Class Reference

The base class for convex polyhedra.

Inherited by Parma_Polyhedra Library::C _Polyhedron, and Parma_Polyhedra Library::NNC _-
Polyhedron.

Public Types

e enumbDegenerateKind { UNIVERSE, EMPTY }
Kinds of degenerate polyhedra.

Public Methods

e ~Polyhedron()
Destructor.

e sizet spacedimension() const

Returns the dimension of the vector space enclosihig

e boolintersection.assignand_minimize (const Polyhedron &y)
Assigns tocthis the intersection ofthis andy, minimizing the result.

¢ void intersection_assign(const Polyhedron &y)

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference

Assigns tocthis the intersection ofthis andy. The result is not guaranteed to be minimized.

e bool poly_hull _assignand_minimize (const Polyhedron &y)
Assigns torthis the poly-hull ofxthis andy, minimizing the result.

¢ void poly_hull _assign(const Polyhedron &y)
Assigns tocthis the poly-hullxthis andy. The result is not guaranteed to be minimized.

e bool poly_difference assignand_minimize (const Polyhedron &y)
Assigns tocthis thepoly-difference (p. 6) of xthis andy, minimizing the result.

¢ void poly_difference_assign(const Polyhedron &y)
Assigns toethis the poly-difference (p. 6) of xthis andy. The result is not guaranteed to be minimized.

e Poly_Con_Relation relation_with (constConstraint &c) const
Returns the relations holding between the polyheckibiis and the constraint.

e Poly_Gen_Relation relation_with (constGenerator &g) const
Returns the relations holding between the polyheddttiis and the generatog.

e void H79_widening_assign(const Polyhedron &y)
Assigns tothis the result of computing thid79-widening (p.8) betweenxthis andy.

¢ void limited _H79_widening_assign(const Polyhedron &y, ConSys &cs)

Limits theH79-widening (p. 8) computation betweesfthis andy by enforcing constraintss and assigns
the result toxthis

¢ void time_elapseassign(const Polyhedron &y)
Assigns torthis the result of computing thiime-elapse(p. 8) betweenxthis andy.

e const ConSys &onstraints () const
Returns the system of constraints.

e const ConSys &ninimized_constraints () const
Returns the system of constraints, with no redundant constraint.

e const GenSys &enerators() const
Returns the system of generators.

e const GenSys &ninimized_generators() const
Returns the system of generators, with no redundant generator.

e void add_constraint (constConstraint &c)
Adds a copy of constraimt to the system of constraints ghis

¢ void add_generator (constGenerator &g)
Adds a copy of generatay to the system of generators-ghis

¢ void affine_.image (constVariable &var, constLinExpression &expr, constinteger &denomina-
tor=Integerone())

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9

Parma Polyhedra Library::Polyhedron Class Reference 34

Assigns tokthis the affine image(p.7) of xthis under the function mapping variableinto the affine
expression specified Bxpr andd.

void affine_preimage (constVariable &var, constLinExpression &expr, constinteger &denomi-
nator=Integerone())

Assigns to«this the affine preimage (p.7) of xthis under the function mapping variabie into the
affine expression specified bypr andd.

template<class Box- void shrink _bounding_box (Box &box) const
Usexthis to shrink a generic, interval-based bounding box.

bool OK (bool checknot empty=false) const
Checks if all the invariants are satisfied.

void add_dimensionsand_embed(sizet dim)
Addsdim new dimensions and embeds the old polyhedron into the new space.

void add_dimensionsand_project (sizet dim)
Addsdim new dimensions to the polyhedron and does not embed it in the new space.

void remove_dimensions(const std::set Variable > &to_be removed)
Removes all the specified dimensions.

void remove_higher_dimensions(sizet new.dimension)
Removes the higher dimensions so that the resulting space will have dimeesiatimension

bool add_constraints.and_minimize (ConSys &cs)
Adds the specified constraints and minimizes the result, which is assigreiksto .

void add_constraints (ConSys &cs)
Adds the specified constraints without minimizing.

void add_dimensionsand_constraints (ConSys &cs)

First increases the space dimensionstiiis by addingcs.space _dimension() new dimensions;
then adds to the system of constraintstblis a renamed-apart version of the constraint<an.

bool add_generatorsand_minimize (GenSys &gs)
Adds the specified generators and minimizes the result, which is assigrtidsto.

void add_generators(GenSys &gs)
Adds the specified generators without minimizing.

bool check empty () const
Returngrue if and only ifxthis is an empty polyhedron.

bool check universe () const
Returngrue if and only ifxthis is a universe polyhedron.

boolis_bounded() const
Returngtrue if and only ifxthis is a bounded polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference

35

bool bounds from _above(constLinExpression &expr) const
Returngrue if and only ifexpr is bounded from above kthis

bool bounds from _below (constLinExpression &expr) const
Returngrue if and only ifexpr is bounded from below irthis

boolis_topologically_closed() const

Returngrue if and only ifxthis is a topologically closed subset of the vector space.

void topological_closure assign()
Assigns toxthis its topological closure.

void swap (Polyhedron &y)
Swapstthis with polyhedrory. (xthis andy can be dimension-incompatible.).

Protected Methods

e Polyhedron (const Polyhedron &y)
Ordinary copy-constructor.

Polyhedron (Topology topol, size num.dimensionsPegenerateKind kind)
Builds a polyhedron having the specified properties.

Polyhedron (Topology topol, ConSys &cs)
Builds a polyhedron from a system of constraints.

Polyhedron (Topology topol, GenSys &gs)
Builds a polyhedron from a system of generators.

template<class Box- Polyhedron (Topology topol, const Box &box)

Builds a polyhedron out of a generic, interval-based bounding box.

Polyhedron &operator= (const Polyhedron &y)
The assignment operatokthis andy can be dimension-incompatible.).

Friends

e boolParma_Polyhedra Library::operator <= (const Polyhedron &x, const Polyhedron &y)
Returngtrue if and only if polyhedrorx is contained in polyhedrown.

e std::ostream &arma_Polyhedra Library::operator << (std::ostream &s, const Polyhedron &p)
Output operator.

o std::istream &arma_Polyhedra Library::operator >> (std::istream &s, Polyhedron &p)
Input operator.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference

36

Related Functions
(Note that these are not member functions.)

e booloperator== (const Polyhedron &x, const Polyhedron &y)
Returngrue if and only ifx andy are the same polyhedron.

bool operator!= (const Polyhedron &x, const Polyhedron &y)
Returngrue if and only ifx andy are different polyhedra.

bool operator< (const Polyhedron &x, const Polyhedron &y)
Returngrue if and only ifx is strictly contained iry.

bool operator> (const Polyhedron &x, const Polyhedron &y)
Returngrue if and only ifx strictly containsy.

bool operator>= (const Polyhedron &x, const Polyhedron &y)

Returngrue if and only ifx containsy.

void swap (ParmaPolyhedraLibrary::Polyhedron &x, Parm#&olyhedraLibrary::Polyhedron &y)
Specializestd::swap

8.9.1 Detailed Description

The base class for convex polyhedra.
An object of the clas®olyhedron (p.32) represents a convex polyhedron in the vector sfiéce

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
SectionRepresentations of Convex Polyhedrdp.3)) and it is always possible to obtain either represen-
tation. That is, if we know the system of constraints, we can obtain from this the system of generators that
define the same polyhedron and vice versa. These systems can contain redundant members: in this case we
say that they are not in the minimal form. Most operators on polyhedra are provided with two implemen-
tations: one of these, denotewperator-name >_and _minimize , also enforces the minimization of

the representations, and returns the Boolean Malise whenever the resulting polyhedron turns out to

be empty.

Two key attributes of any polyhedron are its topological kind (recording whether ildsPalyhedron
(p-13) or anNNC_Polyhedron (p.28) object) and its space dimension (the dimensioa N of the en-
closing vector space):

¢ all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

e most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see SeRépnesentations of Convex
Polyhedra (p. 3));

e there is no way to change the topology of a polyhedron; rather, there are constructors of the two de-
rived classes that builds a new polyhedron having a topology when provided with the corresponding
polyhedron of the other topology;

¢ the only ways to change the space dimension of a polyhedron are:

— explicitcalls to operators provided for that purpose;

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 37

— standard copy, assignment and swap operators.

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedR% again either closed or NNC.

In all the examples it is assumed that variableandy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a squak?jmgiven as a system of con-
straints:

ConSys cs;
cs.add_constraint(x >= 0);
cs.add_constraint(x <= 3);
cs.add_constraint(y >= 0);
cs.add_constraint(y <= 3);
Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

GenSys gs;

gs.add_generator(point(0*x + 0*y));
gs.add_generator(point(0*x + 3*y));
gs.add_generator(point(3*x + 0*y));
gs.add_generator(point(3*x + 3*y));

Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-sfiip, igiven as a
system of constraints:

ConSys cs;

cs.add_constraint(x >= 0);
cs.add_constraint(x - y <= 0);
cs.add_constraint(x - y + 1 >= 0);
Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

GenSys gs;
gs.add_generator(point(0*x + 0*y));
gs.add_generator(point(0*x + y));
gs.add_generator(ray(x - Vy));
Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to an half-plane by adding a single constraint
to the universe polyhedron R?:

Polyhedron ph(2);
ph.add_constraint(ly >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spac@®? and inserting the appropriate generators (a point, a ray and a line).

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 38

Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
point (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functexid _dimensions _and _embed:

Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension sgacélhen we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singletof2set R. After the last line
of code, the resulting polyhedron is

{(Q,y)T e R? ‘ yER}.

Example 5
The following code shows the use of the functeatd _dimensions _and _project

Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_project(1);

The first two lines of code are the same as in Example 4dor_dimensions _and _embed. After
the last line of code, the resulting polyhedron is the singletor{(saa'())T} C R2,

Example 6
The following code shows the use of the functaffine _image :

Polyhedron ph(2, Polyhedron:EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
LinExpression coeff = x + 4;
ph.affine_image(x, coeff);

In this example the starting polyhedron is a squar®inthe considered variable isand the affine
expression ig + 4. The resulting polyhedron is the same square translated towards right. Moreover,
if the affine transformation for the same variaklés = + y:

LinExpression coeff = x + vy;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line— y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expresgion

LinExpression coeff = vy;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functaffine _preimage :

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 39

Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraintly >= 0);
ph.add_constraintly <= 3);
LinExpression coeff = x + 4;
ph.affine_preimage(x, coeff);

In this example the starting polyhedrorar and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated towards
left. Moreover, if the affine transformation faris « + y

LinExpression coeff = x + vy;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line+ y. Instead, if we do not use an invertible transformation for the
same variable, for example, the affine expressign

LinExpression coeff = vy;

the resulting polyhedron is a line that corresponds tajthgis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functiemove _dimensions

GenSys gs;

gs.add_generator(point(3*x + y +0*z + 2*w));
Polyhedron ph(gs);

set<Variable> to_be _removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_dimensions(to_be_removed);

The starting polyhedron is the singleton §€8,1,0,2)™} C R*, while the resulting polyhedron is
{(3,2)T} C R?. Be careful when removing dimensioiterementally since dimensions are auto-
matically renamed after each application of thenove _dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> to_be_removedl;

to_be_removedLl.insert(y);

ph.remove_dimensions(to_be_removed1l);

set<Variable> to_be removed2;

to_be_removed2.insert(z);

ph.remove_dimensions(to_be_removed?2);

In this case, the result is the polyhedr{)@, O)T} C R2: when removing the set of dimensiotus _-

be _removed2 we are actually removing variable of the original polyhedron. For the same reason,
the operatoremove _dimensions is not idempotent: removing twice the same set of dimensions
is never a no-op.

8.9.2 Member Enumeration Documentation

8.9.2.1 enum ParmaPolyhedra Library::Polyhedron::Degenerate Kind

Kinds of degenerate polyhedra.

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 40

8.9.3 Constructor & Destructor Documentation

8.9.3.1 ParmaPolyhedra Library::Polyhedron::Polyhedron (Topology topol, sizet num.-
dimensions DegenerateKind kind) [protected]

Builds a polyhedron having the specified properties.

Parameters:
topol The topology of the polyhedron;

num_dimensions The number of dimensions of the vector space enclosing the polyhedron;
kind Specifies whether the universe or the empty polyhedron has to be built.

8.9.3.2 ParmaPolyhedra Library::Polyhedron::Polyhedron (Topology topol, ConSys & c9
[protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not decleoedt because it can be
modified.

Exceptions:
std::invalid_argument thrown if the topology ots is incompatible withtopology

8.9.3.3 ParmaPolyhedra Library::Polyhedron::Polyhedron (Topology topol, GenSys & g9
[protected]

Builds a polyhedron from a system of generators.
The polyhedron inherits the space dimension of the generator system.
Parameters:

topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declzordt because it can be
modified.

Exceptions:
std::invalid_argument thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

8.9.3.4 templatecclass Box- Parma_Polyhedra Library::Polyhedron::Polyhedron (Topology
topol, const Box & box) [protected]

Builds a polyhedron out of a generic, interval-based bounding box.

Parameters:
topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference

Exceptions:
std::invalid_argument thrown if box has intervals that are incompatible witipol

The template class Box must provide the following methods.

unsigned int space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

bool is_empty() const

returnstrue if and only if the bounding box describes the empty set. iBheempty() method will
always be called before the methods below. Howevés, iempty() returnstrue , none of the functions
below will be called.

bool get_lower_bound(unsigned int k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to theth dimension. IfI is not bounded from below, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the lower boundary of
Iisclosed and is set false otherwisen andd are assigned the integetsindd such that the canonical
fractionn/d corresponds to the greatest lower bound ofThe fractionn/d is in canonical form if and
only if n andd have no common factors ards positive,0/1 being the unique representation for zero.

bool get_upper_bound(unsigned int k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to theth dimension. Iff is not bounded from above, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the upper boundary of

Iisclosed and is set false otherwisen andd are assigned the integetsindd such that the canonical

fractionn/d corresponds to the least upper bound of

8.9.4 Member Function Documentation

8.9.4.1 bool ParmaPolyhedra Library::Polyhedron:intersection _assignand_minimize (const
Polyhedron & y)
Assigns toxthis the intersection ofthis andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.2 void ParmaPolyhedra_ Library::Polyhedron::intersection _assign (const Polyhedron &)

Assigns toxthis the intersection ofthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 42

8.9.4.3 bool ParmaPolyhedra Library::Polyhedron::poly _hull _assignand_minimize (const Poly-
hedron & y)

Assigns tokthis the poly-hull of«this andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.4 void ParmaPolyhedra_Library::Polyhedron::poly _hull _assign (const Polyhedron &)

Assigns toxthis the poly-hullxthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.5 bool ParmaPolyhedra_Library::Polyhedron::poly _difference_assignand_minimize (const
Polyhedron & y)

Assigns toxthis the poly-difference (p.6) of xthis andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.6 void ParmaPolyhedra Library::Polyhedron::poly _difference_assign (const Polyhedron &
y)

Assigns tokthis thepoly-difference (p.6) of «this andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.7 PolyCon_Relation Parma_Polyhedra Library::Polyhedron::relation _with (const Con-
straint & c) const

Returns the relations holding between the polyheditbis and the constrairt.

Exceptions:
std::invalid_argument thrown if «this and constraint are dimension-incompatible.

8.9.4.8 PolyGen_ Relation Parma Polyhedra Library::Polyhedron::relation _with (const Generator
& g) const

Returns the relations holding between the polyhedithis and the generatay.

Exceptions:
std::invalid_argument thrown if x«this and generatag are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 43

8.9.4.9 void ParmaPolyhedra Library::Polyhedron::H79 _widening_assign (const Polyhedron &)

Assigns toxthis the result of computing th79-widening (p. 8) betweenxthis andy.

Parameters:
y A polyhedron thatmustbe contained inthis

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.10 void ParmaPolyhedra Library::Polyhedron::limited _H79_widening_assign (const Polyhe-
dron & y, ConSys &c9)

Limits the H79-widening (p.8) computation betweerthis andy by enforcing constraintss and as-
signs the result tathis

Parameters:
y A polyhedron thatnustbe contained irthis

cs The system of constraints that limits the widened polyhedron. It is not dectaresi because it
can be modified.

Exceptions:
std::invalid_argument thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

8.9.4.11 void ParmaPolyhedra Library::Polyhedron::time _elapseassign (const Polyhedron &y)

Assigns toxthis the result of computing thiéme-elapse(p.8) betweenxthis andy.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.12 void ParmaPolyhedra_Library::Polyhedron::add _constraint (const Constraint & c)
Adds a copy of constrairtt to the system of constraints ethis
Exceptions:

std::invalid_argument thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

8.9.4.13 void ParmaPolyhedra Library::Polyhedron::add _generator (const Generator &9)
Adds a copy of generatagy to the system of generators sthis
Exceptions:

std::invalid_argument thrown if «this and generatog are topology-incompatible or dimension-
incompatible, or ifsthis is an empty polyhedron arglis not a point.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 44

8.9.4.14 void ParmaPolyhedra Library::Polyhedron::affine _image (const Variable & var, const
LinExpression & expr, const Integer & denominator= Integer_one())

Assigns tokthis theaffine image(p.7) of xthis under the function mapping variableinto the affine
expression specified xpr andd.

Parameters:
var The variable to which the affine expression is assigned.

expr The numerator of the affine expression.
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument thrown if denominator is zero or ifexpr andx«this are dimension-
incompatible or ifvar is not a dimension ofthis

8.9.4.15 void ParmaPolyhedra_Library::Polyhedron::affine _preimage (const Variable &var, const
LinExpression & expr, const Integer & denominator= Integer_one())

Assigns toxthis the affine preimage (p.7) of xthis under the function mapping variableinto the
affine expression specified lexpr andd.

Parameters:
var The variable to which the affine expression is substituted.

expr The numerator of the affine expression.
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:

std::invalid_argument thrown if denominator is zero or ifexpr andx«this are dimension-
incompatible or ifvar is not a dimension ofthis

8.9.4.16 templatecclass Box> void Parma_Polyhedra_Library::Polyhedron::shrink _bounding_box
(Box & box) const

Usexthis to shrink a generic, interval-based bounding box.

Parameters:
box The bounding box to be shrunk.

The template class Box must provide the following methods, whose return value, if any, is simply ignored.
set_empty()

causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(unsigned int k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to #hh dimension with[n/d, +c0) if closed is true , with
(n/d,+o0) if closed isfalse . The fractionn/d is in canonical form, that is; andd have no common
factors andl is positive,0/1 being the unique representation for zero.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 45

lower_upper_bound(unsigned int k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to theh dimension with(—oco,n/d] if closed is true , with
(—o0,n/d) if closed isfalse . The fractionn/d is in canonical form.

8.9.4.17 bool ParmaPolyhedra_Library::Polyhedron::OK (bool checknot.empty= false) const

Checks if all the invariants are satisfied.

Parameters:
checknot.empty true if and only if, in addition to checking the invariantghis must be checked
to be not empty.

Returns:
true if and only if xthis satisfies all the invariants and eithelteck _not _empty is false or
xthis is not empty.

The check is performed so as to intrude as little as possible. In case invariants are violated error messages
are written orstd::cerr . This is useful for the purpose of debugging the library.

8.9.4.18 void ParmaPolyhedra Library::Polyhedron::add _dimensionsand_embed (sizet dim)

Addsdim new dimensions and embeds the old polyhedron into the new space.

Parameters:
dim The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are not constrained.
For instance, when starting from the polyhedf@rC R? and adding a third dimension, the result will be
the polyhedron

{ (z,y,2)T € R3 ‘ (z,y)T e P }.

8.9.4.19 void ParmaPolyhedra Library::Polyhedron::add _dimensionsand_project (size.t dim)

Addsdim new dimensions to the polyhedron and does not embed it in the new space.

Parameters:
dim The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the polyhe®rah R? and adding a third dimension,

the result will be the polyhedron

{(z,y,O)T e R? | (z,y)T € 77}.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference

46

8.9.4.20 void ParmaPolyhedra Library::Polyhedron::remove _dimensions (const std::set Vari-
able > & to_beremoved

Removes all the specified dimensions.

Parameters:
to_beremoved The set ofVariable (p.49) objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument thrown if xthis is dimension-incompatible with one of théariable (p.49)
objects contained ito _be _removed .

8.9.4.21 void ParmaPolyhedra Library::Polyhedron::remove _higher_dimensions (sizet new-
dimension

Removes the higher dimensions so that the resulting space will have dimeesgictimension

Exceptions:
std::invalid_argument thrown if new_dimensions is greater than the space dimensioribfis

8.9.4.22 bool ParmaPolyhedra Library::Polyhedron::add _constraints.and_minimize (ConSys &
c9)

Adds the specified constraints and minimizes the result, which is assigatdgo .

Returns:
false if and only if the result is empty.

Parameters:
cs The constraints that will be added to the current system of constraints. This parameter is not
declaredconst because it can be modified.

Exceptions:
std::invalid_argument thrown if «this and cs are topology-incompatible or dimension-
incompatible.

8.9.4.23 void ParmaPolyhedra Library::Polyhedron::add _constraints (ConSys &cs)

Adds the specified constraints without minimizing.

Parameters:
cs The constraints that will be added to the current system of constraints. This parameter is not
declarecconst because it can be modified.

Exceptions:
std::invalid_argument thrown if «this and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference a7

8.9.4.24 void ParmaPolyhedra Library::Polyhedron::add _dimensionsand_constraints (ConSys &
c9)

First increases the space dimensiontifis by addingcs.space _dimension() new dimensions;
then adds to the system of constraintsthfis a renamed-apart version of the constraintssn

Exceptions:
std::invalid_argument thrown if xthis andcs are topology-incompatible.

8.9.4.25 bool ParmaPolyhedra Library::Polyhedron::add _generatorsand_minimize (GenSys &
99
Adds the specified generators and minimizes the result, which is assigriisto .

Returns:
false if and only if the result is empty.

Parameters:
gs The generators that will be added to the current system of generators. The parameter is not declared
const because it can be modified.

Returns:
false if the resulting polyhedron is empty.

Exceptions:
std::invalid_argument thrown if «this and gs are topology-incompatible or dimension-
incompatible, or ifkthis is empty and the the system of generatggss not empty, but has no
points.

8.9.4.26 void ParmaPolyhedra Library::Polyhedron::add _generators (GenSys &g9)

Adds the specified generators without minimizing.

Parameters:
gs The generators that will be added to the current system of generators. This parameter is not declared
const because it can be modified.

Exceptions:
std::invalid_argument thrown if «this and gs are topology-incompatible or dimension-
incompatible, or ifxthis is empty and the system of generatgss is not empty, but has no
points.

8.9.4.27 bool ParmaPolyhedra_Library::Polyhedron::bounds _from _above (const LinExpression &
expr) const

Returngtrue if and only if expr is bounded from above isthis

Exceptions:
std::invalid_argument thrown if expr andsxthis are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 ParmaPolyhedra Library::Polyhedron Class Reference 48

8.9.4.28 bool ParmaPolyhedra Library::Polyhedron::bounds _from _below (const LinExpression &
expr) const

Returngrue if and only if expr is bounded from below inthis

Exceptions:
std::invalid_argument thrown if expr andsxthis are dimension-incompatible.

8.9.4.29 void ParmaPolyhedra Library::Polyhedron::swap (Polyhedron & y)

Swapssthis with polyhedrony. (xthis andy can be dimension-incompatible.).

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible.

8.9.5 Friends And Related Function Documentation

8.9.5.1 bool ParmaPolyhedra_Library::operator <= (const Polyhedron &x, const Polyhedron &Yy)
[friend]
Returngrue if and only if polyhedrorx is contained in polyhedrow.

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.5.2 bool operator== (const Polyhedron &, const Polyhedron &y) [related]

Returngrue if and only if x andy are the same polyhedron.

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.5.3 bool operator!= (const Polyhedron &, const Polyhedron &y) [related]

Returngrue if and only if x andy are different polyhedra.

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.5.4 bool operatok (const Polyhedron &x, const Polyhedron &y) [related]

Returngtrue if and only if x is strictly contained iry.

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.10 ParmaPolyhedra Library::Throwable Class Reference 49

8.9.5.5 bool operator- (const Polyhedron &x, const Polyhedron &y) [related]

Returngrue if and only if x strictly containsy.

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.5.6 bool operator-= (const Polyhedron &Xx, const Polyhedron &y) [related]

Returngrue if and only if X containsy.

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.10 ParmaPolyhedra Library::Throwable Class Reference

User objects’ the PPL can throw.

Public Methods

¢ virtual void throw _me () const=0
Throws the user defined exception object.

8.10.1 Detailed Description

User objects’ the PPL can throw.

This abstract base class should be instantiated by those users willing to provide a polynomial upper bound
to the time spent by any invocation of a library operator.

8.11 ParmaPolyhedra Library::Variable Class Reference

A dimension of the space.

Public Methods

e Variable (unsigned int i)
Builds the variable corresponding to the Cartesian axis of index

e unsigned inid () const
Returns the index of the Cartesian axis associated to the variable.

Related Functions
(Note that these are not member functions.)

e std::ostream &operator< < (std::ostream &s, const Variable &v)

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9 PPL File Documentation 50

Output operator.

e booloperator< (const Variable &v, const Variable &w)
Defines a total ordering on variables.

8.11.1 Detailed Description

A dimension of the space.

An object of the clas¥ariable (p.49) represents a dimension of the space, that is one of the Cartesian
axes. Variables are used as base blocks in order to build more complex linear expressions. Each variable
is identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0).

Note that the “meaning” of an object of the clagariable (p.49) is completely specified by the integer
index provided to its constructor: be careful not to be mislead by C++ language variable names. For
instance, in the following example the linear expressmhs&nde? are equivalent, since the two variables

x andz denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
LinExpression el
LinExpression e2

X +y;
y +z

9 PPL File Documentation

9.1 pplc.h File Reference

Include dependency graph for pph:

gmp.h

Typedefs

o typedef pplCoefficienttag ppl_Coefficient.t
Opaque pointer to Coefficient .

o typedef pplCoefficienttag const« ppl_const Coefficient. t
Opaque pointer to const Coefficient .

o typedef pplLinExpressiontag* ppl_LinExpression_t
Opaque pointer to LinExpression .

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference

51

o typedef pplLinExpressiontag const ppl_constLinExpression_t
Opaque pointer to const LinExpression .

o typedef pplConstrainttag« ppl_Constraint_t
Opaque pointer to Constraint .

o typedef pplConstrainttag const ppl_const Constraint _t
Opaque pointer to const Constraint .

o typedef pplConSystag* ppl_ConSyst
Opaque pointer to ConSys .

o typedef pplConSystag const« ppl_const ConSyst
Opaque pointer to const ConSys .

o typedef pplConSys_constiteratortag+ ppl_ConSys_constiterator _t
Opaque pointer to ConSysonstiterator .

o typedef pplConSys_constiteratortag const ppl_const ConSys _constiterator _t
Opaque pointer to const ConSysonstiterator .

o typedef pplGeneratottag « ppl_Generator_t
Opaque pointer to Generator .

o typedef pplGeneratoitag consi ppl_const Generator_t
Opaque pointer to const Generator .

o typedef pplGenSystag* ppl_GenSyst
Opaque pointer to GenSys .

o typedef pplGenSystag const ppl_const GenSyst
Opaque pointer to const GenSys .

o typedef pplGenSys_constiteratortag* ppl_GenSys_constiterator _t
Opaque pointer to GenSysonstiterator .

o typedef pplGenSys_constiteratortag const ppl_const GenSys_constiterator _t
Opaque pointer to const GenSysnstiterator .

o typedef pplPolyhedrontag« ppl_Polyhedron.t
Opaque pointer to Polyhedron .

o typedef pplPolyhedrontag const« ppl_const Polyhedron t
Opaque pointer to const Polyhedron .

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1

ppl_c.h File Reference

52

Enumerations

enum ppl_enumerror _code { PPL_LERROR.OUT_.OF_MEMORY, PPL_ERROR.-
INVALID _ARGUMENT, PPL_ERROR_INTERNAL _ERROR, PPL_.ERROR_UNKNOWN _-
STANDARD_EXCEPTION, PPL.LERROR_UNEXPECTED_ERROR }

enum ppl_enum_Constraint_Type { PPL_CONSTRAINT _-TYPE_EQUAL, PPL_-
CONSTRAINT _TYPE_GREATER _-THAN _OR_EQUAL, PPL_CONSTRAINT _TYPE _-
GREATER _-THAN, PPL_CONSTRAINT _-TYPE_LESS.THAN _.OR_EQUAL, PPL_-
CONSTRAINT _-TYPE_LESS_ THAN }

enum ppl_enum_Generator_Type { PPL.GENERATOR _TYPE_LINE, PPL_GENERATOR _-
TYPE_RAY, PPL_GENERATOR _TYPE_POINT, PPL_GENERATOR _TYPE_CLOSURE -
POINT }

Functions

int ppl_initialize (void)

int ppl_finalize (void)

int ppl_seterror _handler (void(xh)(enumppl_enum_error _codecode, const chardescription))
int ppl_new_Coefficient (ppl_Coefficientt xpc)

int ppl_new_Coefficient from _mpz_t (ppl_Coefficientt xpc, mpzt z)

int ppl_new_Coefficient from _Coefficient (ppl _Coefficient t xpc, ppl_const Coefficientt c)

int ppl_assignCoefficientfrom _mpz_t (ppl_Coefficientt dst, mpzt z)

int ppl_assignCoefficient from _Coefficient (ppl_Coefficientt dst,ppl_const Coefficient t src)
int ppl_delete Coefficient (ppl_const Coefficient.t c)

int ppl_Coefficientto_mpz_t (ppl_const Coefficientt c, mpzt z)

int ppl_Coefficient OK (ppl_constCoefficient.t c)

int ppl_new_LinExpression (ppl_LinExpression_t xple)

int ppl_new_LinExpression_with _dimension (ppl_LinExpression_t xple, unsigned int d)

int ppl_new_LinExpression_from _LinExpression (ppl_LinExpression_t xple, ppl_constLin-
Expressiont le)

int ppl_new_LinExpression_from _Constraint (ppl_LinExpression_t «ple,ppl_const Constraint_t
c)

int ppl_new_LinExpression_from _Generator (ppl_LinExpression_t *ple, ppl_const Generator_t
9)

int ppl_delete LinExpression (ppl_const LinExpression_t le)

int ppl_assignLinExpression_from _LinExpression (ppl_LinExpression_t dst, ppl_constLin-
Expressiont src)

int ppl_LinExpression_add_to_coefficient (ppl_LinExpression_t le, unsigned int varppl_const -
Coefficient.t n)

int ppl_LinExpression_add_to_inhomogeneougppl_LinExpression_t le, ppl_const Coefficient t
n)

int ppl_LinExpression_spacedimension (ppl_const LinExpression_t le)

int ppl_LinExpression_OK (ppl_constLinExpression_t le)

int ppl_new_Constraint (ppl_Constraint_t xpc, ppl_constLinExpression_t le, enumppl_enum_-
Constraint_Type)

int ppl_new_Constraint_zero_dim _false (ppl_Constraint_t «pc)

int ppl_new_Constraint_zero_dim _positivity (ppl_Constraint_t xpc)

int ppl_new_Constraint_from _Constraint (ppl_Constraint_t xpc, ppl_constConstraint_t c)

int ppl_delete Constraint (ppl_const Constraint_t c)

int ppl_assignConstraint_from _Constraint (ppl_Constraint_t dst,ppl_constConstraint_t src)
int ppl_Constraint_spacedimension (ppl_constConstraint_t c)

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 53

int ppl_Constraint_type (ppl_const Constraint_t c)

int ppl_Constraint_coefficient(ppl_const Constraint_t c, int var,ppl_Coefficient.t n)

int ppl_Constraint_inhomogeneougerm (ppl_const Constraint_t c, ppl_Coefficientt n)

int ppl_Constraint_OK (ppl_const.Constraint_t c)

int ppl_new_ConSys(ppl_ConSyst *pcs)

int ppl_new_ConSyszero_dim_empty (ppl_ConSyst xpcs)

int ppl_new_ConSysfrom _Constraint (ppl_ConSyst xpcs,ppl_constConstraint_t c)

int ppl_new_ConSysfrom _ConSys(ppl_-ConSyst xpcs,ppl_const ConSyst cs)

int ppl_delete ConSys(ppl_const ConSyst cs)

int ppl_assignConSysfrom _ConSys(ppl_ConSyst dst,ppl_constConSyst src)

int ppl_ConSysspacedimension (ppl_const ConSyst cs)

int ppl_ConSysinsert_Constraint (ppl_ConSyst cs,ppl_constConstraint_t c)

int ppl_ConSysOK (ppl_constConSyst c)

int ppl_new_ConSys _constiterator (ppl_ConSys _constiterator _t xpcit)

int ppl_new_ConSys_constiterator _from _ConSys _const.iterator (ppl_ConSys _const -

iterator _t «pcit, ppl_const ConSys _const.iterator _t cit)

int ppl_delete ConSys _constiterator (ppl_constConSys_constiterator _t cit)

e int ppl_assignConSys _constiterator from _ConSys_constiterator (ppl_-ConSys_const-
iterator _t dst,ppl_const ConSys_constiterator _t src)

e int ppl_ConSysbegin (ppl_ConSyst cs,ppl_ConSys_constiterator _t cit)

e int ppl_ConSysend (ppl_ConSyst cs,ppl_ConSys_constiterator _t cit)

e int ppl_ConSys _constiterator _dereference(ppl_const ConSys_constiterator _t cit, ppl_const-
Constraint_t xpc)

e int ppl_ConSys _constiterator _increment (ppl_ConSys _constiterator _t cit)

e int ppl_ConSys _constiterator _equaltest (ppl_constConSys _constiterator .t X, ppl_const-
ConSys _constiterator _t y)

e int ppl_new_Generator (ppl_Generator_t xpg, ppl_constLinExpression_t le, enumppl_enum.-

Generator_Type t, ppl_const Coefficient t d)

int ppl_new_Generator_zero_dim _point (ppl_Generator_t «pg)

int ppl_new_Generator_zero_dim _closure point (ppl_Generator_t «pg)

int ppl_new_Generator_from _Generator (ppl_Generator_t xpg, ppl_constGenerator_t g)

int ppl_delete Generator (ppl_constGenerator_t g)

int ppl_assignGenerator_from _Generator (ppl_Generator_t dst,ppl_const Generator_t src)

int ppl_Generator_spacedimension (ppl_const Generator-t g)

int ppl_Generator_type (ppl_const Generator_t g)

int ppl_Generator_coefficient(ppl_const Generator.t g, int var,ppl_Coefficient.t n)

int ppl_Generator_divisor (ppl_constGenerator_t g, ppl_Coefficientt n)

int ppl_Generator_ OK (ppl_constGenerator.t g)

int ppl_new_GenSys(ppl_GenSyst xpgs)

int ppl_new_GenSysfrom _Generator (ppl_GenSyst *pgs,ppl_const Generator.t g)

int ppl_new_GenSysfrom _GenSys(ppl_GenSyst xpgs,ppl_const GenSyst gs)

int ppl_delete GenSys(ppl_const GenSyst gs)

int ppl_assignGenSysfrom _GenSys(ppl_GenSyst dst,ppl_const GenSyst src)

int ppl_GenSysspacedimension (ppl_const GenSyst gs)

int ppl_GenSysinsert_Generator (ppl_GenSyst gs,ppl_const Generator_t g)

int ppl_GenSysOK (ppl_constGenSyst c)

int ppl_new_GenSys_constiterator (ppl_GenSys_constiterator _t xpgit)

int ppl_new_GenSys_constiterator _from _GenSys_constiterator (ppl_GenSys _const -

iterator _t xpgit, ppl_const GenSys_constiterator _t git)

¢ int ppl_delete GenSys _constiterator (ppl_constGenSys_constiterator _t git)

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 54

e int ppl_assignGenSys_constiterator _from _GenSys_constiterator (ppl_-GenSys_const-
iterator _t dst,ppl_const GenSys_constiterator _t src)

e int ppl_GenSysbegin (ppl_const GenSyst gs,ppl_GenSys_constiterator _t git)

e int ppl_GenSysend (ppl_const GenSyst gs,ppl_GenSys_constiterator _t git)

e int ppl_GenSys_constiterator _dereference(ppl_const GenSys_constiterator _t git, ppl_const -
Generator_t xpg)

e int ppl_GenSys _constiterator _increment (ppl_GenSys_constiterator _t git)

int ppl_GenSys_constiterator _equal_test (ppl_constGenSys_constiterator _t x, ppl_const-

GenSys _constiterator _t y)

int ppl_new_C_Polyhedron_from _dimension (ppl_Polyhedron_t «pph, unsigned int d)

int ppl_new_NNC_Polyhedron_from _dimension (ppl_Polyhedron_t xpph, unsigned int d)

int ppl_new_C_Polyhedron_empty_from _dimension (ppl_Polyhedron.t xpph, unsigned int d)

int ppl_new_NNC_Polyhedron_empty_from _dimension (ppl_Polyhedron_t «pph, unsigned int d)

int ppl_new_C_Polyhedron from _C_Polyhedron (ppl_Polyhedront xpph, ppl_const-

Polyhedron.t ph)

e int ppl_new.C_Polyhedron_from _NNC_Polyhedron (ppl_Polyhedront xpph, ppl_const-
Polyhedron_t ph)

e int ppl_new.NNC_Polyhedron_from _C_Polyhedron (ppl_Polyhedront xpph, ppl_const-
Polyhedron.t ph)

e int ppl_-new.NNC_Polyhedron_from _NNC_Polyhedron (ppl_Polyhedron.t xpph, ppl_const-

Polyhedron_t ph)

int ppl_new_C _Polyhedron_from _ConSys(ppl_Polyhedron_t xpph,ppl_ConSyst cs)

int ppl_new_NNC_Polyhedron_from _ConSys(ppl_Polyhedron_t xpph,ppl_ConSyst cs)

int ppl_new_C_Polyhedron_from _GenSys(ppl_Polyhedron_t xpph, ppl_GenSyst gs)

int ppl_new_NNC_Polyhedron_from _GenSys(ppl_Polyhedron.t xpph,ppl_GenSyst gs)

int ppl_new_C_Polyhedron_from _bounding_box (ppl_Polyhedron_t «pph, unsigned in{space-

dimension)(void), int¢éis_.empty)(void), intégetlower_bound)(unsigned int k, int closedpl_-

Coefficientt n, ppl_Coefficientt d), int(xgetupperbound)(unsigned int k, int closedypl_-

Coefficientt n, ppl_Coefficient t d))

e int ppl_new.NNC_Polyhedron from _bounding_box (ppl_Polyhedront «pph, unsigned
int(xspacedimension)(void), intis_empty)(void), intégetlower_.bound)(unsigned int k, int
closed,ppl_Coefficientt n, ppl_Coefficientt d), int(xgetupperbound)(unsigned int k, int closed,
ppl _Coefficientt n, ppl_Coefficientt d))

e int ppl_delete Polyhedron (ppl_const Polyhedron_t ph)

e int ppl_assignC_Polyhedron from _C_Polyhedron (ppl_Polyhedront dst, ppl_const-
Polyhedron_t src)

e int ppl_assignNNC_Polyhedron_from _NNC_Polyhedron (ppl_Polyhedront dst, ppl_const-
Polyhedron_t src)

¢ int ppl_Polyhedron_spacedimension (ppl_constPolyhedron_t ph)

¢ int ppl_Polyhedron.intersection assign(ppl_Polyhedron.t x, ppl_constPolyhedron_t y)

e int ppl_Polyhedron.intersection.assignand_minimize (ppl_Polyhedront x, ppl_const-
Polyhedron_t y)

o int ppl_Polyhedron_poly_hull _assign(ppl_Polyhedron.t x, ppl_const Polyhedron_t y)

e int ppl_Polyhedron poly_hull _assignand_minimize (ppl_Polyhedront x, ppl_const-
Polyhedron_t y)

¢ int ppl_Polyhedron_poly_difference_assign(ppl_Polyhedron_t x, ppl_const Polyhedron.t y)

e int ppl_Polyhedron_poly_difference_assignand_minimize (ppl_Polyhedront x, ppl_const-
Polyhedron_t y)

o int ppl_Polyhedron H79_widening_assign(ppl_Polyhedron.t x, ppl_const Polyhedron.t y)

o int ppl_Polyhedron_limited "H79_widening_assign(ppl_Polyhedron.t x, ppl_const Polyhedron_t
Yy, ppl_ConSyst cs)

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1

ppl_c.h File Reference 55

int ppl_Polyhedron_constraints (ppl_constPolyhedron_t ph, ppl_const ConSyst xpcs)

int ppl_Polyhedron.minimized_constraints (ppl_constPolyhedront ph, ppl_constConSyst
*PCS)

int ppl_Polyhedron_generators(ppl_const Polyhedron_t ph, ppl_const GenSyst *pgs)

int ppl_Polyhedron_minimized_generators (ppl_constPolyhedront ph, ppl_constGenSyst
*Pgs)

int ppl_Polyhedron.add_constraint (ppl _Polyhedron_t ph, ppl_constConstraint_t c)

int ppl_Polyhedron.add_generator (ppl_Polyhedron.t ph, ppl_const Generator_t g)

int ppl_Polyhedron_.add_constraints (ppl _Polyhedron_t ph, ppl_ConSyst cs)

int ppl_Polyhedron.add_constraints.and_minimize (ppl_Polyhedron_t ph, ppl_ConSyst cs)

int ppl_Polyhedron.add_generators(ppl_Polyhedron_t ph, ppl_GenSyst gs)

int ppl_Polyhedron.add_generatorsand_minimize (ppl_Polyhedron.t ph, ppl_GenSyst gs)

int ppl_Polyhedron.add_dimensionsand_embed(ppl_Polyhedron_t ph, unsigned int d)

int ppl_Polyhedron.add_dimensionsand_project (ppl_Polyhedron_t ph, unsigned int d)

int ppl_Polyhedron_remove dimensions(ppl_Polyhedron_t ph, unsigned int ds[], unsigned int n)
int ppl_Polyhedron_remove higher_dimensions(ppl _Polyhedron_t ph, unsigned int d)

int ppl_Polyhedron.add_dimensionsand_constraints (ppl_Polyhedron_t ph, ppl_ConSyst cs)
int ppl_Polyhedron_affine_.image (ppl_Polyhedront ph, unsigned int var,ppl_constLin-
Expressiont le, ppl_const Coefficient.t d)

int ppl_Polyhedron_affine_preimage (ppl_Polyhedron.t ph, unsigned int varppl_constLin-
Expressiont le, ppl_const Coefficient.t d)

int ppl_Polyhedron_shrink _bounding_box (ppl_constPolyhedron_t ph, void¢isetempty)(void),
void(xraiselower_bound)(unsigned int k, int closedppl_constCoefficientt n, ppl_const-
Coefficientt d), void(xlower_.upperbound)(unsigned int k, int closeg@pl_const Coefficientt n,
ppl_const Coefficient t d))

int ppl_Polyhedron relation_with _Constraint (ppl_constPolyhedront ph, ppl_const-
Constraint_t c)

int ppl_Polyhedron_relation _with_Generator (ppl_constPolyhedront ph, ppl_const-
Generator_t g)

int ppl_Polyhedron_.check empty (ppl_constPolyhedron_t ph)

int ppl_Polyhedron_check universe (ppl_const Polyhedron_t ph)

int ppl_Polyhedron_is_bounded (ppl_const Polyhedron_t ph)

int ppl_Polyhedron_.bounds from _above (ppl_constPolyhedront ph, ppl_constLin-
Expressiont le)

int ppl_Polyhedron_bounds from_below (ppl_constPolyhedront ph, ppl_constLin-
Expressiont le)

int ppl_Polyhedron.is_topologically_closed(ppl_const Polyhedron_t ph)

int ppl_Polyhedron_topological_closure assign(ppl -Polyhedron.t ph)

int ppl_Polyhedron_contains Polyhedron (ppl _const Polyhedron.t x, ppl_const Polyhedron.t y)
int ppl_Polyhedron_ strictly _.contains Polyhedron (ppl_constPolyhedront x, ppl_const-
Polyhedron_t y)

int ppl_Polyhedron. OK (ppl_const Polyhedron_t ph)

Variables

unsigned inPPL_POLY _.CON_RELATION _IS_DISJOINT

unsigned inPPL_POLY _CON_RELATION _STRICTLY _INTERSECTS
unsigned inPPL_POLY _CON_RELATION _IS_INCLUDED

unsigned inPPL_POLY _CON_RELATION _SATURATES

unsigned inPPL_POLY _GEN_RELATION _SUBSUMES

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference

9.1.1 Detailed Description

This file implements the C interface. Detailed description with examples to be written.

9.1.2 Define Documentation

9.1.2.1 #define PPLTYPE_DECLARATION(Type)

Value:

/*! \brief Opaque pointer to Type. */ \

typedef struct ppl_ ## Type ## _tag* ppl_ ## Type ## _t; \

/*! \brief Opaque pointer to const Type. */ \

typedef struct ppl_ ## Type ## _tag const* ppl_const_ ## Type ## _t

9.1.3 Enumeration Type Documentation

9.1.3.1 enum pplenum_error _code

Defines the error code that any function can return.

Enumeration values:
PPL_ERROR_OUT_OF_MEMORY The virtual memory available to the process has been ex-
hausted.

PPL_ERROR_INVALID _/ARGUMENT A function has been invoked with an invalid argument.

PPL_ERROR_INTERNAL _.ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL_ERROR_UNKNOWN _STANDARD _EXCEPTION A standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL_ERROR_UNEXPECTED_ERROR A totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

9.1.3.2 enum pplenum_Constraint_Type

Describes the relations represented by a constraint.

Enumeration values:
PPL_CONSTRAINT _TYPE_EQUAL The constraint is of the forra = 0.

PPL_CONSTRAINT _TYPE_GREATER _THAN _OR_EQUAL The constraint is of the form >
0.

PPL_.CONSTRAINT _TYPE_GREATER_THAN The constraint is of the forra > 0.
PPL_CONSTRAINT _TYPE_LESS_THAN _OR_EQUAL The constraint is of the forra < 0.
PPL_.CONSTRAINT _-TYPE_LESS_.THAN The constraint is of the forma < 0.

9.1.3.3 enum pplenum_Generator_Type

Describes the different kinds of generators.

Enumeration values:
PPL_GENERATOR _TYPE_LINE The generator is a line.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 57

PPL_GENERATOR _TYPE_RAY The generator is a ray.
PPL_GENERATOR _TYPE_POINT The generator is a point.
PPL_GENERATOR _TYPE_CLOSURE_POINT The generator is a closure point.

9.1.4 Function Documentation

9.1.4.1 intpplinitialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

9.1.4.2 int ppLfinalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

9.1.4.3 int pplLseterror _handler (void(x h)(enum ppl.enum_error_code code, const char
xdescription))

Installs the user-defined error handler pointechbyThe error handler takes an error code and a textual
description that gives further information about the actual error. The C string containing the textual de-
scription is read-only and its existence it not guaranteed after the handler has returned.

9.1.4.4 int ppLnew_Coefficient (ppl_Coefficientt x pc)

Creates a new coefficent with value 0 and writes an handle for the newly created coefficient atpaldress

9.1.4.5 int ppLnew_Coefficientfrom _mpz_t (ppl _Coefficientt x pc, mpz.t 2)

Creates a new coefficent with the value given by the GMP integamd writes an handle for the newly
created coefficient at address.

9.1.4.6 int ppLnew_Coefficient from _Coefficient (ppl_Coefficientt x pc, ppl_constCoefficientt c)

Builds a coefficient that is a copy af writes an handle for the newly created coefficient at addvess

9.1.4.7 int pplLassignCoefficient.from_mpz_t (ppl _Coefficientt dst mpz.t 2)
Assign todst the value given by the GMP integer

9.1.4.8 int pplassignCoefficientfrom Coefficient (ppl_Coefficientt dst ppl_constCoefficientt
Sre)

Assigns a copy of the linear expressgne to dst .

9.1.4.9 int ppLdelete Coefficient (ppl_const. Coefficient.t c)

Invalidates the handle: this makes sure the corresponding resources will eventually be released.

9.1.4.10 int pplLCoefficientto_mpz_t (ppl_const Coefficientt c, mpzt 2)
Sets the value of the GMP integeto the value of.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 58

9.1.4.11 int ppLCoefficient OK (ppl _const.Coefficient.t c)

Returns a positive integerdf is well formed, i.e., if it satisfies all its implementation variant; returns 0 and
perhaps make some noiseiis broken. Useful for debugging purposes.

9.1.4.12 int ppLnew_LinExpression (ppl_LinExpression_t * ple)

Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes an
handle for the new linear expression at addggss.

9.1.4.13 int ppLnew_LinExpression_with _dimension (ppLLinExpression_t = ple, unsigned intd)

Creates a new linear expression corresponding to the constantddimzensional space; writes an handle
for the new linear expression at address .

9.1.4.14 int pplnew_LinExpression_from _LinExpression (ppl_LinExpression_t = ple, ppl_const-
LinExpression_t le)

Builds a linear expression that is a copylef; writes an handle for the newly created linear expression at
addresgple .

9.1.4.15 int pplnew_LinExpression_from_Constraint (ppl_LinExpression_t * ple, ppl_const-
Constraint_t c)

Builds a linear expression corresponding to constraintvrites an handle for the newly created linear
expression at addrepte .

9.1.4.16 int pplnew_LinExpression_from _Generator (ppl_LinExpressiont * ple, ppl_const-
Generator_t g)

Builds a linear expression corresponding to genergtowrites an handle for the newly created linear
expression at addrepte .

9.1.4.17 int ppldelete LinExpression (ppl_constLinExpression_t le)

Invalidates the handle : this makes sure the corresponding resources will eventually be released.

9.1.4.18 int pplassignLinExpression_from _LinExpression (ppl_LinExpression_t dst ppl_const-
LinExpression_t src)

Assigns a copy of the linear expressine to dst .

9.1.4.19 int pplLLinExpression_add_to_coefficient (ppLLinExpression_t le, unsigned intvar, ppl_-
const Coefficient.t n)

Addsn to the coefficient of variablear in the linear expressiole . The space dimension is set to be the
maximum betweemar + 1 and the old space dimension.

9.1.4.20 int pplLinExpression_add_to_.inhomogeneous (pplLinExpressiont le, ppl_const-
Coefficientt n)

Addsn to the inhomogeneous term of the linear expreskion

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference

59

9.1.4.21 int pplLLinExpression_spacedimension (ppLconstLinExpression._t le)

Returns the space dimensionlef.

9.1.4.22 int ppLLinExpression_OK (ppl _.constLinExpression_t le)

Returns a positive integer ié is well formed, i.e., if it satisfies all its implementation variant; returns 0
and perhaps make some noistif is broken. Useful for debugging purposes.

9.1.4.23 int ppLnew_Constraint (ppl_Constraint_t « pc, ppl_constLinExpression_t le, enum ppl_-
enum.Constraint Typé

Creates the new constraité‘rel 0’ and writes an handle for it at addrgss. The space dimension of
the new constraint is equal to the space dimensida of

9.1.4.24 int ppLnew_Constraint_zero_dim _false (ppl.Constraint_t « pc)

Creates the unsatisfiable (zero-dimension space) condirairitand writes an handle for it at addrgss.

9.1.4.25 int ppLnew_Constraint_zero_dim _positivity (ppl _Constraint_t x pc)

Creates the true (zero-dimension space) constfaitl, also known agositivity constraint An handle
for the newly created constraint is written at addness

9.1.4.26 int ppLnew_Constraint_from _Constraint (ppl_Constraint_t x pc, ppl_constConstraint_t c)

Builds a constraint that is a copy of writes an handle for the newly created constraint at adqress

9.1.4.27 int ppLdelete Constraint (ppl .constConstraint_t c)

Invalidates the handle: this makes sure the corresponding resources will eventually be released.

9.1.4.28 int pplassignConstraint_from _Constraint (ppl_Constraint_t dst ppl_constConstraint_t
Sre)

Assigns a copy of the constraisitc to dst .

9.1.4.29 int pplLConstraint_spacedimension (pplLconstConstraint_t c)

Returns the space dimensionaf

9.1.4.30 int ppLConstraint_type (ppl_constConstraint_t c)

Returns the type of constraiat

9.1.4.31 int ppLConstraint_coefficient (ppLconstConstraint_t c, int var, ppl_Coefficient.t n)

Copies inton the coefficient of variablgar in constraintc.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference

60

9.1.4.32 int ppLConstraint_inhomogeneousterm (ppl_const Constraint_t ¢, ppl_Coefficient.t n)

Copies inton the inhomogeneous term of constraint

9.1.4.33 int ppLConstraint_OK (ppl _const. Constraint_t c)

Returns a positive integerdf is well formed, i.e., if it satisfies all its implementation variant; returns 0 and
perhaps make some noiseifs broken. Useful for debugging purposes.

9.1.4.34 int ppLnew_ConSys (ppLConSyst * pc9

Builds an empty system of constraints and writes an handle to it at aguress

9.1.4.35 int ppLnew_ConSyszero_dim_empty (ppl_ConSyst * pc9

Builds a zero-dimensional, unsatisfiable constraint system and writes an handle to it at pdgress

9.1.4.36 int ppLnew_ConSysfrom _Constraint (ppl_ConSyst * pcs ppl_constConstraint_t c)

Builds the singleton constraint system containing only a copy of constraintrites an handle for the
newly created system at addregs .

9.1.4.37 int ppLnew_ConSysfrom _ConSys (ppLConSyst x pcs ppl_const ConSyst c9)

Builds a constraint system that is a copycsf; writes an handle for the newly created system at address
pcs.

9.1.4.38 int pplLdelete ConSys (pplLconstConSyst cs)

Invalidates the handles : this makes sure the corresponding resources will eventually be released.

9.1.4.39 int pplassignConSysfrom _ConSys (ppLConSyst dst, ppl_const ConSyst src)

Assigns a copy of the constraint systers to dst .

9.1.4.40 int ppLConSysspacedimension (ppl.constConSyst cs)

Returns the dimension of the vector space enclosihiy

9.1.4.41 int ppLConSysinsert_Constraint (ppl_ConSyst cs ppl_constConstraint_t)

Inserts a copy of the constraiatinto xthis ; the space dimension is increased, if necessary.

9.1.4.42 int ppLConSysOK (ppl _constConSyst c)

Returns a positive integer s is well formed, i.e., if it satisfies all its implementation variant; returns 0
and perhaps make some noisesfis broken. Useful for debugging purposes.

9.1.4.43 int ppLnew_ConSys_constiterator (ppl _.ConSys _constiterator _t x pcit)

Builds a new ‘const iterator’ and writes an handle to it at addpess .

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 61

9.1.4.44 int pplnew_ConSys_constiterator _from _ConSys_constiterator (ppl_ConSys_const-
iterator _t * pcit, ppl_const ConSys _constiterator _t cit)

Builds a const iterator system that is a copycitf ; writes an handle for the newly created const iterator
at addresgcit

9.1.4.45 int pplLdelete ConSys _constiterator (ppl _.const ConSys_constiterator _t cit)

Invalidates the handleit : this makes sure the corresponding resources will eventually be released.

9.1.4.46 int pplassignConSys_constiterator _from _ConSys _constiterator (ppl _ConSys_const-
iterator _t dst, ppl_const ConSys _constiterator _t src)

Assigns a copy of the const iteratenc to dst .

9.1.4.47 int ppLConSysbegin (ppl.ConSyst cs ppl_ConSys _constiterator _t cit)

Assigns tocit a const iterator "pointing” to the beginning of the constraint system

9.1.4.48 int ppLConSysend (ppl_.ConSyst cs, ppl_ConSys _constiterator _t cit)

Assigns tocit a const iterator "pointing” past the end of the constraint system

9.1.4.49 int pplLConSys_constiterator _dereference (pplconstConSys_constiterator _t cit, ppl_-
constConstraint_t * pc)

Dereferenceit writing a const handle to the resulting constraint at addoess

9.1.4.50 int ppLConSys_constiterator _increment (ppl_ConSys_constiterator _t cit)

Incrementcit so that it "points” to the next constraint.

9.1.4.51 int pplLConSys _constiterator _equaltest (ppl.constConSys constiterator t x, ppl._-
constConSys _constiterator _t y)

Returns a positive integer if the iterators correspondingamdy are equal; return 0 if they are different.

9.1.4.52 int ppLnew_Generator (ppl_Generator_t x pg, ppl_constLinExpression_t le, enum ppl_-
enum_Generator_Type t, ppl_const Coefficient.t d)

Creates a new generator of directien and typet . If the generator to be created is a point or a closure
point, the divisord is applied tde . For other types of generatadsis simply disregarded. An handle for
the new generator is written at addr@gs The space dimension of the new generator is equal to the space
dimension ofe .

9.1.4.53 int ppLnew_Generator_zero_dim_point (ppl _Generator_t x pg)

Creates the point that is the origin of the zero-dimensional SRé&c®/rites an handle for the new generator
at addrespg.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference

62

9.1.4.54 int ppLnew_Generator_zero_dim_closure_point (ppl_Generator_t x pg)

Creates, as a closure point, the point that is the origin of the zero-dimensionalRpaskites an handle
for the new generator at addrgss.

9.1.4.55 int ppLnew_Generator_from _Generator (ppl_Generator_t « pg, ppl_const Generator_t g)

Builds a generator that is a copy @f writes an handle for the newly created generator at adgigss

9.1.4.56 int pplLdelete Generator (ppl_-constGenerator_t g)

Invalidates the handlg: this makes sure the corresponding resources will eventually be released.

9.1.4.57 intpplassignGenerator_from_Generator (ppl_Generator_t dst, ppl_const Generator_t src)

Assigns a copy of the generatnc to dst .

9.1.4.58 int ppLGenerator_spacedimension (ppLconstGenerator_t g)

Returns the space dimensiongf

9.1.4.59 int ppLGenerator_type (ppl_constGenerator_t g)

Returns the type of generatgr

9.1.4.60 int ppLGenerator_coefficient (ppLconstGenerator_t g, int var, ppl_Coefficientt n)

Copies inton the coefficient of variablear in generatog.

9.1.4.61 int ppLGenerator_divisor (ppl_constGenerator_t g, ppl_Coefficientt n)

If g is a point or a closure point assigns its divisonto

9.1.4.62 int ppLGenerator_OK (ppl _.constGenerator_t g)

Returns a positive integerdf is well formed, i.e., if it satisfies all its implementation variant; returns 0 and
perhaps make some noisaifs broken. Useful for debugging purposes.

9.1.4.63 int ppLnew_GenSys (pplGenSyst *« pg9

Builds an empty system of generators and writes an handle to it at agdy®ss

9.1.4.64 int ppLnew_GenSysfrom _Generator (ppl_-GenSyst * pgs ppl_constGenerator_t g)

Builds the singleton generator system containing only a copy of generatoites an handle for the newly
created system at addrgsss .

9.1.4.65 int ppLnew_GenSysfrom _GenSys (pplGenSyst * pgs ppl_constGenSyst g9

Builds a generator system that is a copygsf, writes an handle for the newly created system at address
pgs.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 63

9.1.4.66 int pplLdelete GenSys (pplconstGenSyst g9

Invalidates the handigs : this makes sure the corresponding resources will eventually be released.

9.1.4.67 int pplassignGenSysfrom _GenSys (pplGenSyst dst, ppl_const GenSyst src)

Assigns a copy of the generator systera to dst .

9.1.4.68 int ppLGenSysspacedimension (pplL.constGenSyst g9

Returns the dimension of the vector space enclosihip

9.1.4.69 int ppLGenSysinsert_Generator (ppl_GenSyst gs, ppl_constGenerator_t g)

Inserts a copy of the generatmiinto xthis ; the space dimension is increased, if necessary.

9.1.4.70 int pplLGenSysOK (ppl _constGenSyst c)

Returns a positive integer s is well formed, i.e., if it satisfies all its implementation variant; returns 0
and perhaps make some noisgsf is broken. Useful for debugging purposes.

9.1.4.71 int ppLnew_GenSys_constiterator (ppl _.GenSys_constiterator _t x pgit)

Builds a new ‘const iterator’ and writes an handle to it at addpgss .

9.1.4.72 int pplnew_GenSys_constiterator _from_GenSys_constiterator (ppl .GenSys_const-
iterator _t « pgit, ppl_constGenSys _constiterator _t git)

Builds a const iterator system that is a copygdf ; writes an handle for the newly created const iterator
at addrespgit

9.1.4.73 int ppldelete GenSys_constiterator (ppl _const GenSys_constiterator _t git)

Invalidates the handigit : this makes sure the corresponding resources will eventually be released.

9.1.4.74 int pplassignGenSys_constiterator _from _GenSys_constiterator (ppl .GenSys_const-
iterator _t dst ppl_const GenSys_constiterator _t src)

Assigns a copy of the const iteratenc to dst .

9.1.4.75 int ppLGenSysbegin (ppl.constGenSyst gs ppl_-GenSys_constiterator _t git)

Assigns togit a const iterator "pointing” to the beginning of the generator sygem

9.1.4.76 int ppLGenSysend (ppl_-const GenSyst gs ppl_-GenSys_constiterator _t git)

Assigns togit a const iterator "pointing” past the end of the generator sygfem

9.1.4.77 int ppLGenSys_constiterator dereference (pplconstGenSys_constiterator _t git, ppl_-
constGenerator_t * pg)

Dereferencgit writing a const handle to the resulting generator at addrgss

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 64

9.1.4.78 int ppLGenSys_constiterator _increment (ppl_GenSys_constiterator _t git)

Incrementgit so that it "points” to the next generator.

9.1.4.79 int ppLGenSys_constiterator _equaltest (ppl.constGenSys_constiterator t x, ppl_-
const GenSys_constiterator _t y)

Return a positive integer if the iterators corresponding sndy are equal; return 0 if they are different.

9.1.4.80 int ppLnew_C_Polyhedron from _dimension (pplLPolyhedron.t « pph, unsigned intd)

Builds an universe closed polyhedron of dimengioand writes an handle to it at addrggsh .

9.1.4.81 int ppLnew_NNC_Polyhedron_from _dimension (pplLPolyhedron_t x pph, unsigned intd)

Builds an universe NNC polyhedron of dimensiband writes an handle to it at addrggsh.

9.1.4.82 int pplLnew_C_Polyhedron_empty_from _dimension (pplLPolyhedron_t « pph, unsigned int
d)

Builds an empty closed polyhedron of dimensiand writes an handle to it at addrexsh.

9.1.4.83 int ppLnew_NNC_Polyhedron_empty_from _dimension (ppl.Polyhedront « pph, unsigned
int d)

Builds an empty NNC polyhedron of dimensidrand writes an handle to it at addrgxsh.

9.1.4.84 int pplnew.C_Polyhedronfrom_C_Polyhedron (ppl.Polyhedront = pph, ppl_const-
Polyhedron_t ph)

Builds a closed polyhedron that is a copypf; writes an handle for the newly created polyhedron at
addrespph.

9.1.4.85 int pplLnew_C_Polyhedron from _NNC_Polyhedron (ppl_Polyhedron.t « pph, ppl_const-
Polyhedron.t ph)

Builds a closed polyhedron that is a copy of of the NNC polyhegronwrites an handle for the newly
created polyhedron at addrggsh .

9.1.4.86 int ppLnew_.NNC_Polyhedron from _C_Polyhedron (ppl_.Polyhedront « pph, ppl_const-
Polyhedron_t ph)

Builds an NNC polyhedron that is a copy of of the closed polyhegtonwrites an handle for the newly
created polyhedron at addrggsh.

9.1.4.87 int ppLnew.NNC_Polyhedron_from _NNC_Polyhedron (ppl_Polyhedront = pph, ppl_-
constPolyhedron_t ph)

Builds an NNC polyhedron that is a copy ph; writes an handle for the newly created polyhedron at
addrespph.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 65

9.1.4.88 int ppLnew_C_Polyhedron from _ConSys (pplLPolyhedron.t x pph, ppl_ConSyst c9

Builds a new closed polyhedron recycling the system of constreintend writes an handle for the newly
created polyhedron at addrggsh. Sincecs will be the system of constraints of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the constraint system referencedy upon return, no assumption can be
made on its value.

9.1.4.89 int ppLnew_NNC_Polyhedron_from _ConSys (ppLPolyhedron.t « pph, ppl_ConSyst c9

Builds a new NNC polyhedron recycling the system of constraiat&ind writes an handle for the newly
created polyhedron at addrggsh. Sincecs will be the system of constraints of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the constraint system referencedy upon return, no assumption can be
made on its value.

9.1.4.90 int ppLnew_C_Polyhedron_from _GenSys (pplPolyhedron.t x pph, ppl_GenSyst g9

Builds a new closed polyhedron recycling the system of genergsoend writes an handle for the newly
created polyhedron at addrggsh . Sincecs will be the system of generators of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the generator system referenceddayupon return, no assumption can be
made on its value.

9.1.4.91 int ppLnew_NNC_Polyhedron_from _GenSys (pplPolyhedron.t « pph, ppl_GenSyst g9

Builds a new NNC polyhedron recycling the system of generagerand writes an handle for the newly
created polyhedron at addrggsh. Sincecs will be thesystem of generators of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the generator system referenceddayupon return, no assumption can be
made on its value.

9.1.4.92 int ppLnew_C_Polyhedron_from _bounding_box (ppl_Polyhedron.t x pph, unsigned int(x
spacedimension(void), int(x is_.empty(void), int(x getlower_bound(unsigned int k, int closed,
ppl_Coefficientt n, ppl_Coefficientt d), int(x getupperbound)(unsigned int k, int closed, ppl-
Coefficientt n, ppl_Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addrggsh. If an interval of the bounding box is provided with any finite

but open bound, then the polyhedron is not built and the vRlee ERRORNVALID ARGUMENTB
returned. The bounding box is accessed by using the following functions, passed as arguments:

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 66

unsigned int space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.
int is_empty()

returns O if and only if the bounding box describes a non-empty set. The furistiemmpty() will
always be called before the other functions. Howeveis ifempty() does not return 0, none of the
functions below will be called.

int get_lower_bound(unsigned int k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Ifl is not bounded from below, simply return 0.
Otherwise, setlosed , n andd as follows: closed s set to O if the lower boundary dfis open and
is set to a value different from zero otherwiseandd are assigned the integersandd such that the
canonical fractiom/d corresponds to the greatest lower bound.cThe fractionn/d is in canonical form

if and only if n andd have no common factors amlis positive,0/1 being the unique representation for
zero.

int get_upper_bound(unsigned int k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Ifl is not bounded from above, simply return O.
Otherwise, setlosed , n andd as follows:closed is set to O if the upper boundary éfis open and is
set to a value different from O otherwiseandd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the least upper bound of

9.1.4.93 intppLnew_.NNC_Polyhedron from _bounding_box (ppl_Polyhedron.t « pph, unsigned int(«
spacedimension(void), int(x is_.empty(void), int(x getlower_bound)(unsigned int k, int closed,
ppl_Coefficientt n, ppl_Coefficientt d), int(x getupperbound(unsigned int k, int closed, ppl-
Coefficientt n, ppl_Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addregsh . The bounding box is accessed by using the following functions,
passed as arguments:

unsigned int space_dimension()
returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()
returns O if and only if the bounding box describes a non-empty set. The furistismmpty() will
always be called before the other functions. Howeveis ifempty() does not return 0, none of the

functions below will be called.

int get_lower_bound(unsigned int k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Iff is not bounded from below, simply return 0.
Otherwise, setlosed , n andd as follows: closed is set to O if the lower boundary dfis open and

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 67

is set to a value different from zero otherwiseandd are assigned the integerisandd such that the
canonical fractiom/d corresponds to the greatest lower bound.ofhe fractionn/d is in canonical form

if and only if n andd have no common factors amtis positive,0/1 being the unique representation for
zero.

int get_upper_bound(unsigned int k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Ifl is not bounded from above, simply return O.
Otherwise, setlosed , n andd as follows:closed is set to O if the upper boundary éfis open and is
set to a value different from O otherwiseandd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the least upper bound of

9.1.4.94 int ppLdelete Polyhedron (ppl_constPolyhedron_t ph)

Invalidates the handlgh: this makes sure the corresponding resources will eventually be released.

9.1.4.95 int pplassignC_Polyhedron from_C_Polyhedron (ppl_Polyhedront dst ppl_const-
Polyhedron_t src)

Assigns a copy of the closed polyhedrsne to the closed polyhedrodst .

9.1.4.96 int pplassignNNC_Polyhedron from NNC_Polyhedron (ppl_Polyhedron_t dst ppl_const-
Polyhedron_t src)

Assigns a copy of the NNC polyhedranc to the NNC polyhedromist .

9.1.4.97 int ppLPolyhedron_spacedimension (pplLconstPolyhedron.t ph)

Returns the dimension of the vector space encloging

9.1.4.98 int ppLPolyhedron.intersection.assign (ppLPolyhedron.t x, ppl_constPolyhedron_t y)

Intersectx with polyhedrony and assigns the resuit

9.1.4.99 int pplPolyhedron.intersection.assignand_minimize (ppl_Polyhedront x, ppl_const-
Polyhedron.t y)

Intersectsx with polyhedrony and assigns the resut Returns a positive integer if the resulting polyhe-
dron is non-empty; returns 0O if it is empty. Upon successful retxiis,also guaranteed to be minimized.

9.1.4.100 int pplLPolyhedron_poly_hull _assign (ppLPolyhedron.t x, ppl_const Polyhedron_t y)

Assigns tax the poly-hull of the set-theoretic union vfandy.

9.1.4.101 int pplPolyhedron_poly_hull_assignand_minimize (ppl_Polyhedront x, ppl_const-
Polyhedron.t y)

Assigns tox the poly-hull of the set-theoretic union gfandy. Returns a positive integer if the resulting
polyhedron is non-empty; returns O if it is empty. Upon successful returis, also guaranteed to be
minimized.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 68

9.1.4.102 int pplPolyhedron_poly_difference_assign (ppLPolyhedront x, ppl_constPolyhedron.t
y)

Assigns tax the poly-hull of the set-theoretic differencexofandy .

9.1.4.103 int pplPolyhedron poly_difference_assignand_minimize (ppl_Polyhedront x, ppl_-
const Polyhedron_t y)

Assigns tox the poly-hull of the set-theoretic difference wfandy. Returns a positive integer if the
resulting polyhedron is non-empty; returns O if it is empty. Upon successful retusralso guaranteed to
be minimized.

9.1.4.104 int pplPolyhedron. H79_widening_assign (ppLPolyhedron.t x, ppl_const Polyhedron_t y)

If the polyhedrory is contained in (or equal to) the polyhedmnassigns tx the H79-widening ok and
y.

9.1.4.105 int pplPolyhedronlimited _H79_widening_assign (pplLPolyhedront x, ppl_const-
Polyhedron.t y, ppl_ConSyst c9)

If the polyhedrory is contained in (or equal to) the polyhedmnassigns tx the H79-widening ok and
y intersected with the constraint systesn.

Warning:
This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

9.1.4.106 int pplPolyhedron_constraints (ppl_-constPolyhedron.t ph, ppl_constConSyst * pc9

Writes a const handle to the constraint system defining the polyhgtirah addresgcs .

9.1.4.107 int pplPolyhedron.minimized_constraints (ppl-constPolyhedront ph, ppl_constCon-
Syst x pc9

Writes a const handle to the minimized constraint system defining the polyhedratnaddresgcs .

9.1.4.108 int pplPolyhedron generators (ppLconstPolyhedron.t ph, ppl_const GenSyst * pgs

Writes a const handle to the generator system defining the polyhptrahaddrespgs .

9.1.4.109 int pplPolyhedron.minimized_generators (pplconstPolyhedront ph, ppl_constGen-
Syst * pg9
Writes a const handle to the minimized generator system defining the polyhgtliatraddrespgs .

9.1.4.110 int pplPolyhedron.add_constraint (ppl_Polyhedron_t ph, ppl_constConstraint_t c)

Adds a copy of the constraintto the system of constraints ph.

9.1.4.111 int pplPolyhedron.add_generator (ppl_Polyhedron_t ph, ppl_const Generator_t g)

Adds a copy of the generatgrto the system of generatorssyf.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference

69

9.1.4.112 int pplPolyhedron.add_constraints (ppl_-Polyhedron._t ph, ppl_ConSyst cs)
Adds the system of constraints to the system of constraints ph.
Warning:

This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

9.1.4.113 int pplPolyhedron.add_constraints.and_minimize (ppl_Polyhedron.t ph, ppl_-ConSyst
c9)

Adds the system of constraints to the system of constraints ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns O if it is empty. Upon successful rgthiris,guaranteed to be
minimized.

Warning:
This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

9.1.4.114 int pplPolyhedron.add_generators (ppLPolyhedron.t ph, ppl_GenSyst gs)
Adds the system of generatags to the system of generators |offi.
Warning:

This function modifies the generator system referenceddayupon return, no assumption can be
made on its value.

9.1.4.115 int pplPolyhedron.add_generatorsand_minimize (ppl_Polyhedront ph, ppl-GenSyst
g9

Adds the system of generatogs to the system of generators ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns O if it is empty. Upon successful rgthinis, guaranteed to be
minimized.

Warning:
This function modifies the generator system referenceddayupon return, no assumption can be
made on its value.

9.1.4.116 int pplPolyhedron.add_dimensionsand_embed (ppLPolyhedron.t ph, unsigned intd)

Addsd new dimensions to the space enclosing the polyheghoand toph itself.

9.1.4.117 int pplPolyhedron.add_dimensionsand_project (ppl _Polyhedron.t ph, unsigned intd)

Addsd new dimensions to the space enclosing the polyhedhon

9.1.4.118 int pplPolyhedron.remove dimensions (ppLPolyhedron_t ph, unsigned intdq], unsigned
int n)

Removes fronph and its containing space the dimensions that are specified in fassitions of the array
ds. The presence of duplicatesds is innocuous.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference 70

9.1.4.119 int pplPolyhedron_remove higher_dimensions (pplLPolyhedron_t ph, unsigned intd)

Removes the higher dimensions frgh and its enclosing space so that, upon successful return, the new
space dimension id.

9.1.4.120 int pplPolyhedron.add_dimensionsand_constraints (ppl_Polyhedron.t ph, ppl_ConSyst
c9)

First increases the space dimensioplfby adding as many dimensions as is the space dimensics;of
then adds to the system of constraintpbfa renamed-apart version of the constraintssn

Warning:
This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

9.1.4.121 int pplPolyhedron_affine_.image (ppLPolyhedron.t ph, unsigned intvar, ppl_constLin-
Expressiont le, ppl_const Coefficient.t d)

Transforms the polyhedrgrh, assigning an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed.

var The variable to which the affine expression is assigned.
le The numerator of the affine expression.
d The denominator of the affine expression.

9.1.4.122 int pplPolyhedron_affine_preimage (ppLPolyhedron.t ph, unsigned intvar, ppl_const-
LinExpression_t le, ppl_const Coefficient.t d)

Transforms the polyhedrgeh, substituting an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed.

var The variable to which the affine expression is substituted.
le The numerator of the affine expression.
d The denominator of the affine expression.

9.1.4.123 int pplPolyhedron_shrink _bounding_box (ppl_constPolyhedront ph, void(x set-
empty(void), void(x raiselower_bound)(unsigned int k, int closed, pplconstCoefficientt n, ppl_-
const Coefficientt d), void(x lower_upperbound)(unsigned int k, int closed, pplconst Coefficientt
n, ppl_const Coefficientt d))

Use ph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters,

Parameters:
ph The polyhedron that is used to shrink the bounding box.

setempty a pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 pplc.hFile Reference

raiselower_.bound a pointer to a void function with argument&nsigned int k, int
closed, ppl _const _Coefficient t n, ppl _const _Coefficient t d) thatin-
tersects the interval corresponding to khth dimension witHn /d, +00) if closed is non-zero,
with (n/d, +o0) if closed is zero. The fractiom/d is in canonical form, that is; andd have
no common factors andlis positive,0/1 being the unique representation for zero.

lower_upperbound a pointer to a void function with argumer(unsigned int k, int
closed, ppl _const _Coefficient t n, ppl _const _Coefficient t d) thatin-
tersects the interval corresponding to khth dimension with —oco, n/d] if closed is non-zero,
with (—oo, n/d) if closed is zero. The fractiom/d is in canonical form.

9.1.4.124 int pplPolyhedronrelation_with _Constraint (ppl_constPolyhedront ph, ppl_const-
Constraint_t c)

Checks the relation between the polyhedpbnwith the constraint. If successful, returns a non-negative
integer that is obtained as the bitwise or of the bits (chosen amongPERY_CON_RELATION_IS_-
DISJOINT PPLPOLY_CON.RELATION_STRICTLY_INTERSECTS, PPLPOLY_CON._RELATION. -
IS.INCLUDED, and PPLPOLY_CON_RELATION_SATURATES) that describe the relation betwg#n
andc.

9.1.4.125 int pplPolyhedron.relation_with _Generator (ppl_constPolyhedront ph, ppl_const-
Generator-t g)

Checks the relation between the polyhedpbnwith the generatog. If successful, returns a non-negative
integer that is obtained as the bitwise or of the bits (only FR)LY_GEN_RELATION_SUBSUMES, at
present) that describe the relation betwphrandg.

9.1.4.126 int pplPolyhedron_check empty (ppl_constPolyhedron_t ph)

Returns a positive integerjith is empty; returns 0 iph is not empty.

9.1.4.127 int pplPolyhedron_checkuniverse (ppl.constPolyhedron.t ph)

Returns a positive integer fifh is a universe polyhedron; returns 0 if it is not.

9.1.4.128 int pplPolyhedron.is_bounded (pplLconstPolyhedron.t ph)

Returns a positive integerjith is bounded; returns O gh is unbounded.

9.1.4.129 int pplPolyhedron_boundsfrom _above (pplLconstPolyhedront ph, ppl_constLin-
Expressiont le)

Returns a positive integerlié is bounded from above iph; returns 0 otherwise.

9.1.4.130 int pplPolyhedron_boundsfrom_below (ppl-constPolyhedront ph, ppl_constLin-
Expressiont le)

Returns a positive integerlié is bounded from below iph; returns 0 otherwise.

9.1.4.131 int pplPolyhedron.is_topologically_closed (ppLconst Polyhedron_t ph)

Returns a positive integer fifh is topologically closed; returns 0jifh is not topologically closed.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10 PPL Page Documentation 72

9.1.4.132 int pplPolyhedron_topological closure assign (ppLPolyhedron_t ph)

Assigns toph its topological closure.

9.1.4.133 int pplPolyhedron_contains Polyhedron (ppl.constPolyhedront x, ppl_const-
Polyhedron.t y)

Returns a positive integer Xf contains or is equal tg; returns 0 if it does not.

9.1.4.134 int pplPolyhedron_strictly _.contains Polyhedron (ppl_constPolyhedront x, ppl_const-
Polyhedron.t y)

Returns a positive integer¥f strictly containgy; returns 0 if it does not.

9.1.4.135 int pplPolyhedron OK (ppl _const.Polyhedron.t ph)

Returns a positive integer fh is well formed, i.e., if it satisfies all its implementation variant; returns 0
and perhaps make some noiselif is broken. Useful for debugging purposes.

9.1.5 Variable Documentation
9.1.5.1 unsigned int PPLPOLY _CON_RELATION _IS_DISJOINT

Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

9.1.5.2 unsigned int PPLPOLY _CON_RELATION _STRICTLY _INTERSECTS

Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

9.1.5.3 unsigned int PPLPOLY _CON_RELATION _IS_INCLUDED

Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

9.1.5.4 unsigned int PPLPOLY _CON_RELATION _SATURATES

Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

9.1.5.5 unsigned int PPLPOLY _GEN_RELATION _SUBSUMES

Individual bit saying that adding the generator would not change the polyhedron.

10 PPL Page Documentation

10.1 Prolog Interface
10.1.1 Introduction
The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization

of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 73

The system-independent features of the library are described in S>sbem-Independent Features
(p.73). SectionCompilation and Installation (p.82) explains how the various incarnations of the Prolog
interface are compiled and installed. Secti®ystem-Dependent Feature§p.82) illustrates the system-
dependent features of the interface for all the supported systems.

10.1.2 System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in Séctidmsiry

for Convex Polyhedra(p. 1), An Introduction to Convex Polyhedra (p.2), Representations of Convex
Polyhedra(p. 3), andOperations on Convex Polyhedrgp. 6) of this manual. Here we just describe those
aspects that are specific to the Prolog interface.

For proper operation the Prolog interface must be initialized by calling the predmaite-

initialize/0 and finalized by calling the predicappl _finalize/0 . Bothppl _initialize/0

andppl _finalize/0 are guarded against multiple invocations so that calfiph _initialize/O

several times makes no harm. The same holdgbr_finalize/0 . However, the first call t@pl _-
initialize/0 must occur before any other predicate of the interface is called. On the other hand, the
only interface’s predicates callable aftgpl _finalize/O areppl _finalize/0O itself (this further

call has no effect) andpl _initialize/0O , after which the interface’s services are usable again. Some

Prolog systems allow the specification of initialization and deinitialization functions in their foreign lan-
guage interfaces. The corresponding incarnations of the PPL-Prolog interface have been written so that
ppl _initialize/0 and/orppl _finalize/0O are called automatically. Secti@ystem-Dependent
Features(p.82) will detail in which cases initialization and finalization is automatically performed or is

left to the Prolog programmer’s responsibility. However, if you want to write portable applications you
may decide to invokepl _initialize/0 andppl _finalize/0 explicitly: since they can be called
multiple times without problems this will result in enhanced portability at a cost that is, by all means,
negligible.

The PPL predicates provided by the Prolog interface are specified below. The specification uses the fol-
lowing grammar rules:

Topology -> ¢ | nnc
Varld --> non-negative integer variable identifier
PPL_Var --> "$VAR’(Varld) PPL variable
LinExpr --> PPL_Var PPL variable

| number integer

| + LinExpr unary plus

| - LinExpr unary minus

| LinExpr + LinExpr addition

| LinExpr - LinExpr subtraction

| number * LinExpr multiplication

| LinExpr * number multiplication
Constraint > LinExpr = LinExpr equation

| LinExpr =< LinExpr nonstrict inequation

| LinExpr >= LinExpr nonstrict inequation

| LinExpr < LinExpr strict inequation

| LinExpr > LinExpr strict inequation
Constraint_System list of constraints

> []

| [Constraint]
| [Constraint | Constraint_System]

Generator --> point(LinExpr) point

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 74

| point(LinExpr, number) point
| closure-point(LinExpr) closure point
| closure-point(LinExpr, number)
closure point
(Int is the denominator so that the point or
closure point is defined by Expr/Int.)

| ray(LinExpr) ray
| line(LinExpr) line
Generator_System list of generators
-— []
| [Generator]

| [Generator | Generator_System]

Relation --> is_disjoint between a constraint and a polyhedron
| strictly_intersects between a constraint and a polyhedron
| is_included between a constraint and a polyhedron
| saturates between a constraint and a polyhedron
| subsumes between a generator and a polyhedron
| nothing
Numerator ~ --> number | + number | - number
Denominator --> number number must be non-zero
Rational --> number | + number | - number
| Numerator/Denominator rational number
Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction
Interval --> i(Bound, Bound) rational interval
Box ->]
| [Interval]
| [Interval | Box] list of intervals.

We first give some general information about using the interface.

e Access to any PPL polyhedron is provided by means of a Prolog term calladdie The data
structure of a handle, is implementation-dependent, system-dependent and version-dependent, and,
for this reason, deliberately left unspecified. What we do guarantee is that a handle is an ordinary
Prolog term that can be used as such and requiring very little memory.

e Only terms bound tealid handles may be used to access PPL polyhedra. A handle is made valid by

using:

ppl_new_Polyhedron_from_dimension/3,

ppl_new_Polyhedron_empty_from_dimension/3,

ppl_new_Polyhedron_from_Polyhedron/4,

ppl_new_Polyhedron_from_constraints/3,

ppl_new_Polyhedron_from_generators/3.

ppl_new_Polyhedron_from_bounding_box/3.
These predicates will create or copy a PPL polyhedron and construct a valid handle for referencing it.
The first argument (in the case ppl _new_Polyhedron _from _Polyhedron/4 , the first and
third arguments) denotes the topology and can be eitlbennc indicating a C or NNC polyhedron,
respectively. The third argument (in the cas@pl _new_Polyhedron _from _Polyhedron/4
the fourth argument) is a Prolog term that is unified with a new valid handle for accessing this

polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface

75

e As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicatppl _delete _Polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argumeptindelete _Polyhedron/1 , it becomes invalid.

e For a PPL polyhedron with space dimensionthe identifiers used for the PPL variables in the
constraints and the generators must lie between @arid Moreover, when using the predicates that
combine PPL polyhedra or add constraints or generators to a representation of a PPL polyhedron,
the polyhedra referenced and any constraints or generators in the call should follow all the space
dimension-compatibility rules stated in Secti@epresentations of Convex Polyhedrép. 3).

e As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in SectidRepresentations of Convex Polyhedrgp. 3).

e There are a number of predicates whose name ends &ith minimize . These are provided to
help the user obtain better performance.

For some of the operations on polyhedra in the PPL, the internal representation of a polyhedra has
to beminimized if it is not already minimized, an extra PPL minimization operation is performed
first. However this operation may be very costly and, for this reason, the PPL library is lazy and
avoids it as much as it can. For this reason, a predicate wittamat_minimize ending should

be used unless a minimized representation is needed for the next PPL operation. In that case it is
more efficient to use theand _minimize predicate. As an example, suppose you have to compute
the poly-hull of several polyhedra. Then use ¢ _Polyhedron _poly _hull _assign/2 for

each intermediate step apgdl _Polyhedron _poly _hull _assign _and_minimize/2 for the

last step. If you just have to compute the poly-hull of two polyhedra, theppisePolyhedron _-

poly _hull _assign _and_minimize/2

ppl _new_Polyhedron _from _dimension(+Topology, +Integer, -Handle)

Creates a new universe C or NNC polyhed@ndepending on the value @pology , with Integer
dimensionsHandle is unified with the handle foP. Thus the query

?- ppl_new_Polyhedron_from_dimension(c, X, 3).

creates the C polyhedron defining the 3-dimensional vector Spaeegth X bound to a valid handle for
accessing it.

ppl _new_Polyhedron _empty _from _dimension(+Topology, +Integer, -Handle)

Creates a new empty C or NNC polyhedrBn depending on the value dfopology , with Integer
dimensionsHandle is unified with the handle foP. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, X, 3).

creates an empty NNC polyhedron embeddeRiwith X bound to a valid handle for accessing it.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface

ppl _-new_Polyhedron _from _Polyhedron(+Topology _1, +Handle _1, +Topology _2,
-Handle _2)

If Handle _1 refers to a C or NNC polyhedroR; (depending on the value Gfopology _1), then this
creates a cop¥, of P; with topology C or NNC, depending on the valueTafpology _2. Handle _2is
unified with the handle foP,. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, X, 3),
ppl_new_Polyhedron_from_Polyhedron(c, X, nnc, Y).

creates an empty C polyhedron embeddefirreferenced byX and then makes a copy, converting the
topology to an NNC polyhedron. with bound to a valid handle for accessing it.

When usingppl _new_Polyhedron _from _Polyhedron/2 , when the source polyhedron is NNC and
the copy is C, care must be taken that the source polyhedron referendéanbiel is topologically
closed.

ppl _new_Polyhedron _from _constraints(+Topology, +Constraint _System, -
Handle)

Creates a polyhedroR represented bZonstraint _System with topology C or NNC, depending on
the value ofTopology . Handle is unified with the handle foP.

ppl _new_Polyhedron _from _generators(+Topology, +Generator _System, -
Handle)

Creates a polyhedrdh represented b@enerator _System with topology C or NNC, depending on the
value ofTopology . Handle is unified with the handle fopP.

ppl _new_Polyhedron _from _bounding _box(+Topology, +Box, -Handle)
Creates a polyhedroR represented bBox with topology C or NNC, depending on the valueTafpol-

ogy, andHandle is unified with the handle faP. A bound of the fornp(Rational) can be included
in an interval inBox only if Topology isnnc.

ppl _delete _Polyhedron(+Handle)

Deletes the polyhedron referencedtbgndle . After executionHandle is no longer a valid handle for a
PPL polyhedron.

ppl _Polyhedron _space _dimension(+Handle, -Integer)

Unifies the space dimension of the polyhedron referencedamdle with Integer

ppl _Polyhedron _intersection _assign(+Handle _1, +Handle _2)
ppl _Polyhedron _intersection _assign _and _minimize(+Handle _1, +Handle _2)

Assign to the polyhedron referencedidgndle _1 its intersection with the polyhedra referencedHgn-
dle _2.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 77

ppl _Polyhedron _poly _hull _assign(+Handle _1, +Handle _2)
ppl _Polyhedron _poly _hull _assign _and_minimize(+Handle _1, +Handle _2)

Assign to the polyhedron referenced Hgndle _1 its poly-hull with the polyhedra referenced bjan-
dle _2.

ppl _Polyhedron _poly _difference _assign(+Handle _1, +Handle _2)
ppl _Polyhedron _poly _difference _assign _and_minimize(+Handle _1, +Handle _2)

Assign to the polyhedron referenced Handle _1 its poly-difference with the polyhedron referenced by
Handle _2.

ppl _Polyhedron _H79_widening _assign(+Handle _1, +Handle _2)

Assigns to the polyhedron referencedgndle _1 its H79-widening with the polyhedra referenced by
Handle _2,

ppl _Polyhedron _limited _H79_widening _assign(+Handle _1, +Handle _2, +Con-
straint _System)

Assigns to the polyhedron referencedigndle _1 its H79-widening with the polyhedron referenced by
Handle _2, limited by the constraints i@onstraint _System .

ppl _Polyhedron _topological _closure _assign(+Handle)

Assigns to the polyhedron referencedtdgndle its topological closure.

ppl _Polyhedron _get _constraints(+Handle, -Constraint _System)

Unifies Constraint ~ _System with a list of the constraints in the constraints system representing the
polyhedron referenced bytandle .

ppl _Polyhedron _get _minimized _constraints(+Handle, -Constraint _System)

UnifiesConstraint _System with a minimized list of the constraints in the constraints system repre-
senting the polyhedron referencedigndle .

ppl _Polyhedron _get _generators(+Handle, -Generator _System)

UnifiesGenerator _System with a list of the generators in the generators system representing the poly-
hedron referenced kyandle .

ppl _Polyhedron _get _minimized _generators(+Handle, -Generator _System)

UnifiesGenerator _System with a minimized list of the generators in the generators system represent-
ing the polyhedron referenced blandle .

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 78

ppl _Polyhedron _add_constraint(+Handle, +Constraint)

Updates the polyhedron referencedHigndle to one obtained by addinQonstraint to its constraint
system. Thus, the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = '$VAR'(0), B = '$VAR(1), C = '$VAR'(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handkto consist of the set of points in the vector sp&esatisfying
the constraintiz +y — 2z >=5.

ppl _Polyhedron _add _generator(+Handle, +Generator)

Updates the polyhedron referencedtigndle to one obtained by addinGenerator to its generator
system. Thus, after the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = '$VAR’(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handXto be the single point—12.5, —0.625,0)T in the vector space
R3.

ppl _Polyhedron _add constraints(+Handle, +Constraint _System)

Updates the polyhedron referenced Hgndle to one obtained by adding to its constraint system the
constraints irConstraint _System . E.g.,

| ?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = '$VAR’(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referencedHigndle can be empty and a query will succeed even w@en-
straint _System is unsatisfiable.

ppl _Polyhedron _add _constraints _and_minimize(+Handle, +Constraint _System)

Updates the polyhedron referenced Hgndle to one obtained by adding to its constraint system the
constraints irConstraint _System . E.g.,

?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = '$VAR'(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]

This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 79

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_dimension(c, 2, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A = 0, B =< 0)),
ppl_Polyhedron_get_constraints(X, CS).

ppl _Polyhedron _add _generators(+Handle, +Generator _System)

Updates the polyhedron referenced Hgndle to one obtained by adding to its generator system the
generators ilGenerator _System .

If the system of generators representing a polyhedron is non-empty, then it must include a point (see the
paragraph on generator representation in Se®igpresentations of Convex Polyhedrép. 3)). Thus care

must be taken to ensure that, before calling this predicate, either the polyhedron referehicetdley is
non-empty or that whenev&@enerator _System is non-empty the first element defines a point. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’'(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

ppl _Polyhedron _add _generators _and_minimize(+Handle, +Generator _System)

Updates the polyhedron referenced lgndle to one obtained by adding to its generator system the
generators ilcenerator _System .

Unlike the predicatppl _add _generators , the order of the generators@enerator _System is not
important. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]

ppl _Polyhedron _add _dimensions

_and _constraints(+Handle, +Constraint
System)

After embedding the polyhedron referred to Hyandle in a new space that is enlarged by the space
dimensions of the constraint systemGonstraint _System , it then updates the polyhedron referenced
by Handle to one obtained by adding to the new space the constrai@ernstraint _System . E.g.,

?- ppl_new_Polyhedron_from_dimension(nnc, 2, X),
A = '$VAR’(0), B = '$VAR'(1), C = '$VAR'(2),
D = '$VAR'(3), E = '$VAR'(4),
ppl_Polyhedron_add_dimensions_and_constraints(X,
[A>1, B > 0, C >= Q)),
ppl_Polyhedron_get_constraints(P, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= 0]

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface

80

ppl _Polyhedron _add_dimensions _and_project(+Handle, +Integer)

Projects the polyhedron referred to b\andle onto a space that is enlarged leger dimensions,
E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

Cs
GS

[1*A = 0, 1*B = 0],
[point(0)]

ppl _Polyhedron _add_dimensions _and_embed(+Handle, +Integer)

Embeds the polyhedron referred toldgndle in a space that is enlarged byteger dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

Ccs =1,
GS = [point(0),line(1*A),line(1*B)]

ppl _Polyhedron _remove _dimensions(+Handle, +List _of _PPL_Vars)

Removes the dimensions given by the identifiers of the PPL variables indist of _PPL Vars from
the polyhedron referred to byandle . The identifiers for the remaining PPL variables are renumbered so
that they are consecutive and the maximum index is less than the number of dimensions. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’'(2),
ppl_Polyhedron_remove_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K = 2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl _Polyhedron _remove _higher _dimensions(+Handle, +Integer))

Projects the the polyhedron referred toldgndle onto the firsinteger dimension. E.g.,
?- ppl_new_Polyhedron_empty_from_dimension(c, 5, X),

ppl_Polyhedron_remove_higher_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

K =3,

The polyhedrorP referenced byHandle must have space dimensiémgreater that or equal toateger

ppl _Polyhedron _affine _image(+Handle, +PPL _Var, +LinExpr, +Integer)

Transforms the polyhedron referencedtbgndle assigning the affine expressieimExpr /Integer
to PPL Var.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 81

ppl _Polyhedron _affine _preimage(+Handle, +PPL _Var, +LinExpr, +Integer)

This is the inverse transformation to that fipl _affine _image .

ppl _Polyhedron _relation _with _constraint(+Handle, +Constraint, -Relation)
UnifiesRelation with the relation the polyhedron referencedHdgndle has withConstraint . The
possible relations are listed in the grammar rules above; their meaning is given in Septoations

on Convex Polyhedra(p.6). The relatiomnothing means that nothing is known about the relation the
polyhedron referenced byandle has withConstraint

ppl _Polyhedron _relation _with _generator(+Handle, +Generator, -Relation)
UnifiesRelation with the relation the polyhedron referencediBgndle has withGenerator . The
possible relations are listed in the grammar rules above; The meaning of the rsl#tgume is given

in SectionOperations on Convex Polyhedrap.6). The relatiomothing means that nothing is known
about the relation the polyhedron referencedHaydle has withGenerator

ppl _Polyhedron _check _empty(+Handle)

Succeeds if and only if the polyhedron referencedHaydle is empty.

ppl _Polyhedron _check _universe(+Handle)

Succeeds if and only if the polyhedron referencedHaydle is the universe.

ppl _Polyhedron _is _bounded(+Handle)

Succeeds if and only if the polyhedron referencedHaydle is bounded.

ppl _Polyhedron _bounds _from _above(+Handle, +LinExpr)

Succeeds if and only IfinExpr is bounded from above in the polyhedron referencediagdle .

ppl _Polyhedron _bounds _from _below(+Handle, +LinExpr)

Succeeds if and only IfinExpr is bounded from below in the polyhedron referenceddaydle .

ppl _Polyhedron _is _topologically _closed(+Handle)

Succeeds if and only if the polyhedron referencedHaydle is topologically closed.

ppl _Polyhedron _contains _Polyhedron(+Handle 1, +Handle _2)

Succeeds if and only if the polyhedron referencedHaydle _1 is included in or equal to the polyhedron
referenced byandle _2.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 82

ppl _Polyhedron _strictly _contains _Polyhedron(+Handle _1, +Handle _2)

Succeeds if and only if the polyhedron referencedHaydle _1 is included in but not equal to the poly-
hedron referenced iyandle _2.

ppl _Polyhedron _equals _Polyhedron, 2(+Handle _1, +Handle _2)

Succeeds if and only if the polyhedron referencedaydle _1 is equal to the polyhedron referenced by
Handle _2.

ppl _Polyhedron _get _bounding _box(+Handle, -Box)

Succeeds if and only if the bounding box of the polyhedron referencedilmyglle unifies with the box
defined byBox. E.g.,

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], P),
ppl_Polyhedron_get_bounding_box(P, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].
Note that the rational numbersBox are in canonical form. E.g., the following will fail:

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], P),
ppl_Polyhedron_get_bounding_box(P, Box),

Box = [i(o(minf), c(2/4)), i(o(0), o(pinf))].

10.1.3 Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

In the sequelprefix is the prefix under which you have installed the library (typicdlhgr or
Jusr/local).

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library addiDfROLOGTRACKALLOCATIONto the
options passed to the C++ compiler. Your configure command would then look like

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

10.1.4 System-Dependent Features
CIAQO Prolog

Support for CIAO Prolog is under development and will be available in a future release.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 83

GNU Prolog

The GNU Prolog interface to the PPL library is available both as “PPL enhanced” GNU Prolog interpreter
and as a library that can be linked to GNU Prolog programs. Only GNU Prolog version 1.2.12 or later is
supported.

Notice that GNU Prolog version 1.2.12 suffers from a serious limitation as far as foreign code is concerned.

In order to be safe you must configure GNU Prolog with thiisable-ebp option (note that this
has a negative effect on performance). Suep://www.cs.unipr.it/pipermail/ppl-
devel/2002-June/001777 .html , http://www.cs.unipr.it/pipermail/ppl-
devel/2002-June/001780.html , http://www.cs.unipr.it/pipermail/ppl-
devel/2002-June/001788.html and http://www.cs.unipr.it/pipermail/ppl-
devel/2002-June/001789.html for more information.

The ppl _gprolog Executable

If an appropriate version of GNU Prolog is installed on the machine on which you compiled the library, the
commandmake install will install the executablepl _gprolog in the directoryprefix/bin

The ppl _gprolog executable is simply the GNU Prolog interpreter with the Parma Polyhedra library
linked in. The only thing you should do to use the library is to pall _initialize/0 before any other

PPL predicate and to cgbl _finalize/0 when you are done with the library.

Linking the Library To GNU Prolog Programs

In order to allow linking GNU Prolog programs to the PPL, the following files are installed in the di-
rectoryprefix/lib/ppl : ppl _gprolog.pl contains the required foreign declaratiolisppl _-
gprolog. * contain the executable code for the GNU Prolog interface in various formats (static library,
shared library, libtool library). If your GNU Prolog program is constituted by, sayrcel.pl and
source2.pl and you want to create the executaitmigprog , your compilation command may look like

gplc -0 myprog prefix/lib/ppl/ppl_gprolog.pl sourcel.pl source2.pl \
-L -Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmp -lgmpxx -Istdc++’

SICStus Prolog

The SICStus Prolog interface to the PPL library is available both as a statically linked module or as a
dynamically linked one. Only SICStus Prolog version 3.9.0 or later is supported.

The Statically Linked ppl _sicstus Executable

If an appropriate version of SICStus Prolog is installed on the machine on which you compiled the library,
the commananake install will install the executabl@pl _sicstus in the directoryprefix/bin

The ppl _sicstus executable is simply the SICStus Prolog system with the Parma Polyhedra library
statically linked. The only thing you should do to use the library is to lpaefix/lib/ppl/ppl -
sicstus.pl

Loading the SICStus Interface Dynamically

In order to dynamically load the library from SICStus Prolog you should simply lpaet
fix/lib/ppl/ppl _sicstus.pl . Notice that, for dynamic linking to work, you should have con-
figured the library with the-enable-shared option.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE 84

SWiI-Prolog

The SWI-Prolog interface of the library is available both as a statically linked module or as a dynamically
linked one. Only SWI-Prolog version 5.0 or later is supported.

The ppl _pl Executable

If an appropriate version of SWI-Prolog is installed on the machine on which you compiled the library,
the commandnake install will install the executablg@pl _pl in the directoryprefix/bin . The

ppl _pl executable is simply the SWI-Prolog shell with the Parma Polyhedra library statically linked: from
within ppl _pl all the services of the library are available without further action.

Loading the SWI-Prolog Interface Dynamically

In order to dynamically load the library from SWI-Prolog you should simply lopre-
fix/lib/ppl/ppl _swiprolog.pl . This will invoke ppl _initialize/0 automatically but, at
least for SWI-Prolog versions up to 5.0.7, it is the programmer’s responsibility tppalfinalize/0
Alternatively, you can load the library directly with

- load_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).
This will call ppl _initialize/0 automatically. Analogously,
- unload_foreign_library('prefix/lib/ppl/libppl_swiprolog’).

will, as part of the unload process, invogpl _finalize/0

Notice that, for dynamic linking to work, you should have configured the library with-#aeable-
shared option.

YAP
The YAP Prolog interface to the PPL library is available as a dynamically linked module. Only YAP version
4.3.23 or later is supported.

In order to dynamically load the library from YAP you should simply Iqaéfix/lib/ppl/ppl -
yap.pl . This will invoke ppl _initialize/0 automatically; it is the programmer’s responsibility to
call ppl _finalize/0 when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with thenable-shared option.

10.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE 85

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFI-
CATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program”, below,
refers to any such program or work, and a "work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification”.) Each licensee is addressed as "you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE

86

protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

¢ a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

e b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

¢ c) Ifthe modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not

derived from the Program, and can be reasonably considered independent and separate works in themselves,

then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the

distribution of the whole must be on the terms of this License, whose permissions for other licensees extend

to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

e a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

e b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

e c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE

87

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7.1f, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 89

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY:; for details
type ‘show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show ¢’

for details.

The hypothetical commandsSAMP>‘show w'</SAMP> and <SAMP>‘show ¢'</SAMP> should

show the appropriate parts of the General Public License. Of course, the commands you use may be called
something other thar SAMP>‘show w'</SAMP> and <SAMP>‘show ¢'</SAMP>; they could even

be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copy-
right disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this

License.

10.3 GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free” in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,

either commercially or noncommercially. Secondarily, this License preserves for the author and publisher
away to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 90

regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The "Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you”.

A "Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section” is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (For ex-
ample, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not "Transparent” is called "Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The "Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 91

must also clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on the covers

in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a complete Transparent copy of the Doc-
ument, free of added material, which the general network-using public has access to download anony-
mously at no charge using public-standard network protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

Itis requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

e A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

e B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of

the modifications in the Modified Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to

use the Modified Version under the terms of this License, in the form shown in the Addendum below.

e G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

¢ H. Include an unaltered copy of this License.

¢ |. Preserve the section entitled "History”, and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled "History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

e J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

e K. In any section entitled "Acknowledgements” or "Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 92

e L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

e M. Delete any section entitled "Endorsements”. Such a section may not be included in the Modified
Version.

e N. Do not retitle any existing section as "Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History” in the various original documents,
forming one section entitled "History”; likewise combine any sections entitled "Acknowledgements”, and
any sections entitled "Dedications”. You must delete all sections entitled "Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation

is called an "aggregate”, and this License does not apply to the other self-contained works thus compiled

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License

with the Document, on account of their being thus compiled, if they are not themselves derivative works of
the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License provided
that you also include the original English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. Bg&//www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections” instead of saying which ones are
invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts” instead of "Front-Cover Texts
being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License

94

their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

Index
~C_Polyhedron

ParmaPolyhedralLibrary:

13
~Constraint

ParmaPolyhedraLibrary:

~Generator

ParmaPolyhedraLibrary:

~LinExpression

ParmaPolyhedraLibrary::LinExpression,

25
~NNC_Polyhedron

ParmaPolyhedraLibrary:

Polyhedron28
~Polyhedron

ParmaPolyhedraLibrary:

:C_Polyhedron,

:Constraint15

:Generator20

‘NNC._-

:Polyhedron32

abandonexponentialcomputations
ParmaPolyhedraLibrary, 12

add.constraint

ParmaPolyhedralLibrary:

add.constraints

ParmaPolyhedralLibrary:

add.constraintsand minimize

ParmaPolyhedraLibrary:

:Polyhedron43
:Polyhedron46

:Polyhedron46

add dimensionsand.constraints

ParmaPolyhedralibrary:

adddimensionsand.embed

ParmaPolyhedralLibrary:

add dimensionsand project

ParmaPolyhedralLibrary:

add generator

ParmaPolyhedraLibrary:

add generators

ParmaPolyhedraLibrary:

add generatorsand. minimize

ParmaPolyhedralLibrary:

affineimage

ParmaPolyhedralLibrary:

affine_preimage

ParmaPolyhedraLibrary:

boundsfrom_above

ParmaPolyhedraLibrary:

boundsfrom_below

ParmaPolyhedralLibrary:

C_Polyhedron

ParmaPolyhedraLibrary:

13-15
checkempty

ParmaPolyhedralLibrary:

:Polyhedron46
:Polyhedrong5
:Polyhedron45
:Polyhedron43
:Polyhedrong7
:Polyhedron4?7
:Polyhedron43

:Polyhedrong4

:Polyhedrong7

:Polyhedron4?7

:C_Polyhedron,

:Polyhedron34

checkuniverse
ParmaPolyhedralibrary::
CLOSUREPOINT
ParmaPolyhedraLibrary::
closurepoint

Polyhedron34

Generator24

ParmaPolyhedraLibrary, 12

ParmaPolyhedraLibrary::
coefficient
ParmaPolyhedraLibrary::
ParmaPolyhedraLibrary::
Constraint
ParmaPolyhedraLibrary::
constraints
ParmaPolyhedraLibrary::

Degeneratind
ParmaPolyhedralibrary::

divisor
ParmaPolyhedraLibrary::

EMPTY
ParmaPolyhedraLibrary::

EQUALITY
ParmaPolyhedraLibrary::

Generator
ParmaPolyhedraLibrary::

generators
ParmaPolyhedraLibrary::

H79.wideningassign
ParmaPolyhedraLibrary::

id
ParmaPolyhedraLibrary::
implies
ParmaPolyhedraLibrary::
Relation,30
ParmaPolyhedraLibrary::
Relation,31
inhomogeneouserm
ParmaPolyhedraLibrary::
Integer

Generator24

Constraint19
Generator24

Constraint]l5

Polyhedron33

Polyhedron39

Generator25

Polyhedron39

Constraint]19

Generator20

Polyhedron33

Polyhedron42

Variable,49
Poly.Con-

Poly Gen-

Constraint]16

ParmaPolyhedraLibrary, 11

intersectionassign
ParmaPolyhedraLibrary::

Polyhedron41

intersectionassignandminimize

ParmaPolyhedralLibrary::
is_bounded

ParmaPolyhedraLibrary::
is_closurepoint

ParmaPolyhedraLibrary::

Polyhedron41
Polyhedron34

Generator20

INDEX 96
is_disjoint ParmaPolyhedraLibrary::Poly Gen-
ParmaPolyhedralibrary::Poly Con - Relation,31
Relation,30 ParmaPolyhedralibrary::Polyhedron45
is_equality operator!=
ParmaPolyhedraLibrary::Constraint16 ParmaPolyhedraLibrary::Polyhedron48
is_included operatok
ParmaPolyhedralLibrary::Poly Con - ParmaPolyhedralLibrary::Polyhedron48
Relation,30 ParmaPolyhedralibrary::Variable,50
is_inequality operatox <
ParmaPolyhedraLibrary::Constraint16 ParmaPolyhedraLibrary::Constraint17
is_line ParmaPolyhedraLibrary::Variable,49
ParmaPolyhedraLibrary::Generator20 operator=
is_nonstrictinequality ParmaPolyhedralLibrary::C_Polyhedron,
ParmaPolyhedralibrary::Constraint,L6 13
is_point ParmaPolyhedraLibrary::Constraint15
ParmaPolyhedraLibrary::Generator20 ParmaPolyhedraLibrary::Generator20
is_ray ParmaPolyhedraLibrary::NNC._-
ParmaPolyhedralibrary::Generator20 Polyhedron28
is_strictinequality ParmaPolyhedralibrary::Polyhedron35
ParmaPolyhedraLibrary::Constraint16 operator==
is_topologically closed ParmaPolyhedraLibrary::Polyhedron48
ParmaPolyhedraLibrary::Polyhedron35 operator-
ParmaPolyhedraLibrary::Polyhedron48
limited_H79_wideningassign operator-=
I_INEParmaPonhedraLibrary::Polyhedron43 ParmaPolyhedraLibrary::Polyhedron49
ParmaPolyhedralibrary::Generator24 ParmaPolyhedralibrary, 11
line abandopexponentialcomputations]2
ParmaPolyhedralibrary, 12 closurepoint, 12
ParmaPolyhedraLibrary::Generator24 Integer,11
LinExpression line, 12
ParmaPolyhedralibrary::LinExpression, point, 12
25,28 ray,12
o] ParmaPolyhedralibrary::C_Polyhedron13
minimized constraints _ ~C_Polyhedron13
. .Pfe\rmaPonhedralerary::Polyhedron33 C_Polyhedron13-15
minimized generators _ operator=13
ParmaPolyhedral.ibrary::Polyhedron33 ParmaPolyhedraLibrary::Constraint]15
NNC_Polyhedron ~Constraint15
ParmaPolyhedraLibrary::NNC._- coeff|C|e_nt,19
Polyhedron28, 29 Constraint,15
NONSTRICT INEQUALITY EQUALITY, 19
ParmaPolyhedralibrary::Constraint,19 !nhomogeneouserm,lfi
nothing !s,gquallt){,16
ParmaPolyhedraLibrary::Poly Con - !Sf'”eq“"’?"tY’m .
Relation,30 !s,no_nst_rlctlnecl}_uallrg/,16
: . is_strictinequality,
Parn%aPonhedralerary..Poly,GerL- NONSTRICTINEQUALITY, 19
elation,31
OK, 16
OK operatox <, 17
ParmaPolyhedraLibrary::Constraint16 operator=15
ParmaPolyhedraLibrary::Generator20 ParmaPolyhedral ibrary::LinExpression,
ParmaPolyhedraLibrary::Poly.Con.- 26
Relation,30 ParmaPolyhedralibrary::operatog, 17

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

97

ParmaPolyhedral ibrary::operatog.=, 17
ParmaPolyhedralibrary::operator==16
ParmaPolyhedralibrary::operator, 17
ParmaPolyhedral ibrary::operator=, 16,
17
ParmaPolyhedral ibrary::operator>, 17
ParmaPolyhedralLibrary::Polyhedronl16
spacedimension,15
STRICTINEQUALITY, 19
swap,17
Type, 19
type,15
zeradim_false,16
zeradim_positivity, 16
ParmaPolyhedraLibrary::FromBounding-
Box, 19
ParmaPolyhedralLibrary::Generator20
~Generator20
CLOSUREPOINT, 24
closurepoint, 24
coefficient,24
divisor, 25
Generator20
is_closurepoint, 20
is_line, 20
is_point, 20
is_ray, 20
LINE, 24
line, 24
OK, 20
operator=20
ParmaPolyhedraLibrary::LinExpression,
26
ParmaPolyhedralibrary::operatox <, 21
ParmaPolyhedralibrary::Polyhedron21
POINT, 24
point, 24
RAY, 24
ray, 24
spacedimension 20
swap,21
Type,24
type,20
zeradim_closurepoint, 21
zeradim_point,21
ParmaPolyhedraLibrary::LinExpression
~LinExpression25
LinExpression25
ParmaPolyhedraLibrary::Constraint26
ParmaPolyhedralibrary::Generator26
ParmaPolyhedral ibrary::operator, 26
ParmaPolyhedralibrary::operator+26
ParmaPolyhedraLibrary::operator+=26
ParmaPolyhedraLibrary::operator-26

ParmaPolyhedraLibrary::operator-=, 26,
27
ParmaPolyhedraLibrary::Polyhedron26
spacedimension 25
swap,27
zero,25
ParmaPolyhedralibrary::LinExpression25
LinExpression28
ParmaPolyhedraLibrary::NNC_Polyhedron28
~NNC_Polyhedron28
NNC_Polyhedron28, 29
operator=28
ParmaPolyhedralibrary::operator &&
ParmaPolyhedralibrary::Poly Con -
Relation,31
ParmaPolyhedraLibrary::Poly Gen-
Relation,32
ParmaPolyhedralibrary::operato
ParmaPolyhedraLibrary::LinExpression,
26
ParmaPolyhedralibrary::operator!=
ParmaPolyhedral ibrary::Poly Con -
Relation,31
ParmaPolyhedralibrary::Poly. Gen-
Relation,32
ParmaPolyhedral ibrary::operator+
ParmaPolyhedraLibrary::LinExpression,
26
ParmaPolyhedralibrary::operator+=
ParmaPolyhedraLibrary::LinExpression,
26
ParmaPolyhedralibrary::operator-
ParmaPolyhedraLibrary::LinExpression,
26
ParmaPolyhedralibrary::Poly Con -
Relation,31
ParmaPolyhedraLibrary::Poly Gen-
Relation,32
ParmaPolyhedralLibrary::operator-=
ParmaPolyhedralibrary::LinExpression,
26, 27
ParmaPolyhedral ibrary::operatog
ParmaPolyhedraLibrary::Constraint17
ParmaPolyhedral ibrary::operatog <
ParmaPolyhedralibrary::Generator21
ParmaPolyhedralibrary::Poly Con -
Relation,31
ParmaPolyhedraLibrary::Poly Gen-
Relation,32
ParmaPolyhedralLibrary::Polyhedron35
ParmaPolyhedral ibrary::operatog =
ParmaPolyhedraLibrary::Constraint17
ParmaPolyhedraLibrary::Polyhedron48
ParmaPolyhedralibrary::operator==

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

98

ParmaPolyhedraLibrary::Constraint16
ParmaPolyhedralibrary::Poly Con -
Relation,30
ParmaPolyhedral ibrary::Poly Gen-
Relation,31
ParmaPolyhedral ibrary::operator
ParmaPolyhedralibrary::Constraint,l 7
ParmaPolyhedraLibrary::operator-=
ParmaPolyhedraLibrary::Constraint, 16,
17
ParmaPolyhedralibrary::operator >
ParmaPolyhedraLibrary::Constraint17
ParmaPolyhedralibrary::Polyhedron35
ParmaPolyhedraLibrary::Poly Con Relation,
30
implies, 30
is_disjoint, 30
is_included,30
nothing,30
OK, 30
ParmaPolyhedraLibrary::operator &&,31
ParmaPolyhedraLibrary::operator
= 31
ParmaPolyhedralibrary::operator-31
ParmaPolyhedral ibrary::operatox <, 31
ParmaPolyhedral ibrary::operator==30
saturates30
strictly_intersects30
ParmaPolyhedralibrary::Poly GenRelation,
31
implies,31
nothing,31
OK, 31
ParmaPolyhedralibrary::operator &&,32
ParmaPolyhedraLibrary::operator
=, 32
ParmaPolyhedraLibrary::operator-32
ParmaPolyhedraLibrary::operatox <, 32
ParmaPolyhedralLibrary::operator==31
subsumes31
ParmaPolyhedraLibrary::Polyhedron32
~Polyhedron32
add constraint43
add.constraints46
add constraintsandminimize, 46
add dimensionsand.constraints46
adddimensionsandembed 45
add dimensionsand project,45
addgenerator43
add generators47
add generatorandminimize, 47
affineiimage 43
affine_preimaged4
boundsfrom_above 47

boundsfrom_below,47

checkempty,34

checkuniverse 34

constraints33

Degenerateind, 39

EMPTY, 39

generators33

H79_wideningassign42

intersectionassign41

intersectionassignand minimize,41

is_bounded34

is_topologically closed,35

limited_H79_widening assign43

minimized constraints33

minimized generators33

OK, 45

operator!=48

operatok, 48

operator=35

operator==48

operator-, 48

operator-=, 49

ParmaPolyhedraLibrary::Constraint16

ParmaPolyhedralibrary::Generator21

ParmaPolyhedraLibrary::LinExpression,
26

ParmaPolyhedraLibrary::operato& <, 35

ParmaPolyhedral ibrary::operatog.=, 48

ParmaPolyhedraLibrary::operator >, 35

poly_differenceassign42

poly_differenceassignand minimize, 42

poly_hull_assign42

poly_hull_assignand minimize, 41

Polyhedron35, 40

relationwith, 42

removedimensions45

removehigherdimensions46

shrink boundingbox, 44

spacedimension 32

swap,36, 48

time_elapseassign43

topologicalclosureassign35

UNIVERSE, 39

ParmaPolyhedralLibrary::Throwable 49

throw_me, 49

ParmaPolyhedralibrary::Variable,49

id, 49
operatok, 50
operatok <, 49
Variable,49

POINT

ParmaPolyhedraLibrary::Generator24

point

ParmaPolyhedraLibrary, 12

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

99

ParmaPolyhedraLibrary::Generator24
poly_differenceassign
ParmaPolyhedraLibrary::Polyhedron42
poly_differenceassignand. minimize
ParmaPolyhedraLibrary::Polyhedron42
poly_hull_assign
ParmaPolyhedralLibrary::Polyhedron42
poly_hull_assignand minimize
ParmaPolyhedraLibrary::Polyhedron41
Polyhedron
ParmaPolyhedraLibrary::Polyhedron,35,
40
ppl_assignC_Polyhedronfrom_C_Polyhedron
ppl_c.h,67
ppl_assignCoefficientfrom_Coefficient
ppl_c.h,57
ppl-assignCoefficientfrom_mpzt
ppl-c.h,57
ppl.assignConstraintfrom_Constraint
ppl_c.h,59
ppl.assignConSys_constiterator from_-
ConSys_constiterator
ppl.c.h,61
ppl_assignConSysfrom_ConSys
ppl_c.h,60
ppl.assignGeneratoffrom_Generator
ppl_c.h,62
ppl-assignGenSys_constiterator from_-
GenSys_constiterator
ppl_c.h,63
ppl.assignGenSysfrom_GenSys
ppl_c.h,63
ppl-assignLinExpressionfrom_LinExpression
ppl-c.h,58
ppl.assignNNC_Polyhedronfrom_NNC._-
Polyhedron
ppl.c.h,67
ppl_c.h,50
ppl.assignC_Polyhedronfrom_C_-
Polyhedrong7
ppl_assignCoefficientfrom_Coefficient,
57
ppl_assignCoefficientfrom_mpzt, 57
ppl.assignConstraintfrom_Constraint59
ppl_assignConSys_constiterator from_-
ConSys_constiterator,61
ppl_.assignConSysfrom_ConSys 60
ppl_assignGeneratorfrom_Generator62
ppl.assignGenSys_constiteratorfrom_-
GenSys_constiterator,63
ppl.assignGenSysfrom_GenSys63
ppl_assignLinExpressionfrom_-
LinExpression58

ppl.assignNNC_Polyhedronfrom_NNC_-
Polyhedronp7
ppl_CoefficientOK, 57
ppl_Coefficientt, 50
ppl_Coefficientto_mpzt, 57
ppl_constCoefficientt, 50
ppl_constConstraintt, 51
ppl_-constConSys_constiteratort, 51
ppl_constConSyst, 51
ppl_constGeneratott, 51
ppl_constGenSys_constiteratort, 51
ppl.constGenSyst, 51
ppl_constLinExpressiont, 51
ppl_constPolyhedront, 51
ppl_Constraintcoefficient,59
ppl_Constraintinhomogeneouserm,59
ppl_ConstraintOK, 60
ppl_Constraintspacedimension59
ppl_Constraintt, 51
ppl_Constrainttype,59
PPLCONSTRAINT.TYPE_EQUAL, 56
PPLCONSTRAINT.TYPE GREATER-
THAN, 56
PPLCONSTRAINT.-TYPE.GREATER-
THAN_OR EQUAL, 56
PPLCONSTRAINT.TYPE LESSTHAN,
56
PPLCONSTRAINT.TYPE.LESS-
THAN_OR EQUAL, 56
ppl_-ConSys_constiteratordereferencef1
ppl_-ConSys_constiteratorequaltest,61
ppl_.ConSys_constiteratorincrement61
ppl_-ConSys_constiteratort, 51
ppl_-ConSysbegin,61
ppl_-ConSysend,61
ppl_-ConSysinsertConstraint,60
ppl_ConSysOK, 60
ppl_-ConSysspacedimension 60
ppl.ConSyst, 51
ppl_deleteCoefficient,57
ppl_deleteConstraint59
ppl_deleteConSys60
ppl_deleteConSys_constiterator,61
ppl_deleteGeneratort2
ppl_deleteGenSysp2
ppl_deleteGenSys_constiterator,63
ppl_deleteLinExpression58
ppl_deletePolyhedrong7
ppl.enumConstraintType,56
ppl-enumerror.code,56
ppl_.enumGeneratofType,56
PPLERRORINTERNAL_ERROR,56
PPLERRORINVALID ARGUMENT, 56
PPLERROROUT._OF MEMORY, 56

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

100

PPLERRORUNEXPECTEDERROR,56
PPLERRORUNKNOWN_STANDARD.-
EXCEPTION,56
ppl_finalize,57
ppl_-Generatorcoefficient,62
ppl_Generatordivisor, 62
ppl_-GeneratorOK, 62
ppl_-Generatorspacedimension 62
ppl_-Generatott, 51
ppl_Generatoitype, 62
PPLGENERATORTYPE CLOSURE-
POINT,57
PPLGENERATORTYPE.LINE, 56
PPLGENERATORTYPE_POINT,57
PPLGENERATORTYPERAY, 56
ppl_-GenSys_constiterator dereferencet3
ppl.GenSys_constiteratorequaltest,64
ppl-GenSys_constiteratorincrement63
ppl_-GenSys_constiteratort, 51
ppl_-GenSysbegin,63
ppl_-GenSysend,63
ppl_.GenSysinsertGenerator63
ppl-GenSysOK, 63
ppl-GenSysspacedimension63
ppl-GenSyst, 51
pplinitialize, 57
ppl_LinExpressionadd to_coefficient,58
ppl_LinExpressionaddto_inhomogeneous,
58
ppl_LinExpressionOK, 59
ppl_LinExpressionspacedimension58
ppl_LinExpressiont, 50
ppl_-new. C_Polyhedronempty from_-
dimension64
ppl_-new.C_Polyhedronfrom_bounding-
box, 65
ppl_.new.C_Polyhedronfrom_C_-
Polyhedrong4
ppl_-new. C_Polyhedronfrom_ConSys 64
ppl_-new.C_Polyhedronfrom_dimension,
64
ppl_new.C_Polyhedronfrom_GenSysg5
ppl_.new.C_Polyhedronfrom_NNC -
Polyhedrong4
ppl_-new_Coefficient,57
ppl_new_Coefficientfrom_Coefficient,57
ppl_new_Coefficientfrom_mpzt, 57
ppl_.new.Constraint59
ppl_new Constraintfrom_Constraint59
ppl_-new_Constraintzeradim_false,59
ppl_new_Constraintzera dim_positivity, 59
ppl_new.ConSys 60
ppl_new.ConSys_constiterator,60

ppl_new.ConSys_constiteratorfrom_-
ConSys_constiterator,60
ppl_new.ConSysfrom_Constraint,60
ppl_new.ConSysfrom_ConSys 60
ppl_new.ConSyszera dim_empty,60
ppl_.new.Generator61
ppl_.new.Generatoffrom_Generatorf2
ppl_.new.Generatorzeradim_closure-
point, 61
ppl_new.Generatorzeradim_point, 61
ppl.new.GenSysp2
ppl_-new.GenSys_constiterator,63
ppl_.new.GenSys_constiterator from_-
GenSys_constiterator,63
ppl_new.GenSysfrom_Generatorf2
ppl_new.GenSysfrom_GenSys62
ppl_new LinExpressionb8
ppl_-new_LinExpressionfrom_Constraint,
58
ppl_new_LinExpressionfrom_Generator,
58
ppl_new_LinExpressionfrom_-
LinExpressionp8
ppl_new_LinExpressionwith_dimension,
58
ppl_-new.NNC_Polyhedronempty from_-
dimension4
ppl_-new. NNC_Polyhedronfrom_-
boundingbox, 66
ppl_-new.NNC_Polyhedronfrom_C_-
Polyhedrong4
ppl.new.NNC_Polyhedronfrom_ConSys,
65
ppl_-new.NNC_Polyhedronfrom_-
dimension4
ppl_-new.NNC_Polyhedronfrom_GenSys,
65
ppl_.new.NNC_Polyhedronfrom_NNC -
Polyhedrong4
PPLPOLY_CON_RELATION_IS -
DISJOINT,72
PPLPOLY_CON.RELATION.IS -
INCLUDED, 72
PPLPOLY_CON_RELATION.-
SATURATES,72
PPLPOLY_CON_RELATION -
STRICTLY_INTERSECTS,72
PPLPOLY_GEN._RELATION_-
SUBSUMES,72
ppl_Polyhedronadd constraint,68
ppl_Polyhedronadd constraints68
ppl_Polyhedronadd constraintsand -
minimize, 69

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

101

ppl_Polyhedronadd dimensionsand -
constraintsy0
ppl_Polyhedronadd dimensionsand -
embed 69
ppl_Polyhedronadd dimensionsand -
project,69
ppl_Polyhedronadd generator68
ppl_Polyhedronadd generators§9
ppl_Polyhedronadd generatorsand -
minimize, 69
ppl_Polyhedronaffineiimage,70
ppl_Polyhedronaffine_ preimage /0
ppl_Polyhedronboundsfrom_above,71
ppl_Polyhedronboundsfrom_below, 71
ppl_Polyhedroncheckempty,71
ppl_Polyhedroncheckuniverse,71
ppl_Polyhedronconstraints8
ppl_PolyhedroncontainsPolyhedron;72
ppl_Polyhedrongeneratorst8
ppl_PolyhedronH79 wideningassign 68
ppl_Polyhedronintersectionassign67
ppl_Polyhedronintersectionassignand -
minimize,67
ppl_Polyhedronis_boundedy1
ppl_Polyhedronis_topologically closed,71
ppl_Polyhedronlimited_H79 widening -
assignp8
ppl_Polyhedronminimized.constraints68
ppl_Polyhedronminimized generatorst8
ppl_PolyhedronOK, 72
ppl_Polyhedronpoly_differenceassign67
ppl_Polyhedronpoly_differenceassign-
andminimize,68
ppl_Polyhedronpoly_hull_assign67
ppl_Polyhedronpoly_hull_assignand -
minimize,67
ppl_Polyhedronrelationwith_Constraint,
71
ppl_Polyhedronrelationwith_Generator,
71
ppl_Polyhedronremovedimensionsg9
ppl_Polyhedronremovehigher -
dimensionsg9
ppl_Polyhedronshrink boundingbox, 70
ppl_Polyhedronspacedimension67
ppl_Polyhedronstrictly_contains-
Polyhedrony2
ppl_Polyhedront, 51
ppl_Polyhedrontopologicalclosure-
assign,71
ppl_seterrorhandler57
PPLTYPE.DECLARATION, 56
ppl_CoefficientOK
ppl_c.h,57

ppl_Coefficientt
ppl-c.h,50
ppl_Coefficientto_mpzt
ppl_c.h,57
ppl_constCoefficientt
ppl_c.h,50
ppl_constConstraintt
ppl-c.h,51
ppl.constConSys_constiteratort
ppl_c.h,51
ppl.constConSyst
ppl.c.h,51
ppl_constGeneratatt
ppl_c.h,51
ppl.constGenSys_constiteratort
ppl_c.h,51
ppl-constGenSyst
ppl-c.h,51
ppl_constLinExpressiont
ppl_c.h,51
ppl_constPolyhedront
ppl_c.h,51
ppl_-Constraintcoefficient
ppl-c.h,59
ppl_Constraintinhomogeneouserm
ppl_c.h,59
ppl_ConstraintOK
ppl-c.h,60
ppl_Constraintspacedimension
ppl_c.h,59
ppl_Constrainit
ppl.c.h,51
ppl-Constrainttype
ppl-c.h,59
PPLCONSTRAINT.TYPE.EQUAL
ppl_c.h,56
PPLCONSTRAINT.TYPE GREATERTHAN
ppl_c.h,56
PPLCONSTRAINT.-TYPE.GREATER-
THAN_OR_EQUAL
ppl_c.h,56
PPLCONSTRAINT.TYPE LESSTHAN
ppl_c.h,56
PPLCONSTRAINT.-TYPE.LESSTHAN _-
OR_EQUAL
ppl_c.h,56
ppl_.ConSys_constiteratordereference
ppl_c.h,61
ppl-ConSys_constiterator equaltest
ppl-c.h,61
ppl_-ConSys_constiteratorincrement
ppl_c.h,61
ppl_.ConSys_constiteratort
pplc.h,51

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

102

ppl-ConSysbegin
ppl-c.h,61
ppl.ConSysend
ppl_c.h,61
ppl_.ConSysinsertConstraint
ppl_c.h,60
ppl_.ConSysOK
ppl-c.h,60
ppl_.ConSysspacedimension
ppl_c.h,60
ppl_-ConSyst
ppl.c.h,51
ppl_deleteCoefficient
ppl_c.h,57
ppl_deleteConstraint
ppl_c.h,59
ppl-deleteConSys
ppl-c.h,60
ppl_.deleteConSys_constiterator
ppl_c.h,61
ppl_deleteGenerator
ppl_c.h,62
ppl-deleteGenSys
ppl_c.h,62
ppl.deleteGenSys_constiterator
ppl_c.h,63
ppl_deleteLinExpression
ppl.c.h,58
ppl_deletePolyhedron
ppl_c.h,67
ppl.enumConstraintType
ppl_c.h,56
ppl.enumerror.code
ppl-c.h,56
ppl.enumGeneratofType
ppl_c.h,56

PPLERRORINTERNAL_ERROR

ppl_c.h,56

PPLERRORINVALID _ARGUMENT

ppl-c.h,56
PPLERROROUT_OF_MEMORY
ppl_c.h,56

PPLERRORUNEXPECTEDERROR

ppl.c.h,56

PPLERRORUNKNOWN_STANDARD.-

EXCEPTION

ppl_c.h,56
ppl_finalize

ppl.c.h,57
ppl_Generatarcoefficient

ppl_c.h,62
ppl_.Generatardivisor

ppl_c.h,62
ppl_-GeneratorOK

ppl-c.h,62
ppl_Generatarspacedimension
ppl_c.h,62
ppl_.Generatort
ppl_c.h,51
ppl_Generatoitype
ppl-c.h,62
PPLGENERATORTYPE.CLOSUREPOINT
ppl_c.h,57
PPLGENERATORTYPE_LINE
ppl_c.h,56
PPLGENERATORTYPE.POINT
ppl-c.h,57
PPLGENERATORTYPE.RAY
ppl_c.h,56
ppl.GenSys_constiteratordereference
ppl-c.h,63
ppl_GenSys_constiterator equaltest
ppl_c.h,64
ppl.GenSys_constiteratorincrement
ppl_c.h,63
ppl_.GenSys_constiteratort
ppl.c.h,51
ppl_-GenSyshegin
ppl_c.h,63
ppl_.GenSysend
ppl_c.h,63
ppl-GenSysinsert Generator
ppl-c.h,63
ppl_-GenSysOK
ppl_c.h,63
ppl.GenSysspacedimension
ppl-c.h,63
ppl_-GenSyst
ppl_c.h,51
ppl.initialize
ppl_c.h,57
ppl_LinExpressionadd to_coefficient
ppl.c.h,58
ppl_LinExpressionaddto_inhomogeneous
ppl_c.h,58
ppl_LinExpressionOK
ppl_c.h,59
ppl_LinExpressionspacedimension
ppl-c.h,58
ppl_LinExpressiont
ppl_c.h,50
ppl_new C_Polyhedronempty from_dimension
ppl.c.h,64
ppl_-new C_Polyhedronfrom_boundingbox
ppl_c.h,65
ppl_new.C_Polyhedronfrom_C_Polyhedron
ppl_c.h,64
ppl_-new C_Polyhedronfrom_ConSys

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

103

ppl.c.h,64
ppl_-new C_Polyhedronfrom_dimension
ppl_c.h,64
ppl_new.C_Polyhedronfrom_GenSys
ppl_c.h,65
ppl_-new C_Polyhedronfrom_NNC_Polyhedron
ppl-c.h,64
ppl_new Coefficient
ppl_c.h,57
ppl_new_Coefficientfrom_Coefficient
ppl_c.h,57
ppl_.new_Coefficientfrom_mpz.t
ppl_c.h,57
ppl_new_Constraint
ppl_c.h,59
ppl_new_Constraintfrom_Constraint
ppl.c.h,59
ppl_-new_ Constraintzeradim_false
ppl_c.h,59
ppl_new_Constraintzera dim_positivity
ppl_c.h,59
ppl_.new. ConSys
ppl.c.h,60
ppl_-new. ConSys_constiterator
ppl_c.h,60
ppl_new_.ConSys_constiterator from_ConSys-
_constiterator
ppl.c.h,60
ppl_-new ConSysfrom_Constraint
ppl_c.h,60
ppl.new_.ConSysfrom_ConSys
ppl_c.h,60
ppl.new.ConSyszeradim_empty
ppl-c.h,60
ppl_new_Generator
ppl_c.h,61
ppl_.new Generatorfrom_Generator
ppl_c.h,62
ppl.new.Generatarzeradim_closurepoint
ppl_c.h,61
ppl_new.Generatorzeradim_point
ppl_c.h,61
ppl.new. GenSys
ppl.c.h,62
ppl_.new. GenSys_constiterator
ppl_c.h,63
ppl_new.GenSys_constiterator from_GenSys-
_constiterator
ppl.c.h,63
ppl_-new.GenSysfrom_Generator
ppl_c.h,62
ppl_new.GenSysfrom_GenSys
ppl_c.h,62
ppl_new LinExpression

ppl-c.h,58
ppl_-new LinExpressionfrom_Constraint
ppl_c.h,58
ppl_new_LinExpressionfrom_Generator
ppl_c.h,58
ppl_new LinExpressionfrom_LinExpression
ppl-c.h,58
ppl_new LinExpressionwith_dimension
ppl_c.h,58
ppl_-new.NNC_Polyhedronempty from_-
dimension
ppl.c.h,64
ppl_-new. NNC_Polyhedronfrom_boundingbox
ppl_c.h,66
ppl_-new.NNC_Polyhedronfrom_C_Polyhedron
ppl_c.h,64
ppl-new.NNC_Polyhedronfrom_ConSys
ppl-c.h,65
ppl_-new.NNC_Polyhedronfrom_dimension
ppl_c.h,64
ppl_.new. NNC_Polyhedronfrom_GenSys
ppl_c.h,65
ppl.-new.NNC_Polyhedronfrom_NNC_-
Polyhedron
ppl_c.h,64
PPLPOLY_CON.RELATION_IS_DISJOINT
ppl_c.h,72
PPLPOLY_CON.RELATION_IS_INCLUDED
ppl_c.h,72
PPLPOLY_CON_RELATION_SATURATES
pplc.h,72
PPLPOLY_CON RELATION_STRICTLY -
INTERSECTS
ppl-c.h,72
PPLPOLY_GEN_RELATION_SUBSUMES
ppl_c.h,72
ppl_Polyhedronadd constraint
ppl_c.h,68
ppl_-Polyhedronadd constraints
ppl-c.h,68
ppl_Polyhedronadd constraintsand minimize
ppl_c.h,69
ppl_Polyhedronadd dimensionsand constraints
ppl-c.h,70
ppl_Polyhedronadd dimensionsand embed
ppl_c.h,69
ppl_Polyhedronadd dimensionsand project
ppl_c.h,69
ppl-Polyhedronadd generator
ppl-c.h,68
ppl_Polyhedronadd generators
ppl_c.h,69
ppl_Polyhedronadd generatorsand minimize
ppl_c.h,69

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

104

ppl_-Polyhedronaffine.image

ppl_c.h,70
ppl_Polyhedronaffine_preimage
ppl_c.h,70
ppl_Polyhedronboundsfrom_above
pplc.h,71
ppl_Polyhedronboundsfrom_below
ppl_c.h,71
ppl_Polyhedroncheckempty
pplc.h,71
ppl_Polyhedroncheckuniverse
ppl.c.h,71
ppl_Polyhedronconstraints
ppl_c.h,68
ppl_PolyhedroncontainsPolyhedron
ppl.c.h,72
ppl-Polyhedrongenerators
ppl-c.h,68
ppl_PolyhedronH79_wideningassign
ppl_c.h,68
ppl_Polyhedronintersectionassign
ppl_c.h,67
ppl-Polyhedronintersectionassignand -
minimize
ppl_c.h,67
ppl_Polyhedronis_bounded
pplc.h,71
ppl_-Polyhedronis_topologically closed
ppl_c.h,71
ppl_Polyhedronlimited_H79_wideningassign
ppl_c.h,68

ppl_Polyhedronminimized constraints
ppl.c.h,68
ppl_Polyhedronminimized generators
ppl_c.h,68
ppl_PolyhedronOK
ppl.c.h,72
ppl_Polyhedronpoly_differenceassign
ppl.c.h,67
ppl_Polyhedronpoly_differenceassignand.-
minimize
ppl_c.h,68
ppl_Polyhedronpoly_hull_assign
ppl.c.h,67
ppl_Polyhedronpoly_hull_assignand minimize
ppl_c.h,67
ppl_Polyhedronrelationwith_Constraint
pplc.h,71
ppl-Polyhedronrelationwith_Generator
ppl_c.h,71
ppl_Polyhedronremovedimensions
ppl_c.h,69
ppl_Polyhedronremovehigherdimensions
ppl_c.h,69

ppl-Polyhedronshrink boundingbox
ppl-c.h,70
ppl_Polyhedronspacedimension
ppl_c.h,67
ppl_Polyhedronstrictly_containsPolyhedron
ppl_c.h,72
ppl_Polyhedront
ppl-c.h,51
ppl_Polyhedrontopologicalclosureassign
pplc.h,71
ppl_seterrorhandler
ppl.c.h,57
PPLTYPE.DECLARATION
ppl_c.h,56

RAY
ParmaPolyhedralibrary::Generator24
ray
ParmaPolyhedraLibrary, 12
ParmaPolyhedraLibrary::Generator24
relationwith
ParmaPolyhedralLibrary::Polyhedron42
removedimensions
ParmaPolyhedraLibrary::Polyhedron45
removehigherdimensions
ParmaPolyhedraLibrary::Polyhedron46

saturates
ParmaPolyhedraLibrary::Poly Con -
Relation,30
shrink boundingbox
ParmaPolyhedraLibrary::Polyhedron44
spacedimension
ParmaPolyhedraLibrary::Constraint15
ParmaPolyhedralLibrary::Generator20
ParmaPolyhedralibrary::LinExpression,
25
ParmaPolyhedraLibrary::Polyhedron32
std,12
STRICT.INEQUALITY
ParmaPolyhedralLibrary::Constraint19
strictly_intersects
ParmaPolyhedralibrary::Poly Con -
Relation,30
subsumes
ParmaPolyhedraLibrary::Poly Gen-
Relation,31
swap
ParmaPolyhedraLibrary::Constraint17
ParmaPolyhedraLibrary::Generator21
ParmaPolyhedraLibrary::LinExpression,
27
ParmaPolyhedralibrary::Polyhedron,36,
48

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

105

thron_me

ParmaPolyhedralLibrary:

time_elapseassign

ParmaPolyhedraLibrary:

topologicalclosureassign

ParmaPolyhedralibrary:

Type

ParmaPolyhedralibrary:
ParmaPolyhedraLibrary:

type

ParmaPolyhedralLibrary:
ParmaPolyhedraLibrary:

UNIVERSE

ParmaPolyhedralLibrary:

Variable

ParmaPolyhedralLibrary:

Zero

ParmaPolyhedraLibrary:

25
zeradim_closurepoint

ParmaPolyhedralLibrary:

zeradim_false

ParmaPolyhedraLibrary:

zeradim_point

ParmaPolyhedraLibrary:

zeradim_positivity

ParmaPolyhedralibrary:

:Throwable 49
:Polyhedron43
:Polyhedron35

:Constraint,19
:Generator24

:Constraint15
:Generator20

:Polyhedron39

:Variable,49

:LinExpression,

:Generator2l
:Constraint16
:Generator21

:Constraint,16

The Parma Polyhedra Library User’s Manual (version 0.4.2).H8ee//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

	Convex Polyhedra and the PPL
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Compound Index
	PPL File Index
	PPL Page Index
	PPL Namespace Documentation
	PPL Class Documentation
	PPL File Documentation
	PPL Page Documentation

