
The Parma Polyhedra Library
User’s Manual∗

(version 0.4.2)

Roberto Bagnara†

Patricia M. Hill‡

Elisa Ricci§

Enea Zaffanella¶

based on previous work also by

Sara Bonini
Andrea Pescetti
Angela Stazzone

Tatiana Zolo‖

October 4, 2002

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”.

†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‡hill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§ericci@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
¶zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‖zolo@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS 1

Copyright c© 2001, 2002 Roberto Bagnara (bagnara@cs.unipr.it).

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by theFree Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theFree Software Foundation; either version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 Convex Polyhedra and the PPL 1

2 PPL Namespace Index 8

3 PPL Hierarchical Index 9

4 PPL Compound Index 9

5 PPL File Index 10

6 PPL Page Index 10

7 PPL Namespace Documentation 10

8 PPL Class Documentation 12

9 PPL File Documentation 49

10 PPL Page Documentation 71

1 Convex Polyhedra and the PPL

1.1 A Library for Convex Polyhedra

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of rational convex poly-
hedra. Informally, a rational convex polyhedron is a set of points (in somen-dimensional vector space)

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.2 An Introduction to Convex Polyhedra 2

that satisfies a finite number of linear inequalities having rational coefficients. The domain of convex
polyhedra is employed in several systems for the analysis and verification of hardware and software com-
ponents, with applications spanning imperative, functional and logic programming languages, synchronous
languages and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not
meant to target a particular problem, the design of its interface has been largely influenced by the needs
of the above class of applications. That is the reason why the library implements a few operators that are
more or less specific to static analysis applications, while lacking some other operators that might be useful
when working, e.g., in the field of computational geometry.

The main features of the library are the following:

• it is user friendly: you writex + 2 ∗y + 5 ∗z <= 7 when you mean it;
• it is fully dynamic: available virtual memory is the only limitation to the dimension of anything;
• it provides full support for the manipulation of convex polyhedra that are not topologically closed;
• it is written in standard C++: meant to be portable;
• it is exception-safe: never leaks resources or leaves invalid object fragments around;
• it is rather efficient: and we hope to make it even more so;
• it is thoroughly documented: perhaps not literate programming but close enough;
• it is free software: distributed under the terms of the GNU General Public License.

In the following sections we describe the polyhedra and the different representations and operations sup-
ported by the PPL in more detail. For more information about the definitions and results stated here see:

• R. Bagnara, E. Ricci, E. Zaffanella and P. M. Hill - Possibly Not Closed Convex Polyhedra and the
Parma Polyhedra Library - Quaderno 286 - Department of Mathematics, University of Parma, Italy,
May 2002.

• K. Fukuda - Polyhedral Computation FAQ - Swiss Federal Institute of Technology, Lausanne and
Zurich, Switzerland, October 2000.

• G. L. Nemhauser and L. A. Wolsey - Integer and Combinatorial Optimization - Wiley Interscience
Series in Discrete Mathematics and Optimization, 1988.

• D. K. Wilde - A library for doing polyhedral operations - IRISA Publication interne n. 785, Decem-
ber 1993.

1.2 An Introduction to Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail.

Vectors, Matrices and Scalar Products

We denote byRn then-dimensional vector space on the field of real numbersR, endowed with the standard
topology. The set of all non-negative reals is denoted byR+. For eachi ∈ {0, . . . , n − 1}, vi denotes the
i-th component of the (column) vectorv = (v0, . . . , vn−1)T ∈ Rn. We denote by0 the vector ofRn,
calledthe origin, having all components equal to zero. A vectorv ∈ Rn can be also interpreted as a matrix
in Rn×1 and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted byvT.

Thescalar productof v,w ∈ Rn, denoted〈v,w〉, is the real number

vTw =
n−1∑
i=0

viwi.

For anyS1, S2 ⊆ Rn, theMinkowski’s sumof S1 andS2 is: S1 + S2 = {v1 + v2 | v1 ∈ S1,v2 ∈ S2 }.

Affine Hyperplanes and Half-spaces

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 3

For each vectora ∈ Rn and scalarb ∈ R, wherea 6= 0, and for each relational operator./ ∈ {=,≥, >},
the linear constraint〈a,x〉 ./ b defines:

• an affine hyperplane if it is an equality constraint, i.e., if./ ∈ {=};
• a topologically closed affine half-space if it is a non-strict inequality constraint, i.e., if./ ∈ {≥};
• a topologically open affine half-space if it is a strict inequality constraint, i.e., if./ ∈ {>}.

Note that each hyperplane〈a,x〉 = b can be defined as the intersection of the two closed affine half-spaces
〈a,x〉 ≥ b and〈−a,x〉 ≥ −b. Also note that, whena = 0, the constraint〈0,x〉 ./ b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vector spaceRn or
the empty set∅.

Convex Polyhedra

The setP ⊆ Rn is anot necessarily closed convex polyhedron(NNC polyhedron, for short) if and only if
eitherP can be expressed as the intersection of a finite number of (open or closed) affine half-spaces ofRn

or n = 0 andP = ∅. The set of all NNC polyhedra on the vector spaceRn is denotedPn.

The setP ∈ Pn is aclosed convex polyhedron(closed polyhedron, for short) if and only if eitherP can be
expressed as the intersection of a finite number of closed affine half-spaces ofRn or n = 0 andP = ∅.
The set of all closed polyhedra on the vector spaceRn is denotedCPn.

When ordering NNC polyhedra by the set inclusion relation, the empty set∅ and the vector spaceRn are,
respectively, the smallest and the biggest elements of bothPn andCPn. The vector spaceRn is also called
theuniversepolyhedron.

In theoretical terms,Pn is a latticeunder set inclusion andCPn is asub-latticeof Pn.

Bounded Polyhedra

An NNC polyhedronP ∈ Pn is boundedif there exists aλ ∈ R+ such that

P ⊆
{

x ∈ Rn
∣∣ −λ ≤ xj ≤ λ for j = 0, . . . , n− 1

}
.

A bounded polyhedron is also called apolytope.

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

Constraints representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as aconstraint.

By definition, each polyhedronP ∈ Pn is the set of solutions to aconstraint system, i.e., a finite number
of constraints. By using matrix notation, we have

P = {x ∈ Rn | A1x = b1, A2x ≥ b2, A3x > b3 },

where, for alli ∈ {1, 2, 3}, Ai ∈ Rmi × Rn andbi ∈ Rmi , andm1,m2,m3 ∈ N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

Combinations and Hulls

Let S = {x1, . . . ,xk} ⊆ Rn be a finite set of vectors. For all scalarsλ1, . . . , λk ∈ R, the vector
v =

∑k
j=1 λjxj is said to be alinear combination of the vectors inS. Such a combination is said to be

• apositive(or conic) combination, if∀j ∈ {1, . . . , k} : λj ∈ R+;

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 4

• anaffinecombination, if
∑k

j=1 λj = 1;
• aconvexcombination, if it is both positive and affine.

We denote bylinear.hull(S) (resp.,conic.hull(S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors inS.

Let P,C ⊆ Rn, whereP ∪ C = S. We denote bynnc.hull(P,C) the set of all convex combinations of
the vectors inS such thatλj > 0 for somexj ∈ P (informally, we say that there exists a vector ofP that
plays an active role in the convex combination). Note thatnnc.hull(P,C) = nnc.hull(P, P ∪ C) so that,
if C ⊆ P ,

convex.hull(P) = nnc.hull(P, ∅) = nnc.hull(P, P) = nnc.hull(P,C).

It can be observed thatlinear.hull(S) is an affine space,conic.hull(S) is a topologically closed convex
cone,convex.hull(S) is a topologically closed polytope, andnnc.hull(P,C) is an NNC polytope.

Points, Closure Points, Rays and Lines

LetP ∈ Pn be an NNC polyhedron. Then

• a vectorp ∈ P is called apointof P;
• a vectorc ∈ Rn is called aclosure pointof P if it is a point of the topological closure ofP;
• a vectorr ∈ Rn, wherer 6= 0, is called aray (or direction of infinity) ofP if P 6= ∅ andp+λr ∈ P,

for all pointsp ∈ P and allλ ∈ R+;
• a vectorl ∈ Rn is called aline of P if both l and−l are rays ofP.

A point of an NNC polyhedronP ∈ Pn is a vertex if and only if it cannot be expressed as a convex
combination of any other pair of distinct points inP. A ray r of a polyhedronP is anextreme rayif and
only if it cannot be expressed as a positive combination of any other pairr1 andr2 of rays ofP, where
r 6= λr1, r 6= λr2 andr1 6= λr2 for all λ ∈ R+ (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

Generators Representation

Each NNC polyhedronP ∈ Pn can be represented by finite sets of linesL, raysR, pointsP and closure
pointsC of P. The 4-tupleG = (L,R, P, C) is said to be agenerator systemfor P, in the sense that

P = linear.hull(L) + conic.hull(R) + nnc.hull(P,C),

where the symbol ’+’ denotes the Minkowski’s sum.

WhenP ∈ CPn is a closed polyhedron, then it can be represented by finite sets of linesL, raysR and
pointsP of P. In this case, the 3-tupleG = (L,R, P) is said to be agenerator systemfor P since we have

P = linear.hull(L) + conic.hull(R) + convex.hull(P).

Thus, in this case, every closure point ofP is a point ofP.

For anyP ∈ Pn and generator systemG = (L,R, P, C) for P, we haveP = ∅ if and only if P = ∅. Also
P must contain all the vertices ofP althoughP can be non-empty and have no vertices. In this case, asP
is necessarily non-empty, it must contain points ofP that arenot vertices. For instance, the half-space of
R2 corresponding to the single constrainty ≥ 0 can be represented by the generator systemG = (L,R, P)
such thatL =

{
(1, 0)T

}
, R =

{
(0, 1)T

}
, andP =

{
(0, 0)T

}
. It is also worth noting that the only ray in

R is notan extreme ray ofP.

Minimized Representations

A constraints systemC for an NNC polyhedronP ∈ Pn is said to beminimizedif no proper subset ofC is
a constraint system forP.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 5

Similarly, a generator systemG = (L,R, P, C) for an NNC polyhedronP ∈ Pn is said to beminimized
if there does not exist a generator systemG′ = (L′, R′, P ′, C ′) 6= G for P such thatL′ ⊆ L, R′ ⊆ R,
P ′ ⊆ P andC ′ ⊆ C.

Double Description

Any NNC polyhedronP can be described by using a constraint systemC, a generator systemC, or both
by means of thedouble description pair (DD pair)(C,G). Thedouble description methodis a collection
of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

Topologies and Topological-compatibility

As indicated above, when an NNC polyhedronP is necessarily closed, we can ignore the closure points
contained in its generator systemG = (L,R, P, C) (as every closure point is also a point) and represent
P by the triple(L,R, P). Similarly, P can be represented by a constraint system that has no strict in-
equalities. Thus a necessarily closed polyhedron can have a smaller representation than one that is not
necessarily closed. Moreover, operators restricted to work on closed polyhedra only can be implemented
more efficiently. For this reason the library provides two alternative “topological kinds” for a polyhedron,
NNCandC. We shall abuse terminology by referring to the topologcal kind of a polyhedron as itstopology.

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the followingtopological-compatibilityrules:

• polyhedra are tologically-compatible if and only if they have the same topology;
• all constraints except for strict constraints and all generators except for closure points are

topologically-compatible with both C and NNC polyhedra;
• strict inequality constraints and closure points are topologically-compatible with a polyhedron if and

only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

Space Dimensions and Dimension-compatibility

Thespace dimensionof an NNC polyhedronP ∈ Pn (resp., a C polyhedronP ∈ CPn) is the dimension
n ∈ N of the corresponding vector spaceRn. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following spacedimension-compatibilityrules:

• polyhedra are dimension-compatible if and only if they have the same space dimension;
• the constraint〈a,x〉 ./ b where./ ∈ {=,≥, >} anda,x ∈ Rm, is dimension-compatible with a

polyhedron having space dimensionn if and only if m ≤ n;
• the generatorx ∈ Rm is dimension-compatible with a polyhedron having space dimensionn if and

only if m ≤ n;
• a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if

all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 6

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimensions of polyhedra can only be changed by explicit calls to operators provided for
that purpose.

Rational Polyhedra

An NNC polyhedron is calledrational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.

Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedraP1,P2 ∈ Pn, theintersectionof P1 andP2, defined as the set intersection
P1 ∩P2, is the biggest NNC polyhedron included in bothP1 andP2; similarly, theconvex polyhedral hull
(or poly-hull) of P1 andP2, denoted byP1] P2, is the smallest NNC polyhedron that includes bothP1

andP2. The intersection and poly-hull of any pair of closed polyhedra inCPn is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the binarymeetand the
binary join operators on the latticesPn andCPn.

Convex Polyhedral Difference

For any pair of NNC polyhedraP1,P2 ∈ Pn, theconvex polyhedral difference(or poly-difference) of P1

andP2 is defined as the poly-hull of the set-theoretic difference ofP1 andP2.

In general, even thoughP1,P2 ∈ CPn are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

Adding New Dimensions to the Vector Space

The library provides two operators for increasing the space dimension of an NNC polyhedronP ∈ Pn,
therefore transforming it into a new NNC polyhedronQ ∈ Pm, wherem > n. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operatorembeddingthe polyhedronP into the new vector space will return the polyhedronQ defined
by all and only the constraints definingP (the variables corresponding to the added dimensions are uncon-
strained). For instance, when starting from a polyhedronP ⊆ R2 and adding a third dimension, the result
will be the polyhedron

Q =
{

(x0, x1, x2)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

In contrast, the operatorprojectingthe polyhedronP into the new vector space will return the polyhedron
Q whose constraint system, besides the constraints definingP, will include additional constraints on the
added dimensions. Namely, the corresponding variables are all constrained to be equal to 0. For instance,
when starting from a polyhedronP ⊆ R2 and adding a third dimension, the result will be the polyhedron

Q =
{

(x0, x1, 0)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

Removing Dimensions from the Vector Space

The library provides two operators for decreasing the space dimension of an NNC polyhedronP ∈ Pn,
therefore transforming it into a new NNC polyhedronQ ∈ Pm, wherem < n.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 7

Given a set of variables, there is an operator that will remove all the space dimensions corresponding to
the variables in this set. For instance, lettingP ∈ P4 be the singleton set

{
(3, 1, 0, 2)T

}
⊆ R4, then after

invoking this operator with the set of variables{x1, x2} the resulting polyhedron is

Q =
{
(3, 2)T

}
⊆ R2.

Another operator removes from the vector space all the dimensions having an index greater than or equal
to m. For instance, lettingP ∈ P4 defined as before, by invoking this operator withm = 2 the resulting
polyhedron will be

Q =
{
(3, 1)T

}
⊆ R2.

Affine Images and Preimages

The function mappingφ : Rn → Rm is anaffine transformationif there exist a matrixA ∈ Rm × Rn and
a vectorb ∈ Rm such that, for allx ∈ Rn, we haveφ(x) = Ax + b. If n = m, then the functionφ is
said to bespace-dimension preserving. We denote byφ(S) ⊆ Rm the imageunderφ of the setS ⊆ Rn;
similarly, we denote byφ−1(S′) ⊆ Rn thepreimageunderφ of S′ ⊆ Rm, that is the largest setS ⊆ Rn

such thatφ(S) ⊆ S′.

Both Pn andCPn are closed under the application of any space-dimension preserving affine image and
preimage operators.

The library provides two operators, one computes an affine image and the other an affine preimage of a
polyhedronP ∈ Pn for a given variablexk and linear expressionE

n−1∑
i=0

aixi + b.

This variable and expression determine the affine transformationφ that is to be used by the operator. That
is, φ is the transformation defined by the matrix and vector

A =



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
...

...
...

...
a0 a1 . . . ak−1 ak ak+1 . . . an−1

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . 1


, b =



0
0
...
b
...
0


where theai (resp.,b) occurs in the(k + 1)st row inA (resp., position inb). Thusφ transforms any point
(x0, . . . , xn−1)T in the polyhedronP to(

x0, . . . ,
(∑n−1

i=0 aixi + b
)
, . . . , xn−1

)T

.

The affine image operator computes the affine image ofP underφ. For instance, suppose the polyhedron
P to be transformed is the square inR2 generated by the set of points

{
(0, 0)T, (0, 3)T, (3, 0)T, (3, 3)T

}
.

Then, for example if the considered variable isx0 and the linear expressionx0 + 2x1 + 4 (so thatk = 0,
a0 = 1, a1 = 2, b = 4), the affine image operator will translateP to the parallelogramP1 generated
by the set of points

{
(4, 0)T, (10, 3)T, (7, 0)T, (13, 3)T

}
with height equal to the side of the square and

oblique sides parallel to the linex0− 2x1. If the considered variable is as before (i.e.,k = 0) but the linear
expression isx1 (so thata0 = 0, a1 = 1, b = 0), then the resulting polyhedronP2 is the positive diagonal
of the square.

The affine preimage operator computes the affine preimage ofP underφ. For instance, suppose now that
we apply the affine preimage operator as given in the first example using variablex0 and linear expression

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 8

x0 + 2x1 + 4 to the parallelogramP1; then we get the original squareP back. If, on the other hand, we
apply the affine preimage operator as given in the second example using variablex0 and linear expression
x1 toP2, then the resulting polyhedron is a line that corresponds to thex1 axes.

Observe that provided the coefficientak of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

Relation-with Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

SupposeP is an NNC polyhedron andC an arbitrary constraint system representingP. Suppose also that
c =

(
〈a,x〉 ./ b

)
is a constraint with./ ∈ {=,≥, >} andQ the set of points that satisfyc. The possible

relations betweenP andc are as follows.

• P is disjointfrom c if P ∩Q = ∅; that is, addingc to C gives us the empty polyhedron.
• P strictly intersectsc if P ∩ Q 6= ∅ andP ∩ Q ⊂ P; that is, addingc to C gives us a non-empty

polyhedron strictly smaller thanP.
• P is includedin c if P ⊆ Q; that is, addingc to C leavesP unchanged.
• P saturatesc if P ⊆ H, whereH is the hyperplane induced by constraintc, i.e., the set of points

satisfying the equality constraint〈a,x〉 = b; that is, adding the constraint〈a,x〉 = b to C leavesP
unchanged.

The polyhedronP subsumesthe generatorg if addingg to any generator system representingP does not
changeP.

Widening Operators

The library provides widening operators for the domain of NNC polyhedra. These operators use a widen-
ing, we callH79-widening, which is based on that introduced in N. Halbwachs,Détermination automatique
de relations lińeaires v́erifiées par les variables d’un programme, Thèse de 3̀eme cicle d’informatique,
Universit́e scientifique et ḿedicale de Grenoble, Grenoble, France, March 1979. This widening is also
described in N. Halbwachs, Y.-E. Proy, and P. Roumanoff, Verification of real-time systems using linear
relation analysis,Formal Methods in System Design, 11(2):157-185, 1997.

There are a few differences between the H79-widening and the widenings described in the cited paper. In
particular, the H79-widening of an NNC polyhedronP ∈ Pn using the NNC polyhedronQ ∈ Pn:

• allows for equalities inP andQ (the original definition is restricted to inequalities);
• does not requireP andQ to be topologically closed;
• requires as a precondition thatQ ⊆ P.

Time-Elapse Operator

Thetime-elapseoperator has been defined in N. Halbwachs and Y.-E. Proy and P. Roumanoff, Verification
of Real-Time Systems using Linear Relation Analysis, inFormal Methods in System Design11(2):157–
185, 1997.

Actually, the time-elapse operator provided by the library is a slight generalization of that one, since it also
works on NNC polyhedra. For any two NNC polyhedraP,Q ∈ Pn, the time-elapse betweenP andQ,
denotedP ↗ Q, is the smallest NNC polyhedron containing the set{

p + λq ∈ Rn
∣∣ p ∈ P, q ∈ Q, λ ∈ R+

}
.

Note that, ifP,Q ∈ CPn are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

Intervals, boxes and bounding boxes

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 PPL Namespace Index 9

An interval in R is a pair ofbounds, called lower andupper. Each bound can be either (1)closed and
bounded, (2) open and bounded, or (3)open and unbounded. If the bound isbounded, then it has a value
in R. An n-dimensionalboxB in Rn is a sequence ofn intervals inR.

The polyhedronP represents a boxB in Rn if P is described by a constraint system inRn that consists of
one constraint for each bounded bound (lower and upper) in an interval inB: Lettingei = (0, . . . , 1, . . . , 0)
be the vector inRn with 1 in thei’th position and zeros in every other position; if the lower bound of the
i’th interval inB is bounded, the corresponding constraint is defined as〈ei,x〉 ./ b, whereb is the value
of the bound and./ is≥ if it is a closed bound and> if it is an open bound. Similarly, if the upper bound
of the i’th interval inB is bounded, the corresponding constraint is defined as〈ei,x〉 ./ b, whereb is the
value of the bound and./ is≤ if it is a closed bound and< if it is an open bound.

If every bound in the intervals defining a boxB is either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

Thebounding boxof an NNC polyhedronP is the smallestn-dimensional box containingP.

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

2 PPL Namespace Index

2.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:

Parma Polyhedra Library (The entire library is confined into this namespace) 10

std (The standard C++ namespace) 12

3 PPL Hierarchical Index

3.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Parma Polyhedra Library::Constraint 14

Parma Polyhedra Library::From Bounding Box 19

Parma Polyhedra Library::Generator 19

Parma Polyhedra Library::LinExpression 24

Parma Polyhedra Library::Poly Con Relation 29

Parma Polyhedra Library::Poly Gen Relation 30

Parma Polyhedra Library::Polyhedron 31

Parma Polyhedra Library::C Polyhedron 12

Parma Polyhedra Library::NNC Polyhedron 28

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 PPL Compound Index 10

Parma Polyhedra Library::Throwable 48

Parma Polyhedra Library::Variable 48

4 PPL Compound Index

4.1 PPL Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma Polyhedra Library::C Polyhedron (A closed convex polyhedron) 12

Parma Polyhedra Library::Constraint (A linear equality or inequality) 14

Parma Polyhedra Library::From Bounding Box (A tag class) 19

Parma Polyhedra Library::Generator (A line, ray, point or closure point) 19

Parma Polyhedra Library::LinExpression (A linear expression) 24

Parma Polyhedra Library::NNC Polyhedron (A not necessarily closed convex polyhedron) 28

Parma Polyhedra Library::Poly Con Relation (The relation between a polyhedron and a
constraint) 29

Parma Polyhedra Library::Poly Gen Relation (The relation between a polyhedron and a
generator) 30

Parma Polyhedra Library::Polyhedron (The base class for convex polyhedra) 31

Parma Polyhedra Library::Throwable (User objects’ the PPL can throw) 48

Parma Polyhedra Library::Variable (A dimension of the space) 48

5 PPL File Index

5.1 PPL File List

Here is a list of all documented files with brief descriptions:

ppl c.h 49

6 PPL Page Index

6.1 PPL Related Pages

Here is a list of all related documentation pages:

Prolog Interface 71

GNU GENERAL PUBLIC LICENSE 83

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 PPL Namespace Documentation 11

GNU Free Documentation License 88

7 PPL Namespace Documentation

7.1 Parma Polyhedra Library Namespace Reference

The entire library is confined into this namespace.

Compounds

• classVariable

A dimension of the space.

• classLinExpression

A linear expression.

• classConstraint

A linear equality or inequality.

• classGenerator

A line, ray, point or closure point.

• classPoly Con Relation

The relation between a polyhedron and a constraint.

• classPoly GenRelation

The relation between a polyhedron and a generator.

• classPolyhedron

The base class for convex polyhedra.

• classC Polyhedron

A closed convex polyhedron.

• classNNC Polyhedron

A not necessarily closed convex polyhedron.

• classThrowable

User objects’ the PPL can throw.

• structFrom BoundingBox

A tag class.

Typedefs

• typedef mpzclassInteger

See the GMP’s manual available athttp://swox.com/gmp/ .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://swox.com/gmp/
http://www.cs.unipr.it/ppl/

7.2 std Namespace Reference 12

Functions

• Generatorline (constLinExpression&e)

Shorthand forGeneratorGeneratorline(const LinExpression& e).

• Generatorray (constLinExpression&e)

Shorthand forGeneratorGenerator::ray(const LinExpression& e).

• Generatorpoint (constLinExpression&e=LinExpression::zero(), constInteger&d=Integerone())

Shorthand forGeneratorpoint(const LinExpression& e, const Integer& d).

• Generator closurepoint (const LinExpression &e=LinExpression::zero(), constInteger
&d=Integerone())

Shorthand forGeneratorGenerator::closurepoint(const LinExpression& e, const Integer& d).

Variables

• constThrowable∗volatileabandonexponentialcomputations

7.1.1 Detailed Description

The entire library is confined into this namespace.

7.1.2 Variable Documentation

7.1.2.1 constThrowable∗ volatile Parma Polyhedra Library::abandon exponential computations

This pointer, which is initialized to zero, is repeatedly checked along any exponential computation path
in the library. When it is found nonzero the exception it points to is thrown. In other words, making this
pointer point to an exception (and leaving it in this state) ensures that the library will return control to the
client application, possibly by throwing the given exception, within a time that is a linear function of the
space dimension of the object (polyhedron, system of constraints or generators) of highest dimension on
which the library is operating upon.

Note:
The only sensible way to assign to this pointer is from within a signal handler or from a parallel thread.
For this reason, the library, apart from ensuring that the pointer is initially set to zero, never assigns to
it. In particular, it does not zero it again when the exception is thrown: it is the client’s responsibility
to do so.

7.2 std Namespace Reference

The standard C++ namespace.

7.2.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8 PPL Class Documentation 13

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library templates swap() and iterswap() (25.2.2, [lib.alg.swap]).

8 PPL Class Documentation

8.1 Parma Polyhedra Library::C Polyhedron Class Reference

A closed convex polyhedron.

InheritsParmaPolyhedraLibrary::Polyhedron.

Public Methods

• C Polyhedron(size t num dimensions=0,DegenerateKind kind=UNIVERSE)

Builds either the universe or the empty C polyhedron.

• C Polyhedron(ConSys &cs)

Builds a C polyhedron from a system of constraints.

• C Polyhedron(GenSys &gs)

Builds a C polyhedron from a system of generators.

• C Polyhedron(constNNC Polyhedron&y)

Builds a C polyhedron from theNNC Polyhedrony .

• template<class Box> C Polyhedron(const Box &box,From BoundingBox dummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

• C Polyhedron(const CPolyhedron &y)

Ordinary copy-constructor.

• C Polyhedron &operator=(const CPolyhedron &y)

The assignment operator. (∗this andy can be dimension-incompatible.).

• ∼C Polyhedron()

Destructor.

8.1.1 Detailed Description

A closed convex polyhedron.

An object of the classC Polyhedronrepresents atopologically closedconvex polyhedron in the vector
spaceRn.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains astrict inequalityconstraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containing aclosure point.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 Parma Polyhedra Library::C Polyhedron Class Reference 14

Note:
Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the classNNC Polyhedron, the precise topological closure test
will be performed.

8.1.2 Constructor & Destructor Documentation

8.1.2.1 ParmaPolyhedra Library::C Polyhedron::C Polyhedron (sizet num dimensions= 0, De-
generateKind kind = UNIVERSE) [explicit]

Builds either the universe or the empty C polyhedron.

Parameters:
num dimensionsThe number of dimensions of the vector space enclosing the C polyhedron.

kind Specifies whether a universe or an empty C polyhedron should be built.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

8.1.2.2 ParmaPolyhedra Library::C Polyhedron::C Polyhedron (ConSys &cs)

Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declaredconst because it can be

modified.

Exceptions:
std::invalid argument thrown if the system of constraints contains strict inequalities.

8.1.2.3 ParmaPolyhedra Library::C Polyhedron::C Polyhedron (GenSys &gs)

Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declaredconst because it can be

modified.

Exceptions:
std::invalid argument thrown if the system of generators is not empty but has no points, or if it

contains closure points.

8.1.2.4 ParmaPolyhedra Library::C Polyhedron::C Polyhedron (const NNC Polyhedron & y)
[explicit]

Builds a C polyhedron from theNNC Polyhedrony .

Exceptions:
std::invalid argument thrown if the polyhedrony is not topologically closed.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Parma Polyhedra Library::Constraint Class Reference 15

8.1.2.5 template<class Box> Parma Polyhedra Library::C Polyhedron::C Polyhedron (const Box
& box, From Bounding Box dummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: template<class Box> Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:
box The bounding box representing the polyhedron to be built.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:
std::invalid argument thrown if box has intervals that are not topologically closed (i.e., having some

finite but open bounds).

8.2 Parma Polyhedra Library::Constraint Class Reference

A linear equality or inequality.

Public Types

• enumType{ EQUALITY, NONSTRICT INEQUALITY , STRICT INEQUALITY }
The constraint type.

Public Methods

• Constraint(const Constraint &c)

Ordinary copy-constructor.

• ∼Constraint()

Destructor.

• Constraint &operator=(const Constraint &c)

Assignment operator.

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

• Typetype() const

Returns the constraint type of∗this .

• bool is equality() const

Returnstrue if and only if∗this is an equality constraint.

• bool is inequality() const

Returnstrue if and only if∗this is an inequality constraint (either strict or non-strict).

• bool is nonstrictinequality() const

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Parma Polyhedra Library::Constraint Class Reference 16

Returnstrue if and only if∗this is a non-strict inequality constraint.

• bool is strict inequality() const

Returnstrue if and only if∗this is a strict inequality constraint.

• constInteger& coefficient(Variablev) const

Returns the coefficient ofv in ∗this .

• constInteger& inhomogeneousterm() const

Returns the inhomogeneous term of∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Methods

• const Constraint &zerodim false()

The unsatisfiable (zero-dimension space) constraint0 = 1.

• const Constraint &zerodim positivity ()

The true (zero-dimension space) constraint0 ≤ 1, also known aspositivity constraint.

Friends

• classParmaPolyhedraLibrary::Polyhedron
• ConstraintParmaPolyhedraLibrary::operator==(constLinExpression&e1, constLinExpression

&e2)

Returns the constrainte1 = e2 .

• ConstraintParmaPolyhedraLibrary::operator==(constLinExpression&e, constInteger&n)

Returns the constrainte = n.

• ConstraintParmaPolyhedraLibrary::operator==(constInteger&n, constLinExpression&e)

Returns the constraintn = e.

• ConstraintParmaPolyhedraLibrary::operator>= (constLinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 >= e2 .

• ConstraintParmaPolyhedraLibrary::operator>= (constLinExpression&e, constInteger&n)

Returns the constrainte >= n.

• ConstraintParmaPolyhedraLibrary::operator>= (constInteger&n, constLinExpression&e)

Returns the constraintn >= e.

• ConstraintParmaPolyhedraLibrary::operator<= (constLinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 <= e2 .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Parma Polyhedra Library::Constraint Class Reference 17

• ConstraintParmaPolyhedraLibrary::operator<= (constLinExpression&e, constInteger&n)

Returns the constrainte <= n.

• ConstraintParmaPolyhedraLibrary::operator<= (constInteger&n, constLinExpression&e)

Returns the constraintn <= e.

• ConstraintParmaPolyhedraLibrary::operator> (const LinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 > e2 .

• ConstraintParmaPolyhedraLibrary::operator> (constLinExpression&e, constInteger&n)

Returns the constrainte > n.

• ConstraintParmaPolyhedraLibrary::operator> (constInteger&n, constLinExpression&e)

Returns the constraintn > e.

• ConstraintParmaPolyhedraLibrary::operator< (const LinExpression&e1, constLinExpression
&e2)

Returns the constrainte1 < e2 .

• ConstraintParmaPolyhedraLibrary::operator< (constLinExpression&e, constInteger&n)

Returns the constrainte < n.

• ConstraintParmaPolyhedraLibrary::operator< (constInteger&n, constLinExpression&e)

Returns the constraintn < e.

• ConstraintParmaPolyhedraLibrary::operator>> (const Constraint &c, unsigned int offset)

Returns the constraintc with variables renamed by addingoffset to their Cartesian axis identifier.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, const Constraint &c)

Output operator.

• void swap(ParmaPolyhedraLibrary::Constraint &x, ParmaPolyhedraLibrary::Constraint &y)

Specializesstd::swap .

8.2.1 Detailed Description

A linear equality or inequality.

An object of the classConstraintis either:

• an equality:
∑n−1

i=0 aixi + b = 0;

• a non-strict inequality:
∑n−1

i=0 aixi + b ≥ 0; or

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Parma Polyhedra Library::Constraint Class Reference 18

• a strict inequality:
∑n−1

i=0 aixi + b > 0;

wheren is the dimension of the space,ai is the integer coefficient of variablexi and b is the integer
inhomogeneous term.

How to build a constraint
Constraints are typically built by applying a relational operator to a pair of linear expressions. Avail-
able relational operators include equality (==), non-strict inequalities (>= and<=) and strict inequal-
ities (< and>). The space-dimension of a constraint is defined as the maximum space-dimension of
the arguments of its constructor.
In the following examples it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constraint3x + 5y − z = 0, having space-dimension3:

Constraint eq_c(3*x + 5*y - z == 0);

The following code builds the (non-strict) inequality constraint4x ≥ 2y−13, having space-dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);

The corresponding strict inequality constraint4x > 2y − 13 is obtained as follows:

Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension spaceR0 can be specified as follows:

Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_c1(LinExpression::zero() == 1);
Constraint false_c2(LinExpression::zero() >= 1);
Constraint false_c3(LinExpression::zero() > 0);

In constrast, the following code defines an unsatisfiable constraint having space-dimension3:

Constraint false_c(0*z == 1);

How to inspect a constraint
Several methods are provided to examine a constraint and extract all the encoded information: its
space-dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this casex− 5y + 3z <= 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraintx− 5y + 3z > 4).

Constraint c1(x - 5*y + 3*z <= 4);
cout << "Constraint c1: " << c1 << endl;
if (c1.is_equality())

cout << "Constraint c1 is not an inequality." << endl;
else {

LinExpression e;

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 Parma Polyhedra Library::From Bounding Box Struct Reference 19

for (int i = c1.space_dimension() - 1; i >= 0; i--)
e += c1.coefficient(Variable(i)) * Variable(i);

e += c1.inhomogeneous_term();
Constraint c2 = c1.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c2 << endl;

}

The actual output is the following:

Constraint c1: -A + 5*B - 3*C >= -4
Complement c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

8.2.2 Member Enumeration Documentation

8.2.2.1 enum ParmaPolyhedra Library::Constraint::Type

The constraint type.

Enumeration values:
EQUALITY The constraint is an equality.

NONSTRICT INEQUALITY The constraint is a non-strict inequality.

STRICT INEQUALITY The constraint is a strict inequality.

8.2.3 Member Function Documentation

8.2.3.1 constInteger& Parma Polyhedra Library::Constraint::coefficient (Variable v) const

Returns the coefficient ofv in ∗this .

Exceptions:
std::invalid argument thrown if the index ofv is greater than or equal to the space-dimension of

∗this .

8.3 Parma Polyhedra Library::From Bounding Box Struct Reference

A tag class.

8.3.1 Detailed Description

A tag class.

Tag class to differentiate theC PolyhedronandNNC Polyhedronconstructors that build a polyhedron out
of a bounding box.

8.4 Parma Polyhedra Library::Generator Class Reference

A line, ray, point or closure point.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Parma Polyhedra Library::Generator Class Reference 20

Public Types

• enumType{ LINE, RAY, POINT, CLOSUREPOINT}
The generator type.

Public Methods

• Generator(const Generator &g)

Ordinary copy-constructor.

• ∼Generator()

Destructor.

• Generator &operator=(const Generator &g)

Assignment operator.

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

• Typetype() const

Returns the generator type of∗this .

• bool is line () const

Returnstrue if and only if∗this is a line.

• bool is ray () const

Returnstrue if and only if∗this is a ray.

• bool is point () const

Returnstrue if and only if∗this is a point.

• bool is closurepoint () const

Returnstrue if and only if∗this is a closure point.

• constInteger& coefficient(Variablev) const

Returns the coefficient ofv in ∗this .

• constInteger& divisor () const

If ∗this is either a point or a closure point, returns its divisor.

• boolOK () const

Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Parma Polyhedra Library::Generator Class Reference 21

Static Public Methods

• Generatorline (constLinExpression&e)

Returns the line of directione.

• Generatorray (constLinExpression&e)

Returns the ray of directione.

• Generatorpoint(constLinExpression&e=LinExpression::zero(), constInteger&d=Integerone())

Returns the point ate / d.

• Generator closurepoint (const LinExpression &e=LinExpression::zero(), constInteger
&d=Integerone())

Returns the closure point ate / d.

• const Generator &zerodim point ()

Returns the origin of the zero-dimensional spaceR0.

• const Generator &zerodim closurepoint ()

Returns, as a closure point, the origin of the zero-dimensional spaceR0.

Friends

• classParmaPolyhedraLibrary::Polyhedron
• std::ostream &ParmaPolyhedraLibrary::operator<< (std::ostream &s, const Generator &g)

Output operator.

Related Functions

(Note that these are not member functions.)

• void swap(ParmaPolyhedraLibrary::Generator &x, ParmaPolyhedraLibrary::Generator &y)

Specializesstd::swap .

8.4.1 Detailed Description

A line, ray, point or closure point.

An object of the classGeneratoris one of the following:

• a linel = (a0, . . . , an−1)T;

• a rayr = (a0, . . . , an−1)T;

• a pointp = (a0
d , . . . , an−1

d)T;

• a closure pointc = (a0
d , . . . , an−1

d)T;

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Parma Polyhedra Library::Generator Class Reference 22

wheren is the dimension of the space and, for points and closure points,d > 0 is the divisor.

A note on terminology.
As observed in SectionRepresentations of Convex Polyhedra, there are cases when, in order to rep-
resent a polyhedronP using the generator systemG = (L, R, P, C), we need to include in the finite
setP even points ofP that arenot vertices ofP. This situation is even more frequent when working
with NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other libraries
use the word ‘vertex’.

How to build a generator.
Each type of generator is built by applying the corresponding function (line , ray , point or clo-
sure point) to a linear expression, representing a direction in the space; the space-dimension of the
generator is defined as the space-dimension of the corresponding linear expression. Linear expressions
used to define a generator should be homogeneous (any constant term will be simply ignored). When
defining points and closure points, an optional Integer argument can be used as a commondivisor for
all the coefficients occurring in the provided linear expression; the default value for this argument is 1.
In all the following examples it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds a line with directionx− y − z and having space-dimension3:

Generator l = line(x - y - z);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator l = line(x - y - z + 15);

By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator l = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the pointp = (1, 0, 2)T ∈ R3:

Generator p = point(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

Generator p = point(x + 2*z);

Similarly, the origin0 ∈ R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, namely0 ∈ R2:

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Parma Polyhedra Library::Generator Class Reference 23

Generator origin2 = point(0*y);

The following two lines of code both define the only point having space-dimension zero, namely
0 ∈ R0. In the second case we exploit the fact that the first argument of the functionpoint is
optional.

Generator origin0 = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4
The pointp specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the functionpoint (the divisor):

Generator p = point(2*x + 0*y + 4*z, 2);

Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-
nal) coordinates. For instance, the pointq = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5
Closures points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure pointc = (1, 0, 2)T ∈ R3 is defined by

Generator c = closure_point(1*x + 0*y + 2*z);

For the particular case of the (only) closure point having space-dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

How to inspect a generator
Several methods are provided to examine a generator and extract all the encoded information: its
space-dimension, its type and the value of its integer coefficients.

Example 6
The following code shows how it is possible to access each single coefficient of a generator. Ifg1
is a point having coordinates(a0, . . . , an−1)T, we construct the closure pointg2 having coordinates
(a0, 2a1, . . . , (i + 1)ai, . . . , nan−1)T.

if (g1.is_point()) {
cout << "Point g1: " << g1 << endl;
LinExpression e;
for (int i = g1.space_dimension() - 1; i >= 0; i--)

e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, g1.divisor());
cout << "Closure point g2: " << g2 << endl;

}
else

cout << "Generator g1 is not a point." << endl;

Therefore, for the point

Generator g1 = point(2*x - y + 3*z, 2);

we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the notion ofcoefficientwith the notion
of coordinate: these are equivalent only when the divisor of the (closure) point is 1.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Parma Polyhedra Library::Generator Class Reference 24

8.4.2 Member Enumeration Documentation

8.4.2.1 enum ParmaPolyhedra Library::Generator::Type

The generator type.

Enumeration values:
LINE The generator is a line.

RAY The generator is a ray.

POINT The generator is a point.

CLOSURE POINT The generator is a closure point.

8.4.3 Member Function Documentation

8.4.3.1 Generator ParmaPolyhedra Library::Generator::line (const LinExpression & e)
[static]

Returns the line of directione.

Exceptions:
std::invalid argument thrown if the homogeneous part ofe represents the origin of the vector space.

8.4.3.2 Generator ParmaPolyhedra Library::Generator::ray (const LinExpression & e)
[static]

Returns the ray of directione.

Exceptions:
std::invalid argument thrown if the homogeneous part ofe represents the origin of the vector space.

8.4.3.3 Generator ParmaPolyhedra Library::Generator::point (const LinExpression & e = Lin-
Expression::zero(), constInteger & d = Integer one()) [static]

Returns the point ate / d.

Bothe andd are optional arguments, with default valuesLinExpression::zero() and Integerone(), respec-
tively.

Exceptions:
std::invalid argument thrown if d is zero.

8.4.3.4 Generator ParmaPolyhedra Library::Generator::closure point (const LinExpression & e
= LinExpression::zero(), constInteger & d = Integer one()) [static]

Returns the closure point ate / d.

Bothe andd are optional arguments, with default valuesLinExpression::zero() and Integerone(), respec-
tively.

Exceptions:
std::invalid argument thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 Parma Polyhedra Library::LinExpression Class Reference 25

8.4.3.5 constInteger& Parma Polyhedra Library::Generator::coefficient (Variable v) const

Returns the coefficient ofv in ∗this .

Exceptions:
std::invalid argument thrown if the index ofv is greater than or equal to the space-dimension of

∗this .

8.4.3.6 constInteger& Parma Polyhedra Library::Generator::divisor () const

If ∗this is either a point or a closure point, returns its divisor.

Exceptions:
std::invalid argument thrown if ∗this is neither a point nor a closure point.

8.5 Parma Polyhedra Library::LinExpression Class Reference

A linear expression.

Public Methods

• LinExpression()

Default constructor: returns a copy ofLinExpression::zero().

• LinExpression(const LinExpression &e)

Ordinary copy-constructor.

• virtual∼LinExpression()

Destructor.

• LinExpression(constInteger&n)

Builds the linear expression corresponding to the inhomogeneous termn.

• LinExpression(constVariable&v)

Builds the linear expression corresponding to the variablev .

• LinExpression(constConstraint&c)

Builds the linear expression corresponding to constraintc .

• LinExpression(constGenerator&g)

Builds the linear expression corresponding to generatorg (for points and closure points, the divisor is not
copied).

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

Static Public Methods

• const LinExpression &zero()

Returns the (zero-dimension space) constant 0.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 Parma Polyhedra Library::LinExpression Class Reference 26

Friends

• classParmaPolyhedraLibrary::Constraint
• classParmaPolyhedraLibrary::Generator
• classParmaPolyhedraLibrary::Polyhedron
• LinExpression ParmaPolyhedraLibrary::operator+ (const LinExpression &e1, const Lin-

Expression &e2)

Returns the linear expressione1 + e2 .

• LinExpressionParmaPolyhedraLibrary::operator+(constInteger&n, const LinExpression &e)

Returns the linear expressionn + e.

• LinExpressionParmaPolyhedraLibrary::operator+(const LinExpression &e, constInteger&n)

Returns the linear expressione + n.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e)

Returns the linear expression -e.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e1, const LinExpression
&e2)

Returns the linear expressione1 - e2 .

• LinExpressionParmaPolyhedraLibrary::operator-(constInteger&n, const LinExpression &e)

Returns the linear expressionn - e.

• LinExpressionParmaPolyhedraLibrary::operator-(const LinExpression &e, constInteger&n)

Returns the linear expressione - n.

• LinExpressionParmaPolyhedraLibrary::operator∗ (constInteger&n, const LinExpression &e)

Returns the linear expressionn ∗ e.

• LinExpressionParmaPolyhedraLibrary::operator∗ (const LinExpression &e, constInteger&n)

Returns the linear expressione ∗ n.

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e1, const LinExpression
&e2)

Returns the linear expressione1 + e2 and assigns it toe1 .

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e, constVariable&v)

Returns the linear expressione + v and assigns it toe.

• LinExpression &ParmaPolyhedraLibrary::operator+=(LinExpression &e, constInteger&n)

Returns the linear expressione + n and assigns it toe.

• LinExpression &ParmaPolyhedraLibrary::operator-=(LinExpression &e1, const LinExpression
&e2)

Returns the linear expressione1 - e2 and assigns it toe1 .

• LinExpression &ParmaPolyhedraLibrary::operator-=(LinExpression &e, constVariable&v)

Returns the linear expressione - v and assigns it toe.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 Parma Polyhedra Library::LinExpression Class Reference 27

• LinExpression &ParmaPolyhedraLibrary::operator-=(LinExpression &e, constInteger&n)

Returns the linear expressione - n and assigns it toe.

Related Functions

(Note that these are not member functions.)

• void swap(ParmaPolyhedraLibrary::LinExpression &x, ParmaPolyhedraLibrary::LinExpression
&y)

Specializesstd::swap .

8.5.1 Detailed Description

A linear expression.

An object of the classLinExpressionrepresents the linear expression

n−1∑
i=0

aixi + b

wheren is the dimension of the space, eachai is the integer coefficient of thei -th variablexi andb is the
integer for the inhomogeneous term.

How to build a linear expression.
Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequal-
ities) and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to
provide a convenient interface for building complex linear expressions starting from simpler ones and
from objects of the classesVariableand Integer: available operators include unary negation, binary
addition and subtraction, as well as multiplication by an Integer. The space-dimension of a linear ex-
pression is defined as the maximum space-dimension of the arguments used to build it: in particular,
the space-dimension of aVariablex is defined asx.id()+1 , whereas all the objects of the class
Integer have space-dimension zero.

Example
The following code builds the linear expression4x− 2y − z + 14, having space-dimension3:

LinExpression e = 4*x - 2*y - z + 14;

Another way to build the same linear expression is:

LinExpression e1 = 4*x;
LinExpression e2 = 2*y;
LinExpression e3 = z;
LinExpression e = LinExpression(14);
e += e1 - e2 - e3;

Note thate1 , e2 ande3 have space-dimension 1, 2 and 3, respectively; also, in the fourth line of
code,e is created with space-dimension zero and then extended to space-dimension 3.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.6 Parma Polyhedra Library::NNC Polyhedron Class Reference 28

8.5.2 Constructor & Destructor Documentation

8.5.2.1 ParmaPolyhedra Library::LinExpression::LinExpression (const Constraint & c)
[explicit]

Builds the linear expression corresponding to constraintc .

Given the constraintc =
(∑n−1

i=0 aixi + b ./ 0
)
, where./ ∈ {=,≥, >}, builds the linear expression∑n−1

i=0 aixi + b. If c is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

8.5.2.2 ParmaPolyhedra Library::LinExpression::LinExpression (const Generator & g)
[explicit]

Builds the linear expression corresponding to generatorg (for points and closure points, the divisor is not
copied).

Given the generatorg = (a0
d , . . . , an−1

d)T (where, for lines and rays, we haved = 1), builds the linear

expression
∑n−1

i=0 aixi. The inhomogeneous term of the linear expression will always be 0. Ifg is a ray,
point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

8.6 Parma Polyhedra Library::NNC Polyhedron Class Reference

A not necessarily closed convex polyhedron.

InheritsParmaPolyhedraLibrary::Polyhedron.

Public Methods

• NNC Polyhedron(size t num dimensions=0,DegenerateKind kind=UNIVERSE)

Builds either the universe or the empty NNC polyhedron.

• NNC Polyhedron(ConSys &cs)

Builds a NNC polyhedron from a system of constraints.

• NNC Polyhedron(GenSys &gs)

Builds a NNC polyhedron from a system of generators.

• NNC Polyhedron(constC Polyhedron&y)

Builds a NNC polyhedron from theC Polyhedrony .

• template<class Box> NNC Polyhedron(const Box &box,From BoundingBox dummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

• NNC Polyhedron(const NNCPolyhedron &y)

Ordinary copy-constructor.

• NNC Polyhedron &operator=(const NNCPolyhedron &y)

The assignment operator. (∗this andy can be dimension-incompatible.).

• ∼NNC Polyhedron()

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.6 Parma Polyhedra Library::NNC Polyhedron Class Reference 29

Destructor.

8.6.1 Detailed Description

A not necessarily closed convex polyhedron.

An object of the classNNC Polyhedronrepresents anot necessarily closed(NNC) convex polyhedron in
the vector spaceRn.

Note:
Since NNC polyhedra are a generalization of closed polyhedra, any object of the classC Polyhedron
can be (explicitly) converted into an object of the classNNC Polyhedron. The reason for defining
two different classes is that objects of the classC Polyhedronare characterized by a more efficient
implementation, requiring less time and memory resources.

8.6.2 Constructor & Destructor Documentation

8.6.2.1 ParmaPolyhedra Library::NNC Polyhedron::NNC Polyhedron (sizet num dimensions=
0, DegenerateKind kind = UNIVERSE) [explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:
num dimensionsThe number of dimensions of the vector space enclosing the NNC polyhedron.

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

8.6.2.2 ParmaPolyhedra Library::NNC Polyhedron::NNC Polyhedron (ConSys &cs)

Builds a NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declaredconst because it can be

modified.

8.6.2.3 ParmaPolyhedra Library::NNC Polyhedron::NNC Polyhedron (GenSys &gs)

Builds a NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declaredconst because it can be

modified.

Exceptions:
std::invalid argument thrown if the system of generators is not empty but has no points.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.7 Parma Polyhedra Library::Poly Con Relation Class Reference 30

8.6.2.4 template<class Box> Parma Polyhedra Library::NNC Polyhedron::NNC Polyhedron
(const Box & box, From Bounding Box dummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: template<class Box> Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:
box The bounding box representing the polyhedron to be built.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

8.7 Parma Polyhedra Library::Poly Con Relation Class Reference

The relation between a polyhedron and a constraint.

Public Methods

• bool implies(const PolyCon Relation &y) const

True if and only if∗this impliesy .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Methods

• Poly Con Relationnothing()

The assertion that says nothing.

• Poly Con Relationis disjoint ()

The polyhedron and the set of points satisfying the constraint are disjoint.

• Poly Con Relationstrictly intersects()

The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

• Poly Con Relationis included()

The polyhedron is included in the set of points satisfying the constraint.

• Poly Con Relationsaturates()

The polyhedron is included in the set of points saturating the constraint.

Friends

• boolParmaPolyhedraLibrary::operator==(const PolyCon Relation &x, const PolyCon Relation
&y)

True if and only ifx andy are logically equivalent.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.8 Parma Polyhedra Library::Poly Gen Relation Class Reference 31

• bool ParmaPolyhedraLibrary::operator!=(const PolyCon Relation &x, const PolyCon Relation
&y)

True if and only ifx andy are not logically equivalent.

• Poly Con Relation ParmaPolyhedraLibrary::operator && (const PolyCon Relation &x, const
Poly Con Relation &y)

Yields the logical conjunction ofx andy .

• Poly Con RelationParmaPolyhedraLibrary::operator-(const PolyCon Relation &x, const Poly-
Con Relation &y)

Yields the assertion with all the conjuncts ofx that are not iny .

• std::ostream &ParmaPolyhedraLibrary::operator<< (std::ostream &s, const PolyCon Relation
&r)

Output operator.

8.7.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

8.8 Parma Polyhedra Library::Poly Gen Relation Class Reference

The relation between a polyhedron and a generator.

Public Methods

• bool implies(const PolyGenRelation &y) const

True if and only if∗this impliesy .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Methods

• Poly GenRelationnothing()

The assertion that says nothing.

• Poly GenRelationsubsumes()

Adding the generator would not change the polyhedron.

Friends

• boolParmaPolyhedraLibrary::operator==(const PolyGenRelation &x, const PolyGenRelation
&y)

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 32

True if and only ifx andy are logically equivalent.

• bool ParmaPolyhedraLibrary::operator!=(const PolyGenRelation &x, const PolyGenRelation
&y)

True if and only ifx andy are not logically equivalent.

• Poly GenRelation ParmaPolyhedraLibrary::operator && (const PolyGenRelation &x, const
Poly GenRelation &y)

Yields the logical conjunction ofx andy .

• Poly GenRelationParmaPolyhedraLibrary::operator-(const PolyGenRelation &x, const Poly-
GenRelation &y)

Yields the assertion with all the conjuncts ofx that are not iny .

• std::ostream &ParmaPolyhedraLibrary::operator<< (std::ostream &s, const PolyGenRelation
&r)

Output operator.

8.8.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

8.9 Parma Polyhedra Library::Polyhedron Class Reference

The base class for convex polyhedra.

Inherited byParmaPolyhedraLibrary::C Polyhedron, andParmaPolyhedraLibrary::NNC Polyhedron.

Public Types

• enumDegenerateKind { UNIVERSE, EMPTY }
Kinds of degenerate polyhedra.

Public Methods

• ∼Polyhedron()

Destructor.

• size t spacedimension() const

Returns the dimension of the vector space enclosing∗this .

• bool intersectionassignandminimize(const Polyhedron &y)

Assigns to∗this the intersection of∗this andy , minimizing the result.

• void intersectionassign(const Polyhedron &y)

Assigns to∗this the intersection of∗this andy . The result is not guaranteed to be minimized.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 33

• boolpoly hull assignandminimize(const Polyhedron &y)

Assigns to∗this the poly-hull of∗this andy , minimizing the result.

• void poly hull assign(const Polyhedron &y)

Assigns to∗this the poly-hull∗this andy . The result is not guaranteed to be minimized.

• boolpoly differenceassignandminimize(const Polyhedron &y)

Assigns to∗this thepoly-differenceof ∗this andy , minimizing the result.

• void poly differenceassign(const Polyhedron &y)

Assigns to∗this thepoly-differenceof ∗this andy . The result is not guaranteed to be minimized.

• Poly Con Relationrelationwith (constConstraint&c) const

Returns the relations holding between the polyhedron∗this and the constraintc .

• Poly GenRelationrelationwith (constGenerator&g) const

Returns the relations holding between the polyhedron∗this and the generatorg.

• void H79 wideningassign(const Polyhedron &y)

Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

• void limited H79 wideningassign(const Polyhedron &y, ConSys &cs)

Limits theH79-wideningcomputation between∗this andy by enforcing constraintscs and assigns the
result to∗this .

• void time elapseassign(const Polyhedron &y)

Assigns to∗this the result of computing thetime-elapsebetween∗this andy .

• const ConSys &constraints() const

Returns the system of constraints.

• const ConSys &minimizedconstraints() const

Returns the system of constraints, with no redundant constraint.

• const GenSys &generators() const

Returns the system of generators.

• const GenSys &minimizedgenerators() const

Returns the system of generators, with no redundant generator.

• void addconstraint(constConstraint&c)

Adds a copy of constraintc to the system of constraints of∗this .

• void addgenerator(constGenerator&g)

Adds a copy of generatorg to the system of generators of∗this .

• void affine image (const Variable &var, constLinExpression&expr, constInteger &denomina-
tor=Integerone())

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 34

Assigns to∗this theaffine imageof ∗this under the function mapping variablev into the affine expres-
sion specified byexpr andd.

• void affine preimage(constVariable&var, constLinExpression&expr, constInteger&denomina-
tor=Integerone())

Assigns to∗this the affine preimageof ∗this under the function mapping variablev into the affine
expression specified byexpr andd.

• template<class Box> void shrink boundingbox (Box &box) const

Use∗this to shrink a generic, interval-based bounding box.

• boolOK (bool checknot empty=false) const

Checks if all the invariants are satisfied.

• void adddimensionsandembed(size t dim)

Addsdim new dimensions and embeds the old polyhedron into the new space.

• void adddimensionsandproject(size t dim)

Addsdim new dimensions to the polyhedron and does not embed it in the new space.

• void removedimensions(const std::set< Variable> &to be removed)

Removes all the specified dimensions.

• void removehigherdimensions(size t new dimension)

Removes the higher dimensions so that the resulting space will have dimensionnew dimension .

• booladdconstraintsandminimize(ConSys &cs)

Adds the specified constraints and minimizes the result, which is assigned to∗this .

• void addconstraints(ConSys &cs)

Adds the specified constraints without minimizing.

• void adddimensionsandconstraints(ConSys &cs)

First increases the space dimension of∗this by addingcs.space dimension() new dimensions;
then adds to the system of constraints of∗this a renamed-apart version of the constraints incs .

• booladdgeneratorsandminimize(GenSys &gs)

Adds the specified generators and minimizes the result, which is assigned to∗this .

• void addgenerators(GenSys &gs)

Adds the specified generators without minimizing.

• bool checkempty() const

Returnstrue if and only if∗this is an empty polyhedron.

• bool checkuniverse() const

Returnstrue if and only if∗this is a universe polyhedron.

• bool is bounded() const

Returnstrue if and only if∗this is a bounded polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 35

• boolboundsfrom above(constLinExpression&expr) const

Returnstrue if and only ifexpr is bounded from above in∗this .

• boolboundsfrom below(constLinExpression&expr) const

Returnstrue if and only ifexpr is bounded from below in∗this .

• bool is topologically closed() const

Returnstrue if and only if∗this is a topologically closed subset of the vector space.

• void topologicalclosureassign()

Assigns to∗this its topological closure.

• void swap(Polyhedron &y)

Swaps∗this with polyhedrony . (∗this andy can be dimension-incompatible.).

Protected Methods

• Polyhedron(const Polyhedron &y)

Ordinary copy-constructor.

• Polyhedron(Topology topol, sizet num dimensions,DegenerateKind kind)

Builds a polyhedron having the specified properties.

• Polyhedron(Topology topol, ConSys &cs)

Builds a polyhedron from a system of constraints.

• Polyhedron(Topology topol, GenSys &gs)

Builds a polyhedron from a system of generators.

• template<class Box> Polyhedron(Topology topol, const Box &box)

Builds a polyhedron out of a generic, interval-based bounding box.

• Polyhedron &operator=(const Polyhedron &y)

The assignment operator. (∗this andy can be dimension-incompatible.).

Friends

• boolParmaPolyhedraLibrary::operator<= (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only if polyhedronx is contained in polyhedrony .

• std::ostream &ParmaPolyhedraLibrary::operator<< (std::ostream &s, const Polyhedron &p)

Output operator.

• std::istream &ParmaPolyhedraLibrary::operator>> (std::istream &s, Polyhedron &p)

Input operator.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 36

Related Functions

(Note that these are not member functions.)

• booloperator==(const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx andy are the same polyhedron.

• booloperator!=(const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx andy are different polyhedra.

• booloperator< (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx is strictly contained iny .

• booloperator> (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx strictly containsy .

• booloperator>= (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx containsy .

• void swap(ParmaPolyhedraLibrary::Polyhedron &x, ParmaPolyhedraLibrary::Polyhedron &y)

Specializesstd::swap .

8.9.1 Detailed Description

The base class for convex polyhedra.

An object of the classPolyhedronrepresents a convex polyhedron in the vector spaceRn.

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
SectionRepresentations of Convex Polyhedra) and it is always possible to obtain either representation.
That is, if we know the system of constraints, we can obtain from this the system of generators that define
the same polyhedron and vice versa. These systems can contain redundant members: in this case we say
that they are not in the minimal form. Most operators on polyhedra are provided with two implementa-
tions: one of these, denoted<operator-name > and minimize , also enforces the minimization of
the representations, and returns the Boolean valuefalse whenever the resulting polyhedron turns out to
be empty.

Two key attributes of any polyhedron are its topological kind (recording whether it is aC Polyhedronor
anNNC Polyhedronobject) and its space dimension (the dimensionn ∈ N of the enclosing vector space):

• all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;
• most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint

or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see SectionRepresentations of Convex
Polyhedra);

• there is no way to change the topology of a polyhedron; rather, there are constructors of the two de-
rived classes that builds a new polyhedron having a topology when provided with the corresponding
polyhedron of the other topology;

• the only ways to change the space dimension of a polyhedron are:

– explicitcalls to operators provided for that purpose;
– standard copy, assignment and swap operators.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 37

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedronR0, again either closed or NNC.

In all the examples it is assumed that variablesx andy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a square inR2, given as a system of con-
straints:

ConSys cs;
cs.add_constraint(x >= 0);
cs.add_constraint(x <= 3);
cs.add_constraint(y >= 0);
cs.add_constraint(y <= 3);
Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

GenSys gs;
gs.add_generator(point(0*x + 0*y));
gs.add_generator(point(0*x + 3*y));
gs.add_generator(point(3*x + 0*y));
gs.add_generator(point(3*x + 3*y));
Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-strip inR2, given as a
system of constraints:

ConSys cs;
cs.add_constraint(x >= 0);
cs.add_constraint(x - y <= 0);
cs.add_constraint(x - y + 1 >= 0);
Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

GenSys gs;
gs.add_generator(point(0*x + 0*y));
gs.add_generator(point(0*x + y));
gs.add_generator(ray(x - y));
Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to an half-plane by adding a single constraint
to the universe polyhedron inR2:

Polyhedron ph(2);
ph.add_constraint(y >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spaceR2 and inserting the appropriate generators (a point, a ray and a line).

Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 38

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
point (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functionadd dimensions and embed:

Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension spaceR. Then we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singleton set{2} ⊆ R. After the last line
of code, the resulting polyhedron is{

(2, y)T ∈ R2
∣∣ y ∈ R

}
.

Example 5
The following code shows the use of the functionadd dimensions and project :

Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_project(1);

The first two lines of code are the same as in Example 4 foradd dimensions and embed. After
the last line of code, the resulting polyhedron is the singleton set

{
(2, 0)T

}
⊆ R2.

Example 6
The following code shows the use of the functionaffine image :

Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
LinExpression coeff = x + 4;
ph.affine_image(x, coeff);

In this example the starting polyhedron is a square inR2, the considered variable isx and the affine
expression isx + 4. The resulting polyhedron is the same square translated towards right. Moreover,
if the affine transformation for the same variablex is x + y:

LinExpression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex − y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expressiony:

LinExpression coeff = y;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functionaffine preimage :

Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(y >= 0);
ph.add_constraint(y <= 3);
LinExpression coeff = x + 4;
ph.affine_preimage(x, coeff);

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 39

In this example the starting polyhedron,var and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated towards
left. Moreover, if the affine transformation forx is x + y

LinExpression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex + y. Instead, if we do not use an invertible transformation for the
same variablex , for example, the affine expressiony:

LinExpression coeff = y;

the resulting polyhedron is a line that corresponds to they axis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functionremove dimensions :

GenSys gs;
gs.add_generator(point(3*x + y +0*z + 2*w));
Polyhedron ph(gs);
set<Variable> to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_dimensions(to_be_removed);

The starting polyhedron is the singleton set
{
(3, 1, 0, 2)T

}
⊆ R4, while the resulting polyhedron is{

(3, 2)T
}
⊆ R2. Be careful when removing dimensionsincrementally: since dimensions are auto-

matically renamed after each application of theremove dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> to_be_removed1;
to_be_removed1.insert(y);
ph.remove_dimensions(to_be_removed1);
set<Variable> to_be_removed2;
to_be_removed2.insert(z);
ph.remove_dimensions(to_be_removed2);

In this case, the result is the polyhedron
{
(3, 0)T

}
⊆ R2: when removing the set of dimensionsto -

be removed2 we are actually removing variablew of the original polyhedron. For the same reason,
the operatorremove dimensions is not idempotent: removing twice the same set of dimensions
is never a no-op.

8.9.2 Member Enumeration Documentation

8.9.2.1 enum ParmaPolyhedra Library::Polyhedron::Degenerate Kind

Kinds of degenerate polyhedra.

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 40

8.9.3 Constructor & Destructor Documentation

8.9.3.1 ParmaPolyhedra Library::Polyhedron::Polyhedron (Topology topol, sizet num -
dimensions, DegenerateKind kind) [protected]

Builds a polyhedron having the specified properties.

Parameters:
topol The topology of the polyhedron;

num dimensionsThe number of dimensions of the vector space enclosing the polyhedron;

kind Specifies whether the universe or the empty polyhedron has to be built.

8.9.3.2 ParmaPolyhedra Library::Polyhedron::Polyhedron (Topology topol, ConSys & cs)
[protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not declaredconst because it can be
modified.

Exceptions:
std::invalid argument thrown if the topology ofcs is incompatible withtopology .

8.9.3.3 ParmaPolyhedra Library::Polyhedron::Polyhedron (Topology topol, GenSys & gs)
[protected]

Builds a polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declaredconst because it can be
modified.

Exceptions:
std::invalid argument thrown if if the topology ofgs is incompatible withtopol , or if the system

of generators is not empty but has no points.

8.9.3.4 template<class Box> Parma Polyhedra Library::Polyhedron::Polyhedron (Topology
topol, const Box & box) [protected]

Builds a polyhedron out of a generic, interval-based bounding box.

Parameters:
topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 41

Exceptions:
std::invalid argument thrown if box has intervals that are incompatible withtopol .

The template class Box must provide the following methods.

unsigned int space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

bool is_empty() const

returnstrue if and only if the bounding box describes the empty set. Theis empty() method will
always be called before the methods below. However, ifis empty() returnstrue , none of the functions
below will be called.

bool get_lower_bound(unsigned int k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to thek -th dimension. IfI is not bounded from below, simply return
false . Otherwise, setclosed , n andd as follows:closed is set totrue if the the lower boundary of
I is closed and is set tofalse otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form if and
only if n andd have no common factors andd is positive,0/1 being the unique representation for zero.

bool get_upper_bound(unsigned int k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to thek -th dimension. IfI is not bounded from above, simply return
false . Otherwise, setclosed , n andd as follows:closed is set totrue if the the upper boundary of
I is closed and is set tofalse otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the least upper bound ofI.

8.9.4 Member Function Documentation

8.9.4.1 bool ParmaPolyhedra Library::Polyhedron::intersection assignand minimize (const
Polyhedron & y)

Assigns to∗this the intersection of∗this andy , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.2 void ParmaPolyhedra Library::Polyhedron::intersection assign (const Polyhedron &y)

Assigns to∗this the intersection of∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 42

8.9.4.3 bool ParmaPolyhedra Library::Polyhedron::poly hull assignand minimize (const Poly-
hedron & y)

Assigns to∗this the poly-hull of∗this andy , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.4 void ParmaPolyhedra Library::Polyhedron::poly hull assign (const Polyhedron &y)

Assigns to∗this the poly-hull∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.5 bool ParmaPolyhedra Library::Polyhedron::poly difference assignand minimize (const
Polyhedron & y)

Assigns to∗this thepoly-differenceof ∗this andy , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.6 void ParmaPolyhedra Library::Polyhedron::poly difference assign (const Polyhedron &
y)

Assigns to∗this thepoly-differenceof ∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.7 Poly Con Relation Parma Polyhedra Library::Polyhedron::relation with (const Con-
straint & c) const

Returns the relations holding between the polyhedron∗this and the constraintc .

Exceptions:
std::invalid argument thrown if ∗this and constraintc are dimension-incompatible.

8.9.4.8 Poly Gen RelationParma Polyhedra Library::Polyhedron::relation with (constGenerator
& g) const

Returns the relations holding between the polyhedron∗this and the generatorg.

Exceptions:
std::invalid argument thrown if ∗this and generatorg are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 43

8.9.4.9 void ParmaPolyhedra Library::Polyhedron::H79 widening assign (const Polyhedron &y)

Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

Parameters:
y A polyhedron thatmustbe contained in∗this .

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.10 void ParmaPolyhedra Library::Polyhedron::limited H79 widening assign (const Polyhe-
dron & y, ConSys &cs)

Limits theH79-wideningcomputation between∗this andy by enforcing constraintscs and assigns the
result to∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this .

cs The system of constraints that limits the widened polyhedron. It is not declaredconst because it
can be modified.

Exceptions:
std::invalid argument thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

8.9.4.11 void ParmaPolyhedra Library::Polyhedron::time elapseassign (const Polyhedron &y)

Assigns to∗this the result of computing thetime-elapsebetween∗this andy .

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.12 void ParmaPolyhedra Library::Polyhedron::add constraint (constConstraint & c)

Adds a copy of constraintc to the system of constraints of∗this .

Exceptions:
std::invalid argument thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

8.9.4.13 void ParmaPolyhedra Library::Polyhedron::add generator (constGenerator & g)

Adds a copy of generatorg to the system of generators of∗this .

Exceptions:
std::invalid argument thrown if ∗this and generatorg are topology-incompatible or dimension-

incompatible, or if∗this is an empty polyhedron andg is not a point.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 44

8.9.4.14 void ParmaPolyhedra Library::Polyhedron::affine image (constVariable & var, const
LinExpression & expr, constInteger & denominator= Integer one())

Assigns to∗this theaffine imageof ∗this under the function mapping variablev into the affine expres-
sion specified byexpr andd.

Parameters:
var The variable to which the affine expression is assigned.

expr The numerator of the affine expression.

denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid argument thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifvar is not a dimension of∗this .

8.9.4.15 void ParmaPolyhedra Library::Polyhedron::affine preimage (constVariable & var, const
LinExpression & expr, constInteger & denominator= Integer one())

Assigns to∗this the affine preimageof ∗this under the function mapping variablev into the affine
expression specified byexpr andd.

Parameters:
var The variable to which the affine expression is substituted.

expr The numerator of the affine expression.

denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid argument thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifvar is not a dimension of∗this .

8.9.4.16 template<class Box> void Parma Polyhedra Library::Polyhedron::shrink bounding box
(Box & box) const

Use∗this to shrink a generic, interval-based bounding box.

Parameters:
box The bounding box to be shrunk.

The template class Box must provide the following methods, whose return value, if any, is simply ignored.

set_empty()

causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(unsigned int k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to thek -th dimension with[n/d,+∞) if closed is true , with
(n/d,+∞) if closed is false . The fractionn/d is in canonical form, that is,n andd have no common
factors andd is positive,0/1 being the unique representation for zero.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 45

lower_upper_bound(unsigned int k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to thek -th dimension with(−∞, n/d] if closed is true , with
(−∞, n/d) if closed is false . The fractionn/d is in canonical form.

8.9.4.17 bool ParmaPolyhedra Library::Polyhedron::OK (bool checknot empty= false) const

Checks if all the invariants are satisfied.

Parameters:
checknot empty true if and only if, in addition to checking the invariants,∗this must be checked

to be not empty.

Returns:
true if and only if ∗this satisfies all the invariants and eithercheck not empty is false or
∗this is not empty.

The check is performed so as to intrude as little as possible. In case invariants are violated error messages
are written onstd::cerr . This is useful for the purpose of debugging the library.

8.9.4.18 void ParmaPolyhedra Library::Polyhedron::add dimensionsand embed (sizet dim)

Addsdim new dimensions and embeds the old polyhedron into the new space.

Parameters:
dim The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are not constrained.
For instance, when starting from the polyhedronP ⊆ R2 and adding a third dimension, the result will be
the polyhedron {

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

8.9.4.19 void ParmaPolyhedra Library::Polyhedron::add dimensionsand project (size t dim)

Addsdim new dimensions to the polyhedron and does not embed it in the new space.

Parameters:
dim The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the polyhedronP ⊆ R2 and adding a third dimension,
the result will be the polyhedron {

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 46

8.9.4.20 void ParmaPolyhedra Library::Polyhedron::remove dimensions (const std::set< Vari-
able> & to be removed)

Removes all the specified dimensions.

Parameters:
to be removedThe set ofVariableobjects corresponding to the dimensions to be removed.

Exceptions:
std::invalid argument thrown if ∗this is dimension-incompatible with one of theVariableobjects

contained into be removed .

8.9.4.21 void ParmaPolyhedra Library::Polyhedron::remove higher dimensions (sizet new -
dimension)

Removes the higher dimensions so that the resulting space will have dimensionnew dimension .

Exceptions:
std::invalid argument thrown if new dimensions is greater than the space dimension of∗this .

8.9.4.22 bool ParmaPolyhedra Library::Polyhedron::add constraints and minimize (ConSys &
cs)

Adds the specified constraints and minimizes the result, which is assigned to∗this .

Returns:
false if and only if the result is empty.

Parameters:
cs The constraints that will be added to the current system of constraints. This parameter is not

declaredconst because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

8.9.4.23 void ParmaPolyhedra Library::Polyhedron::add constraints (ConSys &cs)

Adds the specified constraints without minimizing.

Parameters:
cs The constraints that will be added to the current system of constraints. This parameter is not

declaredconst because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 47

8.9.4.24 void ParmaPolyhedra Library::Polyhedron::add dimensionsand constraints (ConSys &
cs)

First increases the space dimension of∗this by addingcs.space dimension() new dimensions;
then adds to the system of constraints of∗this a renamed-apart version of the constraints incs .

Exceptions:
std::invalid argument thrown if ∗this andcs are topology-incompatible.

8.9.4.25 bool ParmaPolyhedra Library::Polyhedron::add generatorsand minimize (GenSys &
gs)

Adds the specified generators and minimizes the result, which is assigned to∗this .

Returns:
false if and only if the result is empty.

Parameters:
gs The generators that will be added to the current system of generators. The parameter is not declared

const because it can be modified.

Returns:
false if the resulting polyhedron is empty.

Exceptions:
std::invalid argument thrown if ∗this and gs are topology-incompatible or dimension-

incompatible, or if∗this is empty and the the system of generatorsgs is not empty, but has no
points.

8.9.4.26 void ParmaPolyhedra Library::Polyhedron::add generators (GenSys &gs)

Adds the specified generators without minimizing.

Parameters:
gs The generators that will be added to the current system of generators. This parameter is not declared

const because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and gs are topology-incompatible or dimension-

incompatible, or if∗this is empty and the system of generatorsgs is not empty, but has no
points.

8.9.4.27 bool ParmaPolyhedra Library::Polyhedron::bounds from above (constLinExpression&
expr) const

Returnstrue if and only if expr is bounded from above in∗this .

Exceptions:
std::invalid argument thrown if expr and∗this are dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Parma Polyhedra Library::Polyhedron Class Reference 48

8.9.4.28 bool ParmaPolyhedra Library::Polyhedron::bounds from below (constLinExpression&
expr) const

Returnstrue if and only if expr is bounded from below in∗this .

Exceptions:
std::invalid argument thrown if expr and∗this are dimension-incompatible.

8.9.4.29 void ParmaPolyhedra Library::Polyhedron::swap (Polyhedron & y)

Swaps∗this with polyhedrony . (∗this andy can be dimension-incompatible.).

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible.

8.9.5 Friends And Related Function Documentation

8.9.5.1 bool ParmaPolyhedra Library::operator <= (const Polyhedron &x, const Polyhedron &y)
[friend]

Returnstrue if and only if polyhedronx is contained in polyhedrony .

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.5.2 bool operator== (const Polyhedron &x, const Polyhedron &y) [related]

Returnstrue if and only if x andy are the same polyhedron.

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.5.3 bool operator!= (const Polyhedron &x, const Polyhedron &y) [related]

Returnstrue if and only if x andy are different polyhedra.

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.5.4 bool operator< (const Polyhedron &x, const Polyhedron &y) [related]

Returnstrue if and only if x is strictly contained iny .

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.10 ParmaPolyhedra Library::Throwable Class Reference 49

8.9.5.5 bool operator> (const Polyhedron &x, const Polyhedron &y) [related]

Returnstrue if and only if x strictly containsy .

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.5.6 bool operator>= (const Polyhedron &x, const Polyhedron &y) [related]

Returnstrue if and only if x containsy .

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.10 ParmaPolyhedra Library::Throwable Class Reference

User objects’ the PPL can throw.

Public Methods

• virtual void throw me() const=0

Throws the user defined exception object.

8.10.1 Detailed Description

User objects’ the PPL can throw.

This abstract base class should be instantiated by those users willing to provide a polynomial upper bound
to the time spent by any invocation of a library operator.

8.11 ParmaPolyhedra Library::Variable Class Reference

A dimension of the space.

Public Methods

• Variable(unsigned int i)

Builds the variable corresponding to the Cartesian axis of indexi .

• unsigned intid () const

Returns the index of the Cartesian axis associated to the variable.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, const Variable &v)

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9 PPL File Documentation 50

Output operator.

• booloperator< (const Variable &v, const Variable &w)

Defines a total ordering on variables.

8.11.1 Detailed Description

A dimension of the space.

An object of the classVariable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as base blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0).

Note that the “meaning” of an object of the classVariable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressionse1 ande2 are equivalent, since the two variablesx andz
denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
LinExpression e1 = x + y;
LinExpression e2 = y + z;

9 PPL File Documentation

9.1 ppl c.h File Reference

Include dependency graph for pplc.h:

ppl_c.h

gmp.h

Typedefs

• typedef pplCoefficienttag∗ ppl Coefficientt

Opaque pointer to Coefficient .

• typedef pplCoefficienttag const∗ ppl constCoefficientt

Opaque pointer to const Coefficient .

• typedef pplLinExpressiontag∗ ppl LinExpressiont

Opaque pointer to LinExpression .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 51

• typedef pplLinExpressiontag const∗ ppl constLinExpressiont

Opaque pointer to const LinExpression .

• typedef pplConstrainttag∗ ppl Constraintt

Opaque pointer to Constraint .

• typedef pplConstrainttag const∗ ppl constConstraintt

Opaque pointer to const Constraint .

• typedef pplConSystag∗ ppl ConSyst

Opaque pointer to ConSys .

• typedef pplConSystag const∗ ppl constConSyst

Opaque pointer to const ConSys .

• typedef pplConSys constiterator tag∗ ppl ConSys constiterator t

Opaque pointer to ConSysconstiterator .

• typedef pplConSys constiterator tag const∗ ppl constConSys constiterator t

Opaque pointer to const ConSysconstiterator .

• typedef pplGeneratortag∗ ppl Generatort

Opaque pointer to Generator .

• typedef pplGeneratortag const∗ ppl constGeneratort

Opaque pointer to const Generator .

• typedef pplGenSystag∗ ppl GenSyst

Opaque pointer to GenSys .

• typedef pplGenSystag const∗ ppl constGenSyst

Opaque pointer to const GenSys .

• typedef pplGenSys constiterator tag∗ ppl GenSys constiterator t

Opaque pointer to GenSysconstiterator .

• typedef pplGenSys constiterator tag const∗ ppl constGenSys constiterator t

Opaque pointer to const GenSysconstiterator .

• typedef pplPolyhedrontag∗ ppl Polyhedront

Opaque pointer to Polyhedron .

• typedef pplPolyhedrontag const∗ ppl constPolyhedront

Opaque pointer to const Polyhedron .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 52

Enumerations

• enum ppl enumerror code { PPL ERROROUT OF MEMORY, PPL ERRORINVALID -
ARGUMENT, PPL ERRORINTERNAL ERROR, PPL ERRORUNKNOWN STANDARD -
EXCEPTION, PPL ERRORUNEXPECTEDERROR}

• enum ppl enumConstraintType { PPL CONSTRAINT TYPE EQUAL, PPL CONSTRAINT -
TYPE GREATERTHAN OR EQUAL, PPL CONSTRAINT TYPE GREATERTHAN, PPL -
CONSTRAINT TYPE LESSTHAN OR EQUAL, PPL CONSTRAINT TYPE LESSTHAN }

• enumppl enumGeneratorType { PPL GENERATORTYPE LINE, PPL GENERATORTYPE -
RAY, PPL GENERATORTYPE POINT, PPL GENERATORTYPE CLOSUREPOINT}

Functions

• int ppl initialize (void)
• int ppl finalize(void)
• int ppl seterror handler(void(∗h)(enumppl enumerror codecode, const char∗description))
• int ppl new Coefficient(ppl Coefficientt ∗pc)
• int ppl new Coefficientfrom mpz t (ppl Coefficientt ∗pc, mpzt z)
• int ppl new Coefficientfrom Coefficient(ppl Coefficientt ∗pc,ppl constCoefficientt c)
• int ppl assignCoefficientfrom mpz t (ppl Coefficientt dst, mpzt z)
• int ppl assignCoefficientfrom Coefficient(ppl Coefficientt dst,ppl constCoefficientt src)
• int ppl deleteCoefficient(ppl constCoefficientt c)
• int ppl Coefficientto mpz t (ppl constCoefficientt c, mpzt z)
• int ppl CoefficientOK (ppl constCoefficientt c)
• int ppl new LinExpression(ppl LinExpressiont ∗ple)
• int ppl new LinExpressionwith dimension(ppl LinExpressiont ∗ple, unsigned int d)
• int ppl new LinExpressionfrom LinExpression (ppl LinExpressiont ∗ple, ppl constLin-

Expressiont le)
• int ppl new LinExpressionfrom Constraint(ppl LinExpressiont ∗ple,ppl constConstraintt c)
• int ppl new LinExpressionfrom Generator(ppl LinExpressiont ∗ple,ppl constGeneratort g)
• int ppl deleteLinExpression(ppl constLinExpressiont le)
• int ppl assignLinExpressionfrom LinExpression (ppl LinExpressiont dst, ppl constLin-

Expressiont src)
• int ppl LinExpressionadd to coefficient (ppl LinExpressiont le, unsigned int var,ppl const-

Coefficientt n)
• int ppl LinExpressionadd to inhomogeneous(ppl LinExpressiont le, ppl constCoefficientt n)
• int ppl LinExpressionspacedimension(ppl constLinExpressiont le)
• int ppl LinExpressionOK (ppl constLinExpressiont le)
• int ppl new Constraint (ppl Constraintt ∗pc, ppl constLinExpressiont le, enum ppl enum-

ConstraintType)
• int ppl new Constraintzerodim false(ppl Constraintt ∗pc)
• int ppl new Constraintzerodim positivity (ppl Constraintt ∗pc)
• int ppl new Constraintfrom Constraint(ppl Constraintt ∗pc,ppl constConstraintt c)
• int ppl deleteConstraint(ppl constConstraintt c)
• int ppl assignConstraintfrom Constraint(ppl Constraintt dst,ppl constConstraintt src)
• int ppl Constraintspacedimension(ppl constConstraintt c)
• int ppl Constrainttype(ppl constConstraintt c)
• int ppl Constraintcoefficient(ppl constConstraintt c, int var,ppl Coefficientt n)
• int ppl Constraintinhomogeneousterm(ppl constConstraintt c, ppl Coefficientt n)
• int ppl ConstraintOK (ppl constConstraintt c)
• int ppl new ConSys(ppl ConSyst ∗pcs)

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 53

• int ppl new ConSyszerodim empty(ppl ConSyst ∗pcs)
• int ppl new ConSysfrom Constraint(ppl ConSyst ∗pcs,ppl constConstraintt c)
• int ppl new ConSysfrom ConSys(ppl ConSyst ∗pcs,ppl constConSyst cs)
• int ppl deleteConSys(ppl constConSyst cs)
• int ppl assignConSysfrom ConSys(ppl ConSyst dst,ppl constConSyst src)
• int ppl ConSysspacedimension(ppl constConSyst cs)
• int ppl ConSysinsertConstraint(ppl ConSyst cs,ppl constConstraintt c)
• int ppl ConSysOK (ppl constConSyst c)
• int ppl new ConSys constiterator(ppl ConSys constiterator t ∗pcit)
• int ppl new ConSys constiterator from ConSys constiterator (ppl ConSys constiterator t
∗pcit, ppl constConSys constiterator t cit)

• int ppl deleteConSys constiterator(ppl constConSys constiterator t cit)
• int ppl assignConSys constiterator from ConSys constiterator (ppl ConSys constiterator -

t dst,ppl constConSys constiterator t src)
• int ppl ConSysbegin(ppl ConSyst cs,ppl ConSys constiterator t cit)
• int ppl ConSysend(ppl ConSyst cs,ppl ConSys constiterator t cit)
• int ppl ConSys constiteratordereference(ppl constConSys constiterator t cit, ppl const-

Constraintt ∗pc)
• int ppl ConSys constiterator increment(ppl ConSys constiterator t cit)
• int ppl ConSys constiteratorequaltest(ppl constConSys constiterator t x, ppl constConSys-

constiterator t y)
• int ppl new Generator (ppl Generatort ∗pg, ppl constLinExpressiont le, enum ppl enum-

GeneratorTypet, ppl constCoefficientt d)
• int ppl new Generatorzerodim point (ppl Generatort ∗pg)
• int ppl new Generatorzerodim closurepoint (ppl Generatort ∗pg)
• int ppl new Generatorfrom Generator(ppl Generatort ∗pg,ppl constGeneratort g)
• int ppl deleteGenerator(ppl constGeneratort g)
• int ppl assignGeneratorfrom Generator(ppl Generatort dst,ppl constGeneratort src)
• int ppl Generatorspacedimension(ppl constGeneratort g)
• int ppl Generatortype(ppl constGeneratort g)
• int ppl Generatorcoefficient(ppl constGeneratort g, int var,ppl Coefficientt n)
• int ppl Generatordivisor (ppl constGeneratort g, ppl Coefficientt n)
• int ppl GeneratorOK (ppl constGeneratort g)
• int ppl new GenSys(ppl GenSyst ∗pgs)
• int ppl new GenSysfrom Generator(ppl GenSyst ∗pgs,ppl constGeneratort g)
• int ppl new GenSysfrom GenSys(ppl GenSyst ∗pgs,ppl constGenSyst gs)
• int ppl deleteGenSys(ppl constGenSyst gs)
• int ppl assignGenSysfrom GenSys(ppl GenSyst dst,ppl constGenSyst src)
• int ppl GenSysspacedimension(ppl constGenSyst gs)
• int ppl GenSysinsertGenerator(ppl GenSyst gs,ppl constGeneratort g)
• int ppl GenSysOK (ppl constGenSyst c)
• int ppl new GenSys constiterator(ppl GenSys constiterator t ∗pgit)
• int ppl new GenSys constiterator from GenSys constiterator (ppl GenSys constiterator t
∗pgit, ppl constGenSys constiterator t git)

• int ppl deleteGenSys constiterator(ppl constGenSys constiterator t git)
• int ppl assignGenSys constiterator from GenSys constiterator (ppl GenSys constiterator -

t dst,ppl constGenSys constiterator t src)
• int ppl GenSysbegin(ppl constGenSyst gs,ppl GenSys constiterator t git)
• int ppl GenSysend(ppl constGenSyst gs,ppl GenSys constiterator t git)
• int ppl GenSys constiteratordereference(ppl constGenSys constiterator t git, ppl const-

Generatort ∗pg)

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 54

• int ppl GenSys constiterator increment(ppl GenSys constiterator t git)
• int ppl GenSys constiteratorequaltest(ppl constGenSys constiterator t x, ppl constGenSys-

constiterator t y)
• int ppl new C Polyhedronfrom dimension(ppl Polyhedront ∗pph, unsigned int d)
• int ppl new NNC Polyhedronfrom dimension(ppl Polyhedront ∗pph, unsigned int d)
• int ppl new C Polyhedronempty from dimension(ppl Polyhedront ∗pph, unsigned int d)
• int ppl new NNC Polyhedronempty from dimension(ppl Polyhedront ∗pph, unsigned int d)
• int ppl new C Polyhedronfrom C Polyhedron(ppl Polyhedront ∗pph,ppl constPolyhedront ph)
• int ppl new C Polyhedronfrom NNC Polyhedron(ppl Polyhedront ∗pph,ppl constPolyhedront

ph)
• int ppl new NNC Polyhedronfrom C Polyhedron(ppl Polyhedront ∗pph,ppl constPolyhedront

ph)
• int ppl new NNC Polyhedronfrom NNC Polyhedron (ppl Polyhedront ∗pph, ppl const-

Polyhedront ph)
• int ppl new C Polyhedronfrom ConSys(ppl Polyhedront ∗pph,ppl ConSyst cs)
• int ppl new NNC Polyhedronfrom ConSys(ppl Polyhedront ∗pph,ppl ConSyst cs)
• int ppl new C Polyhedronfrom GenSys(ppl Polyhedront ∗pph,ppl GenSyst gs)
• int ppl new NNC Polyhedronfrom GenSys(ppl Polyhedront ∗pph,ppl GenSyst gs)
• int ppl new C Polyhedronfrom boundingbox (ppl Polyhedront ∗pph, unsigned int(∗space-

dimension)(void), int(∗is empty)(void), int(∗get lower bound)(unsigned int k, int closed,ppl -
Coefficientt n, ppl Coefficientt d), int(∗get upperbound)(unsigned int k, int closed,ppl -
Coefficientt n, ppl Coefficientt d))

• int ppl new NNC Polyhedronfrom boundingbox (ppl Polyhedront ∗pph, unsigned int(∗space-
dimension)(void), int(∗is empty)(void), int(∗get lower bound)(unsigned int k, int closed,ppl -
Coefficientt n, ppl Coefficientt d), int(∗get upperbound)(unsigned int k, int closed,ppl -
Coefficientt n, ppl Coefficientt d))

• int ppl deletePolyhedron(ppl constPolyhedront ph)
• int ppl assignC Polyhedronfrom C Polyhedron(ppl Polyhedront dst, ppl constPolyhedron-

t src)
• int ppl assignNNC Polyhedronfrom NNC Polyhedron (ppl Polyhedront dst, ppl const-

Polyhedront src)
• int ppl Polyhedronspacedimension(ppl constPolyhedront ph)
• int ppl Polyhedronintersectionassign(ppl Polyhedront x, ppl constPolyhedront y)
• int ppl Polyhedronintersectionassignandminimize (ppl Polyhedront x, ppl constPolyhedront

y)
• int ppl Polyhedronpoly hull assign(ppl Polyhedront x, ppl constPolyhedront y)
• int ppl Polyhedronpoly hull assignandminimize(ppl Polyhedront x, ppl constPolyhedront y)
• int ppl Polyhedronpoly differenceassign(ppl Polyhedront x, ppl constPolyhedront y)
• int ppl Polyhedronpoly differenceassignandminimize (ppl Polyhedront x, ppl const-

Polyhedront y)
• int ppl PolyhedronH79 wideningassign(ppl Polyhedront x, ppl constPolyhedront y)
• int ppl Polyhedronlimited H79 wideningassign(ppl Polyhedront x, ppl constPolyhedront y,

ppl ConSyst cs)
• int ppl Polyhedronconstraints(ppl constPolyhedront ph,ppl constConSyst ∗pcs)
• int ppl Polyhedronminimizedconstraints(ppl constPolyhedront ph,ppl constConSyst ∗pcs)
• int ppl Polyhedrongenerators(ppl constPolyhedront ph,ppl constGenSyst ∗pgs)
• int ppl Polyhedronminimizedgenerators(ppl constPolyhedront ph,ppl constGenSyst ∗pgs)
• int ppl Polyhedronaddconstraint(ppl Polyhedront ph,ppl constConstraintt c)
• int ppl Polyhedronaddgenerator(ppl Polyhedront ph,ppl constGeneratort g)
• int ppl Polyhedronaddconstraints(ppl Polyhedront ph,ppl ConSyst cs)
• int ppl Polyhedronaddconstraintsandminimize(ppl Polyhedront ph,ppl ConSyst cs)

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 55

• int ppl Polyhedronaddgenerators(ppl Polyhedront ph,ppl GenSyst gs)
• int ppl Polyhedronaddgeneratorsandminimize(ppl Polyhedront ph,ppl GenSyst gs)
• int ppl Polyhedronadddimensionsandembed(ppl Polyhedront ph, unsigned int d)
• int ppl Polyhedronadddimensionsandproject(ppl Polyhedront ph, unsigned int d)
• int ppl Polyhedronremovedimensions(ppl Polyhedront ph, unsigned int ds[], unsigned int n)
• int ppl Polyhedronremovehigherdimensions(ppl Polyhedront ph, unsigned int d)
• int ppl Polyhedronadddimensionsandconstraints(ppl Polyhedront ph,ppl ConSyst cs)
• int ppl Polyhedronaffine image(ppl Polyhedront ph, unsigned int var,ppl constLinExpressiont

le, ppl constCoefficientt d)
• int ppl Polyhedronaffine preimage (ppl Polyhedront ph, unsigned int var, ppl constLin-

Expressiont le, ppl constCoefficientt d)
• int ppl Polyhedronshrink boundingbox (ppl constPolyhedront ph, void(∗setempty)(void),

void(∗raiselower bound)(unsigned int k, int closed,ppl constCoefficientt n, ppl const-
Coefficientt d), void(∗lower upperbound)(unsigned int k, int closed,ppl constCoefficientt n,
ppl constCoefficientt d))

• int ppl Polyhedronrelationwith Constraint(ppl constPolyhedront ph,ppl constConstraintt c)
• int ppl Polyhedronrelationwith Generator(ppl constPolyhedront ph,ppl constGeneratort g)
• int ppl Polyhedroncheckempty(ppl constPolyhedront ph)
• int ppl Polyhedroncheckuniverse(ppl constPolyhedront ph)
• int ppl Polyhedronis bounded(ppl constPolyhedront ph)
• int ppl Polyhedronboundsfrom above(ppl constPolyhedront ph,ppl constLinExpressiont le)
• int ppl Polyhedronboundsfrom below(ppl constPolyhedront ph,ppl constLinExpressiont le)
• int ppl Polyhedronis topologically closed(ppl constPolyhedront ph)
• int ppl Polyhedrontopologicalclosureassign(ppl Polyhedront ph)
• int ppl PolyhedroncontainsPolyhedron(ppl constPolyhedront x, ppl constPolyhedront y)
• int ppl Polyhedronstrictly containsPolyhedron(ppl constPolyhedront x, ppl constPolyhedront

y)
• int ppl PolyhedronOK (ppl constPolyhedront ph)

Variables

• unsigned intPPL POLY CON RELATION IS DISJOINT
• unsigned intPPL POLY CON RELATION STRICTLY INTERSECTS
• unsigned intPPL POLY CON RELATION IS INCLUDED
• unsigned intPPL POLY CON RELATION SATURATES
• unsigned intPPL POLY GEN RELATION SUBSUMES

9.1.1 Detailed Description

This file implements the C interface. Detailed description with examples to be written.

9.1.2 Define Documentation

9.1.2.1 #define PPLTYPE DECLARATION(Type)

Value:

/*! \brief Opaque pointer to Type. */ \
typedef struct ppl_ ## Type ## _tag* ppl_ ## Type ## _t; \
/*! \brief Opaque pointer to const Type. */ \
typedef struct ppl_ ## Type ## _tag const* ppl_const_ ## Type ## _t

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 56

9.1.3 Enumeration Type Documentation

9.1.3.1 enum pplenum error code

Defines the error code that any function can return.

Enumeration values:
PPL ERROR OUT OF MEMORY The virtual memory available to the process has been ex-

hausted.

PPL ERROR INVALID ARGUMENT A function has been invoked with an invalid argument.

PPL ERROR INTERNAL ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL ERROR UNKNOWN STANDARD EXCEPTION A standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL ERROR UNEXPECTED ERROR A totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

9.1.3.2 enum pplenum Constraint Type

Describes the relations represented by a constraint.

Enumeration values:
PPL CONSTRAINT TYPE EQUAL The constraint is of the forme = 0.

PPL CONSTRAINT TYPE GREATER THAN OR EQUAL The constraint is of the forme ≥
0.

PPL CONSTRAINT TYPE GREATER THAN The constraint is of the forme > 0.

PPL CONSTRAINT TYPE LESS THAN OR EQUAL The constraint is of the forme ≤ 0.

PPL CONSTRAINT TYPE LESS THAN The constraint is of the forme < 0.

9.1.3.3 enum pplenum Generator Type

Describes the different kinds of generators.

Enumeration values:
PPL GENERATOR TYPE LINE The generator is a line.

PPL GENERATOR TYPE RAY The generator is a ray.

PPL GENERATOR TYPE POINT The generator is a point.

PPL GENERATOR TYPE CLOSURE POINT The generator is a closure point.

9.1.4 Function Documentation

9.1.4.1 int ppl initialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

9.1.4.2 int ppl finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 57

9.1.4.3 int ppl set error handler (void(∗ h)(enum ppl enum error code code, const char
∗description))

Installs the user-defined error handler pointed byh. The error handler takes an error code and a textual
description that gives further information about the actual error. The C string containing the textual de-
scription is read-only and its existence it not guaranteed after the handler has returned.

9.1.4.4 int ppl new Coefficient (ppl Coefficient t ∗ pc)

Creates a new coefficent with value 0 and writes an handle for the newly created coefficient at addresspc .

9.1.4.5 int ppl new Coefficient from mpz t (ppl Coefficient t ∗ pc, mpz t z)

Creates a new coefficent with the value given by the GMP integerz and writes an handle for the newly
created coefficient at addresspc .

9.1.4.6 int ppl new Coefficient from Coefficient (ppl Coefficient t ∗ pc, ppl const Coefficient t c)

Builds a coefficient that is a copy ofc ; writes an handle for the newly created coefficient at addresspc .

9.1.4.7 int ppl assignCoefficient from mpz t (ppl Coefficient t dst, mpz t z)

Assign todst the value given by the GMP integerz .

9.1.4.8 int ppl assignCoefficient from Coefficient (ppl Coefficient t dst, ppl const Coefficient t
src)

Assigns a copy of the linear expressionsrc to dst .

9.1.4.9 int ppl deleteCoefficient (ppl const Coefficient t c)

Invalidates the handlec : this makes sure the corresponding resources will eventually be released.

9.1.4.10 int ppl Coefficient to mpz t (ppl const Coefficient t c, mpz t z)

Sets the value of the GMP integerz to the value ofc .

9.1.4.11 int ppl Coefficient OK (ppl const Coefficient t c)

Returns a positive integer ifc is well formed, i.e., if it satisfies all its implementation variant; returns 0 and
perhaps make some noise ifc is broken. Useful for debugging purposes.

9.1.4.12 int ppl new LinExpression (ppl LinExpression t ∗ ple)

Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes an
handle for the new linear expression at addressple .

9.1.4.13 int ppl new LinExpression with dimension (ppl LinExpression t ∗ ple, unsigned intd)

Creates a new linear expression corresponding to the constant 0 in ad-dimensional space; writes an handle
for the new linear expression at addressple .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 58

9.1.4.14 int ppl new LinExpression from LinExpression (ppl LinExpression t ∗ ple, ppl const -
LinExpression t le)

Builds a linear expression that is a copy ofle ; writes an handle for the newly created linear expression at
addressple .

9.1.4.15 int ppl new LinExpression from Constraint (ppl LinExpression t ∗ ple, ppl const -
Constraint t c)

Builds a linear expression corresponding to constraintc ; writes an handle for the newly created linear
expression at addressple .

9.1.4.16 int ppl new LinExpression from Generator (ppl LinExpression t ∗ ple, ppl const -
Generator t g)

Builds a linear expression corresponding to generatorg; writes an handle for the newly created linear
expression at addressple .

9.1.4.17 int ppl deleteLinExpression (ppl const LinExpression t le)

Invalidates the handlele : this makes sure the corresponding resources will eventually be released.

9.1.4.18 int ppl assignLinExpression from LinExpression (ppl LinExpression t dst, ppl const -
LinExpression t src)

Assigns a copy of the linear expressionsrc to dst .

9.1.4.19 int ppl LinExpression add to coefficient (ppl LinExpression t le, unsigned int var, ppl -
const Coefficient t n)

Addsn to the coefficient of variablevar in the linear expressionle . The space dimension is set to be the
maximum betweenvar + 1 and the old space dimension.

9.1.4.20 int ppl LinExpression add to inhomogeneous (ppl LinExpression t le, ppl const -
Coefficient t n)

Addsn to the inhomogeneous term of the linear expressionle .

9.1.4.21 int ppl LinExpression spacedimension (ppl const LinExpression t le)

Returns the space dimension ofle .

9.1.4.22 int ppl LinExpression OK (ppl const LinExpression t le)

Returns a positive integer ifle is well formed, i.e., if it satisfies all its implementation variant; returns 0
and perhaps make some noise ifle is broken. Useful for debugging purposes.

9.1.4.23 int ppl new Constraint (ppl Constraint t ∗ pc, ppl const LinExpression t le, enum ppl -
enum Constraint Type)

Creates the new constraint ‘le rel 0’ and writes an handle for it at addresspc . The space dimension of
the new constraint is equal to the space dimension ofle .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 59

9.1.4.24 int ppl new Constraint zero dim false (ppl Constraint t ∗ pc)

Creates the unsatisfiable (zero-dimension space) constraint0 = 1 and writes an handle for it at addresspc .

9.1.4.25 int ppl new Constraint zero dim positivity (ppl Constraint t ∗ pc)

Creates the true (zero-dimension space) constraint0 ≤ 1, also known aspositivity constraint. An handle
for the newly created constraint is written at addresspc .

9.1.4.26 int ppl new Constraint from Constraint (ppl Constraint t ∗ pc, ppl const Constraint t c)

Builds a constraint that is a copy ofc ; writes an handle for the newly created constraint at addresspc .

9.1.4.27 int ppl deleteConstraint (ppl const Constraint t c)

Invalidates the handlec : this makes sure the corresponding resources will eventually be released.

9.1.4.28 int ppl assignConstraint from Constraint (ppl Constraint t dst, ppl const Constraint t
src)

Assigns a copy of the constraintsrc to dst .

9.1.4.29 int ppl Constraint spacedimension (ppl const Constraint t c)

Returns the space dimension ofc .

9.1.4.30 int ppl Constraint type (ppl const Constraint t c)

Returns the type of constraintc .

9.1.4.31 int ppl Constraint coefficient (ppl const Constraint t c, int var, ppl Coefficient t n)

Copies inton the coefficient of variablevar in constraintc .

9.1.4.32 int ppl Constraint inhomogeneousterm (ppl const Constraint t c, ppl Coefficient t n)

Copies inton the inhomogeneous term of constraintc .

9.1.4.33 int ppl Constraint OK (ppl const Constraint t c)

Returns a positive integer ifc is well formed, i.e., if it satisfies all its implementation variant; returns 0 and
perhaps make some noise ifc is broken. Useful for debugging purposes.

9.1.4.34 int ppl new ConSys (ppl ConSyst ∗ pcs)

Builds an empty system of constraints and writes an handle to it at addresspcs .

9.1.4.35 int ppl new ConSyszero dim empty (ppl ConSyst ∗ pcs)

Builds a zero-dimensional, unsatisfiable constraint system and writes an handle to it at addresspcs .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 60

9.1.4.36 int ppl new ConSysfrom Constraint (ppl ConSyst ∗ pcs, ppl const Constraint t c)

Builds the singleton constraint system containing only a copy of constraintc ; writes an handle for the
newly created system at addresspcs .

9.1.4.37 int ppl new ConSysfrom ConSys (ppl ConSyst ∗ pcs, ppl const ConSyst cs)

Builds a constraint system that is a copy ofcs ; writes an handle for the newly created system at address
pcs .

9.1.4.38 int ppl deleteConSys (ppl const ConSyst cs)

Invalidates the handlecs : this makes sure the corresponding resources will eventually be released.

9.1.4.39 int ppl assignConSysfrom ConSys (ppl ConSyst dst, ppl const ConSyst src)

Assigns a copy of the constraint systemsrc to dst .

9.1.4.40 int ppl ConSysspacedimension (ppl const ConSyst cs)

Returns the dimension of the vector space enclosing∗this .

9.1.4.41 int ppl ConSysinsert Constraint (ppl ConSyst cs, ppl const Constraint t c)

Inserts a copy of the constraintc into ∗this ; the space dimension is increased, if necessary.

9.1.4.42 int ppl ConSysOK (ppl const ConSyst c)

Returns a positive integer ifcs is well formed, i.e., if it satisfies all its implementation variant; returns 0
and perhaps make some noise ifcs is broken. Useful for debugging purposes.

9.1.4.43 int ppl new ConSys const iterator (ppl ConSys const iterator t ∗ pcit)

Builds a new ‘const iterator’ and writes an handle to it at addresspcit .

9.1.4.44 int ppl new ConSys const iterator from ConSys const iterator (ppl ConSys const -
iterator t ∗ pcit, ppl const ConSys const iterator t cit)

Builds a const iterator system that is a copy ofcit ; writes an handle for the newly created const iterator
at addresspcit .

9.1.4.45 int ppl deleteConSys const iterator (ppl const ConSys const iterator t cit)

Invalidates the handlecit : this makes sure the corresponding resources will eventually be released.

9.1.4.46 int ppl assignConSys const iterator from ConSys const iterator (ppl ConSys const -
iterator t dst, ppl const ConSys const iterator t src)

Assigns a copy of the const iteratorsrc to dst .

9.1.4.47 int ppl ConSysbegin (ppl ConSyst cs, ppl ConSys const iterator t cit)

Assigns tocit a const iterator ”pointing” to the beginning of the constraint systemcs .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 61

9.1.4.48 int ppl ConSysend (ppl ConSyst cs, ppl ConSys const iterator t cit)

Assigns tocit a const iterator ”pointing” past the end of the constraint systemcs .

9.1.4.49 int ppl ConSys const iterator dereference (ppl const ConSys const iterator t cit, ppl -
const Constraint t ∗ pc)

Dereferencecit writing a const handle to the resulting constraint at addresspc .

9.1.4.50 int ppl ConSys const iterator increment (ppl ConSys const iterator t cit)

Incrementcit so that it ”points” to the next constraint.

9.1.4.51 int ppl ConSys const iterator equal test (ppl const ConSys const iterator t x, ppl -
const ConSys const iterator t y)

Returns a positive integer if the iterators corresponding tox andy are equal; return 0 if they are different.

9.1.4.52 int ppl new Generator (ppl Generator t ∗ pg, ppl const LinExpression t le, enum ppl -
enum Generator Type t, ppl const Coefficient t d)

Creates a new generator of directionle and typet . If the generator to be created is a point or a closure
point, the divisord is applied tole . For other types of generatorsd is simply disregarded. An handle for
the new generator is written at addresspg . The space dimension of the new generator is equal to the space
dimension ofle .

9.1.4.53 int ppl new Generator zero dim point (ppl Generator t ∗ pg)

Creates the point that is the origin of the zero-dimensional spaceR0. Writes an handle for the new generator
at addresspg .

9.1.4.54 int ppl new Generator zero dim closure point (ppl Generator t ∗ pg)

Creates, as a closure point, the point that is the origin of the zero-dimensional spaceR0. Writes an handle
for the new generator at addresspg .

9.1.4.55 int ppl new Generator from Generator (ppl Generator t ∗ pg, ppl const Generator t g)

Builds a generator that is a copy ofg; writes an handle for the newly created generator at addresspg .

9.1.4.56 int ppl deleteGenerator (ppl const Generator t g)

Invalidates the handleg: this makes sure the corresponding resources will eventually be released.

9.1.4.57 int ppl assignGenerator from Generator (ppl Generator t dst, ppl const Generator t src)

Assigns a copy of the generatorsrc to dst .

9.1.4.58 int ppl Generator spacedimension (ppl const Generator t g)

Returns the space dimension ofg.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 62

9.1.4.59 int ppl Generator type (ppl const Generator t g)

Returns the type of generatorg.

9.1.4.60 int ppl Generator coefficient (ppl const Generator t g, int var, ppl Coefficient t n)

Copies inton the coefficient of variablevar in generatorg.

9.1.4.61 int ppl Generator divisor (ppl const Generator t g, ppl Coefficient t n)

If g is a point or a closure point assigns its divisor ton.

9.1.4.62 int ppl Generator OK (ppl const Generator t g)

Returns a positive integer ifg is well formed, i.e., if it satisfies all its implementation variant; returns 0 and
perhaps make some noise ifg is broken. Useful for debugging purposes.

9.1.4.63 int ppl new GenSys (ppl GenSyst ∗ pgs)

Builds an empty system of generators and writes an handle to it at addresspgs .

9.1.4.64 int ppl new GenSysfrom Generator (ppl GenSyst ∗ pgs, ppl const Generator t g)

Builds the singleton generator system containing only a copy of generatorg; writes an handle for the newly
created system at addresspgs .

9.1.4.65 int ppl new GenSysfrom GenSys (ppl GenSyst ∗ pgs, ppl const GenSyst gs)

Builds a generator system that is a copy ofgs ; writes an handle for the newly created system at address
pgs .

9.1.4.66 int ppl deleteGenSys (ppl const GenSyst gs)

Invalidates the handlegs : this makes sure the corresponding resources will eventually be released.

9.1.4.67 int ppl assignGenSysfrom GenSys (ppl GenSyst dst, ppl const GenSyst src)

Assigns a copy of the generator systemsrc to dst .

9.1.4.68 int ppl GenSysspacedimension (ppl const GenSyst gs)

Returns the dimension of the vector space enclosing∗this .

9.1.4.69 int ppl GenSysinsert Generator (ppl GenSyst gs, ppl const Generator t g)

Inserts a copy of the generatorg into ∗this ; the space dimension is increased, if necessary.

9.1.4.70 int ppl GenSysOK (ppl const GenSyst c)

Returns a positive integer ifgs is well formed, i.e., if it satisfies all its implementation variant; returns 0
and perhaps make some noise ifgs is broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 63

9.1.4.71 int ppl new GenSys const iterator (ppl GenSys const iterator t ∗ pgit)

Builds a new ‘const iterator’ and writes an handle to it at addresspgit .

9.1.4.72 int ppl new GenSys const iterator from GenSys const iterator (ppl GenSys const -
iterator t ∗ pgit, ppl const GenSys const iterator t git)

Builds a const iterator system that is a copy ofgit ; writes an handle for the newly created const iterator
at addresspgit .

9.1.4.73 int ppl deleteGenSys const iterator (ppl const GenSys const iterator t git)

Invalidates the handlegit : this makes sure the corresponding resources will eventually be released.

9.1.4.74 int ppl assignGenSys const iterator from GenSys const iterator (ppl GenSys const -
iterator t dst, ppl const GenSys const iterator t src)

Assigns a copy of the const iteratorsrc to dst .

9.1.4.75 int ppl GenSysbegin (ppl const GenSyst gs, ppl GenSys const iterator t git)

Assigns togit a const iterator ”pointing” to the beginning of the generator systemgs .

9.1.4.76 int ppl GenSysend (ppl const GenSyst gs, ppl GenSys const iterator t git)

Assigns togit a const iterator ”pointing” past the end of the generator systemgs .

9.1.4.77 int ppl GenSys const iterator dereference (ppl const GenSys const iterator t git, ppl -
const Generator t ∗ pg)

Dereferencegit writing a const handle to the resulting generator at addresspg .

9.1.4.78 int ppl GenSys const iterator increment (ppl GenSys const iterator t git)

Incrementgit so that it ”points” to the next generator.

9.1.4.79 int ppl GenSys const iterator equal test (ppl const GenSys const iterator t x, ppl -
const GenSys const iterator t y)

Return a positive integer if the iterators corresponding tox andy are equal; return 0 if they are different.

9.1.4.80 int ppl new C Polyhedron from dimension (ppl Polyhedron t ∗ pph, unsigned intd)

Builds an universe closed polyhedron of dimensiond and writes an handle to it at addresspph .

9.1.4.81 int ppl new NNC Polyhedron from dimension (ppl Polyhedron t ∗ pph, unsigned intd)

Builds an universe NNC polyhedron of dimensiond and writes an handle to it at addresspph .

9.1.4.82 int ppl new C Polyhedron empty from dimension (ppl Polyhedron t ∗ pph, unsigned int
d)

Builds an empty closed polyhedron of dimensiond and writes an handle to it at addresspph .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 64

9.1.4.83 int ppl new NNC Polyhedron empty from dimension (ppl Polyhedron t ∗ pph, unsigned
int d)

Builds an empty NNC polyhedron of dimensiond and writes an handle to it at addresspph .

9.1.4.84 int ppl new C Polyhedron from C Polyhedron (ppl Polyhedron t ∗ pph, ppl const -
Polyhedron t ph)

Builds a closed polyhedron that is a copy ofph ; writes an handle for the newly created polyhedron at
addresspph .

9.1.4.85 int ppl new C Polyhedron from NNC Polyhedron (ppl Polyhedron t ∗ pph, ppl const -
Polyhedron t ph)

Builds a closed polyhedron that is a copy of of the NNC polyhedronph ; writes an handle for the newly
created polyhedron at addresspph .

9.1.4.86 int ppl new NNC Polyhedron from C Polyhedron (ppl Polyhedron t ∗ pph, ppl const -
Polyhedron t ph)

Builds an NNC polyhedron that is a copy of of the closed polyhedronph ; writes an handle for the newly
created polyhedron at addresspph .

9.1.4.87 int ppl new NNC Polyhedron from NNC Polyhedron (ppl Polyhedron t ∗ pph, ppl -
const Polyhedron t ph)

Builds an NNC polyhedron that is a copy ofph ; writes an handle for the newly created polyhedron at
addresspph .

9.1.4.88 int ppl new C Polyhedron from ConSys (ppl Polyhedron t ∗ pph, ppl ConSyst cs)

Builds a new closed polyhedron recycling the system of constraintscs and writes an handle for the newly
created polyhedron at addresspph . Sincecs will be thesystem of constraints of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

9.1.4.89 int ppl new NNC Polyhedron from ConSys (ppl Polyhedron t ∗ pph, ppl ConSyst cs)

Builds a new NNC polyhedron recycling the system of constraintscs and writes an handle for the newly
created polyhedron at addresspph . Sincecs will be thesystem of constraints of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 65

9.1.4.90 int ppl new C Polyhedron from GenSys (ppl Polyhedron t ∗ pph, ppl GenSyst gs)

Builds a new closed polyhedron recycling the system of generatorsgs and writes an handle for the newly
created polyhedron at addresspph . Sincecs will be thesystem of generators of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the generator system referenced bygs : upon return, no assumption can be
made on its value.

9.1.4.91 int ppl new NNC Polyhedron from GenSys (ppl Polyhedron t ∗ pph, ppl GenSyst gs)

Builds a new NNC polyhedron recycling the system of generatorsgs and writes an handle for the newly
created polyhedron at addresspph . Sincecs will be thesystem of generators of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the generator system referenced bygs : upon return, no assumption can be
made on its value.

9.1.4.92 int ppl new C Polyhedron from bounding box (ppl Polyhedron t ∗ pph, unsigned int(∗
spacedimension)(void), int(∗ is empty)(void), int(∗ get lower bound)(unsigned int k, int closed,
ppl Coefficient t n, ppl Coefficient t d), int(∗ get upper bound)(unsigned int k, int closed, ppl -
Coefficient t n, ppl Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addresspph . If an interval of the bounding box is provided with any finite
but open bound, then the polyhedron is not built and the valuePPL ERRORINVALID ARGUMENTis
returned. The bounding box is accessed by using the following functions, passed as arguments:

unsigned int space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The functionis empty() will
always be called before the other functions. However, ifis empty() does not return 0, none of the
functions below will be called.

int get_lower_bound(unsigned int k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th dimension. IfI is not bounded from below, simply return 0.
Otherwise, setclosed , n andd as follows:closed is set to 0 if the lower boundary ofI is open and
is set to a value different from zero otherwise;n andd are assigned the integersn andd such that the
canonical fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form
if and only if n andd have no common factors andd is positive,0/1 being the unique representation for
zero.

int get_upper_bound(unsigned int k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 66

Let I the interval corresponding to thek -th dimension. IfI is not bounded from above, simply return 0.
Otherwise, setclosed , n andd as follows:closed is set to 0 if the upper boundary ofI is open and is
set to a value different from 0 otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the least upper bound ofI.

9.1.4.93 int ppl new NNC Polyhedron from bounding box (ppl Polyhedron t ∗ pph, unsigned int(∗
spacedimension)(void), int(∗ is empty)(void), int(∗ get lower bound)(unsigned int k, int closed,
ppl Coefficient t n, ppl Coefficient t d), int(∗ get upper bound)(unsigned int k, int closed, ppl -
Coefficient t n, ppl Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addresspph . The bounding box is accessed by using the following functions,
passed as arguments:

unsigned int space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The functionis empty() will
always be called before the other functions. However, ifis empty() does not return 0, none of the
functions below will be called.

int get_lower_bound(unsigned int k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th dimension. IfI is not bounded from below, simply return 0.
Otherwise, setclosed , n andd as follows:closed is set to 0 if the lower boundary ofI is open and
is set to a value different from zero otherwise;n andd are assigned the integersn andd such that the
canonical fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form
if and only if n andd have no common factors andd is positive,0/1 being the unique representation for
zero.

int get_upper_bound(unsigned int k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th dimension. IfI is not bounded from above, simply return 0.
Otherwise, setclosed , n andd as follows:closed is set to 0 if the upper boundary ofI is open and is
set to a value different from 0 otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the least upper bound ofI.

9.1.4.94 int ppl deletePolyhedron (ppl const Polyhedron t ph)

Invalidates the handleph : this makes sure the corresponding resources will eventually be released.

9.1.4.95 int ppl assignC Polyhedron from C Polyhedron (ppl Polyhedron t dst, ppl const -
Polyhedron t src)

Assigns a copy of the closed polyhedronsrc to the closed polyhedrondst .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 67

9.1.4.96 int ppl assignNNC Polyhedron from NNC Polyhedron (ppl Polyhedron t dst, ppl const -
Polyhedron t src)

Assigns a copy of the NNC polyhedronsrc to the NNC polyhedrondst .

9.1.4.97 int ppl Polyhedron spacedimension (ppl const Polyhedron t ph)

Returns the dimension of the vector space enclosingph .

9.1.4.98 int ppl Polyhedron intersection assign (ppl Polyhedron t x, ppl const Polyhedron t y)

Intersectsx with polyhedrony and assigns the resultx .

9.1.4.99 int ppl Polyhedron intersection assignand minimize (ppl Polyhedron t x, ppl const -
Polyhedron t y)

Intersectsx with polyhedrony and assigns the resultx . Returns a positive integer if the resulting polyhe-
dron is non-empty; returns 0 if it is empty. Upon successful return,x is also guaranteed to be minimized.

9.1.4.100 int pplPolyhedron poly hull assign (ppl Polyhedron t x, ppl const Polyhedron t y)

Assigns tox the poly-hull of the set-theoretic union ofx andy .

9.1.4.101 int pplPolyhedron poly hull assignand minimize (ppl Polyhedron t x, ppl const -
Polyhedron t y)

Assigns tox the poly-hull of the set-theoretic union ofx andy . Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return,x is also guaranteed to be
minimized.

9.1.4.102 int pplPolyhedron poly difference assign (ppl Polyhedron t x, ppl const Polyhedron t
y)

Assigns tox the poly-hull of the set-theoretic difference ofx andy .

9.1.4.103 int pplPolyhedron poly difference assignand minimize (ppl Polyhedron t x, ppl -
const Polyhedron t y)

Assigns tox the poly-hull of the set-theoretic difference ofx and y . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,x is also guaranteed to
be minimized.

9.1.4.104 int pplPolyhedron H79 widening assign (ppl Polyhedron t x, ppl const Polyhedron t y)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox the H79-widening ofx and
y .

9.1.4.105 int pplPolyhedron limited H79 widening assign (ppl Polyhedron t x, ppl const -
Polyhedron t y, ppl ConSyst cs)

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 68

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox the H79-widening ofx and
y intersected with the constraint systemcs .

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

9.1.4.106 int pplPolyhedron constraints (ppl const Polyhedron t ph, ppl const ConSyst ∗ pcs)

Writes a const handle to the constraint system defining the polyhedronph at addresspcs .

9.1.4.107 int pplPolyhedron minimized constraints (ppl const Polyhedron t ph, ppl const Con-
Sys t ∗ pcs)

Writes a const handle to the minimized constraint system defining the polyhedronph at addresspcs .

9.1.4.108 int pplPolyhedron generators (ppl const Polyhedron t ph, ppl const GenSyst ∗ pgs)

Writes a const handle to the generator system defining the polyhedronph at addresspgs .

9.1.4.109 int pplPolyhedron minimized generators (ppl const Polyhedron t ph, ppl const Gen-
Sys t ∗ pgs)

Writes a const handle to the minimized generator system defining the polyhedronph at addresspgs .

9.1.4.110 int pplPolyhedron add constraint (ppl Polyhedron t ph, ppl const Constraint t c)

Adds a copy of the constraintc to the system of constraints ofph .

9.1.4.111 int pplPolyhedron add generator (ppl Polyhedron t ph, ppl const Generator t g)

Adds a copy of the generatorg to the system of generatorss ofph .

9.1.4.112 int pplPolyhedron add constraints (ppl Polyhedron t ph, ppl ConSyst cs)

Adds the system of constraintscs to the system of constraints ofph .

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

9.1.4.113 int pplPolyhedron add constraints and minimize (ppl Polyhedron t ph, ppl ConSyst
cs)

Adds the system of constraintscs to the system of constraints ofph . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be
minimized.

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 69

9.1.4.114 int pplPolyhedron add generators (ppl Polyhedron t ph, ppl GenSyst gs)

Adds the system of generatorsgs to the system of generators ofph .

Warning:
This function modifies the generator system referenced bygs : upon return, no assumption can be
made on its value.

9.1.4.115 int pplPolyhedron add generatorsand minimize (ppl Polyhedron t ph, ppl GenSyst
gs)

Adds the system of generatorsgs to the system of generators ofph . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be
minimized.

Warning:
This function modifies the generator system referenced bygs : upon return, no assumption can be
made on its value.

9.1.4.116 int pplPolyhedron add dimensionsand embed (ppl Polyhedron t ph, unsigned intd)

Addsd new dimensions to the space enclosing the polyhedronph and toph itself.

9.1.4.117 int pplPolyhedron add dimensionsand project (ppl Polyhedron t ph, unsigned intd)

Addsd new dimensions to the space enclosing the polyhedronph .

9.1.4.118 int pplPolyhedron remove dimensions (ppl Polyhedron t ph, unsigned intds[], unsigned
int n)

Removes fromph and its containing space the dimensions that are specified in firstn positions of the array
ds . The presence of duplicates inds is innocuous.

9.1.4.119 int pplPolyhedron remove higher dimensions (ppl Polyhedron t ph, unsigned intd)

Removes the higher dimensions fromph and its enclosing space so that, upon successful return, the new
space dimension isd.

9.1.4.120 int pplPolyhedron add dimensionsand constraints (ppl Polyhedron t ph, ppl ConSyst
cs)

First increases the space dimension ofph by adding as many dimensions as is the space dimension ofcs ;
then adds to the system of constraints ofph a renamed-apart version of the constraints incs .

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 70

9.1.4.121 int pplPolyhedron affine image (ppl Polyhedron t ph, unsigned int var, ppl const Lin-
Expression t le, ppl const Coefficient t d)

Transforms the polyhedronph , assigning an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed.

var The variable to which the affine expression is assigned.

le The numerator of the affine expression.

d The denominator of the affine expression.

9.1.4.122 int pplPolyhedron affine preimage (ppl Polyhedron t ph, unsigned int var, ppl const -
LinExpression t le, ppl const Coefficient t d)

Transforms the polyhedronph , substituting an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed.

var The variable to which the affine expression is substituted.

le The numerator of the affine expression.

d The denominator of the affine expression.

9.1.4.123 int pplPolyhedron shrink bounding box (ppl const Polyhedron t ph, void(∗ set -
empty)(void), void(∗ raise lower bound)(unsigned int k, int closed, ppl const Coefficient t n, ppl -
const Coefficient t d), void(∗ lower upper bound)(unsigned int k, int closed,ppl const Coefficient t
n, ppl const Coefficient t d))

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters,

Parameters:
ph The polyhedron that is used to shrink the bounding box.

setempty a pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set.

raise lower bound a pointer to a void function with arguments(unsigned int k, int
closed, ppl const Coefficient t n, ppl const Coefficient t d) that in-
tersects the interval corresponding to thek -th dimension with[n/d,+∞) if closed is non-zero,
with (n/d,+∞) if closed is zero. The fractionn/d is in canonical form, that is,n andd have
no common factors andd is positive,0/1 being the unique representation for zero.

lower upper bound a pointer to a void function with argument(unsigned int k, int
closed, ppl const Coefficient t n, ppl const Coefficient t d) that in-
tersects the interval corresponding to thek -th dimension with(−∞, n/d] if closed is non-zero,
with (−∞, n/d) if closed is zero. The fractionn/d is in canonical form.

9.1.4.124 int pplPolyhedron relation with Constraint (ppl const Polyhedron t ph, ppl const -
Constraint t c)

Checks the relation between the polyhedronph with the constraintc . If successful, returns a non-negative
integer that is obtained as the bitwise or of the bits (chosen among PPLPOLY CON RELATION IS -
DISJOINT PPLPOLY CON RELATION STRICTLY INTERSECTS, PPLPOLY CON RELATION -
IS INCLUDED, and PPLPOLY CON RELATION SATURATES) that describe the relation betweenph
andc .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 ppl c.h File Reference 71

9.1.4.125 int pplPolyhedron relation with Generator (ppl const Polyhedron t ph, ppl const -
Generator t g)

Checks the relation between the polyhedronph with the generatorg. If successful, returns a non-negative
integer that is obtained as the bitwise or of the bits (only PPLPOLY GEN RELATION SUBSUMES, at
present) that describe the relation betweenph andg.

9.1.4.126 int pplPolyhedron check empty (ppl const Polyhedron t ph)

Returns a positive integer ifph is empty; returns 0 ifph is not empty.

9.1.4.127 int pplPolyhedron check universe (ppl const Polyhedron t ph)

Returns a positive integer ifph is a universe polyhedron; returns 0 if it is not.

9.1.4.128 int pplPolyhedron is bounded (ppl const Polyhedron t ph)

Returns a positive integer ifph is bounded; returns 0 ifph is unbounded.

9.1.4.129 int pplPolyhedron bounds from above (ppl const Polyhedron t ph, ppl const Lin-
Expression t le)

Returns a positive integer ifle is bounded from above inph ; returns 0 otherwise.

9.1.4.130 int pplPolyhedron bounds from below (ppl const Polyhedron t ph, ppl const Lin-
Expression t le)

Returns a positive integer ifle is bounded from below inph ; returns 0 otherwise.

9.1.4.131 int pplPolyhedron is topologically closed (ppl const Polyhedron t ph)

Returns a positive integer ifph is topologically closed; returns 0 ifph is not topologically closed.

9.1.4.132 int pplPolyhedron topological closure assign (ppl Polyhedron t ph)

Assigns toph its topological closure.

9.1.4.133 int pplPolyhedron contains Polyhedron (ppl const Polyhedron t x, ppl const -
Polyhedron t y)

Returns a positive integer ifx contains or is equal toy ; returns 0 if it does not.

9.1.4.134 int pplPolyhedron strictly contains Polyhedron (ppl const Polyhedron t x, ppl const -
Polyhedron t y)

Returns a positive integer ifx strictly containsy ; returns 0 if it does not.

9.1.4.135 int pplPolyhedron OK (ppl const Polyhedron t ph)

Returns a positive integer ifph is well formed, i.e., if it satisfies all its implementation variant; returns 0
and perhaps make some noise ifph is broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10 PPL Page Documentation 72

9.1.5 Variable Documentation

9.1.5.1 unsigned int PPLPOLY CON RELATION IS DISJOINT

Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

9.1.5.2 unsigned int PPLPOLY CON RELATION STRICTLY INTERSECTS

Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

9.1.5.3 unsigned int PPLPOLY CON RELATION IS INCLUDED

Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

9.1.5.4 unsigned int PPLPOLY CON RELATION SATURATES

Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

9.1.5.5 unsigned int PPLPOLY GEN RELATION SUBSUMES

Individual bit saying that adding the generator would not change the polyhedron.

10 PPL Page Documentation

10.1 Prolog Interface

10.1.1 Introduction

The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization
of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The system-independent features of the library are described in SectionSystem-Independent Features.
SectionCompilation and Installationexplains how the various incarnations of the Prolog interface are
compiled and installed. SectionSystem-Dependent Featuresillustrates the system-dependent features of
the interface for all the supported systems.

10.1.2 System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in SectionsA Library
for Convex Polyhedra, An Introduction to Convex Polyhedra, Representations of Convex Polyhedra, and
Operations on Convex Polyhedraof this manual. Here we just describe those aspects that are specific to
the Prolog interface.

For proper operation the Prolog interface must be initialized by calling the predicateppl -
initialize/0 and finalized by calling the predicateppl finalize/0 . Bothppl initialize/0
andppl finalize/0 are guarded against multiple invocations so that callingppl initialize/0
several times makes no harm. The same holds forppl finalize/0 . However, the first call toppl -
initialize/0 must occur before any other predicate of the interface is called. On the other hand, the
only interface’s predicates callable afterppl finalize/0 areppl finalize/0 itself (this further

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 73

call has no effect) andppl initialize/0 , after which the interface’s services are usable again. Some
Prolog systems allow the specification of initialization and deinitialization functions in their foreign lan-
guage interfaces. The corresponding incarnations of the PPL-Prolog interface have been written so that
ppl initialize/0 and/orppl finalize/0 are called automatically. SectionSystem-Dependent
Featureswill detail in which cases initialization and finalization is automatically performed or is left to the
Prolog programmer’s responsibility. However, if you want to write portable applications you may decide to
invokeppl initialize/0 andppl finalize/0 explicitly: since they can be called multiple times
without problems this will result in enhanced portability at a cost that is, by all means, negligible.

The PPL predicates provided by the Prolog interface are specified below. The specification uses the fol-
lowing grammar rules:

Topology --> c | nnc

VarId --> non-negative integer variable identifier

PPL_Var --> ’$VAR’(VarId) PPL variable

LinExpr --> PPL_Var PPL variable
| number integer
| + LinExpr unary plus
| - LinExpr unary minus
| LinExpr + LinExpr addition
| LinExpr - LinExpr subtraction
| number * LinExpr multiplication
| LinExpr * number multiplication

Constraint --> LinExpr = LinExpr equation
| LinExpr =< LinExpr nonstrict inequation
| LinExpr >= LinExpr nonstrict inequation
| LinExpr < LinExpr strict inequation
| LinExpr > LinExpr strict inequation

Constraint_System list of constraints
--> []

| [Constraint]
| [Constraint | Constraint_System]

Generator --> point(LinExpr) point
| point(LinExpr, number) point
| closure-point(LinExpr) closure point
| closure-point(LinExpr, number)

closure point
(Int is the denominator so that the point or

closure point is defined by Expr/Int.)
| ray(LinExpr) ray
| line(LinExpr) line

Generator_System list of generators
--> []

| [Generator]
| [Generator | Generator_System]

Relation --> is_disjoint between a constraint and a polyhedron
| strictly_intersects between a constraint and a polyhedron
| is_included between a constraint and a polyhedron
| saturates between a constraint and a polyhedron
| subsumes between a generator and a polyhedron
| nothing

Numerator --> number | + number | - number

Denominator --> number number must be non-zero

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 74

Rational --> number | + number | - number
| Numerator/Denominator rational number

Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction

Interval --> i(Bound, Bound) rational interval

Box --> []
| [Interval]
| [Interval | Box] list of intervals.

We first give some general information about using the interface.

• Access to any PPL polyhedron is provided by means of a Prolog term called ahandle. The data
structure of a handle, is implementation-dependent, system-dependent and version-dependent, and,
for this reason, deliberately left unspecified. What we do guarantee is that a handle is an ordinary
Prolog term that can be used as such and requiring very little memory.

• Only terms bound tovalid handles may be used to access PPL polyhedra. A handle is made valid by
using:

ppl_new_Polyhedron_from_dimension/3,
ppl_new_Polyhedron_empty_from_dimension/3,
ppl_new_Polyhedron_from_Polyhedron/4,
ppl_new_Polyhedron_from_constraints/3,
ppl_new_Polyhedron_from_generators/3.
ppl_new_Polyhedron_from_bounding_box/3.

These predicates will create or copy a PPL polyhedron and construct a valid handle for referencing it.
The first argument (in the case ofppl new Polyhedron from Polyhedron/4 , the first and
third arguments) denotes the topology and can be eitherc or nnc indicating a C or NNC polyhedron,
respectively. The third argument (in the case ofppl new Polyhedron from Polyhedron/4 ,
the fourth argument) is a Prolog term that is unified with a new valid handle for accessing this
polyhedron.

• As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicateppl delete Polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argument inppl delete Polyhedron/1 , it becomes invalid.

• For a PPL polyhedron with space dimensionk , the identifiers used for the PPL variables in the
constraints and the generators must lie between 0 andk−1. Moreover, when using the predicates that
combine PPL polyhedra or add constraints or generators to a representation of a PPL polyhedron,
the polyhedra referenced and any constraints or generators in the call should follow all the space
dimension-compatibility rules stated in SectionRepresentations of Convex Polyhedra.

• As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in SectionRepresentations of Convex Polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 75

• There are a number of predicates whose name ends withand minimize . These are provided to
help the user obtain better performance.

For some of the operations on polyhedra in the PPL, the internal representation of a polyhedra has
to beminimized: if it is not already minimized, an extra PPL minimization operation is performed
first. However this operation may be very costly and, for this reason, the PPL library is lazy and
avoids it as much as it can. For this reason, a predicate withoutand minimize ending should
be used unless a minimized representation is needed for the next PPL operation. In that case it is
more efficient to use theand minimize predicate. As an example, suppose you have to compute
the poly-hull of several polyhedra. Then use theppl Polyhedron poly hull assign/2 for
each intermediate step andppl Polyhedron poly hull assign and minimize/2 for the
last step. If you just have to compute the poly-hull of two polyhedra, then useppl Polyhedron -
poly hull assign and minimize/2 .

ppl new Polyhedron from dimension(+Topology, +Integer, -Handle)

Creates a new universe C or NNC polyhedronP, depending on the value ofTopology , with Integer
dimensions.Handle is unified with the handle forP. Thus the query

?- ppl_new_Polyhedron_from_dimension(c, X, 3).

creates the C polyhedron defining the 3-dimensional vector spaceR3 with X bound to a valid handle for
accessing it.

ppl new Polyhedron empty from dimension(+Topology, +Integer, -Handle)

Creates a new empty C or NNC polyhedronP, depending on the value ofTopology , with Integer
dimensions.Handle is unified with the handle forP. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, X, 3).

creates an empty NNC polyhedron embedded inR3 with X bound to a valid handle for accessing it.

ppl new Polyhedron from Polyhedron(+Topology 1, +Handle 1, +Topology 2,
-Handle 2)

If Handle 1 refers to a C or NNC polyhedronP1 (depending on the value ofTopology 1), then this
creates a copyP2 of P1 with topology C or NNC, depending on the value ofTopology 2. Handle 2 is
unified with the handle forP2. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, X, 3),
ppl_new_Polyhedron_from_Polyhedron(c, X, nnc, Y).

creates an empty C polyhedron embedded inR3 referenced byX and then makes a copy, converting the
topology to an NNC polyhedron. withY bound to a valid handle for accessing it.

When usingppl new Polyhedron from Polyhedron/2 , when the source polyhedron is NNC and
the copy is C, care must be taken that the source polyhedron referenced byHandle1 is topologically
closed.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 76

ppl new Polyhedron from constraints(+Topology, +Constraint System, -
Handle)

Creates a polyhedronP represented byConstraint System with topology C or NNC, depending on
the value ofTopology . Handle is unified with the handle forP.

ppl new Polyhedron from generators(+Topology, +Generator System, -
Handle)

Creates a polyhedronP represented byGenerator System with topology C or NNC, depending on the
value ofTopology . Handle is unified with the handle forP.

ppl new Polyhedron from bounding box(+Topology, +Box, -Handle)

Creates a polyhedronP represented byBox with topology C or NNC, depending on the value ofTopol-
ogy , andHandle is unified with the handle forP. A bound of the formo(Rational) can be included
in an interval inBox only if Topology is nnc .

ppl delete Polyhedron(+Handle)

Deletes the polyhedron referenced byHandle . After execution,Handle is no longer a valid handle for a
PPL polyhedron.

ppl Polyhedron space dimension(+Handle, -Integer)

Unifies the space dimension of the polyhedron referenced byHandle with Integer .

ppl Polyhedron intersection assign(+Handle 1, +Handle 2)

ppl Polyhedron intersection assign and minimize(+Handle 1, +Handle 2)

Assign to the polyhedron referenced byHandle 1 its intersection with the polyhedra referenced byHan-
dle 2.

ppl Polyhedron poly hull assign(+Handle 1, +Handle 2)

ppl Polyhedron poly hull assign and minimize(+Handle 1, +Handle 2)

Assign to the polyhedron referenced byHandle 1 its poly-hull with the polyhedra referenced byHan-
dle 2.

ppl Polyhedron poly difference assign(+Handle 1, +Handle 2)

ppl Polyhedron poly difference assign and minimize(+Handle 1, +Handle 2)

Assign to the polyhedron referenced byHandle 1 its poly-difference with the polyhedron referenced by
Handle 2.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 77

ppl Polyhedron H79 widening assign(+Handle 1, +Handle 2)

Assigns to the polyhedron referenced byHandle 1 its H79-widening with the polyhedra referenced by
Handle 2,

ppl Polyhedron limited H79 widening assign(+Handle 1, +Handle 2, +Con-
straint System)

Assigns to the polyhedron referenced byHandle 1 its H79-widening with the polyhedron referenced by
Handle 2, limited by the constraints inConstraint System .

ppl Polyhedron topological closure assign(+Handle)

Assigns to the polyhedron referenced byHandle its topological closure.

ppl Polyhedron get constraints(+Handle, -Constraint System)

Unifies Constraint System with a list of the constraints in the constraints system representing the
polyhedron referenced byHandle .

ppl Polyhedron get minimized constraints(+Handle, -Constraint System)

Unifies Constraint System with a minimized list of the constraints in the constraints system repre-
senting the polyhedron referenced byHandle .

ppl Polyhedron get generators(+Handle, -Generator System)

UnifiesGenerator System with a list of the generators in the generators system representing the poly-
hedron referenced byHandle .

ppl Polyhedron get minimized generators(+Handle, -Generator System)

UnifiesGenerator System with a minimized list of the generators in the generators system represent-
ing the polyhedron referenced byHandle .

ppl Polyhedron add constraint(+Handle, +Constraint)

Updates the polyhedron referenced byHandle to one obtained by addingConstraint to its constraint
system. Thus, the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handleX to consist of the set of points in the vector spaceR3 satisfying
the constraint4x + y − 2z >= 5.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 78

ppl Polyhedron add generator(+Handle, +Generator)

Updates the polyhedron referenced byHandle to one obtained by addingGenerator to its generator
system. Thus, after the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handleX to be the single point(−12.5,−0.625, 0)T in the vector space
R3.

ppl Polyhedron add constraints(+Handle, +Constraint System)

Updates the polyhedron referenced byHandle to one obtained by adding to its constraint system the
constraints inConstraint System . E.g.,

| ?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = ’$VAR’(0), B = ’$VAR’(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1]),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referenced byHandle can be empty and a query will succeed even whenCon-
straint System is unsatisfiable.

ppl Polyhedron add constraints and minimize(+Handle, +Constraint System)

Updates the polyhedron referenced byHandle to one obtained by adding to its constraint system the
constraints inConstraint System . E.g.,

?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = ’$VAR’(0), B = ’$VAR’(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1]),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]

This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_dimension(c, 2, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A = 0, B =< 0]),
ppl_Polyhedron_get_constraints(X, CS).

ppl Polyhedron add generators(+Handle, +Generator System)

Updates the polyhedron referenced byHandle to one obtained by adding to its generator system the
generators inGenerator System .

If the system of generators representing a polyhedron is non-empty, then it must include a point (see the
paragraph on generator representation in SectionRepresentations of Convex Polyhedra). Thus care must
be taken to ensure that, before calling this predicate, either the polyhedron referenced byHandle is non-
empty or that wheneverGenerator System is non-empty the first element defines a point. E.g.,

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 79

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

ppl Polyhedron add generators and minimize(+Handle, +Generator System)

Updates the polyhedron referenced byHandle to one obtained by adding to its generator system the
generators inGenerator System .

Unlike the predicateppl add generators , the order of the generators inGenerator System is not
important. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]

ppl Polyhedron add dimensions and constraints(+Handle, +Constraint -
System)

After embedding the polyhedron referred to byHandle in a new space that is enlarged by the space
dimensions of the constraint system inConstraint System , it then updates the polyhedron referenced
by Handle to one obtained by adding to the new space the constraints inConstraint System . E.g.,

?- ppl_new_Polyhedron_from_dimension(nnc, 2, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
D = ’$VAR’(3), E = ’$VAR’(4),
ppl_Polyhedron_add_dimensions_and_constraints(X,

[A > 1, B >= 0, C >= 0]),
ppl_Polyhedron_get_constraints(P, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= 0]

ppl Polyhedron add dimensions and project(+Handle, +Integer)

Projects the polyhedron referred to byHandle onto a space that is enlarged byInteger dimensions,
E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [1*A = 0, 1*B = 0],
GS = [point(0)]

ppl Polyhedron add dimensions and embed(+Handle, +Integer)

Embeds the polyhedron referred to byHandle in a space that is enlarged byInteger dimensions, E.g.,

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 80

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [],
GS = [point(0),line(1*A),line(1*B)]

ppl Polyhedron remove dimensions(+Handle, +List of PPL Vars)

Removes the dimensions given by the identifiers of the PPL variables in listList of PPL Vars from
the polyhedron referred to byHandle . The identifiers for the remaining PPL variables are renumbered so
that they are consecutive and the maximum index is less than the number of dimensions. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_remove_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K = 2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl Polyhedron remove higher dimensions(+Handle, +Integer))

Projects the the polyhedron referred to byHandle onto the firstInteger dimension. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 5, X),
ppl_Polyhedron_remove_higher_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

K = 3,

The polyhedronP referenced byHandle must have space dimensionk greater that or equal toInteger .

ppl Polyhedron affine image(+Handle, +PPL Var, +LinExpr, +Integer)

Transforms the polyhedron referenced byHandle assigning the affine expressionLinExpr /Integer
to PPL Var .

ppl Polyhedron affine preimage(+Handle, +PPL Var, +LinExpr, +Integer)

This is the inverse transformation to that forppl affine image .

ppl Polyhedron relation with constraint(+Handle, +Constraint, -Relation)

UnifiesRelation with the relation the polyhedron referenced byHandle has withConstraint . The
possible relations are listed in the grammar rules above; their meaning is given in SectionOperations on
Convex Polyhedra. The relationnothing means that nothing is known about the relation the polyhedron
referenced byHandle has withConstraint .

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 81

ppl Polyhedron relation with generator(+Handle, +Generator, -Relation)

UnifiesRelation with the relation the polyhedron referenced byHandle has withGenerator . The
possible relations are listed in the grammar rules above; The meaning of the relationsubsume is given in
SectionOperations on Convex Polyhedra. The relationnothing means that nothing is known about the
relation the polyhedron referenced byHandle has withGenerator .

ppl Polyhedron check empty(+Handle)

Succeeds if and only if the polyhedron referenced byHandle is empty.

ppl Polyhedron check universe(+Handle)

Succeeds if and only if the polyhedron referenced byHandle is the universe.

ppl Polyhedron is bounded(+Handle)

Succeeds if and only if the polyhedron referenced byHandle is bounded.

ppl Polyhedron bounds from above(+Handle, +LinExpr)

Succeeds if and only ifLinExpr is bounded from above in the polyhedron referenced byHandle .

ppl Polyhedron bounds from below(+Handle, +LinExpr)

Succeeds if and only ifLinExpr is bounded from below in the polyhedron referenced byHandle .

ppl Polyhedron is topologically closed(+Handle)

Succeeds if and only if the polyhedron referenced byHandle is topologically closed.

ppl Polyhedron contains Polyhedron(+Handle 1, +Handle 2)

Succeeds if and only if the polyhedron referenced byHandle 1 is included in or equal to the polyhedron
referenced byHandle 2.

ppl Polyhedron strictly contains Polyhedron(+Handle 1, +Handle 2)

Succeeds if and only if the polyhedron referenced byHandle 1 is included in but not equal to the poly-
hedron referenced byHandle 2.

ppl Polyhedron equals Polyhedron, 2(+Handle 1, +Handle 2)

Succeeds if and only if the polyhedron referenced byHandle 1 is equal to the polyhedron referenced by
Handle 2.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 82

ppl Polyhedron get bounding box(+Handle, -Box)

Succeeds if and only if the bounding box of the polyhedron referenced byHandle unifies with the box
defined byBox. E.g.,

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], P),
ppl_Polyhedron_get_bounding_box(P, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].

Note that the rational numbers inBox are in canonical form. E.g., the following will fail:

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], P),
ppl_Polyhedron_get_bounding_box(P, Box),
Box = [i(o(minf), c(2/4)), i(o(0), o(pinf))].

10.1.3 Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

In the sequel,prefix is the prefix under which you have installed the library (typically/usr or
/usr/local).

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library adding-DPROLOGTRACKALLOCATIONto the
options passed to the C++ compiler. Your configure command would then look like

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

10.1.4 System-Dependent Features

CIAO Prolog

Support for CIAO Prolog is under development and will be available in a future release.

GNU Prolog

The GNU Prolog interface to the PPL library is available both as “PPL enhanced” GNU Prolog interpreter
and as a library that can be linked to GNU Prolog programs. Only GNU Prolog version 1.2.12 or later is
supported.

Notice that GNU Prolog version 1.2.12 suffers from a serious limitation as far as foreign code is concerned.
In order to be safe you must configure GNU Prolog with the--disable-ebp option (note that this
has a negative effect on performance). Seehttp://www.cs.unipr.it/pipermail/ppl-
devel/2002-June/001777.html , http://www.cs.unipr.it/pipermail/ppl-
devel/2002-June/001780.html , http://www.cs.unipr.it/pipermail/ppl-
devel/2002-June/001788.html and http://www.cs.unipr.it/pipermail/ppl-
devel/2002-June/001789.html for more information.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001777.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001777.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001777.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001780.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001780.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001780.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001788.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001788.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001788.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001789.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001789.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001789.html
http://www.cs.unipr.it/ppl/

10.1 Prolog Interface 83

The ppl gprolog Executable

If an appropriate version of GNU Prolog is installed on the machine on which you compiled the library, the
commandmake install will install the executableppl gprolog in the directoryprefix/bin .
The ppl gprolog executable is simply the GNU Prolog interpreter with the Parma Polyhedra library
linked in. The only thing you should do to use the library is to callppl initialize/0 before any other
PPL predicate and to callppl finalize/0 when you are done with the library.

Linking the Library To GNU Prolog Programs

In order to allow linking GNU Prolog programs to the PPL, the following files are installed in the di-
rectoryprefix/lib/ppl : ppl gprolog.pl contains the required foreign declarations;libppl -
gprolog. ∗ contain the executable code for the GNU Prolog interface in various formats (static library,
shared library, libtool library). If your GNU Prolog program is constituted by, say,source1.pl and
source2.pl and you want to create the executablemyprog , your compilation command may look like

gplc -o myprog prefix/lib/ppl/ppl_gprolog.pl source1.pl source2.pl \
-L ’-Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmp -lgmpxx -lstdc++’

SICStus Prolog

The SICStus Prolog interface to the PPL library is available both as a statically linked module or as a
dynamically linked one. Only SICStus Prolog version 3.9.0 or later is supported.

The Statically Linked ppl sicstus Executable

If an appropriate version of SICStus Prolog is installed on the machine on which you compiled the library,
the commandmake install will install the executableppl sicstus in the directoryprefix/bin .
The ppl sicstus executable is simply the SICStus Prolog system with the Parma Polyhedra library
statically linked. The only thing you should do to use the library is to loadprefix/lib/ppl/ppl -
sicstus.pl .

Loading the SICStus Interface Dynamically

In order to dynamically load the library from SICStus Prolog you should simply loadpre-
fix/lib/ppl/ppl sicstus.pl . Notice that, for dynamic linking to work, you should have con-
figured the library with the--enable-shared option.

SWI-Prolog

The SWI-Prolog interface of the library is available both as a statically linked module or as a dynamically
linked one. Only SWI-Prolog version 5.0 or later is supported.

The ppl pl Executable

If an appropriate version of SWI-Prolog is installed on the machine on which you compiled the library,
the commandmake install will install the executableppl pl in the directoryprefix/bin . The
ppl pl executable is simply the SWI-Prolog shell with the Parma Polyhedra library statically linked: from
within ppl pl all the services of the library are available without further action.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE 84

Loading the SWI-Prolog Interface Dynamically

In order to dynamically load the library from SWI-Prolog you should simply loadpre-
fix/lib/ppl/ppl swiprolog.pl . This will invoke ppl initialize/0 automatically but, at
least for SWI-Prolog versions up to 5.0.7, it is the programmer’s responsibility to callppl finalize/0 .
Alternatively, you can load the library directly with

:- load_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

This will call ppl initialize/0 automatically. Analogously,

:- unload_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

will, as part of the unload process, invokeppl finalize/0 .

Notice that, for dynamic linking to work, you should have configured the library with the--enable-
shared option.

YAP

The YAP Prolog interface to the PPL library is available as a dynamically linked module. Only YAP version
4.3.23 or later is supported.

In order to dynamically load the library from YAP you should simply loadprefix/lib/ppl/ppl -
yap.pl . This will invoke ppl initialize/0 automatically; it is the programmer’s responsibility to
call ppl finalize/0 when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with the--enable-shared option.

10.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE 85

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFI-
CATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a ”work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE 86

including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE 87

work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and ”any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU GENERAL PUBLIC LICENSE 88

ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands<SAMP>‘show w’</SAMP> and <SAMP>‘show c’</SAMP> should
show the appropriate parts of the General Public License. Of course, the commands you use may be called

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 89

something other than<SAMP>‘show w’</SAMP> and<SAMP>‘show c’</SAMP>; they could even
be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copy-
right disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

10.3 GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document ”free” in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher
a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The ”Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as ”you”.

A ”Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 90

(or to related matters) and contains nothing that could fall directly within that overall subject. (For ex-
ample, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, ”Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a complete Transparent copy of the Doc-
ument, free of added material, which the general network-using public has access to download anony-
mously at no charge using public-standard network protocols. If you use the latter option, you must take

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 91

reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the public permission to

use the Modified Version under the terms of this License, in the form shown in the Addendum below.
• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given

in the Document’s license notice.
• H. Include an unaltered copy of this License.
• I. Preserve the section entitled ”History”, and its title, and add to it an item stating at least the title,

year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled ”History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

• K. In any section entitled ”Acknowledgements” or ”Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section entitled ”Endorsements”. Such a section may not be included in the Modified
Version.

• N. Do not retitle any existing section as ”Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 92

You may add a section entitled ”Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled ”History” in the various original documents,
forming one section entitled ”History”; likewise combine any sections entitled ”Acknowledgements”, and
any sections entitled ”Dedications”. You must delete all sections entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation
is called an ”aggregate”, and this License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are not themselves derivative works of
the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed
on covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 GNU Free Documentation License 93

the original versions of these Invariant Sections. You may include a translation of this License provided
that you also include the original English version of this License. In case of a disagreement between the
translation and the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. Seehttp://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write ”with no Invariant Sections” instead of saying which ones are
invariant. If you have no Front-Cover Texts, write ”no Front-Cover Texts” instead of ”Front-Cover Texts
being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/.
http://www.cs.unipr.it/ppl/

Index
∼C Polyhedron

ParmaPolyhedraLibrary::C Polyhedron,
13

∼Constraint
ParmaPolyhedraLibrary::Constraint,15

∼Generator
ParmaPolyhedraLibrary::Generator,19

∼LinExpression
ParmaPolyhedraLibrary::LinExpression,

25
∼NNC Polyhedron

ParmaPolyhedraLibrary::NNC -
Polyhedron,28

∼Polyhedron
ParmaPolyhedraLibrary::Polyhedron,32

abandonexponentialcomputations
ParmaPolyhedraLibrary, 12

addconstraint
ParmaPolyhedraLibrary::Polyhedron,43

addconstraints
ParmaPolyhedraLibrary::Polyhedron,45

addconstraintsandminimize
ParmaPolyhedraLibrary::Polyhedron,45

adddimensionsandconstraints
ParmaPolyhedraLibrary::Polyhedron,46

adddimensionsandembed
ParmaPolyhedraLibrary::Polyhedron,44

adddimensionsandproject
ParmaPolyhedraLibrary::Polyhedron,44

addgenerator
ParmaPolyhedraLibrary::Polyhedron,43

addgenerators
ParmaPolyhedraLibrary::Polyhedron,46

addgeneratorsandminimize
ParmaPolyhedraLibrary::Polyhedron,46

affine image
ParmaPolyhedraLibrary::Polyhedron,43

affine preimage
ParmaPolyhedraLibrary::Polyhedron,43

boundsfrom above
ParmaPolyhedraLibrary::Polyhedron,46

boundsfrom below
ParmaPolyhedraLibrary::Polyhedron,47

C Polyhedron
ParmaPolyhedraLibrary::C Polyhedron,

13, 14
checkempty

ParmaPolyhedraLibrary::Polyhedron,34

checkuniverse
ParmaPolyhedraLibrary::Polyhedron,34

CLOSUREPOINT
ParmaPolyhedraLibrary::Generator,23

closurepoint
ParmaPolyhedraLibrary, 11
ParmaPolyhedraLibrary::Generator,24

coefficient
ParmaPolyhedraLibrary::Constraint,19
ParmaPolyhedraLibrary::Generator,24

Constraint
ParmaPolyhedraLibrary::Constraint,15

constraints
ParmaPolyhedraLibrary::Polyhedron,32

DegenerateKind
ParmaPolyhedraLibrary::Polyhedron,39

divisor
ParmaPolyhedraLibrary::Generator,24

EMPTY
ParmaPolyhedraLibrary::Polyhedron,39

EQUALITY
ParmaPolyhedraLibrary::Constraint,19

Generator
ParmaPolyhedraLibrary::Generator,19

generators
ParmaPolyhedraLibrary::Polyhedron,33

H79 wideningassign
ParmaPolyhedraLibrary::Polyhedron,42

id
ParmaPolyhedraLibrary::Variable,48

implies
ParmaPolyhedraLibrary::Poly Con -

Relation,29
ParmaPolyhedraLibrary::Poly Gen -

Relation,31
inhomogeneousterm

ParmaPolyhedraLibrary::Constraint,15
Integer

ParmaPolyhedraLibrary, 11
intersectionassign

ParmaPolyhedraLibrary::Polyhedron,41
intersectionassignandminimize

ParmaPolyhedraLibrary::Polyhedron,41
is bounded

ParmaPolyhedraLibrary::Polyhedron,34
is closurepoint

ParmaPolyhedraLibrary::Generator,20

INDEX 95

is disjoint
ParmaPolyhedraLibrary::Poly Con -

Relation,30
is equality

ParmaPolyhedraLibrary::Constraint,15
is included

ParmaPolyhedraLibrary::Poly Con -
Relation,30

is inequality
ParmaPolyhedraLibrary::Constraint,15

is line
ParmaPolyhedraLibrary::Generator,20

is nonstrictinequality
ParmaPolyhedraLibrary::Constraint,15

is point
ParmaPolyhedraLibrary::Generator,20

is ray
ParmaPolyhedraLibrary::Generator,20

is strict inequality
ParmaPolyhedraLibrary::Constraint,15

is topologically closed
ParmaPolyhedraLibrary::Polyhedron,34

limited H79 wideningassign
ParmaPolyhedraLibrary::Polyhedron,42

LINE
ParmaPolyhedraLibrary::Generator,23

line
ParmaPolyhedraLibrary, 11
ParmaPolyhedraLibrary::Generator,23

LinExpression
ParmaPolyhedraLibrary::LinExpression,

25, 27

minimizedconstraints
ParmaPolyhedraLibrary::Polyhedron,33

minimizedgenerators
ParmaPolyhedraLibrary::Polyhedron,33

NNC Polyhedron
ParmaPolyhedraLibrary::NNC -

Polyhedron,28, 29
NONSTRICT INEQUALITY

ParmaPolyhedraLibrary::Constraint,19
nothing

ParmaPolyhedraLibrary::Poly Con -
Relation,30

ParmaPolyhedraLibrary::Poly Gen -
Relation,31

OK
ParmaPolyhedraLibrary::Constraint,15
ParmaPolyhedraLibrary::Generator,20
ParmaPolyhedraLibrary::Poly Con -

Relation,29

ParmaPolyhedraLibrary::Poly Gen -
Relation,31

ParmaPolyhedraLibrary::Polyhedron,44
operator!=

ParmaPolyhedraLibrary::Polyhedron,47
operator<

ParmaPolyhedraLibrary::Polyhedron,47
ParmaPolyhedraLibrary::Variable,49

operator<<
ParmaPolyhedraLibrary::Constraint,17
ParmaPolyhedraLibrary::Variable,49

operator=
ParmaPolyhedraLibrary::C Polyhedron,

13
ParmaPolyhedraLibrary::Constraint,15
ParmaPolyhedraLibrary::Generator,20
ParmaPolyhedraLibrary::NNC -

Polyhedron,28
ParmaPolyhedraLibrary::Polyhedron,35

operator==
ParmaPolyhedraLibrary::Polyhedron,47

operator>
ParmaPolyhedraLibrary::Polyhedron,48

operator>=
ParmaPolyhedraLibrary::Polyhedron,48

ParmaPolyhedraLibrary, 10
abandonexponentialcomputations,12
closurepoint,11
Integer,11
line, 11
point,11
ray,11

ParmaPolyhedraLibrary::C Polyhedron,12
∼C Polyhedron,13
C Polyhedron,13, 14
operator=,13

ParmaPolyhedraLibrary::Constraint
EQUALITY, 19
NONSTRICT INEQUALITY, 19
STRICT INEQUALITY, 19

ParmaPolyhedraLibrary::Constraint,14
∼Constraint,15
coefficient,19
Constraint,15
inhomogeneousterm,15
is equality,15
is inequality,15
is nonstrictinequality,15
is strict inequality,15
OK, 15
operator<<, 17
operator=,15

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 96

ParmaPolyhedraLibrary::LinExpression,
25

ParmaPolyhedraLibrary::operator<, 17
ParmaPolyhedraLibrary::operator<=, 16
ParmaPolyhedraLibrary::operator==,16
ParmaPolyhedraLibrary::operator>, 16
ParmaPolyhedraLibrary::operator>=, 16
ParmaPolyhedraLibrary::operator>>, 17
ParmaPolyhedraLibrary::Polyhedron,16
spacedimension,15
swap,17
Type,19
type,15
zerodim false,16
zerodim positivity, 16

ParmaPolyhedraLibrary::FromBounding-
Box, 19

ParmaPolyhedraLibrary::Generator
CLOSUREPOINT,23
LINE, 23
POINT,23
RAY, 23

ParmaPolyhedraLibrary::Generator,19
∼Generator,19
closurepoint,24
coefficient,24
divisor,24
Generator,19
is closurepoint,20
is line, 20
is point,20
is ray,20
line, 23
OK, 20
operator=,20
ParmaPolyhedraLibrary::LinExpression,

25
ParmaPolyhedraLibrary::operator<<, 21
ParmaPolyhedraLibrary::Polyhedron,21
point,24
ray,23
spacedimension,20
swap,21
Type,23
type,20
zerodim closurepoint,20
zerodim point,20

ParmaPolyhedraLibrary::LinExpression
∼LinExpression,25
LinExpression,25
ParmaPolyhedraLibrary::Constraint,25
ParmaPolyhedraLibrary::Generator,25
ParmaPolyhedraLibrary::operator∗, 26
ParmaPolyhedraLibrary::operator+,25

ParmaPolyhedraLibrary::operator+=,26
ParmaPolyhedraLibrary::operator-,25, 26
ParmaPolyhedraLibrary::operator-=,26
ParmaPolyhedraLibrary::Polyhedron,25
spacedimension,25
swap,26
zero,25

ParmaPolyhedraLibrary::LinExpression,24
LinExpression,27

ParmaPolyhedraLibrary::NNC Polyhedron,28
∼NNC Polyhedron,28
NNC Polyhedron,28, 29
operator=,28

ParmaPolyhedraLibrary::operator &&
ParmaPolyhedraLibrary::Poly Con -

Relation,30
ParmaPolyhedraLibrary::Poly Gen -

Relation,31
ParmaPolyhedraLibrary::operator∗

ParmaPolyhedraLibrary::LinExpression,
26

ParmaPolyhedraLibrary::operator!=
ParmaPolyhedraLibrary::Poly Con -

Relation,30
ParmaPolyhedraLibrary::Poly Gen -

Relation,31
ParmaPolyhedraLibrary::operator+

ParmaPolyhedraLibrary::LinExpression,
25

ParmaPolyhedraLibrary::operator+=
ParmaPolyhedraLibrary::LinExpression,

26
ParmaPolyhedraLibrary::operator-

ParmaPolyhedraLibrary::LinExpression,
25, 26

ParmaPolyhedraLibrary::Poly Con -
Relation,30

ParmaPolyhedraLibrary::Poly Gen -
Relation,31

ParmaPolyhedraLibrary::operator-=
ParmaPolyhedraLibrary::LinExpression,

26
ParmaPolyhedraLibrary::operator<

ParmaPolyhedraLibrary::Constraint,17
ParmaPolyhedraLibrary::operator<<

ParmaPolyhedraLibrary::Generator,21
ParmaPolyhedraLibrary::Poly Con -

Relation,30
ParmaPolyhedraLibrary::Poly Gen -

Relation,31
ParmaPolyhedraLibrary::Polyhedron,35

ParmaPolyhedraLibrary::operator<=
ParmaPolyhedraLibrary::Constraint,16
ParmaPolyhedraLibrary::Polyhedron,47

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 97

ParmaPolyhedraLibrary::operator==
ParmaPolyhedraLibrary::Constraint,16
ParmaPolyhedraLibrary::Poly Con -

Relation,30
ParmaPolyhedraLibrary::Poly Gen -

Relation,31
ParmaPolyhedraLibrary::operator>

ParmaPolyhedraLibrary::Constraint,16
ParmaPolyhedraLibrary::operator>=

ParmaPolyhedraLibrary::Constraint,16
ParmaPolyhedraLibrary::operator>>

ParmaPolyhedraLibrary::Constraint,17
ParmaPolyhedraLibrary::Polyhedron,35

ParmaPolyhedraLibrary::Poly Con Relation,
29

implies,29
is disjoint,30
is included,30
nothing,30
OK, 29
ParmaPolyhedraLibrary::operator &&,30
ParmaPolyhedraLibrary::operator

=, 30
ParmaPolyhedraLibrary::operator-,30
ParmaPolyhedraLibrary::operator<<, 30
ParmaPolyhedraLibrary::operator==,30
saturates,30
strictly intersects,30

ParmaPolyhedraLibrary::Poly GenRelation,
30

implies,31
nothing,31
OK, 31
ParmaPolyhedraLibrary::operator &&,31
ParmaPolyhedraLibrary::operator

=, 31
ParmaPolyhedraLibrary::operator-,31
ParmaPolyhedraLibrary::operator<<, 31
ParmaPolyhedraLibrary::operator==,31
subsumes,31

ParmaPolyhedraLibrary::Polyhedron
EMPTY, 39
UNIVERSE,39

ParmaPolyhedraLibrary::Polyhedron,31
∼Polyhedron,32
addconstraint,43
addconstraints,45
addconstraintsandminimize,45
adddimensionsandconstraints,46
adddimensionsandembed,44
adddimensionsandproject,44
addgenerator,43
addgenerators,46
addgeneratorsandminimize,46

affine image,43
affine preimage,43
boundsfrom above,46
boundsfrom below,47
checkempty,34
checkuniverse,34
constraints,32
DegenerateKind, 39
generators,33
H79 wideningassign,42
intersectionassign,41
intersectionassignandminimize,41
is bounded,34
is topologically closed,34
limited H79 wideningassign,42
minimizedconstraints,33
minimizedgenerators,33
OK, 44
operator!=,47
operator<, 47
operator=,35
operator==,47
operator>, 48
operator>=, 48
ParmaPolyhedraLibrary::Constraint,16
ParmaPolyhedraLibrary::Generator,21
ParmaPolyhedraLibrary::LinExpression,

25
ParmaPolyhedraLibrary::operator<<, 35
ParmaPolyhedraLibrary::operator<=, 47
ParmaPolyhedraLibrary::operator>>, 35
poly differenceassign,41
poly differenceassignandminimize,41
poly hull assign,41
poly hull assignandminimize,41
Polyhedron,34, 39, 40
relationwith, 42
removedimensions,45
removehigherdimensions,45
shrink boundingbox,43
spacedimension,32
swap,35, 47
time elapseassign,42
topologicalclosureassign,34

ParmaPolyhedraLibrary::Throwable,48
throw me,48

ParmaPolyhedraLibrary::Variable,48
id, 48
operator<, 49
operator<<, 49
Variable,48

POINT
ParmaPolyhedraLibrary::Generator,23

point

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 98

ParmaPolyhedraLibrary, 11
ParmaPolyhedraLibrary::Generator,24

poly differenceassign
ParmaPolyhedraLibrary::Polyhedron,41

poly differenceassignandminimize
ParmaPolyhedraLibrary::Polyhedron,41

poly hull assign
ParmaPolyhedraLibrary::Polyhedron,41

poly hull assignandminimize
ParmaPolyhedraLibrary::Polyhedron,41

Polyhedron
ParmaPolyhedraLibrary::Polyhedron,34,

39, 40
ppl assignC Polyhedronfrom C Polyhedron

ppl c.h,65
ppl assignCoefficientfrom Coefficient

ppl c.h,56
ppl assignCoefficientfrom mpz t

ppl c.h,56
ppl assignConstraintfrom Constraint

ppl c.h,58
ppl assignConSys constiterator from -

ConSys constiterator
ppl c.h,59

ppl assignConSysfrom ConSys
ppl c.h,59

ppl assignGeneratorfrom Generator
ppl c.h,60

ppl assignGenSys constiterator from -
GenSys constiterator

ppl c.h,62
ppl assignGenSysfrom GenSys

ppl c.h,61
ppl assignLinExpressionfrom LinExpression

ppl c.h,57
ppl assignNNC Polyhedronfrom NNC -

Polyhedron
ppl c.h,65

ppl c.h
PPL CONSTRAINT TYPE EQUAL, 55
PPL CONSTRAINT TYPE GREATER-

THAN, 55
PPL CONSTRAINT TYPE GREATER-

THAN OR EQUAL, 55
PPL CONSTRAINT TYPE LESSTHAN,

55
PPL CONSTRAINT TYPE LESS-

THAN OR EQUAL, 55
PPL ERRORINTERNAL ERROR,55
PPL ERRORINVALID ARGUMENT, 55
PPL ERROROUT OF MEMORY, 55
PPL ERRORUNEXPECTEDERROR,55
PPL ERRORUNKNOWN STANDARD -

EXCEPTION,55

PPL GENERATORTYPE CLOSURE-
POINT,55

PPL GENERATORTYPE LINE, 55
PPL GENERATORTYPE POINT,55
PPL GENERATORTYPE RAY, 55

ppl c.h,49
ppl assignC Polyhedronfrom C -

Polyhedron,65
ppl assignCoefficientfrom Coefficient,

56
ppl assignCoefficientfrom mpz t, 56
ppl assignConstraintfrom Constraint,58
ppl assignConSys constiterator from -

ConSys constiterator,59
ppl assignConSysfrom ConSys,59
ppl assignGeneratorfrom Generator,60
ppl assignGenSys constiterator from -

GenSys constiterator,62
ppl assignGenSysfrom GenSys,61
ppl assignLinExpressionfrom -

LinExpression,57
ppl assignNNC Polyhedronfrom NNC -

Polyhedron,65
ppl CoefficientOK, 56
ppl Coefficientt, 49
ppl Coefficientto mpz t, 56
ppl constCoefficientt, 49
ppl constConstraintt, 50
ppl constConSys constiterator t, 50
ppl constConSyst, 50
ppl constGeneratort, 50
ppl constGenSys constiterator t, 50
ppl constGenSyst, 50
ppl constLinExpressiont, 50
ppl constPolyhedront, 50
ppl Constraintcoefficient,58
ppl Constraintinhomogeneousterm,58
ppl ConstraintOK, 58
ppl Constraintspacedimension,58
ppl Constraintt, 50
ppl Constrainttype,58
ppl ConSys constiteratordereference,60
ppl ConSys constiteratorequaltest,60
ppl ConSys constiterator increment,60
ppl ConSys constiterator t, 50
ppl ConSysbegin,59
ppl ConSysend,59
ppl ConSysinsertConstraint,59
ppl ConSysOK, 59
ppl ConSysspacedimension,59
ppl ConSyst, 50
ppl deleteCoefficient,56
ppl deleteConstraint,58
ppl deleteConSys,59

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 99

ppl deleteConSys constiterator,59
ppl deleteGenerator,60
ppl deleteGenSys,61
ppl deleteGenSys constiterator,62
ppl deleteLinExpression,57
ppl deletePolyhedron,65
ppl enumConstraintType,55
ppl enumerror code,55
ppl enumGeneratorType,55
ppl finalize,55
ppl Generatorcoefficient,61
ppl Generatordivisor,61
ppl GeneratorOK, 61
ppl Generatorspacedimension,60
ppl Generatort, 50
ppl Generatortype,60
ppl GenSys constiteratordereference,62
ppl GenSys constiteratorequaltest,62
ppl GenSys constiterator increment,62
ppl GenSys constiterator t, 50
ppl GenSysbegin,62
ppl GenSysend,62
ppl GenSysinsertGenerator,61
ppl GenSysOK, 61
ppl GenSysspacedimension,61
ppl GenSyst, 50
ppl initialize, 55
ppl LinExpressionadd to coefficient,57
ppl LinExpressionadd to inhomogeneous,

57
ppl LinExpressionOK, 57
ppl LinExpressionspacedimension,57
ppl LinExpressiont, 50
ppl new C Polyhedronempty from -

dimension,62
ppl new C Polyhedronfrom bounding-

box,64
ppl new C Polyhedronfrom C -

Polyhedron,63
ppl new C Polyhedronfrom ConSys,63
ppl new C Polyhedronfrom dimension,

62
ppl new C Polyhedronfrom GenSys,63
ppl new C Polyhedronfrom NNC -

Polyhedron,63
ppl new Coefficient,56
ppl new Coefficientfrom Coefficient,56
ppl new Coefficientfrom mpz t, 56
ppl new Constraint,57
ppl new Constraintfrom Constraint,58
ppl new Constraintzerodim false,57
ppl new Constraintzerodim positivity, 58
ppl new ConSys,58
ppl new ConSys constiterator,59

ppl new ConSys constiterator from -
ConSys constiterator,59

ppl new ConSysfrom Constraint,58
ppl new ConSysfrom ConSys,59
ppl new ConSyszerodim empty,58
ppl new Generator,60
ppl new Generatorfrom Generator,60
ppl new Generatorzerodim closure-

point,60
ppl new Generatorzerodim point,60
ppl new GenSys,61
ppl new GenSys constiterator,61
ppl new GenSys constiterator from -

GenSys constiterator,62
ppl new GenSysfrom Generator,61
ppl new GenSysfrom GenSys,61
ppl new LinExpression,56
ppl new LinExpressionfrom Constraint,

57
ppl new LinExpressionfrom Generator,

57
ppl new LinExpressionfrom -

LinExpression,56
ppl new LinExpressionwith dimension,

56
ppl new NNC Polyhedronempty from -

dimension,62
ppl new NNC Polyhedronfrom -

boundingbox,65
ppl new NNC Polyhedronfrom C -

Polyhedron,63
ppl new NNC Polyhedronfrom ConSys,

63
ppl new NNC Polyhedronfrom -

dimension,62
ppl new NNC Polyhedronfrom GenSys,

64
ppl new NNC Polyhedronfrom NNC -

Polyhedron,63
PPL POLY CON RELATION IS -

DISJOINT,71
PPL POLY CON RELATION IS -

INCLUDED, 71
PPL POLY CON RELATION -

SATURATES,71
PPL POLY CON RELATION -

STRICTLY INTERSECTS,71
PPL POLY GEN RELATION -

SUBSUMES,71
ppl Polyhedronaddconstraint,67
ppl Polyhedronaddconstraints,67
ppl Polyhedronaddconstraintsand -

minimize,67

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 100

ppl Polyhedronadddimensionsand -
constraints,68

ppl Polyhedronadddimensionsand -
embed,68

ppl Polyhedronadddimensionsand -
project,68

ppl Polyhedronaddgenerator,67
ppl Polyhedronaddgenerators,67
ppl Polyhedronaddgeneratorsand -

minimize,68
ppl Polyhedronaffine image,68
ppl Polyhedronaffine preimage,69
ppl Polyhedronboundsfrom above,70
ppl Polyhedronboundsfrom below,70
ppl Polyhedroncheckempty,70
ppl Polyhedroncheckuniverse,70
ppl Polyhedronconstraints,67
ppl PolyhedroncontainsPolyhedron,70
ppl Polyhedrongenerators,67
ppl PolyhedronH79 wideningassign,66
ppl Polyhedronintersectionassign,66
ppl Polyhedronintersectionassignand -

minimize,66
ppl Polyhedronis bounded,70
ppl Polyhedronis topologically closed,70
ppl Polyhedronlimited H79 widening -

assign,66
ppl Polyhedronminimizedconstraints,67
ppl Polyhedronminimizedgenerators,67
ppl PolyhedronOK, 70
ppl Polyhedronpoly differenceassign,66
ppl Polyhedronpoly differenceassign-

andminimize,66
ppl Polyhedronpoly hull assign,66
ppl Polyhedronpoly hull assignand -

minimize,66
ppl Polyhedronrelationwith Constraint,

69
ppl Polyhedronrelationwith Generator,

69
ppl Polyhedronremovedimensions,68
ppl Polyhedronremovehigher -

dimensions,68
ppl Polyhedronshrink boundingbox,69
ppl Polyhedronspacedimension,66
ppl Polyhedronstrictly contains-

Polyhedron,70
ppl Polyhedront, 50
ppl Polyhedrontopologicalclosure-

assign,70
ppl seterror handler,55
PPL TYPE DECLARATION, 54

ppl CoefficientOK
ppl c.h,56

ppl Coefficientt
ppl c.h,49

ppl Coefficientto mpz t
ppl c.h,56

ppl constCoefficientt
ppl c.h,49

ppl constConstraintt
ppl c.h,50

ppl constConSys constiterator t
ppl c.h,50

ppl constConSyst
ppl c.h,50

ppl constGeneratort
ppl c.h,50

ppl constGenSys constiterator t
ppl c.h,50

ppl constGenSyst
ppl c.h,50

ppl constLinExpressiont
ppl c.h,50

ppl constPolyhedront
ppl c.h,50

ppl Constraintcoefficient
ppl c.h,58

ppl Constraintinhomogeneousterm
ppl c.h,58

ppl ConstraintOK
ppl c.h,58

ppl Constraintspacedimension
ppl c.h,58

ppl Constraintt
ppl c.h,50

ppl Constrainttype
ppl c.h,58

PPL CONSTRAINT TYPE EQUAL
ppl c.h,55

PPL CONSTRAINT TYPE GREATERTHAN
ppl c.h,55

PPL CONSTRAINT TYPE GREATER-
THAN OR EQUAL

ppl c.h,55
PPL CONSTRAINT TYPE LESSTHAN

ppl c.h,55
PPL CONSTRAINT TYPE LESSTHAN -

OR EQUAL
ppl c.h,55

ppl ConSys constiteratordereference
ppl c.h,60

ppl ConSys constiteratorequaltest
ppl c.h,60

ppl ConSys constiterator increment
ppl c.h,60

ppl ConSys constiterator t
ppl c.h,50

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 101

ppl ConSysbegin
ppl c.h,59

ppl ConSysend
ppl c.h,59

ppl ConSysinsertConstraint
ppl c.h,59

ppl ConSysOK
ppl c.h,59

ppl ConSysspacedimension
ppl c.h,59

ppl ConSyst
ppl c.h,50

ppl deleteCoefficient
ppl c.h,56

ppl deleteConstraint
ppl c.h,58

ppl deleteConSys
ppl c.h,59

ppl deleteConSys constiterator
ppl c.h,59

ppl deleteGenerator
ppl c.h,60

ppl deleteGenSys
ppl c.h,61

ppl deleteGenSys constiterator
ppl c.h,62

ppl deleteLinExpression
ppl c.h,57

ppl deletePolyhedron
ppl c.h,65

ppl enumConstraintType
ppl c.h,55

ppl enumerror code
ppl c.h,55

ppl enumGeneratorType
ppl c.h,55

PPL ERRORINTERNAL ERROR
ppl c.h,55

PPL ERRORINVALID ARGUMENT
ppl c.h,55

PPL ERROROUT OF MEMORY
ppl c.h,55

PPL ERRORUNEXPECTEDERROR
ppl c.h,55

PPL ERRORUNKNOWN STANDARD -
EXCEPTION

ppl c.h,55
ppl finalize

ppl c.h,55
ppl Generatorcoefficient

ppl c.h,61
ppl Generatordivisor

ppl c.h,61
ppl GeneratorOK

ppl c.h,61
ppl Generatorspacedimension

ppl c.h,60
ppl Generatort

ppl c.h,50
ppl Generatortype

ppl c.h,60
PPL GENERATORTYPE CLOSUREPOINT

ppl c.h,55
PPL GENERATORTYPE LINE

ppl c.h,55
PPL GENERATORTYPE POINT

ppl c.h,55
PPL GENERATORTYPE RAY

ppl c.h,55
ppl GenSys constiteratordereference

ppl c.h,62
ppl GenSys constiteratorequaltest

ppl c.h,62
ppl GenSys constiterator increment

ppl c.h,62
ppl GenSys constiterator t

ppl c.h,50
ppl GenSysbegin

ppl c.h,62
ppl GenSysend

ppl c.h,62
ppl GenSysinsertGenerator

ppl c.h,61
ppl GenSysOK

ppl c.h,61
ppl GenSysspacedimension

ppl c.h,61
ppl GenSyst

ppl c.h,50
ppl initialize

ppl c.h,55
ppl LinExpressionadd to coefficient

ppl c.h,57
ppl LinExpressionadd to inhomogeneous

ppl c.h,57
ppl LinExpressionOK

ppl c.h,57
ppl LinExpressionspacedimension

ppl c.h,57
ppl LinExpressiont

ppl c.h,50
ppl new C Polyhedronempty from dimension

ppl c.h,62
ppl new C Polyhedronfrom boundingbox

ppl c.h,64
ppl new C Polyhedronfrom C Polyhedron

ppl c.h,63
ppl new C Polyhedronfrom ConSys

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 102

ppl c.h,63
ppl new C Polyhedronfrom dimension

ppl c.h,62
ppl new C Polyhedronfrom GenSys

ppl c.h,63
ppl new C Polyhedronfrom NNC Polyhedron

ppl c.h,63
ppl new Coefficient

ppl c.h,56
ppl new Coefficientfrom Coefficient

ppl c.h,56
ppl new Coefficientfrom mpz t

ppl c.h,56
ppl new Constraint

ppl c.h,57
ppl new Constraintfrom Constraint

ppl c.h,58
ppl new Constraintzerodim false

ppl c.h,57
ppl new Constraintzerodim positivity

ppl c.h,58
ppl new ConSys

ppl c.h,58
ppl new ConSys constiterator

ppl c.h,59
ppl new ConSys constiterator from ConSys-

constiterator
ppl c.h,59

ppl new ConSysfrom Constraint
ppl c.h,58

ppl new ConSysfrom ConSys
ppl c.h,59

ppl new ConSyszerodim empty
ppl c.h,58

ppl new Generator
ppl c.h,60

ppl new Generatorfrom Generator
ppl c.h,60

ppl new Generatorzerodim closurepoint
ppl c.h,60

ppl new Generatorzerodim point
ppl c.h,60

ppl new GenSys
ppl c.h,61

ppl new GenSys constiterator
ppl c.h,61

ppl new GenSys constiterator from GenSys-
constiterator

ppl c.h,62
ppl new GenSysfrom Generator

ppl c.h,61
ppl new GenSysfrom GenSys

ppl c.h,61
ppl new LinExpression

ppl c.h,56
ppl new LinExpressionfrom Constraint

ppl c.h,57
ppl new LinExpressionfrom Generator

ppl c.h,57
ppl new LinExpressionfrom LinExpression

ppl c.h,56
ppl new LinExpressionwith dimension

ppl c.h,56
ppl new NNC Polyhedronempty from -

dimension
ppl c.h,62

ppl new NNC Polyhedronfrom boundingbox
ppl c.h,65

ppl new NNC Polyhedronfrom C Polyhedron
ppl c.h,63

ppl new NNC Polyhedronfrom ConSys
ppl c.h,63

ppl new NNC Polyhedronfrom dimension
ppl c.h,62

ppl new NNC Polyhedronfrom GenSys
ppl c.h,64

ppl new NNC Polyhedronfrom NNC -
Polyhedron

ppl c.h,63
PPL POLY CON RELATION IS DISJOINT

ppl c.h,71
PPL POLY CON RELATION IS INCLUDED

ppl c.h,71
PPL POLY CON RELATION SATURATES

ppl c.h,71
PPL POLY CON RELATION STRICTLY -

INTERSECTS
ppl c.h,71

PPL POLY GEN RELATION SUBSUMES
ppl c.h,71

ppl Polyhedronaddconstraint
ppl c.h,67

ppl Polyhedronaddconstraints
ppl c.h,67

ppl Polyhedronaddconstraintsandminimize
ppl c.h,67

ppl Polyhedronadddimensionsandconstraints
ppl c.h,68

ppl Polyhedronadddimensionsandembed
ppl c.h,68

ppl Polyhedronadddimensionsandproject
ppl c.h,68

ppl Polyhedronaddgenerator
ppl c.h,67

ppl Polyhedronaddgenerators
ppl c.h,67

ppl Polyhedronaddgeneratorsandminimize
ppl c.h,68

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 103

ppl Polyhedronaffine image
ppl c.h,68

ppl Polyhedronaffine preimage
ppl c.h,69

ppl Polyhedronboundsfrom above
ppl c.h,70

ppl Polyhedronboundsfrom below
ppl c.h,70

ppl Polyhedroncheckempty
ppl c.h,70

ppl Polyhedroncheckuniverse
ppl c.h,70

ppl Polyhedronconstraints
ppl c.h,67

ppl PolyhedroncontainsPolyhedron
ppl c.h,70

ppl Polyhedrongenerators
ppl c.h,67

ppl PolyhedronH79 wideningassign
ppl c.h,66

ppl Polyhedronintersectionassign
ppl c.h,66

ppl Polyhedronintersectionassignand -
minimize

ppl c.h,66
ppl Polyhedronis bounded

ppl c.h,70
ppl Polyhedronis topologically closed

ppl c.h,70
ppl Polyhedronlimited H79 wideningassign

ppl c.h,66
ppl Polyhedronminimizedconstraints

ppl c.h,67
ppl Polyhedronminimizedgenerators

ppl c.h,67
ppl PolyhedronOK

ppl c.h,70
ppl Polyhedronpoly differenceassign

ppl c.h,66
ppl Polyhedronpoly differenceassignand -

minimize
ppl c.h,66

ppl Polyhedronpoly hull assign
ppl c.h,66

ppl Polyhedronpoly hull assignandminimize
ppl c.h,66

ppl Polyhedronrelationwith Constraint
ppl c.h,69

ppl Polyhedronrelationwith Generator
ppl c.h,69

ppl Polyhedronremovedimensions
ppl c.h,68

ppl Polyhedronremovehigherdimensions
ppl c.h,68

ppl Polyhedronshrink boundingbox
ppl c.h,69

ppl Polyhedronspacedimension
ppl c.h,66

ppl Polyhedronstrictly containsPolyhedron
ppl c.h,70

ppl Polyhedront
ppl c.h,50

ppl Polyhedrontopologicalclosureassign
ppl c.h,70

ppl seterror handler
ppl c.h,55

PPL TYPE DECLARATION
ppl c.h,54

RAY
ParmaPolyhedraLibrary::Generator,23

ray
ParmaPolyhedraLibrary, 11
ParmaPolyhedraLibrary::Generator,23

relationwith
ParmaPolyhedraLibrary::Polyhedron,42

removedimensions
ParmaPolyhedraLibrary::Polyhedron,45

removehigherdimensions
ParmaPolyhedraLibrary::Polyhedron,45

saturates
ParmaPolyhedraLibrary::Poly Con -

Relation,30
shrink boundingbox

ParmaPolyhedraLibrary::Polyhedron,43
spacedimension

ParmaPolyhedraLibrary::Constraint,15
ParmaPolyhedraLibrary::Generator,20
ParmaPolyhedraLibrary::LinExpression,

25
ParmaPolyhedraLibrary::Polyhedron,32

std,12
STRICT INEQUALITY

ParmaPolyhedraLibrary::Constraint,19
strictly intersects

ParmaPolyhedraLibrary::Poly Con -
Relation,30

subsumes
ParmaPolyhedraLibrary::Poly Gen -

Relation,31
swap

ParmaPolyhedraLibrary::Constraint,17
ParmaPolyhedraLibrary::Generator,21
ParmaPolyhedraLibrary::LinExpression,

26
ParmaPolyhedraLibrary::Polyhedron,35,

47

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 104

throw me
ParmaPolyhedraLibrary::Throwable,48

time elapseassign
ParmaPolyhedraLibrary::Polyhedron,42

topologicalclosureassign
ParmaPolyhedraLibrary::Polyhedron,34

Type
ParmaPolyhedraLibrary::Constraint,19
ParmaPolyhedraLibrary::Generator,23

type
ParmaPolyhedraLibrary::Constraint,15
ParmaPolyhedraLibrary::Generator,20

UNIVERSE
ParmaPolyhedraLibrary::Polyhedron,39

Variable
ParmaPolyhedraLibrary::Variable,48

zero
ParmaPolyhedraLibrary::LinExpression,

25
zerodim closurepoint

ParmaPolyhedraLibrary::Generator,20
zerodim false

ParmaPolyhedraLibrary::Constraint,16
zerodim point

ParmaPolyhedraLibrary::Generator,20
zerodim positivity

ParmaPolyhedraLibrary::Constraint,16

The Parma Polyhedra Library User’s Manual (version 0.4.2). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	Convex Polyhedra and the PPL
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Compound Index
	PPL File Index
	PPL Page Index
	PPL Namespace Documentation
	PPL Class Documentation
	PPL File Documentation
	PPL Page Documentation

