
The Parma Polyhedra Library
User’s Manual∗

(version 0.5)

Roberto Bagnara†

Patricia M. Hill‡

Elisa Ricci§

Enea Zaffanella¶

based on previous work also by

Sara Bonini
Andrea Pescetti
Angela Stazzone

Tatiana Zolo‖

April 27, 2003

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification of
Reactive Systems”.

†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‡hill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§ericci@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
¶zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‖zolo@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS 1

Copyright c© 2001–2003 Roberto Bagnara (bagnara@cs.unipr.it).

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by theFree Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theFree Software Foundation; either version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 Convex Polyhedra and the PPL 1

2 PPL Module Index 13

3 PPL Namespace Index 13

4 PPL Hierarchical Index 14

5 PPL Compound Index 14

6 PPL Module Documentation 15

7 PPL Namespace Documentation 57

8 PPL Class Documentation 60

1 Convex Polyhedra and the PPL

1.1 A Library for Convex Polyhedra

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of rational convex poly-
hedra. Informally, a rational convex polyhedron is a set of points (in somen-dimensional vector space)
that satisfies a finite number of linear inequalities having rational coefficients. The domain of convex
polyhedra is employed in several systems for the analysis and verification of hardware and software com-
ponents, with applications spanning imperative, functional and logic programming languages, synchronous
languages and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not
meant to target a particular problem, the design of its interface has been largely influenced by the needs

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.2 An Introduction to Convex Polyhedra 2

of the above class of applications. That is the reason why the library implements a few operators that are
more or less specific to static analysis applications, while lacking some other operators that might be useful
when working, e.g., in the field of computational geometry.

The main features of the library are the following:

• it is user friendly: you writex + 2 ∗y + 5 ∗z <= 7 when you mean it;

• it is fully dynamic: available virtual memory is the only limitation to the dimension of anything;

• it provides full support for the manipulation of convex polyhedra that are not topologically closed;

• it is written in standard C++: meant to be portable;

• it is exception-safe: never leaks resources or leaves invalid object fragments around;

• it is rather efficient: and we hope to make it even more so;

• it is thoroughly documented: perhaps not literate programming but close enough;

• it is free software: distributed under the terms of the GNU General Public License.

In the following sections we describe the polyhedra and the different representations and operations sup-
ported by the PPL in more detail. For more information about the definitions and results stated here see
[BRZH02b] , [Fuk98], [NW88], and[Wil93] .

1.2 An Introduction to Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail.

Vectors, Matrices and Scalar Products

We denote byRn then-dimensional vector space on the field of real numbersR, endowed with the standard
topology. The set of all non-negative reals is denoted byR+. For eachi ∈ {0, . . . , n − 1}, vi denotes the
i-th component of the (column) vectorv = (v0, . . . , vn−1)T ∈ Rn. We denote by0 the vector ofRn,
calledthe origin, having all components equal to zero. A vectorv ∈ Rn can be also interpreted as a matrix
in Rn×1 and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted byvT.

Thescalar productof v,w ∈ Rn, denoted〈v,w〉, is the real number

vTw =
n−1∑
i=0

viwi.

For anyS1, S2 ⊆ Rn, theMinkowski’s sumof S1 andS2 is: S1 + S2 = {v1 + v2 | v1 ∈ S1,v2 ∈ S2 }.

Affine Hyperplanes and Half-spaces

For each vectora ∈ Rn and scalarb ∈ R, wherea 6= 0, and for each relation symbol./ ∈ {=,≥, >}, the
linear constraint〈a,x〉 ./ b defines:

• an affine hyperplane if it is an equality constraint, i.e., if./ ∈ {=};

• a topologically closed affine half-space if it is a non-strict inequality constraint, i.e., if./ ∈ {≥};

• a topologically open affine half-space if it is a strict inequality constraint, i.e., if./ ∈ {>}.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 3

Note that each hyperplane〈a,x〉 = b can be defined as the intersection of the two closed affine half-spaces
〈a,x〉 ≥ b and〈−a,x〉 ≥ −b. Also note that, whena = 0, the constraint〈0,x〉 ./ b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vector spaceRn or
the empty set∅.

Convex Polyhedra

The setP ⊆ Rn is anot necessarily closed convex polyhedron(NNC polyhedron, for short) if and only if
eitherP can be expressed as the intersection of a finite number of (open or closed) affine half-spaces ofRn

or n = 0 andP = ∅. The set of all NNC polyhedra on the vector spaceRn is denotedPn.

The setP ∈ Pn is aclosed convex polyhedron(closed polyhedron, for short) if and only if eitherP can be
expressed as the intersection of a finite number of closed affine half-spaces ofRn or n = 0 andP = ∅.
The set of all closed polyhedra on the vector spaceRn is denotedCPn.

When ordering NNC polyhedra by the set inclusion relation, the empty set∅ and the vector spaceRn are,
respectively, the smallest and the biggest elements of bothPn andCPn. The vector spaceRn is also called
theuniversepolyhedron.

In theoretical terms,Pn is a latticeunder set inclusion andCPn is asub-latticeof Pn.

Bounded Polyhedra

An NNC polyhedronP ∈ Pn is boundedif there exists aλ ∈ R+ such that

P ⊆
{

x ∈ Rn
∣∣ −λ ≤ xj ≤ λ for j = 0, . . . , n− 1

}
.

A bounded polyhedron is also called apolytope.

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

Constraints representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as aconstraint.

By definition, each polyhedronP ∈ Pn is the set of solutions to aconstraint system, i.e., a finite number
of constraints. By using matrix notation, we have

P = {x ∈ Rn | A1x = b1, A2x ≥ b2, A3x > b3 },

where, for alli ∈ {1, 2, 3}, Ai ∈ Rmi × Rn andbi ∈ Rmi , andm1,m2,m3 ∈ N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

Combinations and Hulls

Let S = {x1, . . . ,xk} ⊆ Rn be a finite set of vectors. For all scalarsλ1, . . . , λk ∈ R, the vector
v =

∑k
j=1 λjxj is said to be alinear combination of the vectors inS. Such a combination is said to be

• apositive(or conic) combination, if∀j ∈ {1, . . . , k} : λj ∈ R+;

• anaffinecombination, if
∑k

j=1 λj = 1;

• aconvexcombination, if it is both positive and affine.

We denote bylinear.hull(S) (resp.,conic.hull(S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors inS.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 4

Let P,C ⊆ Rn, whereP ∪ C = S. We denote bynnc.hull(P,C) the set of all convex combinations of
the vectors inS such thatλj > 0 for somexj ∈ P (informally, we say that there exists a vector ofP that
plays an active role in the convex combination). Note thatnnc.hull(P,C) = nnc.hull(P, P ∪ C) so that,
if C ⊆ P ,

convex.hull(P) = nnc.hull(P, ∅) = nnc.hull(P, P) = nnc.hull(P,C).

It can be observed thatlinear.hull(S) is an affine space,conic.hull(S) is a topologically closed convex
cone,convex.hull(S) is a topologically closed polytope, andnnc.hull(P,C) is an NNC polytope.

Points, Closure Points, Rays and Lines

LetP ∈ Pn be an NNC polyhedron. Then

• a vectorp ∈ P is called apoint of P;

• a vectorc ∈ Rn is called aclosure pointof P if it is a point of the topological closure ofP;

• a vectorr ∈ Rn, wherer 6= 0, is called aray (or direction of infinity) ofP if P 6= ∅ andp+λr ∈ P,
for all pointsp ∈ P and allλ ∈ R+;

• a vectorl ∈ Rn is called aline of P if both l and−l are rays ofP.

A point of an NNC polyhedronP ∈ Pn is a vertex if and only if it cannot be expressed as a convex
combination of any other pair of distinct points inP. A ray r of a polyhedronP is anextreme rayif and
only if it cannot be expressed as a positive combination of any other pairr1 andr2 of rays ofP, where
r 6= λr1, r 6= λr2 andr1 6= λr2 for all λ ∈ R+ (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

Generators Representation

Each NNC polyhedronP ∈ Pn can be represented by finite sets of linesL, raysR, pointsP and closure
pointsC of P. The 4-tupleG = (L,R, P, C) is said to be agenerator systemfor P, in the sense that

P = linear.hull(L) + conic.hull(R) + nnc.hull(P,C),

where the symbol ’+’ denotes the Minkowski’s sum.

WhenP ∈ CPn is a closed polyhedron, then it can be represented by finite sets of linesL, raysR and
pointsP of P. In this case, the 3-tupleG = (L,R, P) is said to be agenerator systemfor P since we have

P = linear.hull(L) + conic.hull(R) + convex.hull(P).

Thus, in this case, every closure point ofP is a point ofP.

For anyP ∈ Pn and generator systemG = (L,R, P, C) for P, we haveP = ∅ if and only if P = ∅. Also
P must contain all the vertices ofP althoughP can be non-empty and have no vertices. In this case, asP is
necessarily non-empty, it must contain points ofP that arenot vertices. For instance, the half-space ofR2

corresponding to the single constrainty ≥ 0 can be represented by the generator systemG = (L, R, P, C)
such thatL =

{
(1, 0)T

}
, R =

{
(0, 1)T

}
, P =

{
(0, 0)T

}
, andC = ∅. It is also worth noting that the

only ray inR is not an extreme ray ofP.

Minimized Representations

A constraints systemC for an NNC polyhedronP ∈ Pn is said to beminimizedif no proper subset ofC is
a constraint system forP.

Similarly, a generator systemG = (L,R, P, C) for an NNC polyhedronP ∈ Pn is said to beminimized
if there does not exist a generator systemG′ = (L′, R′, P ′, C ′) 6= G for P such thatL′ ⊆ L, R′ ⊆ R,
P ′ ⊆ P andC ′ ⊆ C.

Double Description

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 5

Any NNC polyhedronP can be described by using a constraint systemC, a generator systemC, or both
by means of thedouble description pair (DD pair)(C,G). Thedouble description methodis a collection
of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

Topologies and Topological-compatibility

As indicated above, when an NNC polyhedronP is necessarily closed, we can ignore the closure points
contained in its generator systemG = (L,R, P, C) (as every closure point is also a point) and represent
P by the triple(L,R, P). Similarly, P can be represented by a constraint system that has no strict in-
equalities. Thus a necessarily closed polyhedron can have a smaller representation than one that is not
necessarily closed. Moreover, operators restricted to work on closed polyhedra only can be implemented
more efficiently. For this reason the library provides two alternative “topological kinds” for a polyhedron,
NNCandC. We shall abuse terminology by referring to the topologcal kind of a polyhedron as itstopology.

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the followingtopological-compatibilityrules:

• polyhedra are topologically-compatible if and only if they have the same topology;

• all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

• strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

Space Dimensions and Dimension-compatibility

Thespace dimensionof an NNC polyhedronP ∈ Pn (resp., a C polyhedronP ∈ CPn) is the dimension
n ∈ N of the corresponding vector spaceRn. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following spacedimension-compatibilityrules:

• polyhedra are dimension-compatible if and only if they have the same space dimension;

• the constraint〈a,x〉 ./ b where./ ∈ {=,≥, >} anda,x ∈ Rm, is dimension-compatible with a
polyhedron having space dimensionn if and only if m ≤ n;

• the generatorx ∈ Rm is dimension-compatible with a polyhedron having space dimensionn if and
only if m ≤ n;

• a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 6

Rational Polyhedra

An NNC polyhedron is calledrational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.

Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedraP1,P2 ∈ Pn, theintersectionof P1 andP2, defined as the set intersection
P1 ∩P2, is the biggest NNC polyhedron included in bothP1 andP2; similarly, theconvex polyhedral hull
(or poly-hull) of P1 andP2, denoted byP1] P2, is the smallest NNC polyhedron that includes bothP1

andP2. The intersection and poly-hull of any pair of closed polyhedra inCPn is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the binarymeetand the
binary join operators on the latticesPn andCPn.

Convex Polyhedral Difference

For any pair of NNC polyhedraP1,P2 ∈ Pn, theconvex polyhedral difference(or poly-difference) of P1

andP2 is defined as the poly-hull of the set-theoretic difference ofP1 andP2.

In general, even thoughP1,P2 ∈ CPn are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

Adding New Dimensions to the Vector Space

The library provides two operators for increasing the space dimension of an NNC polyhedronP ∈ Pn,
therefore transforming it into a new NNC polyhedronQ ∈ Pm, wherem > n. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operatorembeddingthe polyhedronP into the new vector space will return the polyhedronQ defined
by all and only the constraints definingP (the variables corresponding to the added dimensions are uncon-
strained). For instance, when starting from a polyhedronP ⊆ R2 and adding a third dimension, the result
will be the polyhedron

Q =
{

(x0, x1, x2)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

In contrast, the operatorprojectingthe polyhedronP into the new vector space will return the polyhedron
Q whose constraint system, besides the constraints definingP, will include additional constraints on the
added dimensions. Namely, the corresponding variables are all constrained to be equal to 0. For instance,
when starting from a polyhedronP ⊆ R2 and adding a third dimension, the result will be the polyhedron

Q =
{

(x0, x1, 0)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

Removing Dimensions from the Vector Space

The library provides two operators for decreasing the space dimension of an NNC polyhedronP ∈ Pn,
therefore transforming it into a new NNC polyhedronQ ∈ Pm, wherem < n.

Given a set of variables, there is an operator that will remove all the space dimensions corresponding to
the variables in this set. For instance, lettingP ∈ P4 be the singleton set

{
(3, 1, 0, 2)T

}
⊆ R4, then after

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 7

invoking this operator with the set of variables{x1, x2} the resulting polyhedron is

Q =
{
(3, 2)T

}
⊆ R2.

Another operator removes from the vector space all the dimensions having an index greater than or equal
to m. For instance, lettingP ∈ P4 defined as before, by invoking this operator withm = 2 the resulting
polyhedron will be

Q =
{
(3, 1)T

}
⊆ R2.

Mapping the Dimensions of the Vector Space

The library provides an operator to map the dimensions of the vector spaceRn according to a partial
injective functionρ : {0, . . . , n − 1} � N such thatρ

(
{0, . . . , n − 1}

)
= {0, . . . ,m − 1} with m ≤ n.

Dimensions corresponding to indices that are not mapped byρ are removed.

If m = 0, i.e., if the functionρ is undefined everywhere, then the operator projects the argument polyhedron
P ∈ Pn onto the zero-dimension spaceR0; otherwise the result isQ ∈ Pm given by

Q def=
{(

vρ−1(0), . . . , vρ−1(m−1)

)T
∣∣∣ (v0, . . . , vn−1)T ∈ P

}
.

Affine Images and Preimages

For each function mappingφ : Rn → Rm, we denote byφ(S) ⊆ Rm theimageunderφ of the setS ⊆ Rn;
formally,

φ(S) =
{

φ(v) ∈ Rm
∣∣ v ∈ S

}
.

Similarly, we denote byφ−1(S′) ⊆ Rn thepreimageunderφ of S′ ⊆ Rm, that is the largest setS ⊆ Rn

such thatφ(S) ⊆ S′; formally,

φ−1(S′) =
{

v ∈ Rn
∣∣ φ(v) ∈ S′

}
.

The function mappingφ : Rn → Rm is anaffine transformationif there exist a matrixA ∈ Rm × Rn and
a vectorb ∈ Rm such that, for allx ∈ Rn, we haveφ(x) = Ax + b. If n = m, then the functionφ is said
to bespace-dimension preserving.

Both Pn andCPn are closed under the application of any space-dimension preserving affine image and
preimage operators.

The library provides two operators, one computes an affine image and the other an affine preimage of a
polyhedronP ∈ Pn for a given variablexk and linear expressionexpr =

∑n−1
i=0 aixi + b. This variable

and expression determine the affine transformationφ that is to be used by the operator. That is,φ is the
transformation defined by the matrix and vector

A =



1 0 0 · · · · · · 0
...

...
...

0 1 0 · · · · · · 0
a0 · · · ak−1 ak ak+1 · · · an−1

0 · · · · · · 0 1 0
...

...
...

0 · · · · · · 0 0 1


, b =



0
...
0
b
0
...
0


where theai (resp.,b) occurs in the(k + 1)st row inA (resp., position inb). Thusφ transforms any point
(x0, . . . , xn−1)T in the polyhedronP to(

x0, . . . ,
(∑n−1

i=0 aixi + b
)
, . . . , xn−1

)T

.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 8

The affine image operator computes the affine image ofP underφ. For instance, suppose the polyhedron
P to be transformed is the square inR2 generated by the set of points

{
(0, 0)T, (0, 3)T, (3, 0)T, (3, 3)T

}
.

Then, for example if the considered variable isx0 and the linear expressionx0 + 2x1 + 4 (so thatk = 0,
a0 = 1, a1 = 2, b = 4), the affine image operator will translateP to the parallelogramP1 generated
by the set of points

{
(4, 0)T, (10, 3)T, (7, 0)T, (13, 3)T

}
with height equal to the side of the square and

oblique sides parallel to the linex0− 2x1. If the considered variable is as before (i.e.,k = 0) but the linear
expression isx1 (so thata0 = 0, a1 = 1, b = 0), then the resulting polyhedronP2 is the positive diagonal
of the square.

The affine preimage operator computes the affine preimage ofP underφ. For instance, suppose now that
we apply the affine preimage operator as given in the first example using variablex0 and linear expression
x0 + 2x1 + 4 to the parallelogramP1; then we get the original squareP back. If, on the other hand, we
apply the affine preimage operator as given in the second example using variablex0 and linear expression
x1 toP2, then the resulting polyhedron is a line that corresponds to thex1 axes.

Observe that provided the coefficientak of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

Generalized Affine Images

The library provides another operator which is a generalization of the affine image operator. Given a
polyhedronP ∈ Pn, an affine expressionlhs =

∑n−1
i=0 a′ixi + b′, a relation symbol./ ∈ {<,≤,=,≥, >},

and an affine expressionrhs =
∑n−1

i=0 aixi + b, the image ofP with respect to the transfer function
lhs ./ rhs is defined as (w0, . . . , wn−1)T ∈ Rn

∣∣∣∣∣∣∣
(v0, . . . , vn−1)T ∈ P,(
i ∈ {0, . . . , n− 1} ∧ a′i = 0 =⇒ wi = vi

)
,∑n−1

i=0 a′iwi + b′ ./
∑n−1

i=0 aivi + b

.

Note that, whenlhs = xk and./ ∈ {=}, then the above operator is equivalent to the application of the
standard affine image ofP with respect to the variablexk and the affine expressionrhs (hence the name
given to this operator).

Time-Elapse Operator

The time-elapseoperator has been defined in[HPR97]. Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedraP,Q ∈ Pn, the time-elapse betweenP andQ, denotedP ↗ Q, is the smallest NNC polyhedron
containing the set {

p + λq ∈ Rn
∣∣ p ∈ P, q ∈ Q, λ ∈ R+

}
.

Note that, ifP,Q ∈ CPn are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

Relation-with Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

SupposeP is an NNC polyhedron andC an arbitrary constraint system representingP. Suppose also that
c =

(
〈a,x〉 ./ b

)
is a constraint with./ ∈ {=,≥, >} andQ the set of points that satisfyc. The possible

relations betweenP andc are as follows.

• P is disjoint from c if P ∩Q = ∅; that is, addingc to C gives us the empty polyhedron.

• P strictly intersectsc if P ∩ Q 6= ∅ andP ∩ Q ⊂ P; that is, addingc to C gives us a non-empty
polyhedron strictly smaller thanP.

• P is includedin c if P ⊆ Q; that is, addingc to C leavesP unchanged.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 9

• P saturatesc if P ⊆ H, whereH is the hyperplane induced by constraintc, i.e., the set of points
satisfying the equality constraint〈a,x〉 = b; that is, adding the constraint〈a,x〉 = b to C leavesP
unchanged.

The polyhedronP subsumesthe generatorg if addingg to any generator system representingP does not
changeP.

Intervals, boxes and bounding boxes

An interval in R is a pair ofbounds, called lower andupper. Each bound can be either (1)closed and
bounded, (2) open and bounded, or (3)open and unbounded. If the bound isbounded, then it has a value
in R. An n-dimensionalboxB in Rn is a sequence ofn intervals inR.

The polyhedronP represents a boxB in Rn if P is described by a constraint system inRn that con-
sists of one constraint for each bounded bound (lower and upper) in an interval inB: Letting ei =
(0, . . . , 1, . . . , 0)T be the vector inRn with 1 in the i’th position and zeroes in every other position; if
the lower bound of thei’th interval inB is bounded, the corresponding constraint is defined as〈ei,x〉 ./ b,
whereb is the value of the bound and./ is≥ if it is a closed bound and> if it is an open bound. Similarly, if
the upper bound of thei’th interval inB is bounded, the corresponding constraint is defined as〈ei,x〉 ./ b,
whereb is the value of the bound and./ is≤ if it is a closed bound and< if it is an open bound.

If every bound in the intervals defining a boxB is either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

Thebounding boxof an NNC polyhedronP is the smallestn-dimensional box containingP.

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

Widening Operators

The library provides two widening operators for the domain of NNC polyhedra. The first one, that we
call H79-widening, mainly follows the specification provided in the PhD thesis of N. Halbwachs[Hal79],
also described in[HPR97]. There are a few differences between the H79-widening and the widening
described in the cited paper. In particular, the H79-widening of an NNC polyhedronP ∈ Pn using the
NNC polyhedronQ ∈ Pn:

• allows for equalities inP andQ (the original definition is restricted to inequalities);

• requires as a precondition thatQ ⊆ P.

The second widening operator, that we callBHRZ03-widening, is an instance of the specification provided
in [BHRZ03] . This operator also requires as a precondition thatQ ⊆ P and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to polyhedra that are not topologically closed. The user is warned
that, in such a case, the results may not closely match the geometric intuition which is at the base of the
specification of the two widenings. The reason is that, in the current implementation, the widenings are not
directly applied to the NNC polyhedra, but rather to their internal representations. Implementation work is
in progress and future versions of the library may provide an even better integration of the two widenings
with the domain of NNC polyhedra.

Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parameterk and only apply widenings starting from thek-th iteration.

The library also supports an improved widening delay strategy, that we callwidening with tokens
[BHRZ03] . A token is a sort of wildcard allowing for the replacement of the widening application by

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Bibliography 10

the exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed to thepotentialprecision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed numberk of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

Extrapolation Operators

Besides the two widening operators, the library also implements severalextrapolationoperators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a correspondinglimited extrapolation operator, which
can be used to implement thewidening “up to” technique as described in[HPR97]. Each limited extrapola-
tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97] this set is fixed once and for all before starting the computation of the upward iteration sequence.

The boundedextrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above, by ensuring that their results cannot be worse than the smallestbounding boxenclosing the
two argument polyhedra.

A Note on the Implementation of the Operators

When adopting the double description method, the implementation of the above operators on polyhedra
may require an explicit conversion from one of the two representations into the other one, leading to
algorithms having a worst-case exponential complexity. However, thanks to the adoption of lazy and
incremental computation techniques, the library turns out to be rather efficient in many practical cases.

In earlier versions of the library, a number of operators were introduced in two flavors: alazy version
and aneagerversion, the latter having the operator name ending withand minimize . In principle,
only the lazy versions should be used. The eager versions were added to help a knowledgeble user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

The only case when an eager computation still makes sense is when the well-knownfail-first principle
comes into play. For instance, if you have to compute the intersection of several polyhedra and you strongly
suspect that the result will become empty after a few of these intersections, then you may obtain a better
performance by calling the eager version of the intersection operator, since the minimization process also
enforces an emptyness check. Note anyway that the same effect can be obtained by interleaving the calls
of the lazy operator with explicit emptyness checks.

1.5 Bibliography

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental results.ACM Transactions
on Programming Languages and Systems, 21(4):747-789, 1999.

[BHRZ03] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno, Dipartimento di Matematica, Università di Parma, Italy, 2003. Available at
http://www.cs.unipr.it/Publications/ .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Bibliography 11

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Università di Parma,
Italy, 2002.

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editors,Proceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systems, pages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Polit́ecnica de Madrid, Facultad de Informática.

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Fiĺe, editors,Static Analysis: Proceedings of the 6th International Symposium,
volume 1694 ofLecture Notes in Computer Science, pages 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BRZH02a] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, editors,Static Analysis: Pro-
ceedings of the 9th International Symposium, volume 2477 ofLecture Notes in Computer Science,
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZH02b] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Università di Parma, Italy,
2002. See also[BRZH02c]. Available athttp://www.cs.unipr.it/Publications/ .

[BRZH02c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286”. Available athttp://www.cs.unipr.it/Publications/ , 2002. See[BRZH02b] .

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors,Proceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programming, volume
631 ofLecture Notes in Computer Science, pages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. InConference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equations.U.S.S.R. Computational Mathematics and Mathematical Physics, 4(4):151-
158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities.U.S.S.R. Computational Mathematics and Mathematical Physics,
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem.U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282-293, 1968.

[Dan63] G. B. Dantzig.Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and Y.
Manoussakis, editors,Combinatorics and Computer Science, 8th Franco-Japanese and 4th Franco-
Chinese Conference, Brest, France, July 3-5, 1995, Selected Papers, volume 1120 ofLecture Notes
in Computer Science, pages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral computation FAQ. Swiss Federal Insti-
tute of Technology, Lausanne and Zurich, Switzerland, available at
http://www.ifor.math.ethz.ch/ ∼fukuda/fukuda.html , 1998.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Bibliography 12

[GJ00] E. Gawrilow and M. Joswig.polymake : a framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editors,Polytopes - Combinatorics and Computation, pages 43-74.
Birkhäuser, 2000.

[GJ01] E. Gawrilow and M. Joswig.polymake : an approach to modular software design in computa-
tional geometry. InProceedings of the 17th Annual Symposium on Computational Geometry, pages
222-231. ACM, 2001. June 3-5, 2001, Medford, MA.

[Hal79] N. Halbwachs.Détermination Automatique de Relations Linéaires V́erifiées par les Variables
d’un Programme. Thèse de 3̀eme cycle d’informatique, Université scientifique et ḿedicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor,Computer
Aided Verification: Proceedings of the 5th International Conference, volume 697 ofLecture Notes
in Computer Science, pages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors,Hybrid Systems II, volume 999 of
Lecture Notes in Computer Science, pages 252-264. Springer-Verlag, Berlin, 1995.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. Proy.POLyhedra INtegrated Environment. Verimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interne830, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, editor,Static Analysis: Proceedings of the 1st Inter-
national Symposium, volume 864 ofLecture Notes in Computer Science, pages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis.Formal Methods in System Design, 11(2):157-185, 1997.

[HPWT01] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Control, pages 2887-2892. IEEE
Computer Society Press, 2001.

[Jea02] B. Jeannet. Convex Polyhedra Library, release 1.1.3c edition,
March 2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html .

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequalities.American Math-
ematical Monthly, 63:217-232, 1956.

[Le 92] 92 H. Le Verge. A note on Chernikova’s algorithm.Publication interne635, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/ ∼loechner/polylib/ , March 1999. Declares itself to be
a continuation of[Wil93] .

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their vertices.International Journal
of Parallel Programming, 25(6):525-549, 1997.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editors,Contributions to the Theory of Games - Volume II, number
28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 PPL Module Index 13

[NW88] G. L. Nemhauser and L. A. Wolsey.Integer and Combinatorial Optimization. Wiley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraints.Annals of Mathematics and Artificial Intelligence, 8(3-4):315-343, 1993.

[SW70] J. Stoer and C. Witzgall.Convexity and Optimization in Finite Dimensions I. Springer-Verlag,
Berlin, 1970.

[Wey35] H. Weyl. Elementare theorie der konvexen polyeder.Commentarii Mathematici Helvetici,
7:290-306, 1935. English translation in[Wey50].

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, editor,Contributions to
the Theory of Games - Volume I, number 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated from[Wey35] by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRISAPublication interne785, Rennes,
France, 1993.

2 PPL Module Index

2.1 PPL Modules

Here is a list of all modules:

The Library 15

Library Defines 15

C Language Interface 15

Prolog Language Interface 37

PPL License Pages 52

3 PPL Namespace Index

3.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:

Parma Polyhedra Library (The entire library is confined into this namespace) 57

Parma Polyhedra Library::IO Operators (All input/output operators are confined into this
namespace) 59

std (The standard C++ namespace) 60

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 PPL Hierarchical Index 14

4 PPL Hierarchical Index

4.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Constraint 63

Determinate< PH > 67

Generator 70

LinExpression 76

Poly Con Relation 81

Poly Gen Relation 82

Polyhedron 83

C Polyhedron 60

NNC Polyhedron 79

PowerSet< CS> 104

Variable 107

Compare 109

5 PPL Compound Index

5.1 PPL Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

C Polyhedron (A closed convex polyhedron) 60

Constraint (A linear equality or inequality) 63

Determinate< PH > (Wrap a polyhedron class into a determinate constraint system interface)67

Generator (A line, ray, point or closure point) 70

LinExpression (A linear expression) 76

NNC Polyhedron (A not necessarily closed convex polyhedron) 79

Poly Con Relation (The relation between a polyhedron and a constraint) 81

Poly Gen Relation (The relation between a polyhedron and a generator) 82

Polyhedron (The base class for convex polyhedra) 83

PowerSet< CS> (The powerset construction on constraint systems) 104

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6 PPL Module Documentation 15

Variable (A dimension of the space) 107

Compare (Binary predicate defining the total ordering on variables) 109

6 PPL Module Documentation

6.1 The Library

The core implementation of the Parma Polyhedra Library is written in C++. See Namespace, Hierarchical
and Compound indexes for additional information.

6.2 Library Defines

Defines

• #definePPL VERSION MAJOR 0

The major number of the PPL version.

• #definePPL VERSION MINOR 5

The minor number of the PPL version.

• #definePPL VERSION REVISION 0

The revision number of the PPL version.

• #definePPL VERSION BETA 0

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

6.3 C Language Interface

Initialization, Error Handling and Auxiliary Functions

• int ppl max spacedimension(ppl dimension type ∗m)

Writes tomthe maximum space dimension this library can handle.

• int ppl not a dimension(ppl dimension type ∗m)

Writes toma value that does not designate a valid dimension.

• int ppl initialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

• int ppl finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

• int ppl set error handler (void(∗h)(enumppl enum error codecode, const char∗description))

Installs the user-defined error handler pointed byh.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 16

Functions Related to Coefficients

• int ppl new Coefficient (ppl Coefficient t ∗pc)

Creates a new coefficient with value 0 and writes an handle for the newly created coefficient at addresspc .

• int ppl new Coefficient from mpz t (ppl Coefficient t ∗pc, mpzt z)

Creates a new coefficient with the value given by the GMP integerz and writes an handle for the newly
created coefficient at addresspc .

• int ppl new Coefficient from Coefficient (ppl Coefficient t ∗pc,ppl const Coefficient t c)

Builds a coefficient that is a copy ofc ; writes an handle for the newly created coefficient at addresspc .

• int ppl assignCoefficient from mpz t (ppl Coefficient t dst, mpzt z)

Assign todst the value given by the GMP integerz .

• int ppl assignCoefficient from Coefficient (ppl Coefficient t dst,ppl const Coefficient t src)

Assigns a copy of the coefficientsrc to dst .

• int ppl deleteCoefficient (ppl const Coefficient t c)

Invalidates the handlec : this makes sure the corresponding resources will eventually be released.

• int ppl Coefficient to mpz t (ppl const Coefficient t c, mpzt z)

Sets the value of the GMP integerz to the value ofc .

• int ppl Coefficient OK (ppl const Coefficient t c)

Returns a positive integer ifc is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifc is broken. Useful for debugging purposes.

Functions Related to Linear Expressions

• int ppl new LinExpression (ppl LinExpression t ∗ple)

Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes an
handle for the new linear expression at addressple .

• int ppl new LinExpression with dimension(ppl LinExpression t ∗ple,ppl dimension type d)

Creates a new linear expression corresponding to the constant 0 in ad-dimensional space; writes an handle
for the new linear expression at addressple .

• int ppl new LinExpression from LinExpression (ppl LinExpression t ∗ple, ppl const Lin-
Expression t le)

Builds a linear expression that is a copy ofle ; writes an handle for the newly created linear expression at
addressple .

• int ppl new LinExpression from Constraint (ppl LinExpression t ∗ple,ppl const Constraint t
c)

Builds a linear expression corresponding to constraintc ; writes an handle for the newly created linear
expression at addressple .

• int ppl new LinExpression from Generator (ppl LinExpression t ∗ple, ppl const Generator t
g)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 17

Builds a linear expression corresponding to generatorg; writes an handle for the newly created linear
expression at addressple .

• int ppl deleteLinExpression (ppl const LinExpression t le)

Invalidates the handlele : this makes sure the corresponding resources will eventually be released.

• int ppl assignLinExpression from LinExpression (ppl LinExpression t dst, ppl const Lin-
Expression t src)

Assigns a copy of the linear expressionsrc to dst .

• int ppl LinExpression add to coefficient(ppl LinExpression t le,ppl dimension type var,ppl -
const Coefficient t n)

Addsn to the coefficient of variablevar in the linear expressionle . The space dimension is set to be the
maximum betweenvar + 1 and the old space dimension.

• int ppl LinExpression add to inhomogeneous(ppl LinExpression t le, ppl const Coefficient t
n)

Addsn to the inhomogeneous term of the linear expressionle .

• int ppl add LinExpression to LinExpression (ppl LinExpression t dst, ppl const Lin-
Expression t src)

Adds the linear expressionsrc to dst .

• int ppl subtract LinExpression from LinExpression (ppl LinExpression t dst, ppl const Lin-
Expression t src)

Subtracts the linear expressionsrc from dst .

• int ppl multiply LinExpression by Coefficient (ppl LinExpression t le, ppl const Coefficient t
n)

Multiply the linear expressiondst byn.

• int ppl LinExpression spacedimension(ppl const LinExpression t le)

Returns the space dimension ofle .

• int ppl LinExpression coefficient (ppl const LinExpression t le, ppl dimension type var, ppl -
Coefficient t n)

Copies inton the coefficient of variablevar in the linear expressionle .

• int ppl LinExpression inhomogeneousterm (ppl const LinExpression t le, ppl Coefficient t n)

Copies inton the inhomogeneous term of linear expressionle .

• int ppl LinExpression OK (ppl const LinExpression t le)

Returns a positive integer ifle is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifle is broken. Useful for debugging purposes.

Functions Related to Constraints

• int ppl new Constraint (ppl Constraint t ∗pc, ppl const LinExpression t le, enumppl enum -
Constraint Type rel)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 18

Creates the new constraint ‘le rel 0’ and writes an handle for it at addresspc . The space dimension of
the new constraint is equal to the space dimension ofle .

• int ppl new Constraint zero dim false(ppl Constraint t ∗pc)

Creates the unsatisfiable (zero-dimension space) constraint0 = 1 and writes an handle for it at address
pc .

• int ppl new Constraint zero dim positivity (ppl Constraint t ∗pc)

Creates the true (zero-dimension space) constraint0 ≤ 1, also known aspositivity constraint. An handle
for the newly created constraint is written at addresspc .

• int ppl new Constraint from Constraint (ppl Constraint t ∗pc,ppl const Constraint t c)

Builds a constraint that is a copy ofc ; writes an handle for the newly created constraint at addresspc .

• int ppl deleteConstraint (ppl const Constraint t c)

Invalidates the handlec : this makes sure the corresponding resources will eventually be released.

• int ppl assignConstraint from Constraint (ppl Constraint t dst,ppl const Constraint t src)

Assigns a copy of the constraintsrc to dst .

• int ppl Constraint spacedimension(ppl const Constraint t c)

Returns the space dimension ofc .

• int ppl Constraint type (ppl const Constraint t c)

Returns the type of constraintc .

• int ppl Constraint coefficient (ppl const Constraint t c, ppl dimension type var, ppl -
Coefficient t n)

Copies inton the coefficient of variablevar in constraintc .

• int ppl Constraint inhomogeneousterm (ppl const Constraint t c, ppl Coefficient t n)

Copies inton the inhomogeneous term of constraintc .

• int ppl Constraint OK (ppl const Constraint t c)

Returns a positive integer ifc is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifc is broken. Useful for debugging purposes.

Functions Related to Constraint Systems

• int ppl new ConSys(ppl ConSyst ∗pcs)

Builds an empty system of constraints and writes an handle to it at addresspcs .

• int ppl new ConSyszero dim empty (ppl ConSyst ∗pcs)

Builds a zero-dimensional, unsatisfiable constraint system and writes an handle to it at addresspcs .

• int ppl new ConSysfrom Constraint (ppl ConSyst ∗pcs,ppl const Constraint t c)

Builds the singleton constraint system containing only a copy of constraintc ; writes an handle for the newly
created system at addresspcs .

• int ppl new ConSysfrom ConSys(ppl ConSyst ∗pcs,ppl const ConSyst cs)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 19

Builds a constraint system that is a copy ofcs ; writes an handle for the newly created system at address
pcs .

• int ppl deleteConSys(ppl const ConSyst cs)

Invalidates the handlecs : this makes sure the corresponding resources will eventually be released.

• int ppl assignConSysfrom ConSys(ppl ConSyst dst,ppl const ConSyst src)

Assigns a copy of the constraint systemsrc to dst .

• int ppl ConSysspacedimension(ppl const ConSyst cs)

Returns the dimension of the vector space enclosingcs .

• int ppl ConSysclear (ppl ConSyst cs)

Removes all the constraints from the constraint systemcs and sets its space dimension to 0.

• int ppl ConSysinsert Constraint (ppl ConSyst cs,ppl const Constraint t c)

Inserts a copy of the constraintc into cs ; the space dimension is increased, if necessary.

• int ppl ConSysOK (ppl const ConSyst c)

Returns a positive integer ifcs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifcs is broken. Useful for debugging purposes.

• int ppl new ConSysconst iterator (ppl ConSysconst iterator t ∗pcit)

Builds a new ‘const iterator’ and writes an handle to it at addresspcit .

• int ppl new ConSysconst iterator from ConSysconst iterator (ppl ConSysconst iterator t
∗pcit, ppl const ConSysconst iterator t cit)

Builds a const iterator system that is a copy ofcit ; writes an handle for the newly created const iterator
at addresspcit .

• int ppl deleteConSysconst iterator (ppl const ConSysconst iterator t cit)

Invalidates the handlecit : this makes sure the corresponding resources will eventually be released.

• int ppl assignConSysconst iterator from ConSysconst iterator (ppl ConSysconst -
iterator t dst,ppl const ConSysconst iterator t src)

Assigns a copy of the const iteratorsrc to dst .

• int ppl ConSysbegin (ppl const ConSyst cs,ppl ConSysconst iterator t cit)

Assigns tocit a const iterator ”pointing” to the beginning of the constraint systemcs .

• int ppl ConSysend (ppl const ConSyst cs,ppl ConSysconst iterator t cit)

Assigns tocit a const iterator ”pointing” past the end of the constraint systemcs .

• int ppl ConSysconst iterator dereference(ppl const ConSysconst iterator t cit, ppl const -
Constraint t ∗pc)

Dereferencecit writing a const handle to the resulting constraint at addresspc .

• int ppl ConSysconst iterator increment (ppl ConSysconst iterator t cit)

Incrementcit so that it ”points” to the next constraint.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 20

• int ppl ConSysconst iterator equal test (ppl const ConSysconst iterator t x, ppl const Con-
Sysconst iterator t y)

Returns a positive integer if the iterators corresponding tox andy are equal; return 0 if they are different.

Functions Related to Generators

• int ppl new Generator (ppl Generator t ∗pg, ppl const LinExpression t le, enumppl enum -
Generator Type t, ppl const Coefficient t d)

Creates a new generator of directionle and typet . If the generator to be created is a point or a closure
point, the divisord is applied tole . For other types of generatorsd is simply disregarded. An handle for
the new generator is written at addresspg . The space dimension of the new generator is equal to the space
dimension ofle .

• int ppl new Generator zero dim point (ppl Generator t ∗pg)

Creates the point that is the origin of the zero-dimensional spaceR0. Writes an handle for the new generator
at addresspg .

• int ppl new Generator zero dim closure point (ppl Generator t ∗pg)

Creates, as a closure point, the point that is the origin of the zero-dimensional spaceR0. Writes an handle
for the new generator at addresspg .

• int ppl new Generator from Generator (ppl Generator t ∗pg,ppl const Generator t g)

Builds a generator that is a copy ofg; writes an handle for the newly created generator at addresspg .

• int ppl deleteGenerator (ppl const Generator t g)

Invalidates the handleg: this makes sure the corresponding resources will eventually be released.

• int ppl assignGenerator from Generator (ppl Generator t dst,ppl const Generator t src)

Assigns a copy of the generatorsrc to dst .

• int ppl Generator spacedimension(ppl const Generator t g)

Returns the space dimension ofg.

• int ppl Generator type (ppl const Generator t g)

Returns the type of generatorg.

• int ppl Generator coefficient (ppl const Generator t g, ppl dimension type var, ppl -
Coefficient t n)

Copies inton the coefficient of variablevar in generatorg.

• int ppl Generator divisor (ppl const Generator t g, ppl Coefficient t n)

If g is a point or a closure point assigns its divisor ton.

• int ppl Generator OK (ppl const Generator t g)

Returns a positive integer ifg is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifg is broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 21

Functions Related to Generator Systems

• int ppl new GenSys(ppl GenSyst ∗pgs)

Builds an empty system of generators and writes an handle to it at addresspgs .

• int ppl new GenSysfrom Generator (ppl GenSyst ∗pgs,ppl const Generator t g)

Builds the singleton generator system containing only a copy of generatorg; writes an handle for the newly
created system at addresspgs .

• int ppl new GenSysfrom GenSys(ppl GenSyst ∗pgs,ppl const GenSyst gs)

Builds a generator system that is a copy ofgs ; writes an handle for the newly created system at address
pgs .

• int ppl deleteGenSys(ppl const GenSyst gs)

Invalidates the handlegs : this makes sure the corresponding resources will eventually be released.

• int ppl assignGenSysfrom GenSys(ppl GenSyst dst,ppl const GenSyst src)

Assigns a copy of the generator systemsrc to dst .

• int ppl GenSysspacedimension(ppl const GenSyst gs)

Returns the dimension of the vector space enclosinggs .

• int ppl GenSysclear (ppl GenSyst gs)

Removes all the generators from the generator systemgs and sets its space dimension to 0.

• int ppl GenSysinsert Generator (ppl GenSyst gs,ppl const Generator t g)

Inserts a copy of the generatorg into gs ; the space dimension is increased, if necessary.

• int ppl GenSysOK (ppl const GenSyst c)

Returns a positive integer ifgs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifgs is broken. Useful for debugging purposes.

• int ppl new GenSysconst iterator (ppl GenSysconst iterator t ∗pgit)

Builds a new ‘const iterator’ and writes an handle to it at addresspgit .

• int ppl new GenSysconst iterator from GenSysconst iterator (ppl GenSysconst iterator t
∗pgit, ppl const GenSysconst iterator t git)

Builds a const iterator system that is a copy ofgit ; writes an handle for the newly created const iterator
at addresspgit .

• int ppl deleteGenSysconst iterator (ppl const GenSysconst iterator t git)

Invalidates the handlegit : this makes sure the corresponding resources will eventually be released.

• int ppl assignGenSysconst iterator from GenSysconst iterator (ppl GenSysconst -
iterator t dst,ppl const GenSysconst iterator t src)

Assigns a copy of the const iteratorsrc to dst .

• int ppl GenSysbegin (ppl const GenSyst gs,ppl GenSysconst iterator t git)

Assigns togit a const iterator ”pointing” to the beginning of the generator systemgs .

• int ppl GenSysend (ppl const GenSyst gs,ppl GenSysconst iterator t git)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 22

Assigns togit a const iterator ”pointing” past the end of the generator systemgs .

• int ppl GenSysconst iterator dereference(ppl const GenSysconst iterator t git, ppl const -
Generator t ∗pg)

Dereferencegit writing a const handle to the resulting generator at addresspg .

• int ppl GenSysconst iterator increment (ppl GenSysconst iterator t git)

Incrementgit so that it ”points” to the next generator.

• int ppl GenSysconst iterator equal test (ppl const GenSysconst iterator t x, ppl const Gen-
Sysconst iterator t y)

Return a positive integer if the iterators corresponding tox andy are equal; return 0 if they are different.

Functions Related to Polyhedra

• int ppl new C Polyhedron from dimension(ppl Polyhedron t ∗pph,ppl dimension type d)

Builds an universe closed polyhedron of dimensiond and writes an handle to it at addresspph .

• int ppl new NNC Polyhedron from dimension(ppl Polyhedron t ∗pph,ppl dimension type d)

Builds an universe NNC polyhedron of dimensiond and writes an handle to it at addresspph .

• int ppl new C Polyhedron empty from dimension (ppl Polyhedron t ∗pph, ppl dimension -
type d)

Builds an empty closed polyhedron of dimensiond and writes an handle to it at addresspph .

• int ppl new NNC Polyhedron empty from dimension (ppl Polyhedron t ∗pph, ppl -
dimension type d)

Builds an empty NNC polyhedron of dimensiond and writes an handle to it at addresspph .

• int ppl new C Polyhedron from C Polyhedron (ppl Polyhedron t ∗pph, ppl const -
Polyhedron t ph)

Builds a closed polyhedron that is a copy ofph ; writes an handle for the newly created polyhedron at
addresspph .

• int ppl new C Polyhedron from NNC Polyhedron (ppl Polyhedron t ∗pph, ppl const -
Polyhedron t ph)

Builds a closed polyhedron that is a copy of of the NNC polyhedronph ; writes an handle for the newly
created polyhedron at addresspph .

• int ppl new NNC Polyhedron from C Polyhedron (ppl Polyhedron t ∗pph, ppl const -
Polyhedron t ph)

Builds an NNC polyhedron that is a copy of of the closed polyhedronph ; writes an handle for the newly
created polyhedron at addresspph .

• int ppl new NNC Polyhedron from NNC Polyhedron (ppl Polyhedron t ∗pph, ppl const -
Polyhedron t ph)

Builds an NNC polyhedron that is a copy ofph ; writes an handle for the newly created polyhedron at
addresspph .

• int ppl new C Polyhedron from ConSys(ppl Polyhedron t ∗pph,ppl const ConSyst cs)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 23

Builds a new closed polyhedron from the system of constraintscs and writes an handle for the newly created
polyhedron at addresspph . The new polyhedron will inherit the space dimension ofcs .

• int ppl new C Polyhedron recycle ConSys(ppl Polyhedron t ∗pph,ppl ConSyst cs)

Builds a new closed polyhedron recycling the system of constraintscs and writes an handle for the newly
created polyhedron at addresspph . Sincecs will be thesystem of constraints of the new polyhedron, the
space dimension is also inherited.

• int ppl new NNC Polyhedron from ConSys(ppl Polyhedron t ∗pph,ppl const ConSyst cs)

Builds a new NNC polyhedron from the system of constraintscs and writes an handle for the newly created
polyhedron at addresspph . The new polyhedron will inherit the space dimension ofcs .

• int ppl new NNC Polyhedron recycle ConSys(ppl Polyhedron t ∗pph,ppl ConSyst cs)

Builds a new NNC polyhedron recycling the system of constraintscs and writes an handle for the newly
created polyhedron at addresspph . Sincecs will be thesystem of constraints of the new polyhedron, the
space dimension is also inherited.

• int ppl new C Polyhedron from GenSys(ppl Polyhedron t ∗pph,ppl const GenSyst gs)

Builds a new closed polyhedron from the system of generatorsgs and writes an handle for the newly created
polyhedron at addresspph . The new polyhedron will inherit the space dimension ofgs .

• int ppl new C Polyhedron recycle GenSys(ppl Polyhedron t ∗pph,ppl GenSyst gs)

Builds a new closed polyhedron recycling the system of generatorsgs and writes an handle for the newly
created polyhedron at addresspph . Sincegs will be thesystem of generators of the new polyhedron, the
space dimension is also inherited.

• int ppl new NNC Polyhedron from GenSys(ppl Polyhedron t ∗pph,ppl const GenSyst gs)

Builds a new NNC polyhedron from the system of generatorsgs and writes an handle for the newly created
polyhedron at addresspph . The new polyhedron will inherit the space dimension ofgs .

• int ppl new NNC Polyhedron recycle GenSys(ppl Polyhedron t ∗pph,ppl GenSyst gs)

Builds a new NNC polyhedron recycling the system of generatorsgs and writes an handle for the newly
created polyhedron at addresspph . Sincegs will be thesystem of generators of the new polyhedron, the
space dimension is also inherited.

• int ppl new C Polyhedron from bounding box (ppl Polyhedron t ∗pph, ppl dimension -
type(∗spacedimension)(void), int(∗is empty)(void), int(∗get lower bound)(ppl dimension type k,
int closed,ppl Coefficient t n, ppl Coefficient t d), int(∗get upperbound)(ppl dimension type k,
int closed,ppl Coefficient t n, ppl Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addresspph .

• int ppl new NNC Polyhedron from bounding box (ppl Polyhedron t ∗pph, ppl dimension -
type(∗spacedimension)(void), int(∗is empty)(void), int(∗get lower bound)(ppl dimension type k,
int closed,ppl Coefficient t n, ppl Coefficient t d), int(∗get upperbound)(ppl dimension type k,
int closed,ppl Coefficient t n, ppl Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addresspph .

• int ppl assignC Polyhedron from C Polyhedron (ppl Polyhedron t dst, ppl const -
Polyhedron t src)

Assigns a copy of the closed polyhedronsrc to the closed polyhedrondst .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 24

• int ppl assignNNC Polyhedron from NNC Polyhedron (ppl Polyhedron t dst, ppl const -
Polyhedron t src)

Assigns a copy of the NNC polyhedronsrc to the NNC polyhedrondst .

• int ppl deletePolyhedron (ppl const Polyhedron t ph)

Invalidates the handleph : this makes sure the corresponding resources will eventually be released.

• int ppl Polyhedron spacedimension(ppl const Polyhedron t ph)

Returns the dimension of the vector space enclosingph .

• int ppl Polyhedron constraints (ppl const Polyhedron t ph,ppl const ConSyst ∗pcs)

Writes a const handle to the constraint system defining the polyhedronph at addresspcs .

• int ppl Polyhedron minimized constraints (ppl const Polyhedron t ph, ppl const ConSyst
∗pcs)

Writes a const handle to the minimized constraint system defining the polyhedronph at addresspcs .

• int ppl Polyhedron generators(ppl const Polyhedron t ph,ppl const GenSyst ∗pgs)

Writes a const handle to the generator system defining the polyhedronph at addresspgs .

• int ppl Polyhedron minimized generators (ppl const Polyhedron t ph, ppl const GenSyst
∗pgs)

Writes a const handle to the minimized generator system defining the polyhedronph at addresspgs .

• int ppl Polyhedron relation with Constraint (ppl const Polyhedron t ph, ppl const -
Constraint t c)

Checks the relation between the polyhedronph with the constraintc .

• int ppl Polyhedron relation with Generator (ppl const Polyhedron t ph, ppl const -
Generator t g)

Checks the relation between the polyhedronph with the generatorg.

• int ppl Polyhedron shrink bounding box (ppl const Polyhedron t ph, unsigned int complexity,
void(∗setempty)(void), void(∗raiselower bound)(ppl dimension type k, int closed,ppl const -
Coefficient t n, ppl const Coefficient t d), void(∗lower upperbound)(ppl dimension type k, int
closed,ppl const Coefficient t n, ppl const Coefficient t d))

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by means
of the parameters,.

• int ppl Polyhedron is empty (ppl const Polyhedron t ph)

Returns a positive integer ifph is empty; returns 0 ifph is not empty.

• int ppl Polyhedron is universe(ppl const Polyhedron t ph)

Returns a positive integer ifph is a universe polyhedron; returns 0 if it is not.

• int ppl Polyhedron is bounded(ppl const Polyhedron t ph)

Returns a positive integer ifph is bounded; returns 0 ifph is unbounded.

• int ppl Polyhedron bounds from above (ppl const Polyhedron t ph, ppl const Lin-
Expression t le)

Returns a positive integer ifle is bounded from above inph ; returns 0 otherwise.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 25

• int ppl Polyhedron bounds from below (ppl const Polyhedron t ph, ppl const Lin-
Expression t le)

Returns a positive integer ifle is bounded from below inph ; returns 0 otherwise.

• int ppl Polyhedron is topologically closed(ppl const Polyhedron t ph)

Returns a positive integer ifph is topologically closed; returns 0 ifph is not topologically closed.

• int ppl Polyhedron contains Polyhedron (ppl const Polyhedron t x, ppl const Polyhedron t y)

Returns a positive integer ifx contains or is equal toy ; returns 0 if it does not.

• int ppl Polyhedron strictly contains Polyhedron (ppl const Polyhedron t x, ppl const -
Polyhedron t y)

Returns a positive integer ifx strictly containsy ; returns 0 if it does not.

• int ppl Polyhedron is disjoint from Polyhedron (ppl const Polyhedron t x, ppl const -
Polyhedron t y)

Returns a positive integer ifx andy are disjoint; returns 0 if they are not.

• int ppl Polyhedron equalsPolyhedron (ppl const Polyhedron t x, ppl const Polyhedron t y)

Returns a positive integer ifx andy are the same polyhedron; return 0 if they are different.

• int ppl Polyhedron OK (ppl const Polyhedron t ph)

Returns a positive integer ifph is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifph is broken. Useful for debugging purposes.

• int ppl Polyhedron add constraint (ppl Polyhedron t ph,ppl const Constraint t c)

Adds a copy of the constraintc to the system of constraints ofph .

• int ppl Polyhedron add constraint and minimize (ppl Polyhedron t ph, ppl const -
Constraint t c)

Adds a copy of the constraintc to the system of constraints ofph . Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be minimized.

• int ppl Polyhedron add generator (ppl Polyhedron t ph,ppl const Generator t g)

Adds a copy of the generatorg to the system of generators ofph .

• int ppl Polyhedron add generator and minimize (ppl Polyhedron t ph,ppl const Generator t
g)

Adds a copy of the generatorg to the system of generators ofph . Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be minimized.

• int ppl Polyhedron add constraints (ppl Polyhedron t ph,ppl ConSyst cs)

Adds the system of constraintscs to the system of constraints ofph .

• int ppl Polyhedron add constraints and minimize (ppl Polyhedron t ph,ppl ConSyst cs)

Adds the system of constraintscs to the system of constraints ofph . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be
minimized.

• int ppl Polyhedron add generators(ppl Polyhedron t ph,ppl GenSyst gs)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 26

Adds the system of generatorsgs to the system of generators ofph .

• int ppl Polyhedron add generatorsand minimize (ppl Polyhedron t ph,ppl GenSyst gs)

Adds the system of generatorsgs to the system of generators ofph . Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be minimized.

• int ppl Polyhedron intersection assign(ppl Polyhedron t x, ppl const Polyhedron t y)

Intersectsx with polyhedrony and assigns the resultx .

• int ppl Polyhedron intersection assignand minimize (ppl Polyhedron t x, ppl const -
Polyhedron t y)

Intersectsx with polyhedrony and assigns the resultx . Returns a positive integer if the resulting polyhedron
is non-empty; returns 0 if it is empty. Upon successful return,x is also guaranteed to be minimized.

• int ppl Polyhedron poly hull assign(ppl Polyhedron t x, ppl const Polyhedron t y)

Assigns tox the poly-hull of the set-theoretic union ofx andy .

• int ppl Polyhedron poly hull assignand minimize (ppl Polyhedron t x, ppl const -
Polyhedron t y)

Assigns tox the poly-hull of the set-theoretic union ofx andy . Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return,x is also guaranteed to be
minimized.

• int ppl Polyhedron poly difference assign(ppl Polyhedron t x, ppl const Polyhedron t y)

Assigns tox the poly-hull of the set-theoretic difference ofx andy .

• int ppl Polyhedron affine image (ppl Polyhedron t ph,ppl dimension type var,ppl const Lin-
Expression t le, ppl const Coefficient t d)

Transforms the polyhedronph , assigning an affine expression to the specified variable.

• int ppl Polyhedron affine preimage (ppl Polyhedron t ph, ppl dimension type var, ppl const -
LinExpression t le, ppl const Coefficient t d)

Transforms the polyhedronph , substituting an affine expression to the specified variable.

• int ppl Polyhedron generalizedaffine image (ppl Polyhedron t ph, ppl dimension type var,
enumppl enum Constraint Type relsym,ppl const LinExpression t le, ppl const Coefficient t
d)

Assigns toph the image ofph with respect to thegeneralized affine transfer functionvar′ ./ expr
denominator

,
where./ is the relation symbol encoded byrelsym .

• int ppl Polyhedron generalizedaffine image lhs rhs (ppl Polyhedron t ph, ppl const Lin-
Expression t lhs, enumppl enum Constraint Type relsym,ppl const LinExpression t rhs)

Assigns toph the image ofph with respect to thegeneralized affine transfer functionlhs′ ./ rhs, where
./ is the relation symbol encoded byrelsym .

• int ppl Polyhedron time elapseassign(ppl Polyhedron t x, ppl const Polyhedron t y)

Assigns tox thetime-elapsebetween the polyhedrax andy .

• int ppl Polyhedron BHRZ03 widening assignwith tokens (ppl Polyhedron t x, ppl const -
Polyhedron t y, unsigned∗tp)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 27

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-widening of x
andy . If tp is not the null pointer, thewidening with tokensdelay technique is applied with∗tp available
tokens.

• int ppl Polyhedron BHRZ03 widening assign(ppl Polyhedron t x, ppl const Polyhedron t y)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-widening of
x andy .

• int ppl Polyhedron limited BHRZ03 extrapolation assignwith tokens (ppl Polyhedron t x,
ppl const Polyhedron t y, ppl const ConSyst cs, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-widening of
x andy intersected with the constraints incs that are satisfied by all the points ofx . If tp is not the null
pointer, thewidening with tokensdelay technique is applied with∗tp available tokens.

• int ppl Polyhedron limited BHRZ03 extrapolation assign (ppl Polyhedron t x, ppl const -
Polyhedron t y, ppl const ConSyst cs)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-widening of
x andy intersected with the constraints incs that are satisfied by all the points ofx .

• int ppl Polyhedron bounded BHRZ03 extrapolation assignwith tokens (ppl Polyhedron t x,
ppl const Polyhedron t y, ppl const ConSyst cs, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-widening of x
andy intersected with the constraints incs that are satisfied by all the points ofx , further intersected with
all the constraints of the form±v ≤ r and±v < r, with r ∈ Q, that are satisfied by all the points ofx . If
tp is not the null pointer, thewidening with tokensdelay technique is applied with∗tp available tokens.

• int ppl Polyhedron bounded BHRZ03 extrapolation assign (ppl Polyhedron t x, ppl const -
Polyhedron t y, ppl const ConSyst cs)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-widening of x
andy intersected with the constraints incs that are satisfied by all the points ofx , further intersected with
all the constraints of the form±v ≤ r and±v < r, with r ∈ Q, that are satisfied by all the points ofx .

• int ppl Polyhedron H79 widening assignwith tokens (ppl Polyhedron t x, ppl const -
Polyhedron t y, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y . If tp is not the null pointer, thewidening with tokens delay technique is applied with∗tp available
tokens.

• int ppl Polyhedron H79 widening assign(ppl Polyhedron t x, ppl const Polyhedron t y)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y .

• int ppl Polyhedron limited H79 extrapolation assignwith tokens (ppl Polyhedron t x, ppl -
const Polyhedron t y, ppl const ConSyst cs, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y intersected with the constraints incs that are satisfied by all the points ofx . If tp is not the null pointer,
thewidening with tokensdelay technique is applied with∗tp available tokens.

• int ppl Polyhedron limited H79 extrapolation assign (ppl Polyhedron t x, ppl const -
Polyhedron t y, ppl const ConSyst cs)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y intersected with the constraints incs that are satisfied by all the points ofx .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 28

• int ppl Polyhedron bounded H79 extrapolation assignwith tokens(ppl Polyhedron t x, ppl -
const Polyhedron t y, ppl const ConSyst cs, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y intersected with the constraints incs that are satisfied by all the points ofx , further intersected with all
the constraints of the form±v ≤ r and±v < r, with r ∈ Q, that are satisfied by all the points ofx . If tp
is not the null pointer, thewidening with tokensdelay technique is applied with∗tp available tokens.

• int ppl Polyhedron bounded H79 extrapolation assign (ppl Polyhedron t x, ppl const -
Polyhedron t y, ppl const ConSyst cs)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y intersected with the constraints incs that are satisfied by all the points ofx , further intersected with all
the constraints of the form±v ≤ r and±v < r, with r ∈ Q, that are satisfied by all the points ofx .

• int ppl Polyhedron topological closure assign(ppl Polyhedron t ph)

Assigns toph its topological closure.

• int ppl Polyhedron add dimensionsand embed(ppl Polyhedron t ph,ppl dimension type d)

Addsd new dimensions to the space enclosing the polyhedronph and toph itself.

• int ppl Polyhedron add dimensionsand project (ppl Polyhedron t ph,ppl dimension type d)

Addsd new dimensions to the space enclosing the polyhedronph .

• int ppl Polyhedron concatenateassign(ppl Polyhedron t x, ppl const Polyhedron t y)

Seeing a polyhedron as a set of tuples (its points), assigns tox all the tuples that can be obtained by
concatenating, in the order given, a tuple ofx with a tuple ofy .

• int ppl Polyhedron remove dimensions(ppl Polyhedron t ph, ppl dimension type ds[], sizet
n)

Removes fromph and its containing space the dimensions that are specified in firstn positions of the array
ds . The presence of duplicates inds is a waste but an innocuous one.

• int ppl Polyhedron remove higher dimensions(ppl Polyhedron t ph,ppl dimension type d)

Removes the higher dimensions fromph and its enclosing space so that, upon successful return, the new
space dimension isd.

• int ppl Polyhedron map dimensions(ppl Polyhedron t ph, ppl dimension type maps[], sizet
n)

Remaps the dimensions of the vector space according to apartial function . This function is specified by
means of themaps array, which hasn entries.

Typedefs

• typedef sizet ppl dimension type

An unsigned integral type for representing space dimensions.

• typedef pplCoefficienttag∗ ppl Coefficient t

Opaque pointer to Coefficient .

• typedef pplCoefficienttag const∗ ppl const Coefficient t

Opaque pointer to const Coefficient .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 29

• typedef pplLinExpressiontag∗ ppl LinExpression t

Opaque pointer to LinExpression .

• typedef pplLinExpressiontag const∗ ppl const LinExpression t

Opaque pointer to const LinExpression .

• typedef pplConstrainttag∗ ppl Constraint t

Opaque pointer to Constraint .

• typedef pplConstrainttag const∗ ppl const Constraint t

Opaque pointer to const Constraint .

• typedef pplConSystag∗ ppl ConSyst

Opaque pointer to ConSys .

• typedef pplConSystag const∗ ppl const ConSyst

Opaque pointer to const ConSys .

• typedef pplConSysconstiterator tag∗ ppl ConSysconst iterator t

Opaque pointer to ConSysconstiterator .

• typedef pplConSysconstiterator tag const∗ ppl const ConSysconst iterator t

Opaque pointer to const ConSysconstiterator .

• typedef pplGeneratortag∗ ppl Generator t

Opaque pointer to Generator .

• typedef pplGeneratortag const∗ ppl const Generator t

Opaque pointer to const Generator .

• typedef pplGenSystag∗ ppl GenSyst

Opaque pointer to GenSys .

• typedef pplGenSystag const∗ ppl const GenSyst

Opaque pointer to const GenSys .

• typedef pplGenSysconstiterator tag∗ ppl GenSysconst iterator t

Opaque pointer to GenSysconstiterator .

• typedef pplGenSysconstiterator tag const∗ ppl const GenSysconst iterator t

Opaque pointer to const GenSysconstiterator .

• typedef pplPolyhedrontag∗ ppl Polyhedron t

Opaque pointer to Polyhedron .

• typedef pplPolyhedrontag const∗ ppl const Polyhedron t

Opaque pointer to const Polyhedron .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 30

Enumerations

• enumppl enum error code{
PPL ERROR OUT OF MEMORY , PPL ERROR INVALID ARGUMENT , PPL ERROR -
INTERNAL ERROR, PPL ERROR UNKNOWN STANDARD EXCEPTION ,

PPL ERROR UNEXPECTED ERROR }
Defines the error code that any function can return.

• enumppl enum Constraint Type {
PPL CONSTRAINT TYPE LESS THAN , PPL CONSTRAINT TYPE LESS THAN OR -
EQUAL , PPL CONSTRAINT TYPE EQUAL , PPL CONSTRAINT TYPE GREATER -
THAN OR EQUAL ,

PPL CONSTRAINT TYPE GREATER THAN }
Describes the relations represented by a constraint.

• enum ppl enum Generator Type { PPL GENERATOR TYPE LINE , PPL GENERATOR -
TYPE RAY , PPL GENERATOR TYPE POINT , PPL GENERATOR TYPE CLOSURE -
POINT }

Describes the different kinds of generators.

Variables

• unsigned intPPL COMPLEXITY CLASS POLYNOMIAL

Code of the worst-case polynomial complexity class.

• unsigned intPPL COMPLEXITY CLASS SIMPLEX

Code of the worst-case exponential but typically polynomial complexity class.

• unsigned intPPL COMPLEXITY CLASS ANY

Code of the universal complexity class.

• unsigned intPPL POLY CON RELATION IS DISJOINT

Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

• unsigned intPPL POLY CON RELATION STRICTLY INTERSECTS

Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

• unsigned intPPL POLY CON RELATION IS INCLUDED

Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

• unsigned intPPL POLY CON RELATION SATURATES

Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

• unsigned intPPL POLY GEN RELATION SUBSUMES

Individual bit saying that adding the generator would not change the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 31

6.3.1 Enumeration Type Documentation

6.3.1.1 enum pplenum error code

Defines the error code that any function can return.

Enumeration values:
PPL ERROR OUT OF MEMORY The virtual memory available to the process has been ex-

hausted.

PPL ERROR INVALID ARGUMENT A function has been invoked with an invalid argument.

PPL ERROR INTERNAL ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL ERROR UNKNOWN STANDARD EXCEPTION A standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL ERROR UNEXPECTED ERROR A totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

6.3.1.2 enum pplenum Constraint Type

Describes the relations represented by a constraint.

Enumeration values:
PPL CONSTRAINT TYPE LESS THAN The constraint is of the forme < 0.

PPL CONSTRAINT TYPE LESS THAN OR EQUAL The constraint is of the forme ≤ 0.

PPL CONSTRAINT TYPE EQUAL The constraint is of the forme = 0.

PPL CONSTRAINT TYPE GREATER THAN OR EQUAL The constraint is of the forme ≥
0.

PPL CONSTRAINT TYPE GREATER THAN The constraint is of the forme > 0.

6.3.1.3 enum pplenum Generator Type

Describes the different kinds of generators.

Enumeration values:
PPL GENERATOR TYPE LINE The generator is a line.

PPL GENERATOR TYPE RAY The generator is a ray.

PPL GENERATOR TYPE POINT The generator is a point.

PPL GENERATOR TYPE CLOSURE POINT The generator is a closure point.

6.3.2 Function Documentation

6.3.2.1 int ppl set error handler (void(∗ h)(enum ppl enum error code code, const char
∗description))

Installs the user-defined error handler pointed byh.

The error handler takes an error code and a textual description that gives further information about the
actual error. The C string containing the textual description is read-only and its existence it not guaranteed
after the handler has returned.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 32

6.3.2.2 int ppl new C Polyhedron recycle ConSys (pplPolyhedron t ∗ pph, ppl ConSyst cs)

Builds a new closed polyhedron recycling the system of constraintscs and writes an handle for the newly
created polyhedron at addresspph . Sincecs will be thesystem of constraints of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

6.3.2.3 int ppl new NNC Polyhedron recycle ConSys (pplPolyhedron t ∗ pph, ppl ConSyst cs)

Builds a new NNC polyhedron recycling the system of constraintscs and writes an handle for the newly
created polyhedron at addresspph . Sincecs will be thesystem of constraints of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

6.3.2.4 int ppl new C Polyhedron recycle GenSys (pplPolyhedron t ∗ pph, ppl GenSyst gs)

Builds a new closed polyhedron recycling the system of generatorsgs and writes an handle for the newly
created polyhedron at addresspph . Sincegs will be thesystem of generators of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the generator system referenced bygs : upon return, no assumption can be
made on its value.

6.3.2.5 int ppl new NNC Polyhedron recycle GenSys (pplPolyhedron t ∗ pph, ppl GenSyst gs)

Builds a new NNC polyhedron recycling the system of generatorsgs and writes an handle for the newly
created polyhedron at addresspph . Sincegs will be thesystem of generators of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the generator system referenced bygs : upon return, no assumption can be
made on its value.

6.3.2.6 int ppl new C Polyhedron from bounding box (ppl Polyhedron t ∗ pph, ppl dimension -
type(∗ spacedimension)(void), int(∗ is empty)(void), int(∗ get lower bound)(ppl dimension type k,
int closed, ppl Coefficient t n, ppl Coefficient t d), int(∗ get upper bound)(ppl dimension type k, int
closed, pplCoefficient t n, ppl Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addresspph .

If an interval of the bounding box is provided with any finite but open bound, then the polyhedron is not
built and the valuePPL ERRORINVALID ARGUMENTis returned. The bounding box is accessed by
using the following functions, passed as arguments:

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 33

ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The functionis empty() will
always be called before the other functions. However, ifis empty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th dimension. IfI is not bounded from below, simply return 0.
Otherwise, setclosed , n andd as follows:closed is set to 0 if the lower boundary ofI is open and
is set to a value different from zero otherwise;n andd are assigned the integersn andd such that the
canonical fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form
if and only if n andd have no common factors andd is positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th dimension. IfI is not bounded from above, simply return 0.
Otherwise, setclosed , n andd as follows:closed is set to 0 if the upper boundary ofI is open and is
set to a value different from 0 otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the least upper bound ofI.

6.3.2.7 int ppl new NNC Polyhedron from bounding box (ppl Polyhedron t ∗ pph, ppl -
dimension type(∗ spacedimension)(void), int(∗ is empty)(void), int(∗ get lower bound)(ppl -
dimension type k, int closed, ppl Coefficient t n, ppl Coefficient t d), int(∗ get upper bound)(ppl -
dimension type k, int closed, ppl Coefficient t n, ppl Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addresspph .

The bounding box is accessed by using the following functions, passed as arguments:

ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The functionis empty() will
always be called before the other functions. However, ifis empty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 34

Let I the interval corresponding to thek -th dimension. IfI is not bounded from below, simply return 0.
Otherwise, setclosed , n andd as follows:closed is set to 0 if the lower boundary ofI is open and
is set to a value different from zero otherwise;n andd are assigned the integersn andd such that the
canonical fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form
if and only if n andd have no common factors andd is positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th dimension. IfI is not bounded from above, simply return 0.
Otherwise, setclosed , n andd as follows:closed is set to 0 if the upper boundary ofI is open and is
set to a value different from 0 otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the least upper bound ofI.

6.3.2.8 int ppl Polyhedron relation with Constraint (ppl const Polyhedron t ph, ppl const -
Constraint t c)

Checks the relation between the polyhedronph with the constraintc .

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (chosen among
PPL POLY CON RELATION IS DISJOINT PPLPOLY CON RELATION STRICTLY INTERSECTS,
PPL POLY CON RELATION IS INCLUDED, and PPLPOLY CON RELATION SATURATES) that
describe the relation betweenph andc .

6.3.2.9 int ppl Polyhedron relation with Generator (ppl const Polyhedron t ph, ppl const -
Generator t g)

Checks the relation between the polyhedronph with the generatorg.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (only PPLPOLY -
GEN RELATION SUBSUMES, at present) that describe the relation betweenph andg.

6.3.2.10 int ppl Polyhedron shrink bounding box (ppl const Polyhedron t ph, unsigned int com-
plexity, void(∗ setempty)(void), void(∗ raise lower bound)(ppl dimension type k, int closed, ppl -
const Coefficient t n, ppl const Coefficient t d), void(∗ lower upper bound)(ppl dimension type k, int
closed, pplconst Coefficient t n, ppl const Coefficient t d))

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters,.

Parameters:
complexity The code of the complexity class of the algorithm to be used. Must be one of PPL-

COMPLEXITY CLASS POLYNOMIAL, PPL COMPLEXITY CLASS SIMPLEX, or PPL-
COMPLEXITY CLASS ANY.

ph The polyhedron that is used to shrink the bounding box.

setempty a pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set.

raise lower bound a pointer to a void function with arguments(ppl dimension type k, int
closed, ppl const Coefficient t n, ppl const Coefficient t d) that in-
tersects the interval corresponding to thek -th dimension with[n/d,+∞) if closed is non-zero,
with (n/d,+∞) if closed is zero. The fractionn/d is in canonical form, that is,n andd have
no common factors andd is positive,0/1 being the unique representation for zero.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 35

lower upper bound a pointer to a void function with argument(ppl dimension type k, int
closed, ppl const Coefficient t n, ppl const Coefficient t d) that in-
tersects the interval corresponding to thek -th dimension with(−∞, n/d] if closed is non-zero,
with (−∞, n/d) if closed is zero. The fractionn/d is in canonical form.

6.3.2.11 int ppl Polyhedron equalsPolyhedron (ppl const Polyhedron t x, ppl const Polyhedron t
y)

Returns a positive integer ifx andy are the same polyhedron; return 0 if they are different.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value 0
is returned.

6.3.2.12 int ppl Polyhedron add constraints (ppl Polyhedron t ph, ppl ConSyst cs)

Adds the system of constraintscs to the system of constraints ofph .

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

6.3.2.13 int ppl Polyhedron add constraints and minimize (ppl Polyhedron t ph, ppl ConSyst cs)

Adds the system of constraintscs to the system of constraints ofph . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be
minimized.

Warning:
This function modifies the constraint system referenced bycs : upon return, no assumption can be
made on its value.

6.3.2.14 int ppl Polyhedron add generators (ppl Polyhedron t ph, ppl GenSyst gs)

Adds the system of generatorsgs to the system of generators ofph .

Warning:
This function modifies the generator system referenced bygs : upon return, no assumption can be
made on its value.

6.3.2.15 int ppl Polyhedron add generatorsand minimize (ppl Polyhedron t ph, ppl GenSyst gs)

Adds the system of generatorsgs to the system of generators ofph . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be
minimized.

Warning:
This function modifies the generator system referenced bygs : upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 36

6.3.2.16 int ppl Polyhedron affine image (ppl Polyhedron t ph, ppl dimension type var, ppl -
const LinExpression t le, ppl const Coefficient t d)

Transforms the polyhedronph , assigning an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed.

var The variable to which the affine expression is assigned.

le The numerator of the affine expression.

d The denominator of the affine expression.

6.3.2.17 int ppl Polyhedron affine preimage (ppl Polyhedron t ph, ppl dimension type var, ppl -
const LinExpression t le, ppl const Coefficient t d)

Transforms the polyhedronph , substituting an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed.

var The variable to which the affine expression is substituted.

le The numerator of the affine expression.

d The denominator of the affine expression.

6.3.2.18 int ppl Polyhedron generalizedaffine image (ppl Polyhedron t ph, ppl dimension type
var, enum ppl enum Constraint Type relsym, ppl const LinExpression t le, ppl const Coefficient t
d)

Assigns toph the image ofph with respect to thegeneralized affine transfer function var′ ./
expr

denominator , where./ is the relation symbol encoded byrelsym .

Parameters:
ph The polyhedron that is transformed.

var The left hand side variable of the generalized affine transfer function.

relsym The relation symbol.

le The numerator of the right hand side affine expression.

d The denominator of the right hand side affine expression.

6.3.2.19 int ppl Polyhedron generalizedaffine image lhs rhs (ppl Polyhedron t ph, ppl const Lin-
Expression t lhs, enum ppl enum Constraint Type relsym, ppl const LinExpression t rhs)

Assigns toph the image ofph with respect to thegeneralized affine transfer functionlhs′ ./ rhs, where
./ is the relation symbol encoded byrelsym .

Parameters:
ph The polyhedron that is transformed.

lhs The left hand side affine expression.

relsym The relation symbol.

rhs The right hand side affine expression.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 37

6.3.2.20 int ppl Polyhedron map dimensions (pplPolyhedron t ph, ppl dimension type maps[],
size t n)

Remaps the dimensions of the vector space according to apartial function . This function is specified by
means of themaps array, which hasn entries.

The partial function is defined on dimensioni if i < n andmaps[i] != ppl not a dimension ;
otherwise it is undefined on dimensioni . If the function is defined on dimensioni , then dimensioni is
mapped onto dimensionmaps[i] .

The result is undefined ifmaps does not encode a partial function with the properties described in the
specification of the mapping operator.

6.4 Prolog Language Interface

6.4.1 Introduction

The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization
of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The system-independent features of the library are described in SectionSystem-Independent Features.
SectionCompilation and Installation explains how the various incarnations of the Prolog interface are
compiled and installed. SectionSystem-Dependent Featuresillustrates the system-dependent features of
the interface for all the supported systems.

6.4.2 System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in SectionsA Library for
Convex Polyhedra, An Introduction to Convex Polyhedra, Representations of Convex Polyhedraand
Operations on Convex Polyhedraof this manual. Here we just describe those aspects that are specific to
the Prolog interface.

6.4.2.1 Overview First, here is a list of notes with general information and advice on the use of the
interface.

• A PPL polyhedron can only be accessed by means of a Prolog term called ahandle. Note, however,
that the data structure of a handle, is implementation-dependent, system-dependent and version-
dependent, and, for this reason, deliberately left unspecified. What we do guarantee is that the
handle requires very little memory.

• A Prolog term can be bound to a valid handle by using:

ppl_new_Polyhedron_from_dimension/3,
ppl_new_Polyhedron_empty_from_dimension/3,
ppl_new_Polyhedron_from_Polyhedron/4,
ppl_new_Polyhedron_from_constraints/3,
ppl_new_Polyhedron_from_generators/3.
ppl_new_Polyhedron_from_bounding_box/3.

These predicates will create or copy a PPL polyhedron and construct a valid handle for referencing it.
The first argument (in the case ofppl new Polyhedron from Polyhedron/4 , the first and
third arguments) denotes the topology and can be eitherc or nnc indicating a C or NNC polyhedron,

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 38

respectively. The third argument (in the case ofppl new Polyhedron from Polyhedron/4 ,
the fourth argument) is a Prolog term that is unified with a new valid handle for accessing this
polyhedron.

• As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicateppl delete Polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argument inppl delete Polyhedron/1 , it becomes invalid.

• For a PPL polyhedron with space dimensionk , the identifiers used for the PPL variables must lie
between 0 andk− 1 and correspond to the indices of the associated Cartesian axes. When using the
predicates that combine PPL polyhedra or add constraints or generators to a representation of a PPL
polyhedron, the polyhedra referenced and any constraints or generators in the call should follow all
the space dimension-compatibility rules stated in SectionRepresentations of Convex Polyhedra.

• As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in SectionRepresentations of Convex Polyhedra.

• The predicatesppl initialize/0 andppl finalize/0 initialize and finalize, respectively,
the Prolog interface. Thus the only interface predicates callable afterppl finalize/0 areppl -
finalize/0 itself (this further call has no effect) andppl initialize/0 , after which the in-
terface’s services are usable again. Some Prolog systems allow the specification of initialization and
deinitialization functions in their foreign language interfaces. The corresponding incarnations of the
PPL-Prolog interface have been written so thatppl initialize/0 and/orppl finalize/0
are called automatically. SectionSystem-Dependent Featureswill detail in which cases initial-
ization and finalization is automatically performed or is left to the Prolog programmer’s responsi-
bility. However, for portable applications, it is best to invokeppl initialize/0 andppl -
finalize/0 explicitly: since they can be called multiple times without problems, this will result
in enhanced portability at a cost that is, by all means, negligible.

6.4.2.2 PPL Predicate List Here is a list of all the PPL predicates provided by the Prolog interface.

ppl initialize

ppl finalize

ppl set timeout exception atom(+Atom)

ppl set timeout(+Integer)

ppl reset timeout

ppl new Polyhedron from dimension(+Topology, +Integer, -Handle)

ppl new Polyhedron empty from dimension(+Topology, +Integer, -Handle)

ppl new Polyhedron from Polyhedron(+Topology 1, +Handle 1, +Topology 2,
-Handle 2)

ppl new Polyhedron from constraints(+Topology, +Constraint System,
-Handle)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 39

ppl new Polyhedron from generators(+Topology, +Generator System,
-Handle)

ppl new Polyhedron from bounding box(+Topology, +Box, -Handle)

ppl Polyhedron swap(+Handle1, +Handle2)

ppl delete Polyhedron(+Handle)

ppl Polyhedron space dimension(+Handle, -Integer)

ppl Polyhedron get constraints(+Handle, -Constraint System)

ppl Polyhedron get minimized constraints(+Handle, -Constraint System)

ppl Polyhedron get generators(+Handle, -Generator System)

ppl Polyhedron get minimized generators(+Handle, -Generator System)

ppl Polyhedron relation with constraint(+Handle, +Constraint,
-Relation)

ppl Polyhedron relation with generator(+Handle, +Generator, -Relation)

ppl Polyhedron get bounding box(+Handle, +Complexity, -Box)

ppl Polyhedron is empty(+Handle)

ppl Polyhedron is universe(+Handle)

ppl Polyhedron is bounded(+Handle)

ppl Polyhedron bounds from above(+Handle, +LinExpr)

ppl Polyhedron bounds from below(+Handle, +LinExpr)

ppl Polyhedron is topologically closed(+Handle)

ppl Polyhedron contains Polyhedron(+Handle 1, +Handle 2)

ppl Polyhedron strictly contains Polyhedron(+Handle 1, +Handle 2)

ppl Polyhedron is disjoint from Polyhedron(+Handle 1, +Handle 2)

ppl Polyhedron equals Polyhedron(+Handle 1, +Handle 2)

ppl Polyhedron OK(+Handle)

ppl Polyhedron add constraint(+Handle, +Constraint)

ppl Polyhedron add constraint and minimize(+Handle, +Constraint)

ppl Polyhedron add generator(+Handle, +Generator)

ppl Polyhedron add generator and minimize(+Handle, +Generator)

ppl Polyhedron add constraints(+Handle, +Constraint System)

ppl Polyhedron add constraints and minimize(+Handle, +Constraint System)

ppl Polyhedron add generators(+Handle, +Generator System)

ppl Polyhedron add generators and minimize(+Handle, +Generator System)

ppl Polyhedron intersection assign(+Handle 1, +Handle 2)

ppl Polyhedron intersection assign and minimize(+Handle 1, +Handle 2)

ppl Polyhedron poly hull assign(+Handle 1, +Handle 2)

ppl Polyhedron poly hull assign and minimize(+Handle 1, +Handle 2)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 40

ppl Polyhedron poly difference assign(+Handle 1, +Handle 2)

ppl Polyhedron affine image(+Handle, +PPL Var, +LinExpr, +Integer)

ppl Polyhedron affine preimage(+Handle, +PPL Var, +LinExpr, +Integer)

ppl Polyhedron generalized affine image(+Handle, +PPL Var, +Relation -
Symbol, +LinExpr, +Integer)

ppl Polyhedron generalized affine image lhs rhs(+Handle, +LinExpr1,
+Relation Symbol, +LinExpr2)

ppl Polyhedron time elapse assign(+Handle 1, +Handle 2)

ppl Polyhedron BHRZ03widening assign with token(+Handle 1, +Handle 2,
?Integer)

ppl Polyhedron BHRZ03widening assign(+Handle 1, +Handle 2)

ppl Polyhedron limited BHRZ03extrapolation assign with token(+Handle 1,
+Handle 2, +Constraint System, ?Integer)

ppl Polyhedron limited BHRZ03extrapolation assign(+Handle 1, +Handle 2,
+Constraint System)

ppl Polyhedron bounded BHRZ03extrapolation assign with token(+Handle 1,
+Handle 2, +Constraint System, ?Integer)

ppl Polyhedron bounded BHRZ03extrapolation assign(+Handle 1, +Handle 2,
+Constraint System)

ppl Polyhedron H79 widening assign with token(+Handle 1, +Handle 2,
?Integer)

ppl Polyhedron H79 widening assign(+Handle 1, +Handle 2)

ppl Polyhedron limited H79 extrapolation assign with token(+Handle 1,
+Handle 2, +Constraint System, ?Integer)

ppl Polyhedron limited H79 extrapolation assign(+Handle 1, +Handle 2,
+Constraint System)

ppl Polyhedron bounded H79 extrapolation assign with token(+Handle 1,
+Handle 2, +Constraint System)

ppl Polyhedron bounded H79 extrapolation assign(+Handle 1, +Handle 2,
+Constraint System, ?Integer)

ppl Polyhedron topological closure assign(+Handle)

ppl Polyhedron add dimensions and embed(+Handle, +Integer)

ppl Polyhedron add dimensions and project(+Handle, +Integer)

ppl Polyhedron concatenate assign(+Handle1, +Handle2)

ppl Polyhedron remove dimensions(+Handle, +List of PPL Vars)

ppl Polyhedron remove higher dimensions(+Handle, +Integer))

ppl Polyhedron map dimensions(+Handle, +P Func))

6.4.2.3 PPL Predicate Specifications The PPL predicates provided by the Prolog interface are speci-
fied below. The specification uses the following grammar rules:

Topology --> c | nnc

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 41

VarId --> number | + number variable identifier

PPL_Var --> ’$VAR’(VarId) PPL variable

LinExpr --> PPL_Var PPL variable
| number
| + LinExpr unary plus
| - LinExpr unary minus
| LinExpr + LinExpr addition
| LinExpr - LinExpr subtraction
| number * LinExpr multiplication
| LinExpr * number multiplication

Relation_Symbol
--> = equals

| =< less than or equal
| >= greater than or equal
| < strictly less than
| > strictly greater than

Denominator --> number
| + number | - number number must be non-zero

Constraint --> LinExpr Relation_Symbol LinExpr
constraint

Constraint_System list of constraints
--> []

| [Constraint | Constraint_System]

Generator --> point(LinExpr) point
| point(LinExpr, Denominator)

point
| closure_point(LinExpr) closure point
| closure_point(LinExpr, Denominator)

closure point
(the point or closure point is defined by LinExpr/Denominator.)

| ray(LinExpr) ray
| line(LinExpr) line

Generator_System list of generators
--> []

| [Generator | Generator_System]

Atom --> Prolog atom

Relation --> is_disjoint between a constraint and a polyhedron
| strictly_intersects between a constraint and a polyhedron
| is_included between a constraint and a polyhedron
| saturates between a constraint and a polyhedron
| subsumes between a generator and a polyhedron

Relation_List list of relations
--> []

| [Relation | Relation_List]

Complexity --> polynomial | simplex | any

Rational_Numerator
--> number | + number | - number

Rational_Denominator
--> number number must be non-zero

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 42

Rational --> Rational_Numerator rational number
| Rational_Numerator/Rational_Denominator

Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction

Interval --> i(Bound, Bound) rational interval

Box --> [] list of intervals
| [Interval | Box]

Vars_Pair --> PPLVar - PPLVar map relation

P_Func --> [] list of map relations
| [Vars_Pair | P_Func].

Below is a short description of each of the interface predicates. For full definitions of terminology used
here, see SectionsA Library for Convex Polyhedra , An Introduction to Convex Polyhedra, Represen-
tations of Convex PolyhedraandOperations on Convex Polyhedraof this manual.

ppl initialize Initializes the PPL interface. Multiple calls toppl initialize does no harm.

ppl finalize Finalizes the PPL interface. Once this is executed, the next call to an interface predicate
must either be toppl initialize or to ppl finalize . Multiple calls toppl finalize does no
harm.

ppl set timeout exception atom(+Atom) Sets the atom to be thrown by timeout exceptions
to Atom. The default value istime out .

ppl timeout exception atom(?Atom) The atom to be thrown by timeout exceptions is unified
with Atom.

ppl set timeout(+Integer) Computations taking exponential time will be interrupted some time
afterInteger ms after that call. If the computation is interrupted that way, the current timeout exception
atom will be thrown.Integer must be strictly greater than zero.

ppl reset timeout Resets the timeout time so that the computation is not interrupted.

ppl new Polyhedron from dimension(+Topology, +Integer, -Handle) Creates
a new universe C or NNC polyhedronP, depending on the value ofTopology , with Integer
dimensions.Handle is unified with the handle forP. Thus the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X).

creates the C polyhedron defining the 3-dimensional vector spaceR3 with X bound to a valid handle for
accessing it.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 43

ppl new Polyhedron empty from dimension(+Topology, +Integer, -Handle)
Creates a new empty C or NNC polyhedronP, depending on the value ofTopology , with Integer
dimensions.Handle is unified with the handle forP. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, 3, X).

creates an empty NNC polyhedron embedded inR3 with X bound to a valid handle for accessing it.

ppl new Polyhedron from Polyhedron(+Topology 1, +Handle 1, +Topology -
2, -Handle 2) If Handle 1 refers to a C or NNC polyhedronP1 (depending on the value of
Topology 1), then this creates a copyP2 of P1 with topology C or NNC, depending on the value of
Topology 2. Handle 2 is unified with the handle forP2. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, 3, X),
ppl_new_Polyhedron_from_Polyhedron(c, X, nnc, Y).

creates an empty C polyhedron embedded inR3 referenced byX and then makes a copy, converting the
topology to an NNC polyhedron. withY bound to a valid handle for accessing it.

When usingppl new Polyhedron from Polyhedron/2 , when the source polyhedron is NNC and
the copy is C, care must be taken that the source polyhedron referenced byHandle1 is topologically
closed.

ppl new Polyhedron from constraints(+Topology, +Constraint System,
-Handle) Creates a polyhedronP represented byConstraint System with topology C or
NNC, depending on the value ofTopology . Handle is unified with the handle forP.

ppl new Polyhedron from generators(+Topology, +Generator System,
-Handle) Creates a polyhedronP represented byGenerator System with topology C or
NNC, depending on the value ofTopology . Handle is unified with the handle forP.

ppl new Polyhedron from bounding box(+Topology, +Box, -Handle) Creates a
polyhedronP represented byBox with topology C or NNC, depending on the value ofTopology , and
Handle is unified with the handle forP. A bound of the formo(Rational) can be included in an
interval inBox only if Topology is nnc .

ppl Polyhedron swap(+Handle1, +Handle2) Swaps the polyhedron referenced by
Handle1 with the one referenced byHandle2 . The polyhedraP and Q must have the same
topology.

ppl delete Polyhedron(+Handle) Deletes the polyhedron referenced byHandle . After exe-
cution,Handle is no longer a valid handle for a PPL polyhedron.

ppl Polyhedron space dimension(+Handle, -Integer) Unifies the space dimension of
the polyhedron referenced byHandle with Integer .

ppl Polyhedron get constraints(+Handle, -Constraint System) Unifies
Constraint System with a list of the constraints in the constraints system representing the
polyhedron referenced byHandle .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 44

ppl Polyhedron get minimized constraints(+Handle, -Constraint System)
Unifies Constraint System with a minimized list of the constraints in the constraints system
representing the polyhedron referenced byHandle .

ppl Polyhedron get generators(+Handle, -Generator System) Unifies
Generator System with a list of the generators in the generators system representing the poly-
hedron referenced byHandle .

ppl Polyhedron get minimized generators(+Handle, -Generator System) Uni-
fiesGenerator System with a minimized list of the generators in the generators system representing
the polyhedron referenced byHandle .

ppl Polyhedron relation with constraint(+Handle, +Constraint,
-Relation List) Unifies Relation List with the list of relations the polyhedron refer-
enced byHandle has withConstraint . The possible relations are listed in the grammar rules above;
their meaning is given in SectionOperations on Convex Polyhedra.

ppl Polyhedron relation with generator(+Handle, +Generator, -Relation -
List) UnifiesRelation List with the list of relations the polyhedron referenced byHandle has
with Generator . The possible relations are listed in the grammar rules above; their meaning is given in
SectionOperations on Convex Polyhedra.

ppl Polyhedron get bounding box(+Handle, +Complexity, -Box) Succeeds if and
only if the bounding box of the polyhedron referenced byHandle unifies with the box defined byBox.
E.g.,

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].

Note that the rational numbers inBox are in canonical form. E.g., the following will fail:

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box),
Box = [i(o(minf), c(2/4)), i(o(0), o(pinf))].

The complexity classComplexity determining the algorithm to be used has the following meaning:

• polynomial allows code of the worst-case polynomial complexity class;

• simplex allows code of the worst-case exponential but typically polynomial complexity class;

• any allows code of the universal complexity class.

ppl Polyhedron is empty(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is empty.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 45

ppl Polyhedron is universe(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is the universe.

ppl Polyhedron is bounded(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is bounded.

ppl Polyhedron bounds from above(+Handle, +LinExpr) Succeeds if and only ifLin-
Expr is bounded from above in the polyhedron referenced byHandle .

ppl Polyhedron bounds from below(+Handle, +LinExpr) Succeeds if and only ifLin-
Expr is bounded from below in the polyhedron referenced byHandle .

ppl Polyhedron is topologically closed(+Handle) Succeeds if and only if the polyhe-
dron referenced byHandle is topologically closed.

ppl Polyhedron contains Polyhedron(+Handle 1, +Handle 2) Succeeds if and only
if the polyhedron referenced byHandle 1 is included in or equal to the polyhedron referenced by
Handle 2.

ppl Polyhedron strictly contains Polyhedron(+Handle 1, +Handle 2) Succeeds
if and only if the polyhedron referenced byHandle 1 is included in but not equal to the polyhedron
referenced byHandle 2.

ppl Polyhedron is disjoint from Polyhedron(+Handle 1, +Handle 2) Succeeds if
and only if the polyhedron referenced byHandle 1 is disjoint from the polyhedron referenced by
Handle 2.

ppl Polyhedron equals Polyhedron(+Handle 1, +Handle 2) Succeeds if and only if
the polyhedron referenced byHandle 1 is equal to the polyhedron referenced byHandle 2.

ppl Polyhedron OK(+Handle) Succeeds only if the polyhedron referenced byHandle is well
formed, i.e., if it satisfies all its implementation invariants. Useful for debugging purposes.

ppl Polyhedron add constraint(+Handle, +Constraint)

ppl Polyhedron add constraint and minimize(+Handle, +Constraint) Updates
the polyhedron referenced byHandle to one obtained by addingConstraint to its constraint system.
Thus, the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handleX to consist of the set of points in the vector spaceR3 satisfying
the constraint4x + y − 2z >= 5.

Note thatppl Polyhedron add constraint and minimize/2 will fail if, after adding the con-
straint, the polyhedron is empty.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 46

ppl Polyhedron add generator(+Handle, +Generator)

ppl Polyhedron add generator and minimize(+Handle, +Generator) Updates the
polyhedron referenced byHandle to one obtained by addingGenerator to its generator system. Thus,
after the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handleX to be the single point(−12.5,−0.625, 0)T in the vector space
R3.

ppl Polyhedron add constraints(+Handle, +Constraint System) Updates the poly-
hedron referenced byHandle to one obtained by adding to its constraint system the constraints in
Constraint System . E.g.,

| ?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = ’$VAR’(0), B = ’$VAR’(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1]),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referenced byHandle can be empty and a query will succeed even when
Constraint System is unsatisfiable.

ppl Polyhedron add constraints and minimize(+Handle, +Constraint System)
Updates the polyhedron referenced byHandle to one obtained by adding to its constraint system the
constraints inConstraint System . E.g.,

?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = ’$VAR’(0), B = ’$VAR’(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1]),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]

This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_dimension(c, 2, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A = 0, B =< 0]),
ppl_Polyhedron_get_constraints(X, CS).

ppl Polyhedron add generators(+Handle, +Generator System) Updates the polyhe-
dron referenced byHandle to one obtained by adding to its generator system the generators in
Generator System .

If the system of generators representing a polyhedron is non-empty, then it must include a point (see the
paragraph on generator representation in SectionRepresentations of Convex Polyhedra). Thus care must
be taken to ensure that, before calling this predicate, either the polyhedron referenced byHandle is non-
empty or that wheneverGenerator System is non-empty the first element defines a point. E.g.,

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 47

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

ppl Polyhedron add generators and minimize(+Handle, +Generator System)
Updates the polyhedron referenced byHandle to one obtained by adding to its generator system the
generators inGenerator System .

Unlike the predicateppl add generators , the order of the generators inGenerator System is not
important. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]

ppl Polyhedron intersection assign(+Handle 1, +Handle 2)

ppl Polyhedron intersection assign and minimize(+Handle 1, +Handle 2) As-
signs to the polyhedron referenced byHandle 1 its intersection with the polyhedra referenced by
Handle 2.

ppl Polyhedron poly hull assign(+Handle 1, +Handle 2)

ppl Polyhedron poly hull assign and minimize(+Handle 1, +Handle 2) Assigns
to the polyhedron referenced byHandle 1 its poly-hull with the polyhedra referenced byHandle 2.

ppl Polyhedron poly difference assign(+Handle 1, +Handle 2) Assigns to the
polyhedron referenced byHandle 1 its poly-difference with the polyhedron referenced byHandle 2.

ppl Polyhedron affine image(+Handle, +PPL Var, +LinExpr, +Integer) Trans-
forms the polyhedron referenced byHandle assigning the affine expressionLinExpr /Integer to
PPL Var .

ppl Polyhedron affine preimage(+Handle, +PPL Var, +LinExpr, +Integer)
This is the inverse transformation to that forppl affine image .

ppl Polyhedron generalized affine image(+Handle, +PPL Var, +Relation -
Symbol +LinExpr, +Integer) Transforms the polyhedron referenced byHandle assigning
the generalized affine image with respect to the transfer functionPPL Var Relation Symbol
LinExpr /Integer .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 48

ppl Polyhedron generalized affine image lhs rhs(+Handle, +LinExpr1,
+Relation Symbol +LinExpr2) Transforms the polyhedron referenced byHandle assign-
ing the generalized affine image with respect to the transfer functionLinExpr1 Relation Symbol
LinExpr2 .

ppl Polyhedron time elapse assign(+Handle 1, +Handle 2) Assigns to the polyhe-
dronP referenced byHandle 1 the time-elapse(P ↗ Q) with the polyhedraQ referenced byHandle -
2.

ppl Polyhedron BHRZ03widening assign with token(+Handle 1, +Handle 2,
?Integer) The polyhedra referenced byHandle 1 and Handle 2 are unaltered. The token
Integer is 0 if a BHRZ03 widening would have changed the polyhedron referenced byHandle 1 and
is 1 otherwise.

ppl Polyhedron BHRZ03widening assign(+Handle 1, +Handle 2) Assigns to the
polyhedron referenced byHandle 1 its BHRZ03-widening with the polyhedra referenced byHandle 2.

ppl Polyhedron limited BHRZ03extrapolation assign with token(+Handle 1,
+Handle 2, +Constraint System, ?Integer) The polyhedra referenced byHandle 1 and
Handle 2 are unaltered. The tokenInteger is 0 if a BHRZ03-widening with the polyhedra referenced
by Handle 2, improved by enforcing those constraints inConstraint System would have changed
the polyhedron referenced byHandle 1 and is 1 otherwise.

ppl Polyhedron limited BHRZ03extrapolation assign(+Handle 1, +Handle 2,
+Constraint System) Assigns to the polyhedronP referenced byHandle 1 the result of its
BHRZ03-widening with the polyhedra referenced byHandle 2, improved by enforcing those constraints
in Constraint System .

ppl Polyhedron bounded BHRZ03extrapolation assign with token(+Handle 1,
+Handle 2, +Constraint System, ?Integer) The polyhedronP1 and P2 referenced by
Handle 1 andHandle 2, respectively are unaltered. The tokenInteger is 0 if a BHRZ03-widening
with P2 , improved by enforcing all the constraints of the form±x ≤ r and±x < r that are satisfied
by all the points ofP1 together with the constraints inConstraint System would have changed the
polyhedron referenced byHandle 1 and is 1 otherwise.

ppl Polyhedron bounded BHRZ03extrapolation assign(+Handle 1, +Handle 2,
+Constraint System) Assigns to the polyhedronP referenced byHandle 1 the result of its
BHRZ03-widening with the polyhedra referenced byHandle 2 improved by enforcing all the constraints
of the form±x ≤ r and±x < r that are satisfied by all the points ofP together with the constraints in
Constraint System .

ppl Polyhedron H79 widening assign with token(+Handle 1, +Handle 2,
?Integer) The polyhedra referenced byHandle 1 and Handle 2 are unaltered. The token
Integer is 0 if an H79 widening would have changed the polyhedron referenced byHandle 1 and is 1
otherwise.

ppl Polyhedron H79 widening assign(+Handle 1, +Handle 2) Assigns to the polyhe-
dron referenced byHandle 1 its H79-widening with the polyhedra referenced byHandle 2.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 49

ppl Polyhedron limited H79 extrapolation assign with token(+Handle 1,
+Handle 2, +Constraint System, ?Integer) The polyhedra referenced byHandle 1 and
Handle 2 are unaltered. The tokenInteger is 0 if a H79-widening with the polyhedra referenced by
Handle 2, improved by enforcing those constraints inConstraint System would have changed the
polyhedron referenced byHandle 1 and is 1 otherwise.

ppl Polyhedron limited H79 extrapolation assign(+Handle 1, +Handle 2,
+Constraint System) Assigns to the polyhedronP referenced byHandle 1 its H79-widening
with the polyhedra referenced byHandle 2, improved by enforcing those constraints inConstraint -
System .

ppl Polyhedron bounded H79 extrapolation assign with token(+Handle 1,
+Handle 2, +Constraint System, ?Integer) The polyhedronP1 and P2 referenced by
Handle 1 andHandle 2, respectively are unaltered. The tokenInteger is 0 if a H79-widening with
P2 , improved by enforcing all the constraints of the form±x ≤ r and±x < r that are satisfied by all the
points ofP1 together with the constraints inConstraint System would have changed the polyhedron
referenced byHandle 1 and is 1 otherwise.

ppl Polyhedron bounded H79 extrapolation assign(+Handle 1, +Handle 2,
+Constraint System) Assigns to the polyhedronP referenced byHandle 1 the result of its
H79-widening with the polyhedra referenced byHandle 2 improved by enforcing all the constraints of
the form±x ≤ r and±x < r that are satisfied by all the points ofP together with the constraints in
Constraint System .

ppl Polyhedron topological closure assign(+Handle) Assigns to the polyhedron ref-
erenced byHandle its topological closure.

ppl Polyhedron add dimensions and embed(+Handle, +Integer) Embeds the poly-
hedron referenced byHandle in a space that is enlarged byInteger dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [],
GS = [point(0),line(1*A),line(1*B)]

ppl Polyhedron add dimensions and project(+Handle, +Integer) Projects the
polyhedron referenced byHandle onto a space that is enlarged byInteger dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [1*A = 0, 1*B = 0],
GS = [point(0)]

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 50

ppl Polyhedron concatenate assign(+Handle1, +Handle2) Updates the polyhedron
P1 referenced byHandle1 by first embeddingP1 in a new space enlarged by the space dimensions
of the polyhedronP2 referenced byHandle2 , and then adds to its system of constraints a renamed-apart
version of the constraints ofP2.

E.g.,

?- ppl_new_Polyhedron_from_dimension(nnc, 2, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
D = ’$VAR’(3), E = ’$VAR’(4),
ppl_new_Polyhedron_from_constraints(nnc, [A > 1, B >= 0, C >= 0], Y),
ppl_Polyhedron_concatenate_assign(X, Y),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= 0]

ppl Polyhedron remove dimensions(+Handle, +List of PPL Vars) Removes the di-
mensions given by the identifiers of the PPL variables in listList of PPL Vars from the polyhedron
referenced byHandle . The identifiers for the remaining PPL variables are renumbered so that they are
consecutive and the maximum index is less than the number of dimensions. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_remove_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K = 2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl Polyhedron remove higher dimensions(+Handle, +Integer)) Projects the the
polyhedron referenced to byHandle onto the firstInteger dimension. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 5, X),
ppl_Polyhedron_remove_higher_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

ppl Polyhedron map dimensions(+Handle, +P Func)) Maps the dimensions of the poly-
hedron referenced byHandle using the partial function defined byP Func . The result is undefined if
P Func does not encode a partial function with the properties described in thespecification of the map-
ping operator.

6.4.3 Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

In the sequel,prefix is the prefix under which you have installed the library (typically/usr or
/usr/local).

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library adding-DPROLOGTRACKALLOCATIONto the
options passed to the C++ compiler. Your configure command would then look like

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 51

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

6.4.4 System-Dependent Features

CIAO Prolog Support for CIAO Prolog is under development and will be available in a future release.
Only Ciao Prolog 1.9 #44 or later is supported.

GNU Prolog The GNU Prolog interface to the PPL library is available both as “PPL enhanced” GNU
Prolog interpreter and as a library that can be linked to GNU Prolog programs. Only GNU Prolog version
1.2.12 or later is supported.

Notice that GNU Prolog version 1.2.12 suffers from a serious limitation as far as for-
eign code is concerned. In order to be safe you must configure GNU Prolog with the
--disable-ebp option (note that this has a negative effect on performance). See
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001777.html ,
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001780.html ,
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001788.html and
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001789.html for more
information.

We have experienced other serious problems with the GNU Pro-
log interface, up to and including GNU Prolog version 1.2.16: see
http://www.cs.unipr.it/pipermail/ppl-devel/2002-October/002657.html
for more information.

The ppl gprolog Executable If an appropriate version of GNU Prolog is installed on the machine on
which you compiled the library, the commandmake install will install the executableppl gprolog
in the directoryprefix/bin . Theppl gprolog executable is simply the GNU Prolog interpreter with
the Parma Polyhedra library linked in. The only thing you should do to use the library is to callppl -
initialize/0 before any other PPL predicate and to callppl finalize/0 when you are done with
the library.

Linking the Library To GNU Prolog Programs In order to allow linking GNU Prolog programs to the
PPL, the following files are installed in the directoryprefix/lib/ppl : ppl gprolog.pl contains
the required foreign declarations;libppl gprolog. ∗ contain the executable code for the GNU Prolog
interface in various formats (static library, shared library, libtool library). If your GNU Prolog program
is constituted by, say,source1.pl andsource2.pl and you want to create the executablemyprog ,
your compilation command may look like

gplc -o myprog prefix/lib/ppl/ppl_gprolog.pl source1.pl source2.pl \
-L ’-Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmpxx -lgmp -lstdc++’

SICStus Prolog The SICStus Prolog interface to the PPL library is available both as a statically linked
module or as a dynamically linked one. Only SICStus Prolog version 3.9.0 or later is supported.

The Statically Linked ppl sicstus Executable If an appropriate version of SICStus Prolog is in-
stalled on the machine on which you compiled the library, the commandmake install will install the
executableppl sicstus in the directoryprefix/bin . Theppl sicstus executable is simply the
SICStus Prolog system with the Parma Polyhedra library statically linked. The only thing you should do to
use the library is to loadprefix/lib/ppl/ppl sicstus.pl .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages 52

Loading the SICStus Interface Dynamically In order to dynamically load the library from SICStus Pro-
log you should simply loadprefix/lib/ppl/ppl sicstus.pl . Notice that, for dynamic linking
to work, you should have configured the library with the--enable-shared option.

SWI-Prolog The SWI-Prolog interface of the library is available both as a statically linked module or as
a dynamically linked one. Only SWI-Prolog version 5.0 or later is supported.

The ppl pl Executable If an appropriate version of SWI-Prolog is installed on the machine on which
you compiled the library, the commandmake install will install the executableppl pl in the direc-
tory prefix/bin . Theppl pl executable is simply the SWI-Prolog shell with the Parma Polyhedra
library statically linked: from withinppl pl all the services of the library are available without further
action.

Loading the SWI-Prolog Interface Dynamically In order to dynamically load the library from SWI-
Prolog you should simply loadprefix/lib/ppl/ppl swiprolog.pl . This will invoke ppl -
initialize/0 automatically but, at least for SWI-Prolog versions up to 5.0.7, it is the programmer’s
responsibility to callppl finalize/0 . Alternatively, you can load the library directly with

:- load_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

This will call ppl initialize/0 automatically. Analogously,

:- unload_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

will, as part of the unload process, invokeppl finalize/0 .

Notice that, for dynamic linking to work, you should have configured the library with the
--enable-shared option.

XSB The XSB Prolog interface to the PPL library is available as a dynamically linked
module. Only CVS versions of XSB from August 2002 onward are supported. See
http://www.cs.unipr.it/pipermail/ppl-devel/2002-July/002201.html for infor-
mation about a bug in XSB 2.5 that has bitten several people.

In order to dynamically load the library from XSB you should load theppl xsb module and import the
predicates you need. For things to work, you may have to copy the filesprefix/lib/ppl/ppl xsb.O
andprefix/lib/ppl/ppl xsb.so in your current directory or in one of the XSB library directories.

YAP The YAP Prolog interface to the PPL library is available as a dynamically linked module. Only
YAP version 4.4 or later is supported.

In order to dynamically load the library from YAP you should simply loadprefix/lib/ppl/ppl -
yap.pl . This will invoke ppl initialize/0 automatically; it is the programmer’s responsibility to
call ppl finalize/0 when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with the--enable-shared option.

6.5 PPL License Pages

6.5.1 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages 53

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a ”work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages 54

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages 55

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages 56

to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and ”any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 PPL Namespace Documentation 57

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands‘show w’ and‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than‘show w’ and
‘show c’ ; they could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copy-
right disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

7 PPL Namespace Documentation

7.1 Parma Polyhedra Library Namespace Reference

The entire library is confined into this namespace.

Compounds

• classVariable

A dimension of the space.

• structVariable::Compare

Binary predicate defining the total ordering on variables.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 Parma Polyhedra Library Namespace Reference 58

• classLinExpression

A linear expression.

• classConstraint

A linear equality or inequality.

• classGenerator

A line, ray, point or closure point.

• classPoly Con Relation

The relation between a polyhedron and a constraint.

• classPoly Gen Relation

The relation between a polyhedron and a generator.

• classPolyhedron

The base class for convex polyhedra.

• classC Polyhedron

A closed convex polyhedron.

• classNNC Polyhedron

A not necessarily closed convex polyhedron.

• classDeterminate

Wrap a polyhedron class into a determinate constraint system interface.

• classPowerSet

The powerset construction on constraint systems.

Typedefs

• typedef mpzclassInteger

See the GMP’s manual available athttp://swox.com/gmp/ .

• typedef std::set< Variable, Variable::Compare > Variables Set

An std::set containing variables in increasing order of dimension index.

Functions

• const char∗ version ()

Returns a character string containing the PPL version.

• const char∗ banner ()

Returns a character string containing information about the PPL version, the licensing, the lack of any
warranty whatsoever, the C++ compiler used to build the library, where to report bugs and where to look
for further information.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 Parma Polyhedra Library::IO Operators Namespace Reference 59

• template<typename PH> std::pair< PH, PowerSet< Determinate< NNC Polyhedron > > >
linear partition (const PH &p, const PH &q)

Partitionsq with respect top.

7.1.1 Detailed Description

The entire library is confined into this namespace.

7.1.2 Function Documentation

7.1.2.1 template<typename PH> std::pair < PH, PowerSet< Determinate< NNC Polyhedron> >
> Parma Polyhedra Library::linear partition (const PH & p, const PH & q)

Partitionsq with respect top.

Let p and q be two polyhedra. The function returns an objectr of type std::pair <PH, Power-
Set<Determinate<NNC Polyhedron> > > such that

• r.first is the intersection ofp andq;

• r.second has the property that all its elements are not empty, pairwise disjoint, and disjoint from
p;

• the union ofr.first with all the elements ofr.second givesq (i.e., r is the representation of a
partition ofq).

7.2 Parma Polyhedra Library::IO Operators Namespace Reference

All input/output operators are confined into this namespace.

7.2.1 Detailed Description

All input/output operators are confined into this namespace.

This is done so that the library’s input/output operators do not interfere with those the user might want
to define. In fact, it is highly unlikely that any pre-defined I/O operator will suit the needs of a client
application. On the other hand, those applications for which the PPL I/O operator are enough can easily
obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::IO_Operators;

would suffice for most uses. In more complex situations, such as

const ConSys& cs = ...;
copy(cs.begin(), cs.end(),

ostream_iterator<Constraint>(cout, "\n"));

theParma Polyhedra Library namespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
// Import all the output operators into the main PPL namespace.
using IO_Operators::operator<<;

}

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 std Namespace Reference 60

7.3 std Namespace Reference

The standard C++ namespace.

7.3.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library templates swap() and iterswap() (25.2.2, [lib.alg.swap]).

8 PPL Class Documentation

8.1 C Polyhedron Class Reference

A closed convex polyhedron.

InheritsPolyhedron.

Public Member Functions

• C Polyhedron (dimensiontype numdimensions=0,DegenerateKind kind=UNIVERSE)

Builds either the universe or the empty C polyhedron.

• C Polyhedron (const ConSys &cs)

Builds a C polyhedron from a system of constraints.

• C Polyhedron (ConSys &cs)

Builds a C polyhedron recycling a system of constraints.

• C Polyhedron (const GenSys &gs)

Builds a C polyhedron from a system of generators.

• C Polyhedron (GenSys &gs)

Builds a C polyhedron recycling a system of generators.

• C Polyhedron (constNNC Polyhedron&y)

Builds a C polyhedron from the NNC polyhedrony .

• template<typename Box> C Polyhedron (const Box &box, FromBoundingBox dummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

• C Polyhedron (const CPolyhedron &y)

Ordinary copy-constructor.

• C Polyhedron &operator= (const CPolyhedron &y)

The assignment operator. (∗this andy can be dimension-incompatible.).

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C Polyhedron Class Reference 61

• ∼C Polyhedron ()

Destructor.

8.1.1 Detailed Description

A closed convex polyhedron.

An object of the classC Polyhedron represents atopologically closedconvex polyhedron in the vector
spaceRn.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains astrict inequalityconstraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containing aclosure point.

Note:
Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the classNNC Polyhedron, the precise topological closure test
will be performed.

8.1.2 Constructor & Destructor Documentation

8.1.2.1 CPolyhedron::C Polyhedron (dimensiontype num dimensions= 0, DegenerateKind kind
= UNIVERSE) [explicit]

Builds either the universe or the empty C polyhedron.

Parameters:
num dimensionsThe number of dimensions of the vector space enclosing the C polyhedron.

kind Specifies whether a universe or an empty C polyhedron should be built.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

8.1.2.2 CPolyhedron::C Polyhedron (const ConSys &cs)

Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid argument thrown if the system of constraints contains strict inequalities.

8.1.2.3 CPolyhedron::C Polyhedron (ConSys &cs)

Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C Polyhedron Class Reference 62

Parameters:
cs The system of constraints defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

Exceptions:
std::invalid argument thrown if the system of constraints contains strict inequalities.

8.1.2.4 CPolyhedron::C Polyhedron (const GenSys &gs)

Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron.

Exceptions:
std::invalid argument thrown if the system of generators is not empty but has no points, or if it

contains closure points.

8.1.2.5 CPolyhedron::C Polyhedron (GenSys &gs)

Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

Exceptions:
std::invalid argument thrown if the system of generators is not empty but has no points, or if it

contains closure points.

8.1.2.6 CPolyhedron::C Polyhedron (const NNCPolyhedron & y) [explicit]

Builds a C polyhedron from the NNC polyhedrony .

Exceptions:
std::invalid argument thrown if the polyhedrony is not topologically closed.

8.1.2.7 template<typename Box> C Polyhedron::C Polyhedron (const Box & box, From -
Bounding Box dummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: template<typename Box> Polyhedron::Polyhedron(Topology topol, const
Box& box);

Parameters:
box The bounding box representing the polyhedron to be built.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Constraint Class Reference 63

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:
std::invalid argument thrown if box has intervals that are not topologically closed (i.e., having some

finite but open bounds).

8.2 Constraint Class Reference

A linear equality or inequality.

Public Types

• enumType { EQUALITY , NONSTRICT INEQUALITY , STRICT INEQUALITY }
The constraint type.

Public Member Functions

• Constraint (const Constraint &c)

Ordinary copy-constructor.

• ∼Constraint ()

Destructor.

• Constraint &operator= (const Constraint &c)

Assignment operator.

• dimensiontypespacedimension() const

Returns the dimension of the vector space enclosing∗this .

• Type type () const

Returns the constraint type of∗this .

• bool is equality () const

Returnstrue if and only if∗this is an equality constraint.

• bool is inequality () const

Returnstrue if and only if∗this is an inequality constraint (either strict or non-strict).

• bool is nonstrict inequality () const

Returnstrue if and only if∗this is a non-strict inequality constraint.

• bool is strict inequality () const

Returnstrue if and only if∗this is a strict inequality constraint.

• constInteger & coefficient(Variable v) const

Returns the coefficient ofv in ∗this .

• constInteger & inhomogeneousterm () const

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Constraint Class Reference 64

Returns the inhomogeneous term of∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

• const Constraint &zero dim false()

The unsatisfiable (zero-dimension space) constraint0 = 1.

• const Constraint &zero dim positivity ()

The true (zero-dimension space) constraint0 ≤ 1, also known aspositivity constraint.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, const Constraint &c)

Output operator.

• Constraintoperator== (constLinExpression &e1, constLinExpression &e2)

Returns the constrainte1 = e2 .

• Constraintoperator== (constLinExpression &e, constInteger &n)

Returns the constrainte = n.

• Constraintoperator== (constInteger &n, constLinExpression &e)

Returns the constraintn = e.

• Constraintoperator<= (constLinExpression &e1, constLinExpression &e2)

Returns the constrainte1 <= e2 .

• Constraintoperator<= (constLinExpression &e, constInteger &n)

Returns the constrainte <= n.

• Constraintoperator<= (constInteger &n, constLinExpression &e)

Returns the constraintn <= e.

• Constraintoperator>= (constLinExpression &e1, constLinExpression &e2)

Returns the constrainte1 >= e2 .

• Constraintoperator>= (constLinExpression &e, constInteger &n)

Returns the constrainte >= n.

• Constraintoperator>= (constInteger &n, constLinExpression &e)

Returns the constraintn >= e.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Constraint Class Reference 65

• Constraintoperator< (constLinExpression &e1, constLinExpression &e2)

Returns the constrainte1 < e2 .

• Constraintoperator< (constLinExpression &e, constInteger &n)

Returns the constrainte < n.

• Constraintoperator< (constInteger &n, constLinExpression &e)

Returns the constraintn < e.

• Constraintoperator> (constLinExpression &e1, constLinExpression &e2)

Returns the constrainte1 > e2 .

• Constraintoperator> (constLinExpression &e, constInteger &n)

Returns the constrainte > n.

• Constraintoperator> (constInteger &n, constLinExpression &e)

Returns the constraintn > e.

• void swap(ParmaPolyhedraLibrary::Constraint &x, ParmaPolyhedraLibrary::Constraint &y)

Specializesstd::swap .

8.2.1 Detailed Description

A linear equality or inequality.

An object of the classConstraint is either:

• an equality:
∑n−1

i=0 aixi + b = 0;

• a non-strict inequality:
∑n−1

i=0 aixi + b ≥ 0; or

• a strict inequality:
∑n−1

i=0 aixi + b > 0;

wheren is the dimension of the space,ai is the integer coefficient of variablexi and b is the integer
inhomogeneous term.

How to build a constraint
Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equality (==), non-strict inequalities (>= and<=) and strict inequalities (< and
>). The space-dimension of a constraint is defined as the maximum space-dimension of the arguments
of its constructor.

In the following examples it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constraint3x + 5y − z = 0, having space-dimension3:

Constraint eq_c(3*x + 5*y - z == 0);

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Constraint Class Reference 66

The following code builds the (non-strict) inequality constraint4x ≥ 2y−13, having space-dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);

The corresponding strict inequality constraint4x > 2y − 13 is obtained as follows:

Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension spaceR0 can be specified as follows:

Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_c1(LinExpression::zero() == 1);
Constraint false_c2(LinExpression::zero() >= 1);
Constraint false_c3(LinExpression::zero() > 0);

In contrast, the following code defines an unsatisfiable constraint having space-dimension3:

Constraint false_c(0*z == 1);

How to inspect a constraint
Several methods are provided to examine a constraint and extract all the encoded information: its
space-dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this casex− 5y + 3z <= 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraintx− 5y + 3z > 4).

Constraint c1(x - 5*y + 3*z <= 4);
cout << "Constraint c1: " << c1 << endl;
if (c1.is_equality())

cout << "Constraint c1 is not an inequality." << endl;
else {

LinExpression e;
for (int i = c1.space_dimension() - 1; i >= 0; i--)

e += c1.coefficient(Variable(i)) * Variable(i);
e += c1.inhomogeneous_term();
Constraint c2 = c1.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c2 << endl;

}

The actual output is the following:

Constraint c1: -A + 5*B - 3*C >= -4
Complement c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

8.2.2 Member Enumeration Documentation

8.2.2.1 enum ParmaPolyhedra Library::Constraint::Type

The constraint type.

Enumeration values:
EQUALITY The constraint is an equality.

NONSTRICT INEQUALITY The constraint is a non-strict inequality.

STRICT INEQUALITY The constraint is a strict inequality.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 Determinate< PH > Class Template Reference 67

8.2.3 Member Function Documentation

8.2.3.1 const Integer& Constraint::coefficient (Variablev) const

Returns the coefficient ofv in ∗this .

Exceptions:
std::invalid argument thrown if the index ofv is greater than or equal to the space-dimension of

∗this .

8.3 Determinate< PH > Class Template Reference

Wrap a polyhedron class into a determinate constraint system interface.

Public Member Functions

• dimensiontypespacedimension() const

Returns the dimension of the vector space enclosing∗this .

• const ConSys &constraints () const

Returns the system of constraints.

• const ConSys &minimized constraints () const

Returns the system of constraints, with no redundant constraint.

• const GenSys &generators() const

Returns the system of generators.

• const GenSys &minimized generators() const

Returns the system of generators, with no redundant generator.

• void add constraint (constConstraint &c)

Intersects∗this with (a copy of) constraintc .

• void add constraints (ConSys &cs)

Intersects∗this with the constraints incs .

• void add dimensionsand embed(dimensiontype m)

Addsmnew dimensions and embeds the old polyhedron into the new space.

• void add dimensionsand project (dimensiontype m)

Addsmnew dimensions to the polyhedron and does not embed it in the new space.

• void remove dimensions(constVariables Set&to be removed)

Removes all the specified dimensions.

• void remove higher dimensions(dimensiontype newdimension)

Removes the higher dimensions so that the resulting space will have dimensionnew dimension .

• void H79 widening assign(const Determinate &y)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 Determinate< PH > Class Template Reference 68

Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

• void limited H79 extrapolation assign(const Determinate &y, ConSys &cs)

Limits theH79-widening computation between∗this andy by enforcing constraintscs and assigns the
result to∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Friends

• booloperator== (const Determinate< PH> &x, const Determinate< PH> &y)

Returnstrue if and only ifx andy are the same polyhedron.

• booloperator!= (const Determinate< PH> &x, const Determinate< PH> &y)

Returnstrue if and only ifx andy are different polyhedra.

• bool lcompare (const Determinate &x, const Determinate &y)

Related Functions

(Note that these are not member functions.)

• Determinate< PH> operator+ (const Determinate< PH> &x, const Determinate< PH> &y)
• Determinate< PH> operator ∗ (const Determinate< PH> &x, const Determinate< PH> &y)
• std::ostream &operator<< (std::ostream &, const Determinate< PH> &)

8.3.1 Detailed Description

template<typename PH> class Determinate< PH >

Wrap a polyhedron class into a determinate constraint system interface.

8.3.2 Member Function Documentation

8.3.2.1 template<typename PH> void Determinate< PH >::add constraint (const Constraint & c)

Intersects∗this with (a copy of) constraintc .

Exceptions:
std::invalid argument thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 Determinate< PH > Class Template Reference 69

8.3.2.2 template<typename PH> void Determinate< PH >::add constraints (ConSys &cs)

Intersects∗this with the constraints incs .

Parameters:
cs The constraints to intersect with. This parameter is not declaredconst because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

8.3.2.3 template<typename PH> void Determinate< PH >::remove dimensions (const Variables-
Set & to be removed)

Removes all the specified dimensions.

Parameters:
to be removedThe set ofVariable objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid argument thrown if ∗this is dimension-incompatible with one of theVariable objects

contained into be removed .

8.3.2.4 template<typename PH> void Determinate< PH >::remove higher dimensions (dimen-
sion type new dimension)

Removes the higher dimensions so that the resulting space will have dimensionnew dimension .

Exceptions:
std::invalid argument thrown if new dimensions is greater than the space dimension of∗this .

8.3.2.5 template<typename PH> void Determinate< PH >::H79 widening assign (const
Determinate< PH > & y)

Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

Parameters:
y A polyhedron thatmustbe contained in∗this .

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.3.2.6 template<typename PH> void Determinate< PH >::limited H79 extrapolation assign
(const Determinate< PH > & y, ConSys &cs)

Limits theH79-wideningcomputation between∗this andy by enforcing constraintscs and assigns the
result to∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 70

cs The system of constraints that limits the widened polyhedron. It is not declaredconst because it
can be modified.

Exceptions:
std::invalid argument thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

8.3.3 Friends And Related Function Documentation

8.3.3.1 template<typename PH> bool operator== (const Determinate< PH > & x, const
Determinate< PH > & y) [friend]

Returnstrue if and only if x andy are the same polyhedron.

<PH>

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.3.3.2 template<typename PH> bool operator!= (const Determinate< PH > & x, const
Determinate< PH > & y) [friend]

Returnstrue if and only if x andy are different polyhedra.

<PH>

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.3.3.3 template<typename PH> bool lcompare (const Determinate< PH > & x, const
Determinate< PH > & y) [friend]

<PH>

8.3.3.4 template<typename PH> Determinate< PH > operator+ (const Determinate< PH > & x,
const Determinate< PH > & y) [related]

<PH>

8.3.3.5 template<typename PH> Determinate< PH > operator ∗ (const Determinate< PH > & x,
const Determinate< PH > & y) [related]

<PH>

8.3.3.6 template<typename PH> std::ostream & operator<< (std::ostream &, const
Determinate< PH > &) [related]

<PH>

8.4 Generator Class Reference

A line, ray, point or closure point.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 71

Public Types

• enumType { LINE , RAY , POINT , CLOSURE POINT }
The generator type.

Public Member Functions

• Generator (const Generator &g)

Ordinary copy-constructor.

• ∼Generator ()

Destructor.

• Generator &operator= (const Generator &g)

Assignment operator.

• dimensiontypespacedimension() const

Returns the dimension of the vector space enclosing∗this .

• Type type () const

Returns the generator type of∗this .

• bool is line () const

Returnstrue if and only if∗this is a line.

• bool is ray () const

Returnstrue if and only if∗this is a ray.

• bool is point () const

Returnstrue if and only if∗this is a point.

• bool is closure point () const

Returnstrue if and only if∗this is a closure point.

• constInteger & coefficient(Variable v) const

Returns the coefficient ofv in ∗this .

• constInteger & divisor () const

If ∗this is either a point or a closure point, returns its divisor.

• boolOK () const

Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 72

Static Public Member Functions

• Generatorline (constLinExpression &e)

Shorthand forGenerator Generator::line(const LinExpression& e).

• Generatorray (constLinExpression &e)

Shorthand forGenerator Generator::ray(const LinExpression& e).

• Generatorpoint (const LinExpression &e=LinExpression::zero(), constInteger &d=Integer-
one())

Shorthand forGenerator Generator::point(const LinExpression& e, const Integer& d).

• Generator closure point (const LinExpression &e=LinExpression::zero(), constInteger
&d=Integerone())

Shorthand forGenerator Generator::closure point(const LinExpression& e, const Integer& d).

• const Generator &zero dim point ()

Returns the origin of the zero-dimensional spaceR0.

• const Generator &zero dim closure point ()

Returns, as a closure point, the origin of the zero-dimensional spaceR0.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, const Generator &g)

Output operator.

• void swap(ParmaPolyhedraLibrary::Generator &x, ParmaPolyhedraLibrary::Generator &y)

Specializesstd::swap .

8.4.1 Detailed Description

A line, ray, point or closure point.

An object of the classGenerator is one of the following:

• a linel = (a0, . . . , an−1)T;

• a rayr = (a0, . . . , an−1)T;

• a pointp = (a0
d , . . . , an−1

d)T;

• a closure pointc = (a0
d , . . . , an−1

d)T;

wheren is the dimension of the space and, for points and closure points,d > 0 is the divisor.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 73

A note on terminology.
As observed in SectionRepresentations of Convex Polyhedra, there are cases when, in order to
represent a polyhedronP using the generator systemG = (L,R, P, C), we need to include in the
finite setP even points ofP that arenot vertices ofP. This situation is even more frequent when
working with NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other
libraries use the word ‘vertex’.

How to build a generator.
Each type of generator is built by applying the corresponding function (line , ray , point or
closure point) to a linear expression, representing a direction in the space; the space-dimension
of the generator is defined as the space-dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply
ignored). When defining points and closure points, an optional Integer argument can be used as a
commondivisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds a line with directionx− y − z and having space-dimension3:

Generator l = line(x - y - z);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator l = line(x - y - z + 15);

By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator l = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the pointp = (1, 0, 2)T ∈ R3:

Generator p = point(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

Generator p = point(x + 2*z);

Similarly, the origin0 ∈ R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, namely0 ∈ R2:

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 74

Generator origin2 = point(0*y);

The following two lines of code both define the only point having space-dimension zero, namely
0 ∈ R0. In the second case we exploit the fact that the first argument of the functionpoint is
optional.

Generator origin0 = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4
The pointp specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the functionpoint (the divisor):

Generator p = point(2*x + 0*y + 4*z, 2);

Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-
nal) coordinates. For instance, the pointq = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5
Closures points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure pointc = (1, 0, 2)T ∈ R3 is defined by

Generator c = closure_point(1*x + 0*y + 2*z);

For the particular case of the (only) closure point having space-dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

How to inspect a generator
Several methods are provided to examine a generator and extract all the encoded information: its
space-dimension, its type and the value of its integer coefficients.

Example 6
The following code shows how it is possible to access each single coefficient of a generator. Ifg1
is a point having coordinates(a0, . . . , an−1)T, we construct the closure pointg2 having coordinates
(a0, 2a1, . . . , (i + 1)ai, . . . , nan−1)T.

if (g1.is_point()) {
cout << "Point g1: " << g1 << endl;
LinExpression e;
for (int i = g1.space_dimension() - 1; i >= 0; i--)

e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, g1.divisor());
cout << "Closure point g2: " << g2 << endl;

}
else

cout << "Generator g1 is not a point." << endl;

Therefore, for the point

Generator g1 = point(2*x - y + 3*z, 2);

we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the notion ofcoefficientwith the notion
of coordinate: these are equivalent only when the divisor of the (closure) point is 1.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 75

8.4.2 Member Enumeration Documentation

8.4.2.1 enum ParmaPolyhedra Library::Generator::Type

The generator type.

Enumeration values:
LINE The generator is a line.

RAY The generator is a ray.

POINT The generator is a point.

CLOSURE POINT The generator is a closure point.

8.4.3 Member Function Documentation

8.4.3.1 Generator line (const LinExpression &e) [static]

Shorthand forGenerator Generator::line(const LinExpression& e).

Exceptions:
std::invalid argument thrown if the homogeneous part ofe represents the origin of the vector space.

8.4.3.2 Generator ray (const LinExpression &e) [static]

Shorthand forGenerator Generator::ray(const LinExpression& e).

Exceptions:
std::invalid argument thrown if the homogeneous part ofe represents the origin of the vector space.

8.4.3.3 Generator point (const LinExpression &e = LinExpression::zero(), const Integer & d =
Integer one()) [static]

Shorthand forGenerator Generator::point(const LinExpression& e, const Integer& d).

Both e andd are optional arguments, with default valuesLinExpression::zero() and Integerone(), re-
spectively.

Exceptions:
std::invalid argument thrown if d is zero.

8.4.3.4 Generator closurepoint (const LinExpression & e= LinExpression::zero(), const Integer &
d = Integer one()) [static]

Shorthand forGenerator Generator::closure point(const LinExpression& e, const Integer& d).

Both e andd are optional arguments, with default valuesLinExpression::zero() and Integerone(), re-
spectively.

Exceptions:
std::invalid argument thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 LinExpression Class Reference 76

8.4.3.5 const Integer& Generator::coefficient (Variablev) const

Returns the coefficient ofv in ∗this .

Exceptions:
std::invalid argument thrown if the index ofv is greater than or equal to the space-dimension of

∗this .

8.4.3.6 const Integer& Generator::divisor () const

If ∗this is either a point or a closure point, returns its divisor.

Exceptions:
std::invalid argument thrown if ∗this is neither a point nor a closure point.

8.5 LinExpression Class Reference

A linear expression.

Public Member Functions

• LinExpression ()

Default constructor: returns a copy ofLinExpression::zero().

• LinExpression (const LinExpression &e)

Ordinary copy-constructor.

• virtual∼LinExpression ()

Destructor.

• LinExpression (constInteger &n)

Builds the linear expression corresponding to the inhomogeneous termn.

• LinExpression (constVariable v)

Builds the linear expression corresponding to the variablev .

• LinExpression (constConstraint &c)

Builds the linear expression corresponding to constraintc .

• LinExpression (constGenerator &g)

Builds the linear expression corresponding to generatorg (for points and closure points, the divisor is not
copied).

• dimensiontypespacedimension() const

Returns the dimension of the vector space enclosing∗this .

• constInteger & coefficient(Variable v) const

Returns the coefficient ofv in ∗this .

• constInteger & inhomogeneousterm () const

Returns the inhomogeneous term of∗this .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 LinExpression Class Reference 77

Static Public Member Functions

• const LinExpression &zero ()

Returns the (zero-dimension space) constant 0.

Related Functions

(Note that these are not member functions.)

• LinExpressionoperator+ (const LinExpression &e1, const LinExpression &e2)

Returns the linear expressione1 + e2 .

• LinExpressionoperator+ (constInteger &n, const LinExpression &e)

Returns the linear expressionn + e.

• LinExpressionoperator+ (const LinExpression &e, constInteger &n)

Returns the linear expressione + n.

• LinExpressionoperator+ (const LinExpression &e)

Returns the linear expressione.

• LinExpressionoperator- (const LinExpression &e)

Returns the linear expression -e.

• LinExpressionoperator- (const LinExpression &e1, const LinExpression &e2)

Returns the linear expressione1 - e2 .

• LinExpressionoperator- (constInteger &n, const LinExpression &e)

Returns the linear expressionn - e.

• LinExpressionoperator- (const LinExpression &e, constInteger &n)

Returns the linear expressione - n.

• LinExpressionoperator ∗ (constInteger &n, const LinExpression &e)

Returns the linear expressionn ∗ e.

• LinExpressionoperator ∗ (const LinExpression &e, constInteger &n)

Returns the linear expressione ∗ n.

• LinExpression &operator+= (LinExpression &e1, const LinExpression &e2)

Returns the linear expressione1 + e2 and assigns it toe1 .

• LinExpression &operator+= (LinExpression &e, constVariable v)

Returns the linear expressione + v and assigns it toe.

• LinExpression &operator+= (LinExpression &e, constInteger &n)

Returns the linear expressione + n and assigns it toe.

• LinExpression &operator-= (LinExpression &e1, const LinExpression &e2)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 LinExpression Class Reference 78

Returns the linear expressione1 - e2 and assigns it toe1 .

• LinExpression &operator-= (LinExpression &e, constVariable v)

Returns the linear expressione - v and assigns it toe.

• LinExpression &operator-= (LinExpression &e, constInteger &n)

Returns the linear expressione - n and assigns it toe.

• LinExpression &operator ∗= (LinExpression &e, constInteger &n)

Returns the linear expressionn ∗ e and assigns it toe.

• void swap (ParmaPolyhedraLibrary::LinExpression &x, ParmaPolyhedraLibrary::Lin-
Expression &y)

Specializesstd::swap .

8.5.1 Detailed Description

A linear expression.

An object of the classLinExpression represents the linear expression

n−1∑
i=0

aixi + b

wheren is the dimension of the space, eachai is the integer coefficient of thei -th variablexi andb is the
integer for the inhomogeneous term.

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classesVariable and Integer: available operators include unary negation, binary addition and sub-
traction, as well as multiplication by an Integer. The space-dimension of a linear expression is defined as
the maximum space-dimension of the arguments used to build it: in particular, the space-dimension of a
Variable x is defined asx.id()+1 , whereas all the objects of the class Integer have space-dimension
zero.

Example
The following code builds the linear expression4x− 2y − z + 14, having space-dimension3:

LinExpression e = 4*x - 2*y - z + 14;

Another way to build the same linear expression is:

LinExpression e1 = 4*x;
LinExpression e2 = 2*y;
LinExpression e3 = z;
LinExpression e = LinExpression(14);
e += e1 - e2 - e3;

Note thate1 , e2 ande3 have space-dimension 1, 2 and 3, respectively; also, in the fourth line of
code,e is created with space-dimension zero and then extended to space-dimension 3.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.6 NNC Polyhedron Class Reference 79

8.5.2 Constructor & Destructor Documentation

8.5.2.1 LinExpression::LinExpression (const Constraint &c) [explicit]

Builds the linear expression corresponding to constraintc .

Given the constraintc =
(∑n−1

i=0 aixi + b ./ 0
)
, where./ ∈ {=,≥, >}, builds the linear expression∑n−1

i=0 aixi + b. If c is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

8.5.2.2 LinExpression::LinExpression (const Generator &g) [explicit]

Builds the linear expression corresponding to generatorg (for points and closure points, the divisor is not
copied).

Given the generatorg = (a0
d , . . . , an−1

d)T (where, for lines and rays, we haved = 1), builds the linear

expression
∑n−1

i=0 aixi. The inhomogeneous term of the linear expression will always be 0. Ifg is a ray,
point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

8.6 NNC Polyhedron Class Reference

A not necessarily closed convex polyhedron.

InheritsPolyhedron.

Public Member Functions

• NNC Polyhedron (dimensiontype numdimensions=0,DegenerateKind kind=UNIVERSE)

Builds either the universe or the empty NNC polyhedron.

• NNC Polyhedron (const ConSys &cs)

Builds an NNC polyhedron from a system of constraints.

• NNC Polyhedron (ConSys &cs)

Builds an NNC polyhedron recycling a system of constraints.

• NNC Polyhedron (const GenSys &gs)

Builds an NNC polyhedron from a system of generators.

• NNC Polyhedron (GenSys &gs)

Builds an NNC polyhedron recycling a system of generators.

• NNC Polyhedron (constC Polyhedron&y)

Builds an NNC polyhedron from the C polyhedrony .

• template<typename Box> NNC Polyhedron (const Box &box, FromBoundingBox dummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

• NNC Polyhedron (const NNCPolyhedron &y)

Ordinary copy-constructor.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.6 NNC Polyhedron Class Reference 80

• NNC Polyhedron &operator= (const NNCPolyhedron &y)

The assignment operator. (∗this andy can be dimension-incompatible.).

• ∼NNC Polyhedron ()

Destructor.

8.6.1 Detailed Description

A not necessarily closed convex polyhedron.

An object of the classNNC Polyhedron represents anot necessarily closed(NNC) convex polyhedron in
the vector spaceRn.

Note:
Since NNC polyhedra are a generalization of closed polyhedra, any object of the classC Polyhedron
can be (explicitly) converted into an object of the classNNC Polyhedron. The reason for defining
two different classes is that objects of the classC Polyhedron are characterized by a more efficient
implementation, requiring less time and memory resources.

8.6.2 Constructor & Destructor Documentation

8.6.2.1 NNCPolyhedron::NNC Polyhedron (dimensiontype num dimensions= 0, Degenerate-
Kind kind = UNIVERSE) [explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:
num dimensionsThe number of dimensions of the vector space enclosing the NNC polyhedron.

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

8.6.2.2 NNCPolyhedron::NNC Polyhedron (const ConSys &cs)

Builds an NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

8.6.2.3 NNCPolyhedron::NNC Polyhedron (ConSys &cs)

Builds an NNC polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.7 Poly Con Relation Class Reference 81

8.6.2.4 NNCPolyhedron::NNC Polyhedron (const GenSys &gs)

Builds an NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

Exceptions:
std::invalid argument thrown if the system of generators is not empty but has no points.

8.6.2.5 NNCPolyhedron::NNC Polyhedron (GenSys &gs)

Builds an NNC polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

Exceptions:
std::invalid argument thrown if the system of generators is not empty but has no points.

8.6.2.6 template<typename Box> NNC Polyhedron::NNC Polyhedron (const Box & box, From -
Bounding Box dummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: template<typename Box> Polyhedron::Polyhedron(Topology topol, const
Box& box);

Parameters:
box The bounding box representing the polyhedron to be built.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

8.7 Poly Con Relation Class Reference

The relation between a polyhedron and a constraint.

Public Member Functions

• bool implies (const PolyCon Relation &y) const

True if and only if∗this impliesy .

• boolOK () const

Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.8 Poly Gen Relation Class Reference 82

Static Public Member Functions

• Poly Con Relationnothing ()

The assertion that says nothing.

• Poly Con Relationis disjoint ()

The polyhedron and the set of points satisfying the constraint are disjoint.

• Poly Con Relationstrictly intersects()

The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

• Poly Con Relationis included ()

The polyhedron is included in the set of points satisfying the constraint.

• Poly Con Relationsaturates()

The polyhedron is included in the set of points saturating the constraint.

Related Functions

(Note that these are not member functions.)

• booloperator== (const PolyCon Relation &x, const PolyCon Relation &y)

True if and only ifx andy are logically equivalent.

• booloperator!= (const PolyCon Relation &x, const PolyCon Relation &y)

True if and only ifx andy are not logically equivalent.

• Poly Con Relationoperator && (const PolyCon Relation &x, const PolyCon Relation &y)

Yields the logical conjunction ofx andy .

• Poly Con Relationoperator- (const PolyCon Relation &x, const PolyCon Relation &y)

Yields the assertion with all the conjuncts ofx that are not iny .

• std::ostream &operator<< (std::ostream &s, const PolyCon Relation &r)

Output operator.

8.7.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

8.8 Poly Gen Relation Class Reference

The relation between a polyhedron and a generator.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 83

Public Member Functions

• bool implies (const PolyGenRelation &y) const

True if and only if∗this impliesy .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

• Poly GenRelationnothing ()

The assertion that says nothing.

• Poly GenRelationsubsumes()

Adding the generator would not change the polyhedron.

Related Functions

(Note that these are not member functions.)

• booloperator== (const PolyGenRelation &x, const PolyGenRelation &y)

True if and only ifx andy are logically equivalent.

• booloperator!= (const PolyGenRelation &x, const PolyGenRelation &y)

True if and only ifx andy are not logically equivalent.

• Poly GenRelationoperator && (const PolyGenRelation &x, const PolyGenRelation &y)

Yields the logical conjunction ofx andy .

• Poly GenRelationoperator- (const PolyGenRelation &x, const PolyGenRelation &y)

Yields the assertion with all the conjuncts ofx that are not iny .

• std::ostream &operator<< (std::ostream &s, const PolyGenRelation &r)

Output operator.

8.8.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

8.9 Polyhedron Class Reference

The base class for convex polyhedra.

Inherited byC Polyhedron, andNNC Polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 84

Public Types

• enumDegenerateKind { UNIVERSE, EMPTY }
Kinds of degenerate polyhedra.

Public Member Functions

Member Functions that Do Not Modify the Polyhedron

• dimensiontypespacedimension() const

Returns the dimension of the vector space enclosing∗this .

• const ConSys &constraints () const

Returns the system of constraints.

• const ConSys &minimized constraints () const

Returns the system of constraints, with no redundant constraint.

• const GenSys &generators() const

Returns the system of generators.

• const GenSys &minimized generators() const

Returns the system of generators, with no redundant generator.

• Poly Con Relation relation with (constConstraint &c) const
Returns the relations holding between the polyhedron∗this and the constraintc .

• Poly Gen Relation relation with (constGenerator &g) const
Returns the relations holding between the polyhedron∗this and the generatorg.

• bool is empty () const

Returnstrue if and only if∗this is an empty polyhedron.

• bool is universe() const

Returnstrue if and only if∗this is a universe polyhedron.

• bool is topologically closed() const

Returnstrue if and only if∗this is a topologically closed subset of the vector space.

• bool is disjoint from (const Polyhedron &y) const
Returnstrue if and only if∗this andy are disjoint.

• bool is bounded() const

Returnstrue if and only if∗this is a bounded polyhedron.

• boolbounds from above(constLinExpression &expr) const
Returnstrue if and only ifexpr is bounded from above in∗this .

• boolbounds from below (constLinExpression &expr) const
Returnstrue if and only ifexpr is bounded from below in∗this .

• boolcontains(const Polyhedron &y) const

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 85

Returnstrue if and only if∗this containsy .

• boolstrictly contains(const Polyhedron &y) const
Returnstrue if and only if∗this strictly containsy .

• template<typename Box> void shrink bounding box (Box &box, ComplexityClass complex-
ity=ANY) const

Uses∗this to shrink a generic, interval-based bounding box.

• boolOK (bool checknot empty=false) const
Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Polyhedron

• void add constraint (constConstraint &c)
Adds a copy of constraintc to the system of constraints of∗this (without minimizing the result).

• booladd constraint and minimize (constConstraint &c)
Adds a copy of constraintc to the system of constraints of∗this , minimizing the result.

• void add generator (constGenerator &g)
Adds a copy of generatorg to the system of generators of∗this (without minimizing the result).

• booladd generator and minimize (constGenerator &g)
Adds a copy of generatorg to the system of generators of∗this , minimizing the result.

• void add constraints (ConSys &cs)
Adds the constraints incs to the system of constraints of∗this , minimizing the result.

• booladd constraints and minimize (ConSys &cs)
Adds the constraints incs to the system of constraints of∗this (without minimizing the result).

• void add generators(GenSys &gs)
Adds the generators ings to the system of generators of∗this (without minimizing the result).

• booladd generatorsand minimize (GenSys &gs)
Adds the generators ings to the system of generators of∗this , minimizing the result.

• void intersection assign(const Polyhedron &y)
Assigns to∗this the intersection of∗this andy . The result is not guaranteed to be minimized.

• bool intersection assignand minimize (const Polyhedron &y)
Assigns to∗this the intersection of∗this andy , minimizing the result.

• void poly hull assign(const Polyhedron &y)
Assigns to∗this the poly-hull∗this andy . The result is not guaranteed to be minimized.

• boolpoly hull assignand minimize (const Polyhedron &y)
Assigns to∗this the poly-hull of∗this andy , minimizing the result.

• void poly difference assign(const Polyhedron &y)
Assigns to∗this thepoly-differenceof ∗this andy . The result is not guaranteed to be minimized.

• void affine image (Variable var, constLinExpression &expr, const Integer &denomina-
tor=Integerone())

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 86

Assigns to∗this theaffine imageof ∗this under the function mapping variablevar into the affine
expression specified byexpr anddenominator .

• void affine preimage (Variable var, constLinExpression &expr, constInteger &denomina-
tor=Integerone())

Assigns to∗this the affine preimageof ∗this under the function mapping variablevar into the
affine expression specified byexpr anddenominator .

• void generalizedaffine image (Variable var, const RelationSymbol relsym, constLin-
Expression&expr, constInteger &denominator=Integerone())

Assigns to∗this the image of∗this with respect to thegeneralized affine transfer functionvar′ ./
expr

denominator
, where./ is the relation symbol encoded byrelsym .

• void generalizedaffine image(constLinExpression&lhs, const RelationSymbol relsym, const
LinExpression &rhs)

Assigns to∗this the image of∗this with respect to thegeneralized affine transfer functionlhs′ ./
rhs, where./ is the relation symbol encoded byrelsym .

• void time elapseassign(const Polyhedron &y)
Assigns to∗this the result of computing thetime-elapsebetween∗this andy .

• void topological closure assign()
Assigns to∗this its topological closure.

• void BHRZ03 widening assign(const Polyhedron &y, unsigned∗tp=0)
Assigns to∗this the result of computing theBHRZ03-widening between∗this andy .

• void limited BHRZ03 extrapolation assign(const Polyhedron &y, const ConSys &cs, unsigned
∗tp=0)

Improves the result of theBHRZ03-widening computation by also enforcing those constraints incs
that are satisfied by all the points of∗this .

• void bounded BHRZ03 extrapolation assign (const Polyhedron &y, const ConSys &cs, un-
signed∗tp=0)

Improves the result of theBHRZ03-widening computation by also enforcing those constraints incs
that are satisfied by all the points of∗this , plus all the constraints of the form±x ≤ r and±x < r,
with r ∈ Q, that are satisfied by all the points of∗this .

• void H79 widening assign(const Polyhedron &y, unsigned∗tp=0)
Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

• void limited H79 extrapolation assign (const Polyhedron &y, const ConSys &cs, unsigned
∗tp=0)

Improves the result of theH79-wideningcomputation by also enforcing those constraints incs that are
satisfied by all the points of∗this .

• void bounded H79 extrapolation assign(const Polyhedron &y, const ConSys &cs, unsigned
∗tp=0)

Improves the result of theH79-wideningcomputation by also enforcing those constraints incs that are
satisfied by all the points of∗this , plus all the constraints of the form±x ≤ r and±x < r, with
r ∈ Q, that are satisfied by all the points of∗this .

Member Functions that May Modify the Dimension of the Vector Space

• void add dimensionsand embed(dimensiontype m)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 87

Addsmnew dimensions and embeds the old polyhedron into the new space.

• void add dimensionsand project (dimensiontype m)
Addsmnew dimensions to the polyhedron and does not embed it in the new space.

• void concatenateassign(const Polyhedron &y)
Seeing a polyhedron as a set of tuples (its points), assigns to∗this all the tuples that can be obtained
by concatenating, in the order given, a tuple of∗this with a tuple ofy .

• void remove dimensions(constVariables Set&to be removed)
Removes all the specified dimensions.

• void remove higher dimensions(dimensiontype newdimension)
Removes the higher dimensions so that the resulting space will have dimensionnew dimension .

• template<typename PartialFunction> void map dimensions(const PartialFunction &pfunc)
Remaps the dimensions of the vector space according to apartial function .

Miscellaneous Member Functions

• ∼Polyhedron ()
Destructor.

• void swap(Polyhedron &y)
Swaps∗this with polyhedrony . (∗this andy can be dimension-incompatible.).

Protected Member Functions

• Polyhedron (Topology topol, dimensiontype numdimensions,DegenerateKind kind)

Builds a polyhedron having the specified properties.

• Polyhedron (const Polyhedron &y)

Ordinary copy-constructor.

• Polyhedron (Topology topol, const ConSys &cs)

Builds a polyhedron from a system of constraints.

• Polyhedron (Topology topol, ConSys &cs)

Builds a polyhedron recycling a system of constraints.

• Polyhedron (Topology topol, const GenSys &gs)

Builds a polyhedron from a system of generators.

• Polyhedron (Topology topol, GenSys &gs)

Builds a polyhedron recycling a system of generators.

• template<typename Box> Polyhedron (Topology topol, const Box &box)

Builds a polyhedron out of a generic, interval-based bounding box.

• Polyhedron &operator= (const Polyhedron &y)

The assignment operator. (∗this andy can be dimension-incompatible.).

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 88

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, const Polyhedron &ph)

Output operator.

• booloperator== (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx andy are the same polyhedron.

• booloperator!= (const Polyhedron &x, const Polyhedron &y)

Returnstrue if and only ifx andy are different polyhedra.

• void swap(ParmaPolyhedraLibrary::Polyhedron &x, ParmaPolyhedraLibrary::Polyhedron &y)

Specializesstd::swap .

8.9.1 Detailed Description

The base class for convex polyhedra.

An object of the classPolyhedron represents a convex polyhedron in the vector spaceRn.

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
SectionRepresentations of Convex Polyhedra) and it is always possible to obtain either representation.
That is, if we know the system of constraints, we can obtain from this the system of generators that define
the same polyhedron and vice versa. These systems can contain redundant members: in this case we say
that they are not in the minimal form. Most operators on polyhedra are provided with two implementa-
tions: one of these, denoted<operator-name > and minimize , also enforces the minimization of
the representations, and returns the Boolean valuefalse whenever the resulting polyhedron turns out to
be empty.

Two key attributes of any polyhedron are its topological kind (recording whether it is aC Polyhedron or
anNNC Polyhedronobject) and its space dimension (the dimensionn ∈ N of the enclosing vector space):

• all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

• most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see SectionRepresentations of Convex
Polyhedra);

• there is no way to change the topology of a polyhedron; rather, there are constructors of the two de-
rived classes that builds a new polyhedron having a topology when provided with the corresponding
polyhedron of the other topology;

• the only ways to change the space dimension of a polyhedron are:

– explicit calls to operators provided for that purpose;

– standard copy, assignment and swap operators.

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedronR0, again either closed or NNC.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 89

In all the examples it is assumed that variablesx andy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a square inR2, given as a system of con-
straints:

ConSys cs;
cs.add_constraint(x >= 0);
cs.add_constraint(x <= 3);
cs.add_constraint(y >= 0);
cs.add_constraint(y <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

GenSys gs;
gs.add_generator(point(0*x + 0*y));
gs.add_generator(point(0*x + 3*y));
gs.add_generator(point(3*x + 0*y));
gs.add_generator(point(3*x + 3*y));
C_Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-strip inR2, given as a
system of constraints:

ConSys cs;
cs.add_constraint(x >= 0);
cs.add_constraint(x - y <= 0);
cs.add_constraint(x - y + 1 >= 0);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

GenSys gs;
gs.add_generator(point(0*x + 0*y));
gs.add_generator(point(0*x + y));
gs.add_generator(ray(x - y));
C_Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to an half-plane by adding a single constraint
to the universe polyhedron inR2:

C_Polyhedron ph(2);
ph.add_constraint(y >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spaceR2 and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 90

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
point (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functionadd dimensions and embed:

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension spaceR. Then we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singleton set{2} ⊆ R. After the last line
of code, the resulting polyhedron is{

(2, y)T ∈ R2
∣∣ y ∈ R

}
.

Example 5
The following code shows the use of the functionadd dimensions and project :

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_project(1);

The first two lines of code are the same as in Example 4 foradd dimensions and embed. After
the last line of code, the resulting polyhedron is the singleton set

{
(2, 0)T

}
⊆ R2.

Example 6
The following code shows the use of the functionaffine image :

C_Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
LinExpression coeff = x + 4;
ph.affine_image(x, coeff);

In this example the starting polyhedron is a square inR2, the considered variable isx and the affine
expression isx + 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variablex is x + y:

LinExpression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex − y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expressiony:

LinExpression coeff = y;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functionaffine preimage :

C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(y >= 0);
ph.add_constraint(y <= 3);
LinExpression coeff = x + 4;
ph.affine_preimage(x, coeff);

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 91

In this example the starting polyhedron,var and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation forx is x + y

LinExpression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex + y. Instead, if we do not use an invertible transformation for the
same variablex , for example, the affine expressiony:

LinExpression coeff = y;

the resulting polyhedron is a line that corresponds to they axis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functionremove dimensions :

GenSys gs;
gs.add_generator(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);
set<Variable> to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_dimensions(to_be_removed);

The starting polyhedron is the singleton set
{
(3, 1, 0, 2)T

}
⊆ R4, while the resulting polyhedron is{

(3, 2)T
}
⊆ R2. Be careful when removing dimensionsincrementally: since dimensions are auto-

matically renamed after each application of theremove dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> to_be_removed1;
to_be_removed1.insert(y);
ph.remove_dimensions(to_be_removed1);
set<Variable> to_be_removed2;
to_be_removed2.insert(z);
ph.remove_dimensions(to_be_removed2);

In this case, the result is the polyhedron
{
(3, 0)T

}
⊆ R2: when removing the set of dimensionsto -

be removed2 we are actually removing variablew of the original polyhedron. For the same reason,
the operatorremove dimensions is not idempotent: removing twice the same set of dimensions
is never a no-op.

8.9.2 Member Enumeration Documentation

8.9.2.1 enum ParmaPolyhedra Library::Polyhedron::Degenerate Kind

Kinds of degenerate polyhedra.

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 92

8.9.3 Constructor & Destructor Documentation

8.9.3.1 Polyhedron::Polyhedron (Topologytopol, dimension type num dimensions, Degenerate-
Kind kind) [protected]

Builds a polyhedron having the specified properties.

Parameters:
topol The topology of the polyhedron;

num dimensionsThe number of dimensions of the vector space enclosing the polyhedron;

kind Specifies whether the universe or the empty polyhedron has to be built.

8.9.3.2 Polyhedron::Polyhedron (Topologytopol, const ConSys &cs) [protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid argument thrown if the topology ofcs is incompatible withtopology .

8.9.3.3 Polyhedron::Polyhedron (Topologytopol, ConSys &cs) [protected]

Builds a polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not declaredconst because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid argument thrown if the topology ofcs is incompatible withtopology .

8.9.3.4 Polyhedron::Polyhedron (Topologytopol, const GenSys &gs) [protected]

Builds a polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron.

Exceptions:
std::invalid argument thrown if if the topology ofgs is incompatible withtopol , or if the system

of generators is not empty but has no points.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 93

8.9.3.5 Polyhedron::Polyhedron (Topologytopol, GenSys &gs) [protected]

Builds a polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declaredconst because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid argument thrown if if the topology ofgs is incompatible withtopol , or if the system

of generators is not empty but has no points.

8.9.3.6 template<typename Box> Polyhedron::Polyhedron (Topology topol, const Box & box)
[protected]

Builds a polyhedron out of a generic, interval-based bounding box.

Parameters:
topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

Exceptions:
std::invalid argument thrown if box has intervals that are incompatible withtopol .

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

bool is_empty() const

returnstrue if and only if the bounding box describes the empty set. Theis empty() method will always
be called before the methods below. However, ifis empty() returnstrue , none of the functions below
will be called.

bool get_lower_bound(dimension_type k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to thek -th dimension. IfI is not bounded from below, simply return
false . Otherwise, setclosed , n andd as follows:closed is set totrue if the the lower boundary of
I is closed and is set tofalse otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form if and
only if n andd have no common factors andd is positive,0/1 being the unique representation for zero.

bool get_upper_bound(dimension_type k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to thek -th dimension. IfI is not bounded from above, simply return
false . Otherwise, setclosed , n andd as follows:closed is set totrue if the the upper boundary of
I is closed and is set tofalse otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the least upper bound ofI.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 94

8.9.4 Member Function Documentation

8.9.4.1 PolyCon Relation Polyhedron::relation with (const Constraint & c) const

Returns the relations holding between the polyhedron∗this and the constraintc .

Exceptions:
std::invalid argument thrown if ∗this and constraintc are dimension-incompatible.

8.9.4.2 PolyGen Relation Polyhedron::relation with (const Generator & g) const

Returns the relations holding between the polyhedron∗this and the generatorg.

Exceptions:
std::invalid argument thrown if ∗this and generatorg are dimension-incompatible.

8.9.4.3 bool Polyhedron::isdisjoint from (const Polyhedron & y) const

Returnstrue if and only if ∗this andy are disjoint.

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.4.4 bool Polyhedron::boundsfrom above (const LinExpression &expr) const

Returnstrue if and only if expr is bounded from above in∗this .

Exceptions:
std::invalid argument thrown if expr and∗this are dimension-incompatible.

8.9.4.5 bool Polyhedron::boundsfrom below (const LinExpression &expr) const

Returnstrue if and only if expr is bounded from below in∗this .

Exceptions:
std::invalid argument thrown if expr and∗this are dimension-incompatible.

8.9.4.6 bool Polyhedron::contains (const Polyhedron &y) const

Returnstrue if and only if ∗this containsy .

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.7 bool Polyhedron::strictly contains (const Polyhedron &y) const

Returnstrue if and only if ∗this strictly containsy .

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 95

8.9.4.8 template<typename Box> void Polyhedron::shrink bounding box (Box & box, Complex-
ity Classcomplexity= ANY) const

Uses∗this to shrink a generic, interval-based bounding box.

Parameters:
box The bounding box to be shrunk.

complexity The complexity class of the algorithm to be used.

The template class Box must provide the following methods, whose return value, if any, is simply ignored.

set_empty()

causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to thek -th dimension with[n/d,+∞) if closed is true , with
(n/d,+∞) if closed is false .

lower_upper_bound(dimension_type k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to thek -th dimension with(−∞, n/d] if closed is true , with
(−∞, n/d) if closed is false .

The functionraise lower bound(k, closed, n, d) will be called at most once for each possi-
ble value fork and for all such calls the fractionn/d will be in canonical form, that is,n andd have no
common factors andd is positive,0/1 being the unique representation for zero. The same guarantee is
offered for the functionlower upper bound(k, closed, n, d) .

8.9.4.9 bool Polyhedron::OK (boolchecknot empty= false) const

Checks if all the invariants are satisfied.

Parameters:
checknot empty true if and only if, in addition to checking the invariants,∗this must be checked

to be not empty.

Returns:
true if and only if ∗this satisfies all the invariants and eithercheck not empty is false or
∗this is not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are written onstd::cerr in case invariants are violated. This is
useful for the purpose of debugging the library.

8.9.4.10 void Polyhedron::addconstraint (const Constraint & c)

Adds a copy of constraintc to the system of constraints of∗this (without minimizing the result).

Exceptions:
std::invalid argument thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 96

8.9.4.11 bool Polyhedron::addconstraint and minimize (const Constraint & c)

Adds a copy of constraintc to the system of constraints of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid argument thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

8.9.4.12 void Polyhedron::addgenerator (const Generator &g)

Adds a copy of generatorg to the system of generators of∗this (without minimizing the result).

Exceptions:
std::invalid argument thrown if ∗this and generatorg are topology-incompatible or dimension-

incompatible, or if∗this is an empty polyhedron andg is not a point.

8.9.4.13 bool Polyhedron::addgenerator and minimize (const Generator & g)

Adds a copy of generatorg to the system of generators of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid argument thrown if ∗this and generatorg are topology-incompatible or dimension-

incompatible, or if∗this is an empty polyhedron andg is not a point.

8.9.4.14 void Polyhedron::addconstraints (ConSys &cs)

Adds the constraints incs to the system of constraints of∗this , minimizing the result.

Parameters:
cs The constraints that will be added to the current system of constraints. This parameter is not

declaredconst because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

8.9.4.15 bool Polyhedron::addconstraints and minimize (ConSys &cs)

Adds the constraints incs to the system of constraints of∗this (without minimizing the result).

Returns:
false if and only if the result is empty.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 97

Parameters:
cs The constraints that will be added to the current system of constraints. This parameter is not

declaredconst because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

8.9.4.16 void Polyhedron::addgenerators (GenSys &gs)

Adds the generators ings to the system of generators of∗this (without minimizing the result).

Parameters:
gs The generators that will be added to the current system of generators. This parameter is not declared

const because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and gs are topology-incompatible or dimension-

incompatible, or if∗this is empty and the system of generatorsgs is not empty, but has no
points.

8.9.4.17 bool Polyhedron::addgeneratorsand minimize (GenSys &gs)

Adds the generators ings to the system of generators of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs The generators that will be added to the current system of generators. The parameter is not declared

const because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and gs are topology-incompatible or dimension-

incompatible, or if∗this is empty and the the system of generatorsgs is not empty, but has no
points.

8.9.4.18 void Polyhedron::intersectionassign (const Polyhedron &y)

Assigns to∗this the intersection of∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.19 bool Polyhedron::intersectionassignand minimize (const Polyhedron &y)

Assigns to∗this the intersection of∗this andy , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 98

8.9.4.20 void Polyhedron::polyhull assign (const Polyhedron &y)

Assigns to∗this the poly-hull∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.21 bool Polyhedron::polyhull assignand minimize (const Polyhedron &y)

Assigns to∗this the poly-hull of∗this andy , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.22 void Polyhedron::polydifference assign (const Polyhedron &y)

Assigns to∗this thepoly-differenceof ∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.23 void Polyhedron::affineimage (Variablevar, const LinExpression & expr, const Integer &
denominator= Integer one())

Assigns to∗this the affine imageof ∗this under the function mapping variablevar into the affine
expression specified byexpr anddenominator .

Parameters:
var The variable to which the affine expression is assigned.

expr The numerator of the affine expression.

denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid argument thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifvar is not a dimension of∗this .

8.9.4.24 void Polyhedron::affinepreimage (Variablevar, const LinExpression &expr, const Integer
& denominator= Integer one())

Assigns to∗this theaffine preimageof ∗this under the function mapping variablevar into the affine
expression specified byexpr anddenominator .

Parameters:
var The variable to which the affine expression is substituted.

expr The numerator of the affine expression.

denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid argument thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifvar is not a dimension of∗this .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 99

8.9.4.25 void Polyhedron::generalizedaffine image (Variable var, const RelationSymbol relsym,
const LinExpression & expr, const Integer & denominator= Integer one())

Assigns to∗this the image of∗this with respect to thegeneralized affine transfer functionvar′ ./
expr

denominator , where./ is the relation symbol encoded byrelsym .

Parameters:
var The left hand side variable of the generalized affine transfer function.

relsym The relation symbol.

expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression (optional argument with default
value 1.)

Exceptions:
std::invalid argument thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifvar is not a dimension of∗this or if ∗this is a C Polyhedron and
relsym is a strict relation symbol.

8.9.4.26 void Polyhedron::generalizedaffine image (const LinExpression & lhs, const Relation-
Symbol relsym, const LinExpression & rhs)

Assigns to∗this the image of∗this with respect to thegeneralized affine transfer functionlhs′ ./
rhs, where./ is the relation symbol encoded byrelsym .

Parameters:
lhs The left hand side affine expression.

relsym The relation symbol.

rhs The right hand side affine expression.

Exceptions:
std::invalid argument thrown if ∗this is dimension-incompatible withlhs or rhs or if ∗this is

aC Polyhedronandrelsym is a strict relation symbol.

8.9.4.27 void Polyhedron::timeelapseassign (const Polyhedron &y)

Assigns to∗this the result of computing thetime-elapsebetween∗this andy .

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

8.9.4.28 void Polyhedron::BHRZ03widening assign (const Polyhedron &y, unsigned∗ tp = 0)

Assigns to∗this the result of computing theBHRZ03-widening between∗this andy .

Parameters:
y A polyhedron thatmustbe contained in∗this .

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 100

8.9.4.29 void Polyhedron::limitedBHRZ03 extrapolation assign (const Polyhedron & y, const
ConSys &cs, unsigned∗ tp = 0)

Improves the result of theBHRZ03-widening computation by also enforcing those constraints incs that
are satisfied by all the points of∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this .

cs The system of constraints used to improve the widened polyhedron.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid argument thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

8.9.4.30 void Polyhedron::boundedBHRZ03 extrapolation assign (const Polyhedron &y, const
ConSys &cs, unsigned∗ tp = 0)

Improves the result of theBHRZ03-widening computation by also enforcing those constraints incs that
are satisfied by all the points of∗this , plus all the constraints of the form±x ≤ r and±x < r, with
r ∈ Q, that are satisfied by all the points of∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this .

cs The system of constraints used to improve the widened polyhedron.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid argument thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

8.9.4.31 void Polyhedron::H79widening assign (const Polyhedron &y, unsigned∗ tp = 0)

Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

Parameters:
y A polyhedron thatmustbe contained in∗this .

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 101

8.9.4.32 void Polyhedron::limitedH79 extrapolation assign (const Polyhedron &y, const ConSys
& cs, unsigned∗ tp = 0)

Improves the result of theH79-widening computation by also enforcing those constraints incs that are
satisfied by all the points of∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this .

cs The system of constraints used to improve the widened polyhedron.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid argument thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

8.9.4.33 void Polyhedron::boundedH79 extrapolation assign (const Polyhedron &y, const ConSys
& cs, unsigned∗ tp = 0)

Improves the result of theH79-widening computation by also enforcing those constraints incs that are
satisfied by all the points of∗this , plus all the constraints of the form±x ≤ r and±x < r, with r ∈ Q,
that are satisfied by all the points of∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this .

cs The system of constraints used to improve the widened polyhedron.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid argument thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

8.9.4.34 void Polyhedron::adddimensionsand embed (dimensiontype m)

Addsmnew dimensions and embeds the old polyhedron into the new space.

Parameters:
m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are not constrained.
For instance, when starting from the polyhedronP ⊆ R2 and adding a third dimension, the result will be
the polyhedron {

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 102

8.9.4.35 void Polyhedron::adddimensionsand project (dimension type m)

Addsmnew dimensions to the polyhedron and does not embed it in the new space.

Parameters:
m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the polyhedronP ⊆ R2 and adding a third dimension,
the result will be the polyhedron {

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

8.9.4.36 void Polyhedron::concatenateassign (const Polyhedron &y)

Seeing a polyhedron as a set of tuples (its points), assigns to∗this all the tuples that can be obtained by
concatenating, in the order given, a tuple of∗this with a tuple ofy .

Let P ⊆ Rn andQ ⊆ Rm be the polyhedra represented, on entry, by∗this andy , respectively. Upon
successful completion,∗this will represent the polyhedronR ⊆ Rn+m such that

R
def=

{
(x1, . . . , xn, y1, . . . , ym)T

∣∣∣ (x1, . . . , xn)T ∈ P, (y1, . . . , ym)T ∈ Q
}

.

Another way of seeing it is as follows: first increases the space dimension of∗this by addingy.space -
dimension() new dimensions; then adds to the system of constraints of∗this a renamed-apart version
of the constraints ofy .

Exceptions:
std::invalid argument thrown if ∗this andy are topology-incompatible.

8.9.4.37 void Polyhedron::removedimensions (const VariablesSet & to be removed)

Removes all the specified dimensions.

Parameters:
to be removedThe set ofVariable objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid argument thrown if ∗this is dimension-incompatible with one of theVariable objects

contained into be removed .

8.9.4.38 void Polyhedron::removehigher dimensions (dimensiontype new dimension)

Removes the higher dimensions so that the resulting space will have dimensionnew dimension .

Exceptions:
std::invalid argument thrown if new dimensions is greater than the space dimension of∗this .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 103

8.9.4.39 template<typename PartialFunction> void Polyhedron::map dimensions (const Partial-
Function & pfunc)

Remaps the dimensions of the vector space according to apartial function .

Parameters:
pfunc The partial function specifying the destiny of each dimension.

The template class PartialFunction must provide the following methods.

bool has_empty_codomain() const

returnstrue if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). Thehas empty codomain() method will always be called before the methods below.
However, ifhas empty codomain() returnstrue , none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function andk be the value ofi . If f is defined ink, thenf(k) is assigned toj
andtrue is returned. Iff is undefined ink, thenfalse is returned.

The result is undefined ifpfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

8.9.4.40 void Polyhedron::swap (Polyhedron &y)

Swaps∗this with polyhedrony . (∗this andy can be dimension-incompatible.).

Exceptions:
std::invalid argument thrown if x andy are topology-incompatible.

8.9.5 Friends And Related Function Documentation

8.9.5.1 std::ostream & operator<< (std::ostream & s, const Polyhedron &ph) [related]

Output operator.

Writes a textual representation ofph on s : false is written if ph is an empty polyhedron;true is
written if ph is a universe polyhedron; a minimized system of constraints definingph is written otherwise,
all constraints in one row separated by ”, ”.

8.9.5.2 bool operator== (const Polyhedron &x, const Polyhedron &y) [related]

Returnstrue if and only if x andy are the same polyhedron.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
false is returned.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.10 PowerSet< CS> Class Template Reference 104

8.9.5.3 bool operator!= (const Polyhedron &x, const Polyhedron &y) [related]

Returnstrue if and only if x andy are different polyhedra.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
true is returned.

8.10 PowerSet< CS> Class Template Reference

The powerset construction on constraint systems.

Public Member Functions

• PowerSet(dimensiontype numdimensions=0, bool universe=true)

Builds a universe (top) or empty (bottom)PowerSet.

• PowerSet(const ConSys &cs)

Creates aPowerSetwith the same information contents ascs .

• PowerSet &inject (const CS &c)

Injectsc into ∗this .

• void upper bound assign(const PowerSet &y)

Assigns to∗this an upper bound of∗this andy .

• void meet assign(const PowerSet &y)

Assigns to∗this the meet of∗this andy .

• booldefinitely entails (const PowerSet &y) const

Returnstrue if ∗this definitely entailsy . Returnsfalse if ∗this may not entaily (i.e., if∗this does
not entaily or if entailment could not be decided).

• dimensiontypespacedimension() const

Returns the dimension of the vector space enclosing∗this .

• void add constraint (constConstraint &c)

Intersects∗this with (a copy of) constraintc .

• void add constraints (ConSys &cs)

Intersects∗this with the constraints incs .

• void add dimensionsand embed(dimensiontype m)

Addsmnew dimensions and embeds the old polyhedron into the new space.

• void add dimensionsand project (dimensiontype m)

Addsmnew dimensions to the polyhedron and does not embed it in the new space.

• void remove dimensions(constVariables Set&to be removed)

Removes all the specified dimensions.

• void remove higher dimensions(dimensiontype newdimension)

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.10 PowerSet< CS> Class Template Reference 105

Removes the higher dimensions so that the resulting space will have dimensionnew dimension .

• void H79 extrapolation assign(const PowerSet &y)

Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

• void limited H79 extrapolation assign(const PowerSet &y, const ConSys &cs)

Limits theH79-widening computation between∗this andy by enforcing constraintscs and assigns the
result to∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Friends

• CSproject (const PowerSet &x)
• int lcompare (const PowerSet &x, const PowerSet &y)

Related Functions

(Note that these are not member functions.)

• PowerSet< CS> operator+ (const PowerSet< CS> &, const PowerSet< CS> &)
• PowerSet< CS> operator ∗ (const PowerSet< CS> &, const PowerSet< CS> &)
• booloperator== (const PowerSet< CS> &x, const PowerSet< CS> &y)
• std::ostream &operator<< (std::ostream &, const PowerSet< CS> &)

8.10.1 Detailed Description

template<typename CS> class PowerSet< CS>

The powerset construction on constraint systems.

8.10.2 Constructor & Destructor Documentation

8.10.2.1 template<typename CS> PowerSet< CS>::PowerSet (dimensiontype num dimensions=
0, booluniverse= true) [explicit]

Builds a universe (top) or empty (bottom)PowerSet.

Parameters:
num dimensionsThe number of dimensions of the vector space enclosing the powerset.

universe If true , a universePowerSetis built; an emptyPowerSetis built otherwise.

8.10.3 Member Function Documentation

8.10.3.1 template<typename CS> void PowerSet< CS>::add constraint (const Constraint & c)

Intersects∗this with (a copy of) constraintc .

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.10 PowerSet< CS> Class Template Reference 106

Exceptions:
std::invalid argument thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

8.10.3.2 template<typename CS> void PowerSet< CS>::add constraints (ConSys &cs)

Intersects∗this with the constraints incs .

Parameters:
cs The constraints to intersect with. This parameter is not declaredconst because it can be modified.

Exceptions:
std::invalid argument thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

8.10.3.3 template<typename CS> void PowerSet< CS>::remove dimensions (const VariablesSet
& to be removed)

Removes all the specified dimensions.

Parameters:
to be removedThe set ofVariable objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid argument thrown if ∗this is dimension-incompatible with one of theVariable objects

contained into be removed .

8.10.3.4 template<typename CS> void PowerSet< CS>::remove higher dimensions (dimension-
type new dimension)

Removes the higher dimensions so that the resulting space will have dimensionnew dimension .

Exceptions:
std::invalid argument thrown if new dimensions is greater than the space dimension of∗this .

8.10.3.5 template<typename CS> void PowerSet< CS>::H79 extrapolation assign (const Power-
Set< CS> & y)

Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

Parameters:
y A polyhedron thatmustbe contained in∗this .

Exceptions:
std::invalid argument thrown if∗this andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.11 Variable Class Reference 107

8.10.3.6 template<typename CS> void PowerSet< CS>::limited H79 extrapolation assign (const
PowerSet< CS> & y, const ConSys &cs)

Limits theH79-wideningcomputation between∗this andy by enforcing constraintscs and assigns the
result to∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this .

cs The system of constraints that limits the widened polyhedron. It is not declaredconst because it
can be modified.

Exceptions:
std::invalid argument thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

8.10.4 Friends And Related Function Documentation

8.10.4.1 template<typename CS> CS project (const PowerSet< CS> & x) [friend]

<CS>

8.10.4.2 template<typename CS> int lcompare (const PowerSet< CS> & x, const PowerSet< CS
> & y) [friend]

<CS>

8.10.4.3 template<typename CS> PowerSet< CS > operator+ (const PowerSet< CS > &, const
PowerSet< CS> &) [related]

<CS>

8.10.4.4 template<typename CS> PowerSet< CS > operator ∗ (const PowerSet< CS > &, const
PowerSet< CS> &) [related]

<CS>

8.10.4.5 template<typename CS> bool operator== (const PowerSet< CS> & x, const PowerSet<
CS> & y) [related]

<CS>

8.10.4.6 template<typename CS> std::ostream & operator<< (std::ostream &, const PowerSet<
CS> &) [related]

<CS>

8.11 Variable Class Reference

A dimension of the space.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.11 Variable Class Reference 108

Public Types

• typedef voidOutput Function Type (std::ostream &s, Variable v)

Type of output functions.

Public Member Functions

• Variable (dimensiontype i)

Builds the variable corresponding to the Cartesian axis of indexi .

• dimensiontype id () const

Returns the index of the Cartesian axis associated to the variable.

Static Public Member Functions

• void set output function (Output Function Type ∗p)

Set the output function to be used for printingVariable objects.

• Output Function Type ∗ get output function ()

Returns the pointer to the current output function.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, Variable v)

Output operator.

• bool less(Variable v, Variable w)

Defines a total ordering on variables.

8.11.1 Detailed Description

A dimension of the space.

An object of the classVariable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as base blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0).

Note that the “meaning” of an object of the classVariable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressionse1 ande2 are equivalent, since the two variablesx andz
denote the same Cartesian axis.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.12 Compare Struct Reference 109

Variable x(0);
Variable y(1);
Variable z(0);
LinExpression e1 = x + y;
LinExpression e2 = y + z;

8.12 Compare Struct Reference

Binary predicate defining the total ordering on variables.

Public Member Functions

• booloperator() (Variable x, Variable y) const

Returnstrue if and only ifx comes beforey .

8.12.1 Detailed Description

Binary predicate defining the total ordering on variables.

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index
addconstraint

ParmaPolyhedraLibrary::Determinate,68
ParmaPolyhedraLibrary::Polyhedron,95
ParmaPolyhedraLibrary::PowerSet,105
ParmaPolyhedraLibrary::PowerSet,105

addconstraintandminimize
ParmaPolyhedraLibrary::Polyhedron,95

addconstraints
ParmaPolyhedraLibrary::Determinate,68
ParmaPolyhedraLibrary::Polyhedron,96
ParmaPolyhedraLibrary::PowerSet,106
ParmaPolyhedraLibrary::PowerSet,106

addconstraintsandminimize
ParmaPolyhedraLibrary::Polyhedron,96

adddimensionsandembed
ParmaPolyhedraLibrary::Polyhedron,101

adddimensionsandproject
ParmaPolyhedraLibrary::Polyhedron,101

addgenerator
ParmaPolyhedraLibrary::Polyhedron,96

addgeneratorandminimize
ParmaPolyhedraLibrary::Polyhedron,96

addgenerators
ParmaPolyhedraLibrary::Polyhedron,97

addgeneratorsandminimize
ParmaPolyhedraLibrary::Polyhedron,97

affine image
ParmaPolyhedraLibrary::Polyhedron,98

affine preimage
ParmaPolyhedraLibrary::Polyhedron,98

BHRZ03 wideningassign
ParmaPolyhedraLibrary::Polyhedron,99

boundedBHRZ03 extrapolationassign
ParmaPolyhedraLibrary::Polyhedron,100

boundedH79 extrapolationassign
ParmaPolyhedraLibrary::Polyhedron,101

boundsfrom above
ParmaPolyhedraLibrary::Polyhedron,94

boundsfrom below
ParmaPolyhedraLibrary::Polyhedron,94

C Language Interface,15
C Polyhedron

ParmaPolyhedraLibrary::C Polyhedron,
61, 62

CLOSUREPOINT
ParmaPolyhedraLibrary::Generator,75

closurepoint
ParmaPolyhedraLibrary::Generator,75

coefficient

ParmaPolyhedraLibrary::Constraint,67
ParmaPolyhedraLibrary::Generator,75

concatenateassign
ParmaPolyhedraLibrary::Polyhedron,102

contains
ParmaPolyhedraLibrary::Polyhedron,94

DegenerateKind
ParmaPolyhedraLibrary::Polyhedron,91

divisor
ParmaPolyhedraLibrary::Generator,76

EMPTY
ParmaPolyhedraLibrary::Polyhedron,91

EQUALITY
ParmaPolyhedraLibrary::Constraint,66

generalizedaffine image
ParmaPolyhedraLibrary::Polyhedron,98,

99

H79 extrapolationassign
ParmaPolyhedraLibrary::PowerSet,106
ParmaPolyhedraLibrary::PowerSet,106

H79 wideningassign
ParmaPolyhedraLibrary::Determinate,69
ParmaPolyhedraLibrary::Polyhedron,100

intersectionassign
ParmaPolyhedraLibrary::Polyhedron,97

intersectionassignandminimize
ParmaPolyhedraLibrary::Polyhedron,97

is disjoint from
ParmaPolyhedraLibrary::Polyhedron,94

lcompare
ParmaPolyhedraLibrary::Determinate,70
ParmaPolyhedraLibrary::PowerSet,107
ParmaPolyhedraLibrary::PowerSet,107

Library Defines,15
limited BHRZ03 extrapolationassign

ParmaPolyhedraLibrary::Polyhedron,99
limited H79 extrapolationassign

ParmaPolyhedraLibrary::Determinate,69
ParmaPolyhedraLibrary::Polyhedron,100
ParmaPolyhedraLibrary::PowerSet,106
ParmaPolyhedraLibrary::PowerSet,106

LINE
ParmaPolyhedraLibrary::Generator,75

line
ParmaPolyhedraLibrary::Generator,75

linear partition

INDEX 111

ParmaPolyhedraLibrary, 59
LinExpression

ParmaPolyhedraLibrary::LinExpression,
79

ParmaPolyhedraLibrary::LinExpression,
79

mapdimensions
ParmaPolyhedraLibrary::Polyhedron,102

NNC Polyhedron
ParmaPolyhedraLibrary::NNC -

Polyhedron,80, 81
NONSTRICT INEQUALITY

ParmaPolyhedraLibrary::Constraint,66

OK
ParmaPolyhedraLibrary::Polyhedron,95

operator∗
ParmaPolyhedraLibrary::Determinate,70
ParmaPolyhedraLibrary::PowerSet,107
ParmaPolyhedraLibrary::PowerSet,107

operator!=
ParmaPolyhedraLibrary::Determinate,70
ParmaPolyhedraLibrary::Polyhedron,103

operator+
ParmaPolyhedraLibrary::Determinate,70
ParmaPolyhedraLibrary::PowerSet,107
ParmaPolyhedraLibrary::PowerSet,107

operator<<
ParmaPolyhedraLibrary::Determinate,70
ParmaPolyhedraLibrary::Polyhedron,103
ParmaPolyhedraLibrary::PowerSet,107
ParmaPolyhedraLibrary::PowerSet,107

operator==
ParmaPolyhedraLibrary::Determinate,70
ParmaPolyhedraLibrary::Polyhedron,103
ParmaPolyhedraLibrary::PowerSet,107
ParmaPolyhedraLibrary::PowerSet,107

ParmaPolyhedraLibrary, 57
linear partition,59

ParmaPolyhedraLibrary::C Polyhedron,60
C Polyhedron,61, 62

ParmaPolyhedraLibrary::Constraint,63
coefficient,67
EQUALITY, 66
NONSTRICT INEQUALITY, 66
STRICT INEQUALITY, 66
Type,66

ParmaPolyhedraLibrary::Determinate,67
addconstraint,68
addconstraints,68
H79 wideningassign,69

lcompare,70
limited H79 extrapolationassign,69
operator∗, 70
operator!=,70
operator+,70
operator<<, 70
operator==,70
removedimensions,69
removehigherdimensions,69

ParmaPolyhedraLibrary::Generator,70
CLOSUREPOINT,75
closurepoint,75
coefficient,75
divisor,76
LINE, 75
line, 75
POINT,75
point,75
RAY, 75
ray,75
Type,75

ParmaPolyhedraLibrary::IO Operators,59
ParmaPolyhedraLibrary::LinExpression,76

LinExpression,79
ParmaPolyhedraLibrary::LinExpression

LinExpression,79
ParmaPolyhedraLibrary::NNC Polyhedron,79

NNC Polyhedron,80, 81
ParmaPolyhedraLibrary::Poly Con Relation,

81
ParmaPolyhedraLibrary::Poly GenRelation,

82
ParmaPolyhedraLibrary::Polyhedron,83

addconstraint,95
addconstraintandminimize,95
addconstraints,96
addconstraintsandminimize,96
adddimensionsandembed,101
adddimensionsandproject,101
addgenerator,96
addgeneratorandminimize,96
addgenerators,97
addgeneratorsandminimize,97
affine image,98
affine preimage,98
BHRZ03 wideningassign,99
boundedBHRZ03 extrapolationassign,

100
boundedH79 extrapolationassign,101
boundsfrom above,94
boundsfrom below,94
concatenateassign,102
contains,94
DegenerateKind, 91

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 112

EMPTY, 91
generalizedaffine image,98, 99
H79 wideningassign,100
intersectionassign,97
intersectionassignandminimize,97
is disjoint from, 94
limited BHRZ03 extrapolationassign,99
limited H79 extrapolationassign,100
mapdimensions,102
OK, 95
operator!=,103
operator<<, 103
operator==,103
poly differenceassign,98
poly hull assign,97
poly hull assignandminimize,98
Polyhedron,92, 93
relationwith, 94
removedimensions,102
removehigherdimensions,102
shrink boundingbox,94
strictly contains,94
swap,103
time elapseassign,99
UNIVERSE,91

ParmaPolyhedraLibrary::PowerSet,104
addconstraint,105
addconstraints,106
H79 extrapolationassign,106
lcompare,107
limited H79 extrapolationassign,106
operator∗, 107
operator+,107
operator<<, 107
operator==,107
PowerSet,105
project,107
removedimensions,106
removehigherdimensions,106

ParmaPolyhedraLibrary::PowerSet
addconstraint,105
addconstraints,106
H79 extrapolationassign,106
lcompare,107
limited H79 extrapolationassign,106
operator∗, 107
operator+,107
operator<<, 107
operator==,107
PowerSet,105
project,107
removedimensions,106
removehigherdimensions,106

ParmaPolyhedraLibrary::Variable,107

ParmaPolyhedraLibrary::Variable::Compare,
109

POINT
ParmaPolyhedraLibrary::Generator,75

point
ParmaPolyhedraLibrary::Generator,75

poly differenceassign
ParmaPolyhedraLibrary::Polyhedron,98

poly hull assign
ParmaPolyhedraLibrary::Polyhedron,97

poly hull assignandminimize
ParmaPolyhedraLibrary::Polyhedron,98

Polyhedron
ParmaPolyhedraLibrary::Polyhedron,92,

93
PowerSet

ParmaPolyhedraLibrary::PowerSet,105
ParmaPolyhedraLibrary::PowerSet,105

PPL License Pages,52
PPL C interface

PPL CONSTRAINT TYPE EQUAL, 31
PPL CONSTRAINT TYPE GREATER-

THAN, 31
PPL CONSTRAINT TYPE GREATER-

THAN OR EQUAL, 31
PPL CONSTRAINT TYPE LESSTHAN,

31
PPL CONSTRAINT TYPE LESS-

THAN OR EQUAL, 31
ppl enumConstraintType,31
ppl enumerror code,31
ppl enumGeneratorType,31
PPL ERRORINTERNAL ERROR,31
PPL ERRORINVALID ARGUMENT, 31
PPL ERROROUT OF MEMORY, 31
PPL ERRORUNEXPECTEDERROR,31
PPL ERRORUNKNOWN STANDARD -

EXCEPTION,31
PPL GENERATORTYPE CLOSURE-

POINT,31
PPL GENERATORTYPE LINE, 31
PPL GENERATORTYPE POINT,31
PPL GENERATORTYPE RAY, 31
ppl new C Polyhedronfrom bounding-

box,32
ppl new C PolyhedronrecycleConSys,31
ppl new C PolyhedronrecycleGenSys,32
ppl new NNC Polyhedronfrom -

boundingbox,33
ppl new NNC Polyhedronrecycle-

ConSys,32
ppl new NNC Polyhedronrecycle-

GenSys,32
ppl Polyhedronaddconstraints,35

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 113

ppl Polyhedronaddconstraintsand -
minimize,35

ppl Polyhedronaddgenerators,35
ppl Polyhedronaddgeneratorsand -

minimize,35
ppl Polyhedronaffine image,35
ppl Polyhedronaffine preimage,36
ppl PolyhedronequalsPolyhedron,35
ppl Polyhedrongeneralizedaffine image,

36
ppl Polyhedrongeneralizedaffine image-

lhs rhs,36
ppl Polyhedronmapdimensions,36
ppl Polyhedronrelationwith Constraint,

34
ppl Polyhedronrelationwith Generator,

34
ppl Polyhedronshrink boundingbox,34
ppl seterror handler,31

PPL CONSTRAINT TYPE EQUAL
PPL C interface,31

PPL CONSTRAINT TYPE GREATERTHAN
PPL C interface,31

PPL CONSTRAINT TYPE GREATER-
THAN OR EQUAL

PPL C interface,31
PPL CONSTRAINT TYPE LESSTHAN

PPL C interface,31
PPL CONSTRAINT TYPE LESSTHAN -

OR EQUAL
PPL C interface,31

ppl enumConstraintType
PPL C interface,31

ppl enumerror code
PPL C interface,31

ppl enumGeneratorType
PPL C interface,31

PPL ERRORINTERNAL ERROR
PPL C interface,31

PPL ERRORINVALID ARGUMENT
PPL C interface,31

PPL ERROROUT OF MEMORY
PPL C interface,31

PPL ERRORUNEXPECTEDERROR
PPL C interface,31

PPL ERRORUNKNOWN STANDARD -
EXCEPTION

PPL C interface,31
PPL GENERATORTYPE CLOSUREPOINT

PPL C interface,31
PPL GENERATORTYPE LINE

PPL C interface,31
PPL GENERATORTYPE POINT

PPL C interface,31

PPL GENERATORTYPE RAY
PPL C interface,31

ppl new C Polyhedronfrom boundingbox
PPL C interface,32

ppl new C PolyhedronrecycleConSys
PPL C interface,31

ppl new C PolyhedronrecycleGenSys
PPL C interface,32

ppl new NNC Polyhedronfrom boundingbox
PPL C interface,33

ppl new NNC PolyhedronrecycleConSys
PPL C interface,32

ppl new NNC PolyhedronrecycleGenSys
PPL C interface,32

ppl Polyhedronaddconstraints
PPL C interface,35

ppl Polyhedronaddconstraintsandminimize
PPL C interface,35

ppl Polyhedronaddgenerators
PPL C interface,35

ppl Polyhedronaddgeneratorsandminimize
PPL C interface,35

ppl Polyhedronaffine image
PPL C interface,35

ppl Polyhedronaffine preimage
PPL C interface,36

ppl PolyhedronequalsPolyhedron
PPL C interface,35

ppl Polyhedrongeneralizedaffine image
PPL C interface,36

ppl Polyhedrongeneralizedaffine imagelhs -
rhs

PPL C interface,36
ppl Polyhedronmapdimensions

PPL C interface,36
ppl Polyhedronrelationwith Constraint

PPL C interface,34
ppl Polyhedronrelationwith Generator

PPL C interface,34
ppl Polyhedronshrink boundingbox

PPL C interface,34
ppl seterror handler

PPL C interface,31
project

ParmaPolyhedraLibrary::PowerSet,107
ParmaPolyhedraLibrary::PowerSet,107

Prolog Language Interface,37

RAY
ParmaPolyhedraLibrary::Generator,75

ray
ParmaPolyhedraLibrary::Generator,75

relationwith
ParmaPolyhedraLibrary::Polyhedron,94

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 114

removedimensions
ParmaPolyhedraLibrary::Determinate,69
ParmaPolyhedraLibrary::Polyhedron,102
ParmaPolyhedraLibrary::PowerSet,106
ParmaPolyhedraLibrary::PowerSet,106

removehigherdimensions
ParmaPolyhedraLibrary::Determinate,69
ParmaPolyhedraLibrary::Polyhedron,102
ParmaPolyhedraLibrary::PowerSet,106
ParmaPolyhedraLibrary::PowerSet,106

shrink boundingbox
ParmaPolyhedraLibrary::Polyhedron,94

std,60
STRICT INEQUALITY

ParmaPolyhedraLibrary::Constraint,66
strictly contains

ParmaPolyhedraLibrary::Polyhedron,94
swap

ParmaPolyhedraLibrary::Polyhedron,103

The Library,15
time elapseassign

ParmaPolyhedraLibrary::Polyhedron,99
Type

ParmaPolyhedraLibrary::Constraint,66
ParmaPolyhedraLibrary::Generator,75

UNIVERSE
ParmaPolyhedraLibrary::Polyhedron,91

The Parma Polyhedra Library User’s Manual (version 0.5). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	Convex Polyhedra and the PPL
	PPL Module Index
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Compound Index
	PPL Module Documentation
	PPL Namespace Documentation
	PPL Class Documentation

