The Parma Polyhedra Library
User’'s Manual
(version 0.5)

Roberto Bagnara

Patricia M. Hillt
Elisa Ricck

Enea Zaffanell&

based on previous work also by
Sara Bonini
Andrea Pescetti
Angela Stazzone
Tatiana Zold

April 27, 2003

*This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification of
Reactive Systems”.

Tbagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

Thill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.

Sericci@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

Yzaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

I zolo@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS

Copyright(©) 2001-2003 Roberto Bagnara (bagnara@cs.unipr.it).
This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published byrfeSoftware Foundatipwith

no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitledSNU Free Documentation Licerise

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theee Software Foundatipeither version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section enti@dJ' GENERAL
PUBLIC LICENSE.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 Convex Polyhedra and the PPL 1
2 PPL Module Index 13
3 PPL Namespace Index 13
4 PPL Hierarchical Index 14
5 PPL Compound Index 14
6 PPL Module Documentation 15
7 PPL Namespace Documentation 57
8 PPL Class Documentation 60

1 Convex Polyhedra and the PPL

1.1 A Library for Convex Polyhedra

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of rational convex poly-
hedra. Informally, a rational convex polyhedron is a set of points (in sefdienensional vector space)

that satisfies a finite number of linear inequalities having rational coefficients. The domain of convex
polyhedra is employed in several systems for the analysis and verification of hardware and software com-
ponents, with applications spanning imperative, functional and logic programming languages, synchronous
languages and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not
meant to target a particular problem, the design of its interface has been largely influenced by the needs

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.2 An Introduction to Convex Polyhedra

of the above class of applications. That is the reason why the library implements a few operators that are
more or less specific to static analysis applications, while lacking some other operators that might be useful
when working, e.g., in the field of computational geometry.

The main features of the library are the following:

e itis user friendly: you writex + 2xy + 5%z <= 7 when you mean it;
e itis fully dynamic: available virtual memory is the only limitation to the dimension of anything;
e it provides full support for the manipulation of convex polyhedra that are not topologically closed;
e itis written in standard C++: meant to be portable;
e itis exception-safe: never leaks resources or leaves invalid object fragments around;
e itis rather efficient: and we hope to make it even more so;
e itis thoroughly documented: perhaps not literate programming but close enough;
o itis free software: distributed under the terms of the GNU General Public License.
In the following sections we describe the polyhedra and the different representations and operations sup-

ported by the PPL in more detail. For more information about the definitions and results stated here see
[BRZHO2b], [Fuk98], [NW88], and[Wil93].

1.2 An Introduction to Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail.
Vectors, Matrices and Scalar Products

We denote bR™ then-dimensional vector space on the field of real numiBersndowed with the standard
topology. The set of all non-negative reals is denote@®by For each € {0,...,n — 1}, v; denotes the

i-th component of the (column) vector = (vg,...,v,_1)* € R™. We denote by the vector ofR”,
calledthe origin, having all components equal to zero. A veator R™ can be also interpreted as a matrix

in R™*! and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted by

Thescalar productof v, w € R™, denotedv, w), is the real number

n—1

’UT'UJ: E Viws.

=0

For anyS;, So C R™, theMinkowski's sunof S; andSs is: S1 + S2 = { vy + va | v1 € S1,v2 € 52 }.
Affine Hyperplanes and Half-spaces

For each vectoa € R™ and scalab € R, wherea # 0, and for each relation symbst € {=, >, >}, the
linear constrainta, x) i b defines:

e an affine hyperplane if it is an equality constraint, i.exdie {=};
e atopologically closed affine half-space if it is a non-strict inequality constraint, ire. gf{>};

¢ atopologically open affine half-space if it is a strict inequality constraint, i.eq, & {>}.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra

Note that each hyperplarde,) = b can be defined as the intersection of the two closed affine half-spaces
(a,xz) > band(—a,x) > —b. Also note that, whem = 0, the constraint0,) < b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vectdR%pmace

the empty sep.

Convex Polyhedra

The setP C R” is anot necessarily closed convex polyhed(NC polyhedronfor short) if and only if
eitherP can be expressed as the intersection of a finite number of (open or closed) affine half-sjdtes of
orn = 0andP = @. The set of all NNC polyhedra on the vector sp&ceis denotedP,,.

The setP € P, is aclosed convex polyhedrqolosed polyhedrorfor short) if and only if eithef® can be
expressed as the intersection of a finite number of closed affine half-spaRésoof, = 0 andP = .
The set of all closed polyhedra on the vector speées denotedCP,,.

When ordering NNC polyhedra by the set inclusion relation, the empty setd the vector spade™ are,
respectively, the smallest and the biggest elements offhpdndCP,,. The vector spacR™ is also called
theuniversepolyhedron.

In theoretical termdP,, is alattice under set inclusion an@P,, is asub-latticeof P,,.
Bounded Polyhedra
An NNC polyhedrorP € P, is boundedf there exists a\ € R, such that

PC{wxeR"|-A<az;<Aforj=0,....n—1}.

A bounded polyhedron is also callegbalytope

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

Constraints representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequalitya@satraint

By definition, each polyhedroR € P, is the set of solutions to eonstraint systerri.e., a finite number
of constraints. By using matrix notation, we have

P:{iB eR" | Ayx = by, Asx Zbg,A3$>b3},

where, for alli € {1,2,3}, 4, € R™ x R™ andb; € R™:, andmy,ms,m3 € N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

Combinations and Hulls

Let S = {x1,...,xx} C R™ be a finite set of vectors. For all scalaxs,...,\; € R, the vector
v = Z?Zl Ajx; is said to be dinear combination of the vectors ii. Such a combination is said to be

e apositive(or conic) combination, ifvj € {1,...,k}: A\; € R,;
. . . ek .
e anaffinecombination, |fzj.:1 A =1;

e aconvexcombination, if it is both positive and affine.

We denote byinear.hull(S) (resp. conic.hull(:S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors.in

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra

Let P,C C R", whereP U C = S. We denote byinc.hull(P, C') the set of all convex combinations of
the vectors inS such that\; > 0 for somex; € P (informally, we say that there exists a vector/othat
plays an active role in the convex combination). Note thathull(P, C') = nnc.hull(P, P U C) so that,
if C C P,

convex.hull(P) = nnc.hull(P, @) = nnc.hull(P, P) = nnc.hull(P, C).

It can be observed thainear.hull(S) is an affine space;onic.hull(S) is a topologically closed convex
cone,convex.hull(S) is a topologically closed polytope, amngc.hull(P, C) is an NNC polytope.

Points, Closure Points, Rays and Lines
LetP € P, be an NNC polyhedron. Then

e avectorp € P is called apoint of P;
e avectorc € R™ is called aclosure pointof P if it is a point of the topological closure G?;

e avector € R", wherer # 0, is called aay (or direction of infinity) of P if P £ @ andp+Ar € P,
for all pointsp € P and allA € R;

e avectorl € R” is called dine of P if both I and—1 are rays ofP.

A point of an NNC polyhedror? € P, is avertexif and only if it cannot be expressed as a convex
combination of any other pair of distinct points A ray r of a polyhedrorP is anextreme rayif and
only if it cannot be expressed as a positive combination of any othewpaindr, of rays of P, where

r # Ary, v # Arg andry # Arg for all A € R, (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

Generators Representation
Each NNC polyhedroP € P,, can be represented by finite sets of lidegays R, points P and closure
pointsC of P. The 4-tupleG = (L, R, P, C) is said to be @enerator systerfor P, in the sense that

P = linear.hull(L) + conic.hull(R) + nnc.hull(P, C),

where the symbolH-' denotes the Minkowski’s sum.

WhenP e CP, is a closed polyhedron, then it can be represented by finite sets ofllinesys R and
points P of P. In this case, the 3-tuplé = (L, R, P) is said to be @enerator systerfor P since we have

P = linear.hull(L) + conic.hull(R) 4 convex.hull(P).

Thus, in this case, every closure point/@fs a point ofP.

For anyP € PP, and generator systeéh= (L, R, P, C) for P, we haveP = @ if and only if P = &. Also
P must contain all the vertices &f althoughP can be non-empty and have no vertices. In this cask,ias
necessarily non-empty, it must contain pointstofhat arenot vertices. For instance, the half-spaceRsf
corresponding to the single constraint- 0 can be represented by the generator sysiem(L, R, P, C)
such thatL = {(1,0)T}, R = {(0,1)T}, P = {(0,0)T}, andC = @. Itis also worth noting that the
only ray in R is notan extreme ray oP.

Minimized Representations

A constraints syster@ for an NNC polyhedrorP € P, is said to baninimizedif no proper subset of is
a constraint system fap.

Similarly, a generator systeth = (L, R, P, C') for an NNC polyhedrorP € P, is said to beminimized
if there does not exist a generator systém= (L', R', P',C") # G for P such thatl’ C L, R’ C R,
P’ C PandC’ C C.

Double Description

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra

Any NNC polyhedronP can be described by using a constraint sysfera generator syste, or both

by means of thelouble description pair (DD pair}C, G). Thedouble description methad a collection

of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

Topologies and Topological-compatibility

As indicated above, when an NNC polyhedrBris necessarily closed, we can ignore the closure points
contained in its generator syste&yn= (L, R, P,C) (as every closure point is also a point) and represent

P by the triple(L, R, P). Similarly, P can be represented by a constraint system that has no strict in-
equalities. Thus a necessarily closed polyhedron can have a smaller representation than one that is not
necessarily closed. Moreover, operators restricted to work on closed polyhedra only can be implemented
more efficiently. For this reason the library provides two alternative “topological kinds” for a polyhedron,
NNCandC. We shall abuse terminology by referring to the topologcal kind of a polyhedrontapd®gy

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the followingiopological-compatibilityrules:
e polyhedra are topologically-compatible if and only if they have the same topology;

o all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

e strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.
Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.
Space Dimensions and Dimension-compatibility

The space dimensionf an NNC polyhedrorP € P, (resp., a C polyhedro® € CP,,) is the dimension
n € N of the corresponding vector spaB&. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following spacdimension-compatibilityules:
e polyhedra are dimension-compatible if and only if they have the same space dimension;

e the constraint{a, z) < b wherexxi € {=,>,>} anda,x € R™, is dimension-compatible with a
polyhedron having space dimensiorif and only if m < n;

e the generato € R™ is dimension-compatible with a polyhedron having space dimensiband
only if m < mn;

e a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra

Rational Polyhedra

An NNC polyhedron is calledational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.
Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedr®,, P, € P,,, theintersectionof P; andP,, defined as the set intersection
P1 NPy, is the biggest NNC polyhedron included in b@h andP,; similarly, theconvex polyhedral hull
(or poly-hull) of P; andP,, denoted byP; W Ps, is the smallest NNC polyhedron that includes b#th
and?P,. The intersection and poly-hull of any pair of closed polyhedr@l, is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the rhetand the
binaryjoin operators on the latticés, andCP,,.

Convex Polyhedral Difference

For any pair of NNC polyhedr®,, P, € PP, theconvex polyhedral differender poly-differencg of P,
and?P; is defined as the poly-hull of the set-theoretic differenc@pandP.

In general, even thougR;, P, € CP,, are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

Adding New Dimensions to the Vector Space

The library provides two operators for increasing the space dimension of an NNC polyh@deo,,,
therefore transforming it into a new NNC polyhedrene P,,, wherem > n. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operatoembeddinghe polyhedror into the new vector space will return the polyhed@mefined
by all and only the constraints definif®j(the variables corresponding to the added dimensions are uncon-
strained). For instance, when starting from a polyhedPon R? and adding a third dimension, the result
will be the polyhedron

Q= { (J?Q,l‘l,l‘g)T S R3 ’ (lio,xl)T epP }

In contrast, the operatgrojectingthe polyhedronP into the new vector space will return the polyhedron

Q whose constraint system, besides the constraints deffjngll include additional constraints on the

added dimensions. Namely, the corresponding variables are all constrained to be equal to 0. For instance,
when starting from a polyhedrgh C R? and adding a third dimension, the result will be the polyhedron

Q= {(mo,xl,O)T eR3 ’ (:co,ml)T € 73}.

Removing Dimensions from the Vector Space

The library provides two operators for decreasing the space dimension of an NNC polyfedrdp,,
therefore transforming it into a new NNC polyhedr@re P,,,, wherem < n.

Given a set of variables, there is an operator that will remove all the space dimensions corresponding to
the variables in this set. For instance, lettiige P4 be the singleton seft(3,1,0,2)"} C R, then after

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra

invoking this operator with the set of variablgs;, z2} the resulting polyhedron is

0={(3,2)"} CR%.

Another operator removes from the vector space all the dimensions having an index greater than or equal
to m. For instance, lettin® € P, defined as before, by invoking this operator with= 2 the resulting
polyhedron will be

Q = {(3’ 1)T} g RQ'

Mapping the Dimensions of the Vector Space

The library provides an operator to map the dimensions of the vector §a@ecording to a partial
injective functionp: {0,...,n — 1} — Nsuch thap({0,...,n — 1}) = {0,...,m — 1} with m < n.
Dimensions corresponding to indices that are not mappeggdarg removed.

If m = 0, i.e., ifthe functiorp is undefined everywhere, then the operator projects the argument polyhedron
P € P,, onto the zero-dimension spal@&; otherwise the result i§ € P,, given by

def T
Q= {(”p—1<o>’~-~a%—1(m—1>)

’ (vo, ... ,vn,l)T ep }

Affine Images and Preimages

For each function mapping: R” — R™, we denote by (S) C R™ theimageunder¢ of the setS C R";
formally,

¢(S) ={o(w) eR™ |veS}.
Similarly, we denote by ~1(S’) C R" the preimageunder¢ of S’ C R™, that is the largest st C R”
such thatp(S) C S’; formally,

o7 (S) = {veR"|g(v) €S }.

The function mapping: R™ — R™ is anaffine transformatiorif there exist a matrixd € R™ x R™ and
avectorb € R™ such that, for alle € R™, we havep(x) = Ax + b. If n = m, then the functior is said
to bespace-dimension preserving

Both P,, andCP,, are closed under the application of any space-dimension preserving affine image and
preimage operators.

The library provides two operators, one computes an affine image and the other an affine preimage of a
polyhedronP € P, for a given variabler;, and linear expressioawpr = Z?;ol a;x; + b. This variable

and expression determine the affine transformatidhat is to be used by the operator. Thatdds the
transformation defined by the matrix and vector

1 0 0 v ... 0 0
0 1 0 .. 0 0
A=]ag Ak—1 Ak Gkt1 an-1 |, b= 1|0
0 0 1 0 0
0 - ... 0 0 1 0

where theu; (resp.,b) occurs in the(k + 1)st row in A (resp., position irb). Thus¢ transforms any point
(%0, ...,2n—1)"T in the polyhedrorP to

T
((Eo, ey (Z?;Olaiwi + b), . ,.’L’n,1> .

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra

The affine image operator computes the affine image ahder¢. For instance, suppose the polyhedron
P to be transformed is the squareld generated by the set of poinf$0,0)™, (0,3)T, (3,0)T, (3,3)T}.
Then, for example if the considered variablezisand the linear expressian + 2z, + 4 (so thatk = 0,

ap = l,a; = 2,b = 4), the affine image operator will translate to the parallelogranP; generated
by the set of point{(4,0)T, (10,3)™, (7,0)T, (13,3)T} with height equal to the side of the square and
oblique sides parallel to the ling — 2z,. If the considered variable is as before (ile= 0) but the linear
expression i (so thatag = 0,a; = 1,b = 0), then the resulting polyhedrd®; is the positive diagonal
of the square.

The affine preimage operator computes the affine preimagewfdery. For instance, suppose now that
we apply the affine preimage operator as given in the first example using variadhel linear expression
Zo + 271 + 4 to the parallelogran®; ; then we get the original squaf@ back. If, on the other hand, we
apply the affine preimage operator as given in the second example using vagiaold linear expression
x1 10 P3, then the resulting polyhedron is a line that corresponds te tfexes.

Observe that provided the coefficient of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

Generalized Affine Images

The library provides another operator which is a generalization of the affine image operator. Given a
polyhedronP € PP,,, an affine expressiolts = Z?‘:_Ol aiz; + b, arelation symbak € {<, <, =,>,>},
and an affine expressiorhs = Z;:Ol a;x; + b, the image ofP with respect to the transfer function

lhs < rhs is defined as

(’Uo, R ,’Un_l)T eP,
(wo, ..., wp_1)T € R" (ie {0,....n—1}ANa; =0 = wi:vi),
Z?;Ol alw; + b > Z?;Ol a;v; + b
Note that, wherlhs = z;, and< € {=}, then the above operator is equivalent to the application of the

standard affine image @ with respect to the variable,, and the affine expressiatks (hence the name
given to this operator).

Time-Elapse Operator

The time-elapseoperator has been defined [iHPR97]. Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedraP, Q € P,, the time-elapse betweéhandQ, denoted? ~ Q, is the smallest NNC polyhedron
containing the set

{p+XeR"|peP,qec QAER, }.

Note that, ifP, @ € CP,, are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

Relation-with Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

SupposeP is an NNC polyhedron an@ an arbitrary constraint system representfhgSuppose also that
¢ = ((a,x) > b) is a constraint with< € {=, >, >} and Q the set of points that satisfy The possible
relations betweef® andc are as follows.

e Pisdisjointfrom cif P N Q = @; that is, adding: to C gives us the empty polyhedron.

e P strictly intersects: if PN Q # @ andP N Q C P; that is, adding: to C gives us a non-empty
polyhedron strictly smaller thaR.

e Pisincludedin cif P C Q; that s, adding: to C leavesP unchanged.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra

e P saturates if P C H, whereH is the hyperplane induced by constraini.e., the set of points
satisfying the equality constraia,) = b; that is, adding the constraigt,) = b to C leavesP
unchanged.

The polyhedror? subsumeshe generatoy if adding g to any generator system representidgloes not
changeP.

Intervals, boxes and bounding boxes

An intervalin R is a pair ofbounds calledlower andupper. Each bound can be either (&psed and
bounded (2) open and boundear (3) open and unboundedf the bound isbounded then it has a value
in R. An n-dimensionaboxB in R™ is a sequence of intervals inR.

The polyhedrorP represents a bo¥ in R™ if P is described by a constraint systemi# that con-
sists of one constraint for each bounded bound (lower and upper) in an interifal iretting e; =
0,...,1,...,0)T be the vector ifR™ with 1 in thei'th position and zeroes in every other position; if
the lower bound of théth interval in B is bounded, the corresponding constraint is define@as:) > b,
whereb is the value of the bound amd is > if it is a closed bound ang if it is an open bound. Similarly, if
the upper bound of théth interval in B is bounded, the corresponding constraint is defing@ase) i b,
whereb is the value of the bound and is < if it is a closed bound ang if it is an open bound.

If every bound in the intervals defining a b#Xs either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

Thebounding boxof an NNC polyhedrorP is the smallest-dimensional box containing.

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

Widening Operators

The library provides two widening operators for the domain of NNC polyhedra. The first one, that we
call H79-widening mainly follows the specification provided in the PhD thesis of N. Halbwgidia79],

also described ifHPR97]. There are a few differences between the H79-widening and the widening
described in the cited paper. In particular, the H79-widening of an NNC polyh&drenP,, using the

NNC polyhedronQ € P,,:

o allows for equalities inP andQ (the original definition is restricted to inequalities);

e requires as a precondition thatC P.

The second widening operator, that we &HRZ03-wideningis an instance of the specification provided
in [BHRZ03]. This operator also requires as a precondition fat P and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to polyhedra that are not topologically closed. The user is warned
that, in such a case, the results may not closely match the geometric intuition which is at the base of the
specification of the two widenings. The reason is that, in the current implementation, the widenings are not
directly applied to the NNC polyhedra, but rather to their internal representations. Implementation work is
in progress and future versions of the library may provide an even better integration of the two widenings
with the domain of NNC polyhedra.

Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parametek and only apply widenings starting from tleth iteration.

The library also supports an improved widening delay strategy, that wewdddning with tokens
[BHRZ03]. A token is a sort of wildcard allowing for the replacement of the widening application by

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Bibliography 10

the exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed tpdtamtial precision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed numbet of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

Extrapolation Operators

Besides the two widening operators, the library also implements sexdrapolationoperators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponidimited extrapolation operator, which

can be used to implement thédening “up to” technique as described[iHPR97]. Each limited extrapola-

tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97] this set is fixed once and for all before starting the computation of the upward iteration sequence.

The boundedextrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above, by ensuring that their results cannot be worse than the simalieding box enclosing the
two argument polyhedra.

A Note on the Implementation of the Operators

When adopting the double description method, the implementation of the above operators on polyhedra
may require an explicit conversion from one of the two representations into the other one, leading to
algorithms having a worst-case exponential complexity. However, thanks to the adoption of lazy and
incremental computation techniques, the library turns out to be rather efficient in many practical cases.

In earlier versions of the library, a number of operators were introduced in two flavdezy aersion

and aneagerversion, the latter having the operator name ending vatid _minimize . In principle,

only the lazy versions should be used. The eager versions were added to help a knowledgeble user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

The only case when an eager computation still makes sense is when the well-faisfiret principle

comes into play. For instance, if you have to compute the intersection of several polyhedra and you strongly

suspect that the result will become empty after a few of these intersections, then you may obtain a better

performance by calling the eager version of the intersection operator, since the minimization process also

enforces an emptyness check. Note anyway that the same effect can be obtained by interleaving the calls
of the lazy operator with explicit emptyness checks.

1.5 Bibliography

[BGP99] T.Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental résDisTransactions
on Programming Languages and Systefig4):747-789, 1999.

[BHRZ03] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno, Dipartimento di Matematica, UnivarditParma, Italy, 2003. Available at
http://www.cs.unipr.it/Publications/

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Bibliography

11

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Urdvér§tarma,
Italy, 2002.

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editBi®ceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systempages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Poli&cnica de Madrid, Facultad de Infoatica.

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. F8, editors,Static Analysis: Proceedings of the 6th International Sympasium
volume 1694 ofLecture Notes in Computer Sciengmges 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BRZHO02a] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, edBtatic Analysis: Pro-
ceedings of the 9th International Symposjwmlume 2477 ol ecture Notes in Computer Science
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZHO2b] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Urin@irBiarma, Italy,
2002. See alsfBRZHO02c]. Available athttp://www.cs.unipr.it/Publications/ .

[BRZHO2c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286”. Available athttp://www.cs.unipr.it/Publications/ , 2002. Se¢BRZHO2b].

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editBreceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programminge
631 ofLecture Notes in Computer Scienpages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. InConference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languagespages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equationgJ.S.S.R. Computational Mathematics and Mathematical Phy&i4%151-
158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities.U.S.S.R. Computational Mathematics and Mathematical Physics
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem.U.S.S.R. Computational Mathematics and Mathematical Phy&i6%282-293, 1968.

[Dan63] G. B. Dantzig.Linear Programming and ExtensionBrinceton University Press, Princeton, NJ,
1963.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and Y.
Manoussakis, editor§ombinatorics and Computer Science, 8th Franco-Japanese and 4th Franco-
Chinese Conference, Brest, France, July 3-5, 1995, Selected Papkmne 1120 ot ecture Notes
in Computer Sciengg@ages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral = computation FAQ. Swiss Federal Insti-
tute of Technology, Lausanne and Zurich, Switzerland, available at
http://www.ifor.math.ethz.ch/ ~fukuda/fukuda.html , 1998.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Bibliography 12

[GJO0] E. Gawrilow and M. Joswig.polymake : a framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editorsolytopes - Combinatorics and Computatiqgrages 43-74.
Birkhauser, 2000.

[GJO1] E. Gawrilow and M. Joswigpolymake : an approach to modular software design in computa-
tional geometry. IrProceedings of the 17th Annual Symposium on Computational Gegqmpatygs
222-231. ACM, 2001. June 3-5, 2001, Medford, MA.

[Hal79] N. Halbwachs.Détermination Automatique de Relations &#ires \érifiees par les Variables
d’'un ProgrammeThese de 8me cycle d'informatique, Universiscientifique et riedicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, ditoputer
Aided Verification: Proceedings of the 5th International Conferenofume 697 ofLecture Notes
in Computer Scien¢pages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editbigghrid Systems |lvolume 999 of
Lecture Notes in Computer Scienpages 252-264. Springer-Verlag, Berlin, 1995.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. ProypOLyhedra INtegrated Environmenterimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interne830, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, edit&tatic Analysis: Proceedings of the 1st Inter-
national Symposiummvolume 864 ofLecture Notes in Computer Sciengages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysisFormal Methods in System Desigiil (2):157-185, 1997.

[HPWTO1] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Compiagles 2887-2892. IEEE
Computer Society Press, 2001.

[Jea02] B. Jeannet. Convex Polyhedra Library release 1.1.3c edition,
March 2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html .

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequaliie®rican Math-
ematical Monthly63:217-232, 1956.

[Le 92] 92 H. Le Verge. A note on Chernikova’s algorithfublication internes35, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/ ~loechner/polylib/ , March 1999. Declares itself to be
a continuation ofWil93].

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their verficesnational Journal
of Parallel Programming25(6):525-549, 1997.

[MRTT53] T.S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editor§ontributions to the Theory of Games - Volumenlimber
28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

2 PPL Module Index

[NW88] G.L.Nemhauserand L. A. Wolseinteger and Combinatorial OptimizatiohViley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraintsAnnals of Mathematics and Artificial Intelligend(3-4):315-343, 1993.

[SW70] J. Stoer and C. WitzgallConvexity and Optimization in Finite DimensionsSpringer-Verlag,
Berlin, 1970.

[Wey35] H. Weyl. Elementare theorie der konvexen polyed@ommentarii Mathematici Helvetici
7:290-306, 1935. English translation[Wey50].

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, ed@ontributions to
the Theory of Games - Volumaiumber 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated[iney35] by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRR/lication interne785, Rennes,
France, 1993.

2 PPL Module Index

2.1 PPL Modules

Here is a list of all modules:

The Library 15
Library Defines 15
C Language Interface 15
Prolog Language Interface 37
PPL License Pages 52

3 PPL Namespace Index

3.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:
Parma_Polyhedra Library (The entire library is confined into this namespace) 57

Parma_Polyhedra Library::IO _Operators (All input/output operators are confined into this
namespace) 59

std (The standard C++ namespace) 60

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 PPL Hierarchical Index

4 PPL Hierarchical Index

4.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Constraint 63
Determinate< PH > 67
Generator 70
LinExpression 76
Poly_Con_Relation 81
Poly_Gen_Relation 82
Polyhedron 83

C_Polyhedron 60

NNC_Polyhedron 79
PowerSek CS > 104
Variable 107
Compare 109

5 PPL Compound Index

5.1 PPL Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:
C_Polyhedron (A closed convex polyhedron) 60
Constraint (A linear equality or inequality) 63

Determinate< PH > (Wrap a polyhedron class into a determinate constraint system interface)s7

Generator (A line, ray, point or closure point) 70
LinExpression (A linear expression) 76
NNC_Polyhedron (A not necessarily closed convex polyhedron) 79
Poly_Con_Relation (The relation between a polyhedron and a constraint) 81
Poly_Gen_Relation (The relation between a polyhedron and a generator) 82
Polyhedron (The base class for convex polyhedra) 83
PowerSek: CS > (The powerset construction on constraint systems) 104

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6 PPL Module Documentation 15

Variable (A dimension of the space) 107

Compare (Binary predicate defining the total ordering on variables) 109

6 PPL Module Documentation

6.1 The Library

The core implementation of the Parma Polyhedra Library is written in C++. See Namespace, Hierarchical
and Compound indexes for additional information.

6.2 Library Defines

Defines

o #definePPL_VERSION_MAJOR 0
The major number of the PPL version.

o #definePPL_VERSION_MINOR 5
The minor number of the PPL version.

o #definePPL_VERSION_REVISION 0
The revision number of the PPL version.

o #definePPL_VERSION_BETA 0

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

6.3 C Language Interface
Initialization, Error Handling and Auxiliary Functions

e int ppl_max_spacedimension (ppl_dimension.type xm)
Writes tomthe maximum space dimension this library can handle.

int ppl_not_a_dimension (ppl_dimension.type xm)
Writes toma value that does not designate a valid dimension.

int ppl_initialize (void)
Initializes the Parma Polyhedra Library. This function must be called before any other function.

int ppl_finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

int ppl_seterror _handler (void(xh)(enumppl_enum_error _codecode, const chardescription))
Installs the user-defined error handler pointedhy

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 16

Functions Related to Coefficients

o int ppl_new_Coefficient (ppl _Coefficient t xpc)
Creates a new coefficient with value 0 and writes an handle for the newly created coefficient at pddress

¢ int ppl_new_Coefficient from _mpz_t (ppl_Coefficientt «xpc, mpzt z)

Creates a new coefficient with the value given by the GMP integand writes an handle for the newly
created coefficient at addreps .

o int ppl_new_Coefficient from _Coefficient (ppl_Coefficient.t xpc, ppl_const Coefficient.t c)
Builds a coefficient that is a copy of writes an handle for the newly created coefficient at addpess

e int ppl_assignCoefficientfrom _mpz_t (ppl_Coefficientt dst, mpzt z)
Assign tadst the value given by the GMP integer

e int ppl_assignCoefficient from _Coefficient (ppl_Coefficient t dst,ppl_const Coefficient.t src)
Assigns a copy of the coefficiestt todst .

o int ppl_delete Coefficient (ppl_const Coefficient.t c)
Invalidates the handle: this makes sure the corresponding resources will eventually be released.

¢ int ppl_Coefficientto_mpz_t (ppl_constCoefficientt c, mpzt z)
Sets the value of the GMP integeto the value ot.

¢ int ppl_Coefficient OK (ppl_const Coefficientt c)

Returns a positive integer d is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise i broken. Useful for debugging purposes.

Functions Related to Linear Expressions

o int ppl_new_LinExpression (ppl_LinExpression_t xple)

Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes an
handle for the new linear expression at addrpks .

o int ppl_new_LinExpression_with _dimension (ppl_LinExpression_t xple, ppl_dimensiontype d)

Creates a new linear expression corresponding to the constant @-4dimensional space; writes an handle
for the new linear expression at addrgse .

e int ppl_new_LinExpression_from _LinExpression (ppl_LinExpression_t xple, ppl_constLin-
Expressiont le)

Builds a linear expression that is a copylef; writes an handle for the newly created linear expression at
addresyle .

e int ppl_new_LinExpression_from _Constraint (ppl_LinExpression_t «ple,ppl_const Constraint_t
c)

Builds a linear expression corresponding to constraintwrites an handle for the newly created linear
expression at addregse .

¢ int ppl_new_LinExpression_from _Generator (ppl_LinExpression_t xple, ppl_const Generator_t
9)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 17

Builds a linear expression corresponding to generagorwrites an handle for the newly created linear
expression at addregde .

¢ int ppl_delete LinExpression (ppl_constLinExpression_t le)
Invalidates the handli : this makes sure the corresponding resources will eventually be released.

e int ppl_assignLinExpression_from _LinExpression (ppl_LinExpression_t dst, ppl_constLin-
Expressiont src)

Assigns a copy of the linear express&m todst .

e int ppl_LinExpression_add_to_coefficient(ppl_LinExpression_t le, ppl_dimension.type var, ppl _-
const Coefficient.t n)

Addsn to the coefficient of variablear in the linear expressiote . The space dimension is set to be the
maximum betweevar + 1 and the old space dimension.

e int ppl_LinExpression_add_to_inhomogeneougppl_LinExpression_t le, ppl_const Coefficient t
n)

Addsn to the inhomogeneous term of the linear expresion

e int ppl_add_LinExpression_to_LinExpression (ppl_LinExpression_t dst, ppl_constLin-
Expressiont src)

Adds the linear expressiarc todst .

o int ppl_subtract_LinExpression_from _LinExpression (ppl_LinExpression_t dst, ppl_constLin-
Expressiont src)

Subtracts the linear expressienc fromdst .

o int ppl_multiply _LinExpression_by_Coefficient (ppl_LinExpression_t le, ppl_const Coefficient t
n)

Multiply the linear expressiodst byn.

e int ppl_LinExpression_spacedimension (ppl_constLinExpression_t le)
Returns the space dimensionef.

e int ppl_LinExpression_coefficient (ppl_constLinExpression_t le, ppl_dimension.type var, ppl_-
Coefficientt n)

Copies inton the coefficient of variablear in the linear expressiofe .

e int ppl_LinExpression_inhomogeneousterm (ppl_constLinExpression_t le, ppl_Coefficient.t n)
Copies inton the inhomogeneous term of linear expresden

e int ppl_LinExpression_OK (ppl_constLinExpression_t le)

Returns a positive integerlé is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noistif is broken. Useful for debugging purposes.

Functions Related to Constraints

e int ppl_new_Constraint (ppl_Constraint_t xpc, ppl_constLinExpression_t le, enumppl_enum.-
Constraint_Typerel)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 18

Creates the new constrairie'rel 0’ and writes an handle for it at addregx . The space dimension of
the new constraint is equal to the space dimenside of

e int ppl_new_Constraint_zero_dim _false (ppl_Constraint_t xpc)

Creates the unsatisfiable (zero-dimension space) constaiat1l and writes an handle for it at address
pc.

e int ppl_new_Constraint_zero_dim _positivity (ppl_-Constraint_t xpc)

Creates the true (zero-dimension space) constr@irt 1, also known agositivity constraint An handle
for the newly created constraint is written at addr@ss

¢ int ppl_new_Constraint_from _Constraint (ppl_Constraint_t «pc, ppl_constConstraint_t c)
Builds a constraint that is a copy of, writes an handle for the newly created constraint at addmsss

e int ppl_delete Constraint (ppl_const.Constraint_t c)
Invalidates the handle: this makes sure the corresponding resources will eventually be released.

e int ppl_assignConstraint_from _Constraint (ppl_Constraint_t dst,ppl_constConstraint_t src)
Assigns a copy of the constraiic to dst .

e int ppl_Constraint_spacedimension (ppl_const.Constraint_t c)
Returns the space dimensioncof

e int ppl_Constraint_type (ppl_constConstraint_t c)
Returns the type of constraiot

e int ppl_Constraint_coefficient (ppl_constConstraint.t c, ppl_dimensiontype var, ppl._-
Coefficient.t n)

Copies inton the coefficient of variablear in constraintc.

¢ int ppl_Constraint_inhomogeneousterm (ppl_constConstraint_t c, ppl_Coefficient.t n)
Copies inton the inhomogeneous term of constraint

e int ppl_Constraint_OK (ppl_const.Constraint_t c)

Returns a positive integer d is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise i broken. Useful for debugging purposes.

Functions Related to Constraint Systems

e int ppl_new_ConSys(ppl_ConSyst xpcs)
Builds an empty system of constraints and writes an handle to it at adgiesss

o int ppl_new_ConSyszero_dim_empty (ppl_ConSyst xpcs)
Builds a zero-dimensional, unsatisfiable constraint system and writes an handle to it at guithess

o int ppl_new_ConSysfrom _Constraint (ppl_ConSyst xpcs,ppl_constConstraint_t c)

Builds the singleton constraint system containing only a copy of constraimtites an handle for the newly
created system at addregss .

o int ppl_new_ConSysfrom_ConSys(ppl_ConSyst *pcs,ppl_const ConSyst cs)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 19

Builds a constraint system that is a copyosf; writes an handle for the newly created system at address
pcs .

¢ int ppl_delete ConSys(ppl_constConSyst cs)
Invalidates the handles : this makes sure the corresponding resources will eventually be released.

¢ int ppl_assignConSysfrom _ConSys(ppl_ConSyst dst,ppl_const ConSyst src)
Assigns a copy of the constraint systerm to dst .

¢ int ppl_ConSysspacedimension (ppl_constConSyst cs)
Returns the dimension of the vector space enclosing

e int ppl_ConSysclear (ppl_ConSyst cs)
Removes all the constraints from the constraint systerand sets its space dimension to 0.

e int ppl_ConSysinsert_Constraint (ppl_ConSyst cs,ppl_const Constraint_t c)
Inserts a copy of the constraintinto cs ; the space dimension is increased, if necessary.

e int ppl_ConSysOK (ppl_constConSyst c)

Returns a positive integer @s is well formed, i.e., if it satisfies all its implementation invariants; returns O
and perhaps make some noisesfis broken. Useful for debugging purposes.

o int ppl_new_ConSysconstiterator (ppl_ConSysconstiterator _t xpcit)
Builds a new ‘const iterator’ and writes an handle to it at addrps#

e int ppl_new_ConSysconstiterator from_ConSysconstiterator (ppl_-ConSysconstiterator _t
xpcCit, ppl_const ConSysconstiterator _t cit)

Builds a const iterator system that is a copycdf ; writes an handle for the newly created const iterator
at addresgcit

e int ppl_delete ConSysconstiterator (ppl_constConSysconstiterator _t cit)
Invalidates the handleit : this makes sure the corresponding resources will eventually be released.

e int ppl_assignConSysconstiterator -from _ConSysconstiterator (ppl_ConSysconst -
iterator _t dst,ppl_const ConSysconstiterator _t src)

Assigns a copy of the const iteratnc todst .

¢ int ppl_ConSysbegin (ppl_const ConSyst cs,ppl_ConSysconstiterator _t cit)
Assigns tait a const iterator "pointing” to the beginning of the constraint systesn

e int ppl_ConSysend (ppl_const ConSyst cs,ppl_-ConSysconstiterator _t cit)
Assigns tait a const iterator "pointing” past the end of the constraint systesn

e int ppl_ConSysconstiterator _dereference(ppl_const ConSysconstiterator _t cit, ppl_const-
Constraint_t xpc)

Dereferenceit writing a const handle to the resulting constraint at addrpss

e int ppl_ConSysconstiterator _increment (ppl_ConSysconstiterator _t cit)

Incrementcit so that it "points” to the next constraint.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 20

e int ppl_ConSysconstiterator _equal test (ppl_const ConSysconstiterator _t x, ppl_constCon-
Sysconstiterator _t y)

Returns a positive integer if the iterators corresponding tandy are equal; return O if they are different.

Functions Related to Generators

e int ppl_new_Generator (ppl_Generator_t xpg, ppl_constLinExpression_t le, enumppl_enum.-
Generator_Type t, ppl_const Coefficient.t d)

Creates a new generator of directite and typet . If the generator to be created is a point or a closure
point, the divisod is applied tole . For other types of generatorsis simply disregarded. An handle for
the new generator is written at addresg. The space dimension of the new generator is equal to the space
dimension ofe .

e int ppl_new_Generator_zero_.dim _point (ppl_Generator_t xpg)

Creates the point that is the origin of the zero-dimensional sfécéNrites an handle for the new generator
at addresgg.

e int ppl_new_Generator_zero_.dim _closure_point (ppl_Generator_t xpg)

Creates, as a closure point, the point that is the origin of the zero-dimensional Bat#'rites an handle
for the new generator at addrepg.

¢ int ppl_new_Generator_from _Generator (ppl_Generator_t xpg, ppl_const Generator_t g)
Builds a generator that is a copy gf writes an handle for the newly created generator at addpess

e int ppl_delete Generator (ppl_constGenerator_t g)
Invalidates the handlg: this makes sure the corresponding resources will eventually be released.

e int ppl_assignGenerator_from _Generator (ppl_Generator_t dst,ppl_const Generator_t src)
Assigns a copy of the generatenc to dst .

e int ppl_Generator_spacedimension (ppl_const Generator_t g)
Returns the space dimensiongof

e int ppl_Generator_type (ppl_const Generator_t g)
Returns the type of generatgr

e int ppl_Generator_coefficient (ppl_constGeneratort g, ppl_.dimensiontype var, ppl._-
Coefficient.t n)

Copies inton the coefficient of variablear in generatorg.

o int ppl_Generator_divisor (ppl_constGenerator_t g, ppl_Coefficient.t n)
If g is a point or a closure point assigns its divisorro

e int ppl_Generator_OK (ppl_constGenerator.t g)

Returns a positive integer ¢f is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisg i broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 21

Functions Related to Generator Systems

o int ppl_new_GenSys(ppl_GenSyst «pgs)
Builds an empty system of generators and writes an handle to it at adalyess

o int ppl_new_GenSysfrom _Generator (ppl_GenSyst xpgs,ppl_const Generator_t g)

Builds the singleton generator system containing only a copy of geneyataiites an handle for the newly
created system at addrepgs .

e int ppl_new_GenSysfrom _GenSys(ppl_GenSyst xpgs,ppl_constGenSyst gs)

Builds a generator system that is a copygsf;, writes an handle for the newly created system at address
pgs.

e int ppl_delete GenSys(ppl_const GenSyst gs)
Invalidates the handlgs : this makes sure the corresponding resources will eventually be released.

e int ppl_assignGenSysfrom _GenSys(ppl_GenSyst dst, ppl_const GenSyst src)
Assigns a copy of the generator systam to dst .

e int ppl_GenSysspacedimension(ppl_const GenSyst gs)
Returns the dimension of the vector space encloging

e int ppl_GenSysclear (ppl_GenSyst gs)
Removes all the generators from the generator sygtemnd sets its space dimension to 0.

e int ppl_GenSysinsert_Generator (ppl_GenSyst gs,ppl_constGenerator_t g)
Inserts a copy of the generatgrinto gs ; the space dimension is increased, if necessary.

e int ppl_GenSysOK (ppl_constGenSyst c)

Returns a positive integer @fs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisgsfis broken. Useful for debugging purposes.

e int ppl_new_GenSysconstiterator (ppl_GenSysconstiterator _t xpgit)
Builds a new ‘const iterator’ and writes an handle to it at addrpg# .

e int ppl_new_GenSysconstiterator from_GenSysconstiterator (ppl_-GenSysconstiterator _t
xpgit, ppl_const GenSysconstiterator _t git)

Builds a const iterator system that is a copyodf ; writes an handle for the newly created const iterator
at addresggit .

¢ int ppl_delete GenSysconstiterator (ppl_constGenSysconstiterator _t git)
Invalidates the handlgit : this makes sure the corresponding resources will eventually be released.

e int ppl_assignGenSysconstiterator _from _GenSysconstiterator (ppl_GenSysconst -
iterator _t dst,ppl_const GenSysconstiterator _t src)

Assigns a copy of the const iteratenc to dst .

¢ int ppl_GenSysbegin (ppl_const GenSyst gs, ppl_GenSysconstiterator _t git)
Assigns ta@it a const iterator "pointing” to the beginning of the generator systgsn

¢ int ppl_GenSysend (ppl_constGenSyst gs, ppl_GenSysconstiterator _t git)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface

Assigns tajit a const iterator "pointing” past the end of the generator sysigsn

e int ppl_GenSysconstiterator _dereference(ppl_const GenSysconstiterator _t git, ppl_const-
Generator_t pg)

Dereferenceait writing a const handle to the resulting generator at addnegs

¢ int ppl_GenSysconstiterator _increment (ppl_GenSysconstiterator _t git)
Incremenfit so that it "points” to the next generator.

¢ int ppl_GenSysconstiterator _equal test (ppl_const GenSysconstiterator _t X, ppl_constGen-
Sysconstiterator _t y)

Return a positive integer if the iterators correspondingtandy are equal; return 0 if they are different.

Functions Related to Polyhedra

e int ppl_new_C_Polyhedron from _dimension(ppl_Polyhedron_t xpph, ppl_dimension.type d)
Builds an universe closed polyhedron of dimensland writes an handle to it at addrepgh.

e int ppl_new_.NNC_Polyhedron_from _dimension (ppl_Polyhedron.t xpph,ppl_dimension.type d)
Builds an universe NNC polyhedron of dimensiband writes an handle to it at addrepph.

e int ppl_new_C_Polyhedron_empty_from _dimension (ppl_Polyhedron.t «pph, ppl_dimension-
type d)
Builds an empty closed polyhedron of dimensicemd writes an handle to it at addrepph .

e int ppl_new.NNC_Polyhedron.empty_from_dimension (ppl_Polyhedront xpph, ppl_-
dimension.type d)

Builds an empty NNC polyhedron of dimensiband writes an handle to it at addrepph.

e int ppl_new_C_Polyhedron_from _C_Polyhedron (ppl_Polyhedront =xpph, ppl_const-
Polyhedron.t ph)

Builds a closed polyhedron that is a copypif; writes an handle for the newly created polyhedron at
addresph.

e int ppl_new_C_Polyhedron_from _NNC_Polyhedron (ppl_Polyhedront xpph, ppl_const-
Polyhedron.t ph)

Builds a closed polyhedron that is a copy of of the NNC polyhegionwrites an handle for the newly
created polyhedron at addrepgph.

e int ppl_new.NNC_Polyhedron_from _C_Polyhedron (ppl_Polyhedront xpph, ppl_const-
Polyhedron_t ph)

Builds an NNC polyhedron that is a copy of of the closed polyheghgnwrites an handle for the newly
created polyhedron at addrepgph.

e int ppl_new_.NNC_Polyhedron_from _NNC_Polyhedron (ppl_Polyhedront xpph, ppl_const-
Polyhedron.t ph)

Builds an NNC polyhedron that is a copy joifi; writes an handle for the newly created polyhedron at
addresph.

o int ppl_new_C_Polyhedron_from _ConSys(ppl_Polyhedron.t xpph,ppl_const ConSyst cs)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 23

Builds a new closed polyhedron from the system of constreénemnd writes an handle for the newly created
polyhedron at addregsph. The new polyhedron will inherit the space dimensionf

e int ppl_new_C_Polyhedron_recycle ConSys(ppl _Polyhedron_t xpph, ppl_ConSyst cs)

Builds a new closed polyhedron recycling the system of constresnend writes an handle for the newly
created polyhedron at addregph. Sincecs will be the system of constraints of the new polyhedron, the
space dimension is also inherited.

e int ppl_new_.NNC_Polyhedron_from _ConSys(ppl_Polyhedron_t xpph,ppl_const ConSyst cs)

Builds a new NNC polyhedron from the system of constramtand writes an handle for the newly created
polyhedron at addregsph . The new polyhedron will inherit the space dimensionof

e int ppl_new_NNC_Polyhedron_recycle ConSys(ppl_Polyhedron.t «xpph,ppl_ConSyst cs)
Builds a new NNC polyhedron recycling the system of constragtand writes an handle for the newly

created polyhedron at addregph. Sincecs will be the system of constraints of the new polyhedron, the
space dimension is also inherited.

e int ppl_new_C_Polyhedron_from _GenSys(ppl_Polyhedron.t xpph, ppl_const GenSyst gs)

Builds a new closed polyhedron from the system of genergoed writes an handle for the newly created
polyhedron at addregsph . The new polyhedron will inherit the space dimensiogf

¢ int ppl_new_C_Polyhedron_recycle GenSys(ppl_Polyhedron.t «pph,ppl_GenSyst gs)

Builds a new closed polyhedron recycling the system of genergsoesnd writes an handle for the newly
created polyhedron at addregph. Sincegs will be the system of generators of the new polyhedron, the
space dimension is also inherited.

o int ppl_new_NNC_Polyhedron_from _GenSys(ppl_Polyhedron_t «pph,ppl_const GenSyst gs)

Builds a new NNC polyhedron from the system of generafrand writes an handle for the newly created
polyhedron at addregsph. The new polyhedron will inherit the space dimensiogof

e int ppl_new_.NNC_Polyhedron_recycle GenSys(ppl_Polyhedron.t «pph,ppl_GenSyst gs)

Builds a new NNC polyhedron recycling the system of generat®rand writes an handle for the newly
created polyhedron at addregph. Sincegs will be the system of generators of the new polyhedron, the
space dimension is also inherited.

e int ppl_new_C_Polyhedron_from _bounding_box (ppl_Polyhedront «pph, ppl_dimension-
type(xspacedimension)(void), inttis_empty)(void), intégetlower_bound)ppl_dimension.type k,
int closed ppl_Coefficient t n, ppl_Coefficient t d), int(xgetupperbound)ppl_dimensiontype k,
int closed ppl_Coefficientt n, ppl_Coefficientt d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addrepph.

e int ppl_new_.NNC_Polyhedron from _bounding_box (ppl_Polyhedron.t xpph, ppl_dimension.-
type(xspacedimension)(void), intéis_.empty)(void), intégetlower_bound)ppl_dimension.type K,
int closed ppl_Coefficient t n, ppl_Coefficient t d), int(xgetupperbound)ppl_dimensiontype K,
int closed ppl_Coefficientt n, ppl_Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addrepph.

e int ppl_assignC_Polyhedron_from _C_Polyhedron (ppl_Polyhedront dst, ppl_const-
Polyhedron_t src)

Assigns a copy of the closed polyhedssa to the closed polyhedroust .

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface

e int ppl_assignNNC_Polyhedron_from _NNC_Polyhedron (ppl_Polyhedront dst, ppl_const-
Polyhedron_t src)

Assigns a copy of the NNC polyhedine to the NNC polyhedrodst .

o int ppl_delete Polyhedron (ppl_const Polyhedron_t ph)
Invalidates the handlph: this makes sure the corresponding resources will eventually be released.

¢ int ppl_Polyhedron_spacedimension (ppl_constPolyhedron_t ph)
Returns the dimension of the vector space enclgsing

e int ppl_Polyhedron_constraints (ppl_const Polyhedron_t ph, ppl_const ConSyst xpcs)
Writes a const handle to the constraint system defining the polyhetiram addresspcs .

e int ppl_Polyhedron.minimized_constraints (ppl_constPolyhedront ph, ppl_constConSyst
*PCS)
Writes a const handle to the minimized constraint system defining the polyh@dedraddresspcs .

e int ppl_Polyhedron_generators(ppl_constPolyhedron.t ph, ppl_const GenSyst xpgs)
Writes a const handle to the generator system defining the polyhptrahaddresggs .

e int ppl_Polyhedron_minimized_generators (ppl_constPolyhedron.t ph, ppl_constGenSyst
*Ppgs)
Writes a const handle to the minimized generator system defining the polymddatraddrespgs .

e int ppl_Polyhedron.relation_with_Constraint (ppl_constPolyhedront ph, ppl_const-
Constraint_t c)

Checks the relation between the polyhedpbnwith the constraint.

e int ppl_Polyhedron_relation_with_Generator (ppl_constPolyhedront ph, ppl_const-
Generator-t g)

Checks the relation between the polyhedobnwith the generatog.

¢ int ppl_Polyhedron_shrink _bounding_box (ppl_constPolyhedron_t ph, unsigned int complexity,
void(xsetempty)(void), void¢raiselower_bound)ppl_dimensiontype k, int closed,ppl_const-
Coefficientt n, ppl_const Coefficientt d), void¢<lower_.upperbound)ppl_dimensiontype k, int
closed ppl_const Coefficient t n, ppl_const Coefficient.t d))

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by means
of the parameters,.

e int ppl_Polyhedron.is_.empty (ppl_const Polyhedron_t ph)
Returns a positive integer jifh is empty; returns 0 iph is not empty.

o int ppl_Polyhedron.is_universe (ppl_const Polyhedron.t ph)
Returns a positive integer ifh is a universe polyhedron; returns 0 if it is not.

e int ppl_Polyhedron.is_bounded (ppl_const Polyhedron_t ph)
Returns a positive integer fifh is bounded; returns O ibh is unbounded.

e int ppl_Polyhedron bounds from_above (ppl_constPolyhedront ph, ppl_constLin-
Expressiont le)

Returns a positive integerlié is bounded from above ioh; returns 0 otherwise.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface

25

e int ppl_Polyhedron.boundsfrom_below (ppl_constPolyhedront ph, ppl_constLin-
Expressiont le)

Returns a positive integerlié is bounded from below iph; returns O otherwise.

e int ppl_Polyhedron.is_topologically_closed(ppl _const Polyhedron.t ph)

Returns a positive integer i is topologically closed; returns O fh is not topologically closed.

¢ int ppl_Polyhedron_contains Polyhedron (ppl_constPolyhedron.t x, ppl_const Polyhedron.t y)
Returns a positive integer Xf contains or is equal tg; returns 0 if it does not.

e int ppl_Polyhedron_strictly _contains Polyhedron (ppl_constPolyhedront x, ppl_const-
Polyhedron_t y)

Returns a positive integer Xf strictly containsy; returns 0 if it does not.

e int ppl_Polyhedron.is_disjoint _from_Polyhedron (ppl_constPolyhedront x, ppl_const-
Polyhedron_t y)

Returns a positive integerif andy are disjoint; returns 0 if they are not.

e int ppl_Polyhedron_ equals Polyhedron (ppl_const Polyhedron_t x, ppl_const Polyhedron_t y)
Returns a positive integer¥f andy are the same polyhedron; return 0 if they are different.

e int ppl_Polyhedron.OK (ppl_constPolyhedron_t ph)

Returns a positive integer|ih is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noiselif is broken. Useful for debugging purposes.

¢ int ppl_Polyhedron_add_constraint (ppl_Polyhedron_t ph, ppl_constConstraint_t c)
Adds a copy of the constraintto the system of constraints joifi.

e int ppl_Polyhedron.add_constraint_.and_minimize (ppl_Polyhedront ph, ppl_const-
Constraint_t ¢)

Adds a copy of the constraintto the system of constraintsoifi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful repliris guaranteed to be minimized.

e int ppl_Polyhedron_.add_generator (ppl _Polyhedron_t ph, ppl_const Generator_t g)
Adds a copy of the generatgrto the system of generatorsati.

e int ppl_Polyhedron_.add_generator.and_minimize (ppl_Polyhedron_t ph, ppl_const Generator_t
9)

Adds a copy of the generatgrto the system of generatorspi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful rgpliris guaranteed to be minimized.

e int ppl_Polyhedron_add_constraints (ppl_Polyhedron_t ph, ppl_ConSyst cs)
Adds the system of constraims to the system of constraints joffi.

e int ppl_Polyhedron_add_constraints.and_minimize (ppl_Polyhedron_t ph, ppl_ConSyst cs)

Adds the system of constraints to the system of constraints ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful rgtiaris, guaranteed to be
minimized.

int ppl_Polyhedron.add_generators(ppl_Polyhedron.t ph, ppl_GenSyst gs)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 26

Adds the system of generat@s to the system of generatorsaif .

¢ int ppl_Polyhedron_.add_generatorsand_minimize (ppl_Polyhedron.t ph, ppl_GenSyst gs)

Adds the system of generatgs to the system of generatorsgdi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful repliris guaranteed to be minimized.

¢ int ppl_Polyhedron.intersection assign(ppl_Polyhedron.t x, ppl_constPolyhedron_t y)
Intersectsx with polyhedrory and assigns the resutt

e int ppl_Polyhedron.intersection.assignand_minimize (ppl_Polyhedront x, ppl_const-
Polyhedron_t y)

Intersect with polyhedrory and assigns the result Returns a positive integer if the resulting polyhedron
is non-empty; returns 0 if it is empty. Upon successful returis, also guaranteed to be minimized.

¢ int ppl_Polyhedron_poly_hull _assign(ppl_Polyhedron._t x, ppl_constPolyhedron_t y)
Assigns to the poly-hull of the set-theoretic unionxfandy.

e int ppl_Polyhedron poly_hull _assignand_minimize (ppl_Polyhedront x, ppl_const-
Polyhedron_t y)

Assigns tax the poly-hull of the set-theoretic union wfandy. Returns a positive integer if the resulting
polyhedron is non-empty; returns O if it is empty. Upon successful returis, also guaranteed to be
minimized.

¢ int ppl_Polyhedron_poly_difference_assign(ppl_Polyhedron_t x, ppl_const Polyhedron_t y)
Assigns to the poly-hull of the set-theoretic differencexofindy.

¢ int ppl_Polyhedron_affine_image (ppl_Polyhedron_t ph, ppl_dimensiontype var, ppl_constLin-
Expressiont le, ppl_const Coefficient.t d)

Transforms the polyhedrgoh, assigning an affine expression to the specified variable.

e int ppl_Polyhedron_affine_preimage (ppl_Polyhedron.t ph, ppl_dimensiontype var, ppl_const-
LinExpression_t le, ppl_const Coefficient.t d)

Transforms the polyhedrgrh, substituting an affine expression to the specified variable.

o int ppl_Polyhedron generalizedaffine_.image (ppl_Polyhedront ph, ppl_dimensiontype var,
enumppl_enum_Constraint_Type relsym,ppl_constLinExpression_t le, ppl_const Coefficient t
d)

Assigns th the image oph with respect to thgeneralized affine transfer functionvar’ > ;=P
wherex is the relation symbol encoded bgisym .

e int ppl_Polyhedron generalizedaffine_imagelhs_rhs (ppl_Polyhedront ph, ppl_constLin-
Expressiont lhs, enumppl_enum_Constraint_Type relsym,ppl_const LinExpression_t rhs)

Assigns tgh the image oph with respect to thgeneralized affine transfer functionlhs’ < rhs, where
> is the relation symbol encoded kgisym .

¢ int ppl_Polyhedron_time_elapseassign(ppl_Polyhedron_t x, ppl_constPolyhedron.t y)
Assigns tox thetime-elapsebetween the polyhedraandy .

e int ppl_Polyhedron BHRZ03_widening_assignwith tokens (ppl_Polyhedron.t x, ppl_const-
Polyhedron_t y, unsignedktp)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface

27

If the polyhedrory is contained in (or equal to) the polyhedranassigns tox the BHRZ03-widening of x
andy. If tp is not the null pointer, thevidening with tokensdelay technique is applied witlip available
tokens.

e int ppl_Polyhedron BHRZ03_widening_assign(ppl_Polyhedron.t x, ppl_constPolyhedron.t y)

If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-widening of
X andy.

e int ppl_Polyhedron.limited BHRZ03_extrapolation_assignwith _tokens (ppl_Polyhedron.t x,
ppl_constPolyhedron.t y, ppl_const ConSyst cs, unsignedtp)
If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-widening of

x andy intersected with the constraints @3 that are satisfied by all the points gf If tp is not the null
pointer, thewidening with tokens delay technique is applied wititp available tokens.

e int ppl_Polyhedron.limited BHRZ03_extrapolation_assign (ppl_Polyhedront x, ppl_const-
Polyhedron_t y, ppl_constConSyst cs)

If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-widening of
x andy intersected with the constraints @3 that are satisfied by all the points »f

e int ppl_Polyhedron.bounded BHRZ03_extrapolation_assignwith _tokens (ppl_Polyhedron_t x,
ppl_const Polyhedron_t y, ppl_const ConSyst cs, unsignedtp)
If the polyhedrory is contained in (or equal to) the polyhedranassigns tox the BHRZ03-widening of x
andy intersected with the constraints @s that are satisfied by all the points »f further intersected with
all the constraints of the formv < r and+v < r, withr € Q, that are satisfied by all the points »f If
tp is not the null pointer, thevidening with tokens delay technique is applied witiip available tokens.

e int ppl_Polyhedron_.bounded BHRZ03_extrapolation_assign (ppl_Polyhedron.t x, ppl_const-
Polyhedron_t y, ppl_const ConSyst cs)
If the polyhedrory is contained in (or equal to) the polyhedranassigns tx the BHRZ03-widening of x

andy intersected with the constraints @ that are satisfied by all the points »f further intersected with
all the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points »f

e int ppl_Polyhedron. H79_widening_assignwith tokens (ppl_Polyhedront x, ppl_const-
Polyhedron_t y, unsignedktp)
If the polyhedrory is contained in (or equal to) the polyhedranassigns to the H79-widening of x and

y. If tp is not the null pointer, thevidening with tokens delay technique is applied witkitp available
tokens.

o int ppl_Polyhedron H79_widening_assign(ppl_Polyhedron.t x, ppl_const Polyhedron.t y)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« theH79-widening of x and
y.

e int ppl_Polyhedron.limited _H79_extrapolation_assignwith _tokens (ppl_Polyhedron.t x, ppl_-
constPolyhedron.t y, ppl_const ConSyst cs, unsignectp)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the H79-widening of x and
y intersected with the constraints @$ that are satisfied by all the points »f If tp is not the null pointer,
thewidening with tokens delay technique is applied wititp available tokens.

e int ppl_Polyhedron.limited _H79_extrapolation_assign (ppl_Polyhedront x, ppl_const-
Polyhedront y, ppl_const ConSyst cs)

If the polyhedrory is contained in (or equal to) the polyhedranassigns tox theH79-widening of x and
y intersected with the constraints @3 that are satisfied by all the points wf

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 28

e int ppl_Polyhedron.bounded H79_extrapolation_assignwith _tokens (ppl_Polyhedron.t x, ppl_-
constPolyhedron_t y, ppl_const ConSyst cs, unsignedtp)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the H79-widening of x and
y intersected with the constraints @3 that are satisfied by all the points »f further intersected with all
the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points ®f If tp
is not the null pointer, thevidening with tokens delay technique is applied witifp available tokens.

e int ppl_Polyhedron_.bounded H79_extrapolation_assign (ppl_Polyhedront x, ppl_const-
Polyhedron_t y, ppl_constConSyst cs)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to the H79-widening of x and
y intersected with the constraints @3 that are satisfied by all the points »f further intersected with all
the constraints of the formtv < r» and+v < r, withr € Q, that are satisfied by all the points »f

¢ int ppl_Polyhedron_topological closure assign(ppl_Polyhedron_t ph)
Assigns toh its topological closure.

e int ppl_Polyhedron.add_dimensionsand_embed(ppl_Polyhedron.t ph, ppl_dimension.type d)
Addsd new dimensions to the space enclosing the polyheghoand toph itself.

e int ppl_Polyhedron_.add_dimensionsand_project (ppl_Polyhedron_t ph, ppl_dimension.type d)
Addsd new dimensions to the space enclosing the polyheginon

¢ int ppl_Polyhedron_concatenateassign(ppl_Polyhedron_t x, ppl_constPolyhedron.t y)

Seeing a polyhedron as a set of tuples (its points), assignsath the tuples that can be obtained by
concatenating, in the order given, a tuplexofvith a tuple ofy.

e int ppl_Polyhedron.remove dimensions(ppl_Polyhedron.t ph, ppl_dimensiontype ds[], sizet
n)
Removes fromph and its containing space the dimensions that are specified imfijsisitions of the array
ds. The presence of duplicatesds is a waste but an innocuous one.

¢ int ppl_Polyhedron_remove_ higher_dimensions(ppl_Polyhedron_t ph, ppl_dimension type d)

Removes the higher dimensions frpim and its enclosing space so that, upon successful return, the new
space dimension @.

¢ int ppl_Polyhedron_map_dimensions(ppl_Polyhedron_t ph, ppl_dimensiontype maps[], sizet
n)
Remaps the dimensions of the vector space accordingpartéal function . This function is specified by
means of thenaps array, which has entries.

Typedefs

o typedef sizet ppl_dimension type
An unsigned integral type for representing space dimensions.

o typedef pplCoefficienttag ppl_Coefficient t
Opaque pointer to Coefficient .

o typedef pplCoefficienttag const« ppl_const Coefficient t
Opaque pointer to const Coefficient .

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface

29

o typedef pplLinExpressiontag * ppl_LinExpression_t
Opaque pointer to LinExpression .

o typedef pplLinExpressiontag const ppl_const LinExpression_t
Opaque pointer to const LinExpression .

o typedef pplConstrainttag + ppl_Constraint_t
Opaque pointer to Constraint .

o typedef pplConstrainttag const ppl_const Constraint _t
Opaque pointer to const Constraint .

o typedef pplConSystag ppl_ConSyst
Opaque pointer to ConSys .

o typedef pplConSystag const« ppl_const ConSyst
Opaque pointer to const ConSys .

o typedef pplConSysconstiteratortag* ppl_ConSysconstiterator _t
Opaque pointer to ConSymnstiterator .

o typedef pplConSysconstiteratortag const ppl_const ConSysconstiterator _t
Opaque pointer to const ConSgenstiterator .

o typedef pplGeneratortag « ppl_Generator_t
Opaque pointer to Generator .

o typedef pplGeneratartag const ppl_const Generator_t
Opaque pointer to const Generator .

o typedef pplGenSystag* ppl_GenSyst
Opaque pointer to GenSys .

o typedef pplGenSystag const ppl_const GenSyst
Opaque pointer to const GenSys .

¢ typedef pplGenSysconstiteratortag* ppl_GenSysconstiterator _t
Opaque pointer to GenSy®nstiterator .

o typedef pplGenSysconstiteratortag const ppl_const GenSysconstiterator _t
Opaque pointer to const GenSgsnstiterator .

o typedef pplPolyhedrontag « ppl_Polyhedron.t
Opaque pointer to Polyhedron .

o typedef pplPolyhedrontag const« ppl_const Polyhedron. t
Opaque pointer to const Polyhedron .

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 30

Enumerations

e enumppl_enum_error _code{

PPL_ERROR_OUT_OF_MEMORY , PPL_ERROR_INVALID _ARGUMENT , PPL_.ERROR._-
INTERNAL _ERROR, PPL_LERROR_UNKNOWN _STANDARD_EXCEPTION,

PPL_ERROR_UNEXPECTED_ERROR }
Defines the error code that any function can return.

e enumppl_enum_Constraint_Type {

PPL_CONSTRAINT _-TYPE_LESS.THAN, PPL_.CONSTRAINT _TYPE_LESS THAN _OR -
EQUAL, PPL_.CONSTRAINT_TYPE_EQUAL, PPL_.CONSTRAINT _TYPE_GREATER -
THAN _OR_EQUAL,

PPL_CONSTRAINT _TYPE_GREATER_THAN }
Describes the relations represented by a constraint.

e enum ppl_enum_Generator_Type { PPL_.GENERATOR _TYPE_LINE, PPL_GENERATOR _-
TYPE_RAY, PPL_.GENERATOR_TYPE_POINT, PPL_.GENERATOR_TYPE_CLOSURE -
POINT }

Describes the different kinds of generators.

Variables

e unsigned inPPL_COMPLEXITY _CLASS_POLYNOMIAL
Code of the worst-case polynomial complexity class.

e unsigned inPPL_COMPLEXITY _CLASS_SIMPLEX
Code of the worst-case exponential but typically polynomial complexity class.

e unsigned inPPL_COMPLEXITY _CLASS_ANY
Code of the universal complexity class.

e unsigned inPPL_POLY _CON_RELATION _IS_DISJOINT
Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

e unsigned inPPL_POLY _CON_RELATION _STRICTLY _INTERSECTS

Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

e unsigned inPPL_POLY _CON_RELATION _IS_INCLUDED
Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

e unsigned inPPL_POLY _CON_RELATION _SATURATES
Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

e unsigned inPPL_POLY _GEN_RELATION _SUBSUMES
Individual bit saying that adding the generator would not change the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 31

6.3.1 Enumeration Type Documentation

6.3.1.1 enum pplenum_error _code

Defines the error code that any function can return.

Enumeration values:
PPL_ERROR_OUT_OF_MEMORY The virtual memory available to the process has been ex-
hausted.

PPL_ERROR_INVALID _ARGUMENT A function has been invoked with an invalid argument.

PPL_ERROR_INTERNAL _.ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL_ERROR_UNKNOWN _STANDARD EXCEPTION A standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL_ERROR_UNEXPECTED_ERROR A totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

6.3.1.2 enum pplenum_Constraint_Type

Describes the relations represented by a constraint.

Enumeration values:
PPL_.CONSTRAINT _-TYPE_LESS_.THAN The constraint is of the forma < 0.

PPL_CONSTRAINT _-TYPE_LESS.THAN _.OR_EQUAL The constraint is of the forma < 0.
PPL_CONSTRAINT _-TYPE_EQUAL The constraint is of the form = 0.

PPL_CONSTRAINT _TYPE_GREATER _THAN _OR_EQUAL The constraint is of the form >
0.

PPL_CONSTRAINT _TYPE_GREATER _THAN The constraint is of the forra > 0.

6.3.1.3 enum pplenum._Generator_Type

Describes the different kinds of generators.

Enumeration values:
PPL_GENERATOR _TYPE_LINE The generator is a line.

PPL_GENERATOR _TYPE_RAY The generator is a ray.
PPL_GENERATOR _TYPE_POINT The generator is a point.
PPL_GENERATOR _TYPE_CLOSURE_POINT The generator is a closure point.

6.3.2 Function Documentation

6.3.2.1 int pplLseterror _handler (void(x h)(enum ppl.enum_error_code code, const char
xdescription))

Installs the user-defined error handler pointechby

The error handler takes an error code and a textual description that gives further information about the
actual error. The C string containing the textual description is read-only and its existence it not guaranteed
after the handler has returned.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 32

6.3.2.2 int ppLnew_C_Polyhedron.recycle ConSys (pplLPolyhedron.t « pph, ppl_ConSyst c9

Builds a new closed polyhedron recycling the system of constraeintend writes an handle for the newly
created polyhedron at addrggsh. Sincecs will be the system of constraints of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

6.3.2.3 int ppLnew_NNC_Polyhedron_recycle ConSys (pplLPolyhedron_t « pph, ppl_ConSyst cs)

Builds a new NNC polyhedron recycling the system of constraiatand writes an handle for the newly
created polyhedron at addrggsh. Sincecs will be the system of constraints of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the constraint system reference@sy upon return, no assumption can be
made on its value.

6.3.2.4 int ppLnew_C_Polyhedron.recycle GenSys (pplPolyhedron.t x pph, ppl_GenSyst g9

Builds a new closed polyhedron recycling the system of genergsoed writes an handle for the newly
created polyhedron at addrggsh . Sincegs will be the system of generators of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the generator system referenceddayupon return, no assumption can be
made on its value.

6.3.2.5 int ppLnew.NNC_Polyhedron_recycle GenSys (pplPolyhedron.t = pph, ppl_GenSyst g9

Builds a new NNC polyhedron recycling the system of generagsrand writes an handle for the newly
created polyhedron at addrggsh. Sincegs will be the system of generators of the new polyhedron, the
space dimension is also inherited.

Warning:
This function modifies the generator system referenceddayupon return, no assumption can be
made on its value.

6.3.2.6 int ppLnew_C_Polyhedron_from _bounding_box (ppl_Polyhedront « pph, ppl_dimension-
type(x spacedimension(void), int(x is_.empty(void), int(x getlower_bound)(ppl_dimensiontype Kk,
int closed, ppLCoefficientt n, ppl_Coefficientt d), int(x getupperbound)(ppl_dimensiontype k, int
closed, pplCoefficientt n, ppl_Coefficient.t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addrexgsh .

If an interval of the bounding box is provided with any finite but open bound, then the polyhedron is not
built and the valuePPL ERRORNVALID _ARGUMENTS returned. The bounding box is accessed by
using the following functions, passed as arguments:

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 33

ppl_dimension_type space_dimension()
returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.
int is_empty()

returns O if and only if the bounding box describes a non-empty set. The furistimmpty() will
always be called before the other functions. Howevers ifempty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type Kk, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. IfI is not bounded from below, simply return 0.
Otherwise, setlosed , n andd as follows: closed s set to O if the lower boundary dfis open and
is set to a value different from zero otherwiseandd are assigned the integersandd such that the
canonical fractiom/d corresponds to the greatest lower bound.cfhe fractionn/d is in canonical form

if and only if n andd have no common factors amtis positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Iff is not bounded from above, simply return O.
Otherwise, setlosed , n andd as follows:closed is set to O if the upper boundary éfis open and is
set to a value different from 0 otherwiseandd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the least upper bound of

6.3.2.7 int pplLnew.NNC_Polyhedron_from_bounding_.box (ppl_-Polyhedront = pph, ppl_-
dimensiontype(x spacedimensior)(void), int(x is_.empty(void), int(x getlower_bound)(ppl_-
dimension.type K, int closed, pplLCoefficientt n, ppl_Coefficientt d), int(x getupperbound(ppl_-
dimension.type k, int closed, ppLCoefficientt n, ppl_Coefficient t d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addreggsh .

The bounding box is accessed by using the following functions, passed as arguments:
ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.
int is_empty()

returns O if and only if the bounding box describes a non-empty set. The furistimmpty() will
always be called before the other functions. Howeveis ifempty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 34

Let I the interval corresponding to theth dimension. IfI is not bounded from below, simply return 0.
Otherwise, setlosed , n andd as follows: closed s set to O if the lower boundary dfis open and
is set to a value different from zero otherwiseandd are assigned the integersandd such that the
canonical fractiom/d corresponds to the greatest lower bound.cfhe fractionn/d is in canonical form

if and only if n andd have no common factors amlis positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Iff is not bounded from above, simply return 0.
Otherwise, setlosed , n andd as follows:closed is set to O if the upper boundary éfis open and is
set to a value different from 0 otherwiseandd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the least upper bound of

6.3.2.8 int pplLPolyhedron.relation_with _Constraint (ppl_constPolyhedront ph, ppl_const-
Constraint_t c)

Checks the relation between the polyhedpbnwith the constraint.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (chosen among
PPLPOLY_CON_RELATION_IS_DISJOINT PPLPOLY_CON.RELATION_STRICTLY_INTERSECTS,
PPLPOLY_CON.RELATION_IS_INCLUDED, and PPLPOLY_CON._RELATION_SATURATES) that
describe the relation betwegh andc.

6.3.2.9 int ppLPolyhedron.relation_with_Generator (ppl_constPolyhedront ph, ppl_const-
Generator-t g)

Checks the relation between the polyhedpbnwith the generatog.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (orfNOPRF1-
GEN_RELATION_SUBSUMES, at present) that describe the relation betybeandg.

6.3.2.10 int pplLPolyhedron_shrink _bounding_box (ppl_const Polyhedron.t ph, unsigned int com-
plexity, void(x setempty(void), void(x raiselower_bound)(ppl_dimensiontype Kk, int closed, pplL-
const Coefficient t n, ppl_const Coefficientt d), void(x lower_upperbound)(ppl_dimension_type k, int
closed, pplconst Coefficientt n, ppl_const Coefficient t d))

Use ph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters,.

Parameters:
complexity The code of the complexity class of the algorithm to be used. Must be one of PPL
COMPLEXITY_CLASS POLYNOMIAL, PPL.COMPLEXITY_CLASS SIMPLEX, or PPL-
COMPLEXITY_CLASS ANY.

ph The polyhedron that is used to shrink the bounding box.

setempty a pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set.

raise lower_bound a pointer to a void function with argumer(gpl _dimension _type k, int
closed, ppl _const _Coefficient t n, ppl _const _Coefficient t d) thatin-
tersects the interval corresponding to khth dimension withn /d, +00) if closed is non-zero,
with (n/d, +00) if closed is zero. The fractiom/d is in canonical form, that is; andd have
no common factors andlis positive,0/1 being the unique representation for zero.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 35

lower_upperbound a pointer to a void function with argumefipl _dimension _type k, int
closed, ppl _const _Coefficient t n, ppl _const _Coefficient t d) thatin-
tersects the interval corresponding to khth dimension with —co, n/d] if closed is non-zero,
with (—oco,n/d) if closed is zero. The fractiom/d is in canonical form.

6.3.2.11 int ppLPolyhedron equalsPolyhedron (ppl_const Polyhedron.t x, ppl_const Polyhedron.t
y)

Returns a positive integer¥ andy are the same polyhedron; return O if they are different.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value 0
is returned.

6.3.2.12 int pplLPolyhedron.add_constraints (ppl_Polyhedron.t ph, ppl_ConSyst c9

Adds the system of constraints to the system of constraints ph.

Warning:
This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

6.3.2.13 int pplLPolyhedron add_constraints.and_minimize (ppl_Polyhedron_t ph, ppl_ConSyst cs)

Adds the system of constraints to the system of constraints ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful retiars, guaranteed to be
minimized.

Warning:
This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

6.3.2.14 int ppLPolyhedron.add_generators (ppLPolyhedron_t ph, ppl_GenSyst g9

Adds the system of generatags to the system of generators poifi.

Warning:
This function modifies the generator system referenceddayupon return, no assumption can be
made on its value.

6.3.2.15 int ppLPolyhedron.add_generatorsand_minimize (ppl_Polyhedron_t ph, ppl_GenSyst g9

Adds the system of generatogs to the system of generators ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful retlans, guaranteed to be
minimized.

Warning:
This function modifies the generator system referenceddayupon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.3 C Language Interface 36

6.3.2.16 int pplLPolyhedron affine.image (pplPolyhedront ph, ppl_.dimensiontype var, ppl_-
constLinExpression_t le, ppl_const Coefficient.t d)

Transforms the polyhedrgrh, assigning an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed.

var The variable to which the affine expression is assigned.
le The numerator of the affine expression.
d The denominator of the affine expression.

6.3.2.17 int ppLPolyhedron_affine_preimage (pplLPolyhedront ph, ppl_dimensiontype var, ppl_-
constLinExpression_t le, ppl_const Coefficient.t d)

Transforms the polyhedrgrh, substituting an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed.

var The variable to which the affine expression is substituted.
le The numerator of the affine expression.
d The denominator of the affine expression.

6.3.2.18 int pplLPolyhedron_generalizedaffine_.image (pplLPolyhedront ph, ppl_dimensiontype

var, enum ppl.enum_Constraint_Type relsym ppl_constLinExpression_t le, ppl_const Coefficientt

d)

Assigns toph the image ofph with respect to thegeneralized affine transfer function var’ <
P wherex is the relation symbol encoded bgisym .

denominator’

Parameters:
ph The polyhedron that is transformed.

var The left hand side variable of the generalized affine transfer function.
relsym The relation symbol.

le The numerator of the right hand side affine expression.

d The denominator of the right hand side affine expression.

6.3.2.19 int ppLPolyhedron generalizedaffine_image Ihs_rhs (ppl_Polyhedron_t ph, ppl_constLin-
Expressiont Ihs, enum ppl.enum_Constraint_Type relsym ppl_const LinExpression_t rhs)

Assigns toph the image oph with respect to thgeneralized affine transfer functionlhs’ > rhs, where
< is the relation symbol encoded bgilsym .

Parameters:
ph The polyhedron that is transformed.

Ihs The left hand side affine expression.
relsym The relation symbol.
rhs The right hand side affine expression.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface

37

6.3.2.20 int pplLPolyhedron.map_dimensions (pplLPolyhedront ph, ppl_dimensiontype mapg],
sizet n)

Remaps the dimensions of the vector space according#otal function . This function is specified by
means of thenaps array, which has entries.

The partial function is defined on dimensibrf i < n andmaps[i] != ppl _not _a_dimension ;
otherwise it is undefined on dimension If the function is defined on dimension then dimension is
mapped onto dimensianapsi]

The result is undefined haps does not encode a partial function with the properties described in the
specification of the mapping operator

6.4 Prolog Language Interface
6.4.1 Introduction

The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization
of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The system-independent features of the library are described in S&statem-Independent Features
SectionCompilation and Installation explains how the various incarnations of the Prolog interface are
compiled and installed. Secti®@ystem-Dependent Featurelustrates the system-dependent features of
the interface for all the supported systems.

6.4.2 System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in SActidmnary for

Convex Polyhedrag An Introduction to Convex Polyhedra, Representations of Convex Polyhedrand
Operations on Convex Polyhedraof this manual. Here we just describe those aspects that are specific to
the Prolog interface.

6.4.2.1 Overview First, here is a list of notes with general information and advice on the use of the
interface.

e A PPL polyhedron can only be accessed by means of a Prolog term chiediee Note, however,
that the data structure of a handle, is implementation-dependent, system-dependent and version-
dependent, and, for this reason, deliberately left unspecified. What we do guarantee is that the
handle requires very little memory.

e A Prolog term can be bound to a valid handle by using:

ppl_new_Polyhedron_from_dimension/3,
ppl_new_Polyhedron_empty_from_dimension/3,
ppl_new_Polyhedron_from_Polyhedron/4,
ppl_new_Polyhedron_from_constraints/3,
ppl_new_Polyhedron_from_generators/3.
ppl_new_Polyhedron_from_bounding_box/3.

These predicates will create or copy a PPL polyhedron and construct a valid handle for referencing it.
The first argument (in the case ppl _new_Polyhedron _from _Polyhedron/4 | the first and
third arguments) denotes the topology and can be aitikennc indicating a C or NNC polyhedron,

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface

respectively. The third argument (in the cas@plf _new_Polyhedron _from _Polyhedron/4
the fourth argument) is a Prolog term that is unified with a new valid handle for accessing this
polyhedron.

e As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicatppl _delete _Polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argumeptindelete _Polyhedron/1 | it becomes invalid.

e For a PPL polyhedron with space dimenslonthe identifiers used for the PPL variables must lie
between 0 and — 1 and correspond to the indices of the associated Cartesian axes. When using the
predicates that combine PPL polyhedra or add constraints or generators to a representation of a PPL
polyhedron, the polyhedra referenced and any constraints or generators in the call should follow all
the space dimension-compatibility rules stated in Sed®epresentations of Convex Polyhedra

e As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in SectidRepresentations of Convex Polyhedra

e The predicateppl _initialize/0 andppl _finalize/O initialize and finalize, respectively,
the Prolog interface. Thus the only interface predicates callablemdteffinalize/0 areppl _-
finalize/O itself (this further call has no effect) angbl _initialize/0O , after which the in-

terface’s services are usable again. Some Prolog systems allow the specification of initialization and
deinitialization functions in their foreign language interfaces. The corresponding incarnations of the
PPL-Prolog interface have been written so thlt _initialize/0 and/orppl _finalize/0

are called automatically. Secti®ystem-Dependent Featuresvill detail in which cases initial-
ization and finalization is automatically performed or is left to the Prolog programmer’s responsi-
bility. However, for portable applications, it is best to invopel _initialize/0 andppl _-
finalize/O explicitly: since they can be called multiple times without problems, this will result

in enhanced portability at a cost that is, by all means, negligible.

6.4.2.2 PPL Predicate List Here is a list of all the PPL predicates provided by the Prolog interface.

ppl _initialize

ppl _finalize

ppl _set _timeout _exception _atom(+Atom)
ppl _set _timeout(+Integer)

ppl _reset _timeout
ppl _new_Polyhedron _from _dimension(+Topology, +Integer, -Handle)
ppl _new_Polyhedron _empty _from _dimension(+Topology, +Integer, -Handle)

ppl _new_Polyhedron _from _Polyhedron(+Topology _1, +Handle _1, +Topology .2,
-Handle _2)

ppl _-new_Polyhedron _from _constraints(+Topology, +Constraint _System,
-Handle)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface

39

ppl _-new_Polyhedron _from _generators(+Topology, +Generator _System,

-Handle)

ppl _new_Polyhedron _from _bounding _box(+Topology, +Box, -Handle)

ppl _Polyhedron

_swap(+Handlel, +Handle2)

ppl _delete _Polyhedron(+Handle)

ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron

ppl _Polyhedron
-Relation)

ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron
ppl _Polyhedron

_space _dimension(+Handle, -Integer)

_get _constraints(+Handle, -Constraint _System)

_get _minimized _constraints(+Handle, -Constraint _System)
_get _generators(+Handle, -Generator _System)

_get _minimized _generators(+Handle, -Generator _System)

_relation _with _constraint(+Handle, +Constraint,

_relation _with _generator(+Handle, +Generator, -Relation)
_get _bounding _box(+Handle, +Complexity, -Box)

_is _empty(+Handle)

_is _universe(+Handle)

_is _bounded(+Handle)

_bounds _from _above(+Handle, +LinExpr)

_bounds _from _below(+Handle, +LinExpr)

_is _topologically _closed(+Handle)

_contains _Polyhedron(+Handle _1, +Handle _2)

_strictly _contains _Polyhedron(+Handle _1, +Handle _2)
_is _disjoint _from _Polyhedron(+Handle _1, +Handle _2)
_equals _Polyhedron(+Handle _1, +Handle _2)
_OK(+Handle)

_add _constraint(+Handle, +Constraint)

_add _constraint _and _minimize(+Handle, +Constraint)

_add _generator(+Handle, +Generator)

_add _generator _and _minimize(+Handle, +Generator)

_add _constraints(+Handle, +Constraint _System)

_add _constraints _and _minimize(+Handle, +Constraint _System)
_add _generators(+Handle, +Generator _System)

_add _generators _and _minimize(+Handle, +Generator _System)
_intersection _assign(+Handle _1, +Handle _2)

_intersection _assign _and _minimize(+Handle _1, +Handle _2)

_poly _hull _assign(+Handle _1, +Handle _2)

_poly _hull _assign _and_minimize(+Handle _1, +Handle _2)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 40

ppl _Polyhedron _poly _difference _assign(+Handle _1, +Handle _2)
ppl _Polyhedron _affine _image(+Handle, +PPL _Var, +LinExpr, +Integer)
ppl _Polyhedron _affine _preimage(+Handle, +PPL _Var, +LinExpr, +Integer)

ppl _Polyhedron _generalized _affine _image(+Handle, +PPL _Var, +Relation _-
Symbol, +LinExpr, +Integer)

ppl _Polyhedron _generalized _affine _image _lhs _rhs(+Handle, +LinExprl,
+Relation _Symbol, +LinExpr2)

ppl _Polyhedron _time _elapse _assign(+Handle _1, +Handle _2)

ppl _Polyhedron _BHRZ03widening _assign _with _token(+Handle _1, +Handle _2,
?Integer)

ppl _Polyhedron _BHRZO3widening _assign(+Handle _1, +Handle _2)

ppl _Polyhedron _limited _BHRZ03extrapolation _assign _with _token(+Handle _1,
+Handle 2, +Constraint _System, ?Integer)

ppl _Polyhedron _limited _BHRZ03extrapolation _assign(+Handle 1, +Handle _2,
+Constraint _System)

ppl _Polyhedron _bounded BHRZ03extrapolation _assign _with _token(+Handle 1,
+Handle 2, +Constraint _System, ?Integer)

ppl _Polyhedron _bounded BHRZ03extrapolation _assign(+Handle 1, +Handle _2,
+Constraint _System)

ppl _Polyhedron _H79_widening _assign _with _token(+Handle _1, +Handle _2,
?Integer)

ppl _Polyhedron _H79_widening _assign(+Handle _1, +Handle _2)

ppl _Polyhedron _limited _H79_extrapolation _assign _with _token(+Handle _1,
+Handle _2, +Constraint _System, ?Integer)

ppl _Polyhedron _limited _H79_extrapolation _assign(+Handle _1, +Handle _2,
+Constraint _System)

ppl _Polyhedron _bounded _H79_extrapolation _assign _with _token(+Handle _1,
+Handle _2, +Constraint _System)

ppl _Polyhedron _bounded _H79_extrapolation _assign(+Handle 1, +Handle _2,
+Constraint _System, ?Integer)

ppl _Polyhedron _topological _closure _assign(+Handle)

ppl _Polyhedron _add_dimensions _and_embed(+Handle, +Integer)

ppl _Polyhedron _add _dimensions _and _project(+Handle, +Integer)

ppl _Polyhedron _concatenate _assign(+Handlel, +Handle2)

ppl _Polyhedron _remove _dimensions(+Handle, +List _of _PPL_Vars)
ppl _Polyhedron _remove _higher _dimensions(+Handle, +Integer))

ppl _Polyhedron _map.dimensions(+Handle, +P _Func))

6.4.2.3 PPL Predicate Specifications The PPL predicates provided by the Prolog interface are speci-
fied below. The specification uses the following grammar rules:

Topology --> ¢ | nnc

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface

41

Varld --> number | + number
PPL_Var --> "$VAR’(Varld)
LinExpr --> PPL_Var

number

+ LinExpr

- LinExpr

|
I
| LinExpr + LinExpr
| LinExpr - LinExpr
| number * LinExpr
| LinExpr * number
Relation_Symbol
-—-> =

| =<

| >=

| <

| >

Denominator --> number
| + number | - number

variable identifier
PPL variable
PPL variable

unary plus
unary minus
addition
subtraction
multiplication
multiplication

equals

less than or equal
greater than or equal
strictly less than
strictly greater than

number must be non-zero

Constraint --> LinExpr Relation_Symbol LinExpr

Constraint_System

constraint

list of constraints

> []
| [Constraint | Constraint_System]
Generator --> point(LinExpr) point
| point(LinExpr, Denominator)
point
| closure_point(LinExpr) closure point

(the point or closure point
ray(LinExpr)
| line(LinExpr)

Generator_System

closure_point(LinExpr, Denominator)

closure point
is defined by LinExpr/Denominator.)
ray

line

list of generators

-— []

| [Generator | Generator_System]
Atom --> Prolog atom
Relation --> is_disjoint between a constraint and a polyhedron

| strictly_intersects between a constraint and a polyhedron

| is_included between a constraint and a polyhedron

| saturates between a constraint and a polyhedron

| subsumes between a generator and a polyhedron
Relation_List list of relations

— I]

| [Relation | Relation_List]

Complexity --> polynomial | simplex | any

Rational_Numerator

--> number | + number | - number

Rational_Denominator
--> number

number must be non-zero

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface

42

Rational --> Rational_Numerator rational number
| Rational_Numerator/Rational_Denominator

Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction
Interval --> i(Bound, Bound) rational interval
Box -->] list of intervals

| [Interval | Box]
Vars_Pair --> PPLVar - PPLVar map relation
P_Func -->] list of map relations

| [Vars_Pair | P_Func].

Below is a short description of each of the interface predicates. For full definitions of terminology used
here, see SectiosLibrary for Convex Polyhedra, An Introduction to Convex Polyhedra, Represen-
tations of Convex PolyhedraandOperations on Convex Polyhedraof this manual.

ppl _initialize Initializes the PPL interface. Multiple calls fipl _initialize does no harm.

ppl _finalize Finalizes the PPL interface. Once this is executed, the next call to an interface predicate
must either be tppl _initialize ortoppl _finalize . Multiple calls toppl _finalize does no

harm.

ppl _set _timeout _exception _atom(+Atom) Sets the atom to be thrown by timeout exceptions
to Atom. The default value iime _out .

ppl _timeout _exception _atom(?Atom) The atom to be thrown by timeout exceptions is unified
with Atom.

ppl _set _timeout(+Integer) Computations taking exponential time will be interrupted some time
afterinteger ms after that call. If the computation is interrupted that way, the current timeout exception
atom will be thrown.Integer must be strictly greater than zero.

ppl _reset _timeout Resets the timeout time so that the computation is not interrupted.

ppl _new_Polyhedron _from _dimension(+Topology, +Integer, -Handle) Creates
a new universe C or NNC polyhedroR, depending on the value dfopology , with Integer
dimensionsHandle is unified with the handle foP. Thus the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X).

creates the C polyhedron defining the 3-dimensional vector spaeegth X bound to a valid handle for
accessing it.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface

43

ppl _-new_Polyhedron _empty _from _dimension(+Topology, +Integer, -Handle)
Creates a new empty C or NNC polyhedrBn depending on the value dfopology , with Integer
dimensionsHandle is unified with the handle foP. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, 3, X).

creates an empty NNC polyhedron embeddeRwith X bound to a valid handle for accessing it.

ppl _-new_Polyhedron _from _Polyhedron(+Topology -1, +Handle _1, +Topology -

2, -Handle _2) If Handle _1 refers to a C or NNC polyhedro®; (depending on the value of
Topology _1), then this creates a co. of P; with topology C or NNC, depending on the value of
Topology _2. Handle _2 is unified with the handle faP,. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, 3, X),
ppl_new_Polyhedron_from_Polyhedron(c, X, nnc, Y).

creates an empty C polyhedron embedde®irreferenced byX and then makes a copy, converting the
topology to an NNC polyhedron. withf bound to a valid handle for accessing it.

When usingppl _new_Polyhedron _from _Polyhedron/2 , when the source polyhedron is NNC and
the copy is C, care must be taken that the source polyhedron referenddaniojel is topologically
closed.

ppl _new_Polyhedron _from _constraints(+Topology, +Constraint _System,
-Handle) Creates a polyhedro® represented byConstraint _System with topology C or
NNC, depending on the value ®bpology . Handle is unified with the handle foP.

ppl _new_Polyhedron _from _generators(+Topology, +Generator _System,
-Handle) Creates a polyhedrorP represented byGenerator _System with topology C or
NNC, depending on the value ®bpology . Handle is unified with the handle faP.

ppl _-new_Polyhedron _from _bounding _box(+Topology, +Box, -Handle) Creates a
polyhedronP represented baox with topology C or NNC, depending on the valueTapology , and
Handle is unified with the handle fo. A bound of the formo(Rational) can be included in an
interval inBox only if Topology isnnc.

ppl _Polyhedron _swap(+Handlel, +Handle2) Swaps the polyhedron referenced by
Handlel with the one referenced bidandle2 . The polyhedraP and Q must have the same

topology.

ppl _delete _Polyhedron(+Handle) Deletes the polyhedron referencedgndle . After exe-
cution,Handle is no longer a valid handle for a PPL polyhedron.

ppl _Polyhedron _space _dimension(+Handle, -Integer) Unifies the space dimension of
the polyhedron referenced Ibjandle with Integer

ppl _Polyhedron _get _constraints(+Handle, -Constraint _System) Unifies

Constraint _System with a list of the constraints in the constraints system representing the

polyhedron referenced tiandle .

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 44

ppl _Polyhedron _get _minimized _constraints(+Handle, -Constraint _System)
Unifies Constraint _System with a minimized list of the constraints in the constraints system
representing the polyhedron referencecHandle .

ppl _Polyhedron _get _generators(+Handle, -Generator _System) Unifies
Generator _System with a list of the generators in the generators system representing the poly-
hedron referenced byandle .

ppl _Polyhedron _get _minimized _generators(+Handle, -Generator _System) Uni-
fiesGenerator _System with a minimized list of the generators in the generators system representing
the polyhedron referenced biandle .

ppl _Polyhedron _relation _with _constraint(+Handle, +Constraint,

-Relation _List) Unifies Relation _List with the list of relations the polyhedron refer-
enced byHandle has withConstraint . The possible relations are listed in the grammar rules above;
their meaning is given in Sectiddperations on Convex Polyhedra

ppl _Polyhedron _relation _with _generator(+Handle, +Generator, -Relation -

List) UnifiesRelation _List with the list of relations the polyhedron referencedHigndle has

with Generator . The possible relations are listed in the grammar rules above; their meaning is given in
SectionOperations on Convex Polyhedra

ppl _Polyhedron _get _bounding _box(+Handle, +Complexity, -Box) Succeeds if and
only if the bounding box of the polyhedron referencedHgndle unifies with the box defined bBox.
E.g.,

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].
Note that the rational numbersBox are in canonical form. E.g., the following will fail:

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box),

Box = [i(o(minf), c(2/4)), i(o(0), o(pinf))].

The complexity clas€omplexity determining the algorithm to be used has the following meaning:

e polynomial allows code of the worst-case polynomial complexity class;
e simplex allows code of the worst-case exponential but typically polynomial complexity class;

e any allows code of the universal complexity class.

ppl _Polyhedron _is _empty(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is empty.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface

45

ppl _Polyhedron _is _universe(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is the universe.

ppl _Polyhedron _is _bounded(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is bounded.

ppl _Polyhedron _bounds _from _above(+Handle, +LinExpr) Succeeds if and only ifin-
Expr is bounded from above in the polyhedron referencetiiagdle .

ppl _Polyhedron _bounds _from _below(+Handle, +LinExpr) Succeeds if and only Ifin-
Expr is bounded from below in the polyhedron referencedHandle .

ppl _Polyhedron _is _topologically _closed(+Handle) Succeeds if and only if the polyhe-
dron referenced bidandle is topologically closed.

ppl _Polyhedron _contains _Polyhedron(+Handle 1, +Handle _2) Succeeds if and only
if the polyhedron referenced bandle _1 is included in or equal to the polyhedron referenced by
Handle _2.

ppl _Polyhedron _strictly _contains _Polyhedron(+Handle _1, +Handle _2) Succeeds
if and only if the polyhedron referenced yandle _1 is included in but not equal to the polyhedron
referenced byHandle _2.

ppl _Polyhedron _is _disjoint _from _Polyhedron(+Handle _1, +Handle _2) Succeeds if
and only if the polyhedron referenced Byandle _1 is disjoint from the polyhedron referenced by
Handle _2.

ppl _Polyhedron _equals _Polyhedron(+Handle _1, +Handle _2) Succeeds if and only if
the polyhedron referenced blandle _1 is equal to the polyhedron referencedibgndle 2.

ppl _Polyhedron _OK(+Handle) Succeeds only if the polyhedron referencedHandle is well
formed, i.e., if it satisfies all its implementation invariants. Useful for debugging purposes.

ppl _Polyhedron _add _constraint(+Handle, +Constraint)

ppl _Polyhedron _add _constraint _and_minimize(+Handle, +Constraint) Updates
the polyhedron referenced bjandle to one obtained by addin@onstraint to its constraint system.
Thus, the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = '$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handkto consist of the set of points in the vector sp&esatisfying
the constraintz +y — 2z >=5.

Note thatppl _Polyhedron _add _constraint _and _minimize/2 will fail if, after adding the con-
straint, the polyhedron is empty.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 46

ppl _Polyhedron _add_generator(+Handle, +Generator)

ppl _Polyhedron _add _generator _and_minimize(+Handle, +Generator) Updates the
polyhedron referenced iyandle to one obtained by addin@enerator to its generator system. Thus,
after the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = '$VAR’(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handkto be the single point—12.5, —0.625,0)™ in the vector space
R3.

ppl _Polyhedron _add _constraints(+Handle, +Constraint _System) Updates the poly-
hedron referenced bidandle to one obtained by adding to its constraint system the constraints in
Constraint _System . E.g.,

| ?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = '$VAR'(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referenced Hgndle can be empty and a query will succeed even when
Constraint _System is unsatisfiable.

ppl _Polyhedron _add_constraints _and_minimize(+Handle, +Constraint _System)
Updates the polyhedron referenced Hgndle to one obtained by adding to its constraint system the
constraints irConstraint _System . E.g.,

?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = '$VAR’(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]
This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_dimension(c, 2, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A =0, B =< 0)),
ppl_Polyhedron_get_constraints(X, CS).

ppl _Polyhedron _add _generators(+Handle, +Generator _System) Updates the polyhe-
dron referenced byHandle to one obtained by adding to its generator system the generators in
Generator _System .

If the system of generators representing a polyhedron is non-empty, then it must include a point (see the
paragraph on generator representation in Se®epresentations of Convex Polyhedra Thus care must

be taken to ensure that, before calling this predicate, either the polyhedron referertaddby is non-

empty or that whenevegenerator _System is non-empty the first element defines a point. E.g.,

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 47

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’'(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

ppl _Polyhedron _add_generators _and_minimize(+Handle, +Generator _System)

Updates the polyhedron referenced Hgndle to one obtained by adding to its generator system the
generators ifGenerator _System .

Unlike the predicatppl _add _generators |, the order of the generators@enerator _System is not
important. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’'(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]
ppl _Polyhedron _intersection _assign(+Handle _1, +Handle _2)

ppl _Polyhedron _intersection _assign _and _minimize(+Handle _1, +Handle 2) As-

signs to the polyhedron referenced biandle _1 its intersection with the polyhedra referenced by
Handle _2.

ppl _Polyhedron _poly _hull _assign(+Handle _1, +Handle _2)

ppl _Polyhedron _poly _hull _assign _and_minimize(+Handle _1, +Handle _2) Assigns
to the polyhedron referenced biandle _1 its poly-hull with the polyhedra referenced biandle _2.

ppl _Polyhedron _poly _difference _assign(+Handle _1, +Handle _2) Assigns to the
polyhedron referenced byandle _1 its poly-difference with the polyhedron referencedHigndle _2.

ppl _Polyhedron _affine _image(+Handle, +PPL _Var, +LinExpr, +Integer) Trans-

forms the polyhedron referenced Iandle assigning the affine expressidinExpr /Integer to
PPL Var .

ppl _Polyhedron _affine _preimage(+Handle, +PPL _Var, +LinExpr, +Integer)
This is the inverse transformation to that fgpl _affine _image .

ppl _Polyhedron _generalized _affine _image(+Handle, +PPL _Var, +Relation _-

Symbol +LinExpr, +Integer) Transforms the polyhedron referenced Handle assigning

the generalized affine image with respect to the transfer fundi@Bh_ Var Relation _Symbol
LinExpr /Integer

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 48

ppl _Polyhedron _generalized _affine _image _lhs _rhs(+Handle, +LinExprl,

+Relation _Symbol +LinExpr2) Transforms the polyhedron referenced blandle assign-
ing the generalized affine image with respect to the transfer funtiicxprl Relation _Symbol
LinExpr2

ppl _Polyhedron _time _elapse _assign(+Handle _1, +Handle _2) Assigns to the polyhe-
dronP referenced bydandle _1 thetime-elapséP ,~ Q) with the polyhedra& referenced bydandle _-
2.

ppl _Polyhedron _BHRZ03widening _assign _with _token(+Handle _1, +Handle _2,
?Integer) The polyhedra referenced bylandle 1 and Handle _2 are unaltered. The token
Integer is 0 if a BHRZ03 widening would have changed the polyhedron referencéthhgle _1 and
is 1 otherwise.

ppl _Polyhedron _BHRZO3widening _assign(+Handle _1, +Handle _2) Assigns to the
polyhedron referenced Byandle _1 its BHRZ03-widening with the polyhedra referencedHigndle _2.

ppl _Polyhedron _limited _BHRZO03extrapolation _assign _with _token(+Handle _1,
+Handle _2, +Constraint _System, ?Integer) The polyhedra referenced biandle _1 and
Handle _2 are unaltered. The tokdnteger is 0 if a BHRZ03-widening with the polyhedra referenced
by Handle _2, improved by enforcing those constraintsGonstraint _System would have changed
the polyhedron referenced biandle _1 and is 1 otherwise.

ppl _Polyhedron _limited _BHRZ03extrapolation _assign(+Handle 1, +Handle _2,
+Constraint _System) Assigns to the polyhedrof® referenced byHandle _1 the result of its
BHRZ03-widening with the polyhedra referencedtdgndle _2, improved by enforcing those constraints
in Constraint _System .

ppl _Polyhedron _bounded BHRZ03extrapolation _assign _with _token(+Handle _1,
+Handle 2, +Constraint _System, ?Integer) The polyhedronP; and P- referenced by
Handle _1 andHandle _2, respectively are unaltered. The toKeteger is O if a BHRZ03-widening
with Ps , improved by enforcing all the constraints of the fofite < r and+z < r that are satisfied
by all the points ofP; together with the constraints @onstraint _System would have changed the
polyhedron referenced tiyandle _1 and is 1 otherwise.

ppl _Polyhedron _bounded -BHRZ03extrapolation _assign(+Handle 1, +Handle _2,
+Constraint _System) Assigns to the polyhedrof® referenced byHandle _1 the result of its
BHRZ03-widening with the polyhedra referencedHigndle _2 improved by enforcing all the constraints
of the form+x < r and+x < r that are satisfied by all the points Bftogether with the constraints in
Constraint _System .

ppl _Polyhedron _H79_widening _assign _with _token(+Handle _1, +Handle _2,

?Integer) The polyhedra referenced hiyandle -1 and Handle 2 are unaltered. The token
Integer is O if an H79 widening would have changed the polyhedron referencétabgle 1 andis 1
otherwise.

ppl _Polyhedron _H79_widening _assign(+Handle _1, +Handle _2) Assigns to the polyhe-
dron referenced bifgandle _1 its H79-widening with the polyhedra referencedtigndle _2.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface

49

ppl _Polyhedron _limited _H79_extrapolation _assign _with _token(+Handle _1,

+Handle 2, +Constraint _System, ?Integer) The polyhedra referenced biandle _1 and
Handle _2 are unaltered. The tokdnteger is O if a H79-widening with the polyhedra referenced by
Handle _2, improved by enforcing those constraintsGonstraint _System would have changed the
polyhedron referenced tyandle _1 and is 1 otherwise.

ppl _Polyhedron _limited _H79_extrapolation _assign(+Handle 1, +Handle _2,
+Constraint _System) Assigns to the polyhedro® referenced byHandle _1 its H79-widening
with the polyhedra referenced blandle _2, improved by enforcing those constraintdonstraint _-
System .

ppl _Polyhedron _bounded _H79_extrapolation _assign _with _token(+Handle _1,

+Handle 2, +Constraint _System, ?Integer) The polyhedronP; and P- referenced by
Handle _1 andHandle _2, respectively are unaltered. The tokateger is 0 if a H79-widening with
P- , improved by enforcing all the constraints of the fotm < r and+z < r that are satisfied by all the
points of P; together with the constraints @onstraint _System would have changed the polyhedron
referenced byHandle _1 and is 1 otherwise.

ppl _Polyhedron _bounded _H79_extrapolation _assign(+Handle 1, +Handle _2,
+Constraint _System) Assigns to the polyhedrof® referenced byHandle _1 the result of its
H79-widening with the polyhedra referenced Hgndle _2 improved by enforcing all the constraints of
the form+x < r and+x < r that are satisfied by all the points ®f together with the constraints in
Constraint _System .

ppl _Polyhedron _topological _closure _assign(+Handle) Assigns to the polyhedron ref-
erenced byHandle its topological closure.

ppl _Polyhedron _add_dimensions _and_embed(+Handle, +Integer) Embeds the poly-
hedron referenced iyandle in a space that is enlarged byteger dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

Cs = [
GS = [point(0),line(1*A),line(1*B)]
ppl _Polyhedron _add_dimensions _and _project(+Handle, +Integer) Projects the

polyhedron referenced tiyandle onto a space that is enlarged loyeger dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

Cs
GS

[1*A = 0, 1*B = 0],
[point(0)]

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 50

ppl _Polyhedron _concatenate _assign(+Handlel, +Handle2) Updates the polyhedron

P; referenced byHandlel by first embeddingP; in a new space enlarged by the space dimensions
of the polyhedrorP; referenced byHandle2 , and then adds to its system of constraints a renamed-apart
version of the constraints @¥,.

E.g.,

?- ppl_new_Polyhedron_from_dimension(nnc, 2, X),
A = '$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
D = '$VAR'(3), E = '$VAR'(4),
ppl_new_Polyhedron_from_constraints(nnc, [A > 1, B >= 0, C >= 0], Y),
ppl_Polyhedron_concatenate_assign(X, Y),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= 0]

ppl _Polyhedron _remove _dimensions(+Handle, +List _of PPLVars) Removes the di-
mensions given by the identifiers of the PPL variables inlist _of _PPL Vars from the polyhedron
referenced byHandle . The identifiers for the remaining PPL variables are renumbered so that they are
consecutive and the maximum index is less than the number of dimensions. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’'(2),
ppl_Polyhedron_remove_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K = 2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl _Polyhedron _remove _higher _dimensions(+Handle, +Integer)) Projects the the
polyhedron referenced to Byandle onto the firsinteger dimension. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 5, X),
ppl_Polyhedron_remove_higher_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

ppl _Polyhedron _map.dimensions(+Handle, +P _Func)) Maps the dimensions of the poly-
hedron referenced bilandle using the partial function defined B.Func. The result is undefined if
P_Func does not encode a partial function with the properties described sptwdfication of the map-
ping operator.

6.4.3 Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

In the sequelprefix is the prefix under which you have installed the library (typicdlhgr or
lusr/local).

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library addiDfROLOGTRACKALLOCATIONto the
options passed to the C++ compiler. Your configure command would then look like

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.4 Prolog Language Interface 51

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

6.4.4 System-Dependent Features

CIAO Prolog Support for CIAO Prolog is under development and will be available in a future release.
Only Ciao Prolog 1.9 #44 or later is supported.

GNU Prolog The GNU Prolog interface to the PPL library is available both as “PPL enhanced” GNU
Prolog interpreter and as a library that can be linked to GNU Prolog programs. Only GNU Prolog version
1.2.12 or later is supported.

Notice that GNU Prolog version 1.2.12 suffers from a serious limitation as far as for-
eign code is concerned. In order to be safe you must configure GNU Prolog with the
--disable-ebp option (note that this has a negative effect on performance). See
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001777 .html ,
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001780.html ,

http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001788.html and
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001789.html for more
information.

We have experienced other serious problems with the GNU Pro-
log interface, up to and including GNU Prolog version 1.2.16: see
http://www.cs.unipr.it/pipermail/ppl-devel/2002-October/002657.html

for more information.

The ppl _gprolog Executable If an appropriate version of GNU Prolog is installed on the machine on
which you compiled the library, the commantake install will install the executablepl _gprolog

in the directoryprefix/bin . Theppl _gprolog executable is simply the GNU Prolog interpreter with
the Parma Polyhedra library linked in. The only thing you should do to use the library is tpptalt
initialize/0 before any other PPL predicate and to gl _finalize/0O when you are done with
the library.

Linking the Library To GNU Prolog Programs In order to allow linking GNU Prolog programs to the
PPL, the following files are installed in the directquefix/lib/ppl : ppl _gprolog.pl contains

the required foreign declarationgyppl _gprolog. =« contain the executable code for the GNU Prolog
interface in various formats (static library, shared library, libtool library). If your GNU Prolog program
is constituted by, saygourcel.pl andsource2.pl and you want to create the executabigprog ,

your compilation command may look like

gplc -0 myprog prefix/lib/ppl/ppl_gprolog.pl sourcel.pl source2.pl \
-L ’-Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmpxx -lgmp -Istdc++

SICStus Prolog The SICStus Prolog interface to the PPL library is available both as a statically linked
module or as a dynamically linked one. Only SICStus Prolog version 3.9.0 or later is supported.

The Statically Linked ppl _sicstus Executable If an appropriate version of SICStus Prolog is in-
stalled on the machine on which you compiled the library, the commaaice install will install the

executablegpl _sicstus in the directoryprefix/bin . Theppl _sicstus executable is simply the
SICStus Prolog system with the Parma Polyhedra library statically linked. The only thing you should do to
use the library is to loagrefix/lib/ppl/ppl _sicstus.pl

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages

52

Loading the SICStus Interface Dynamically In order to dynamically load the library from SICStus Pro-
log you should simply loagrefix/lib/ppl/ppl _sicstus.pl . Notice that, for dynamic linking
to work, you should have configured the library with thenable-shared option.

SWI-Prolog The SWI-Prolog interface of the library is available both as a statically linked module or as
a dynamically linked one. Only SWI-Prolog version 5.0 or later is supported.

The ppl _pl Executable If an appropriate version of SWI-Prolog is installed on the machine on which
you compiled the library, the commamnabke install will install the executabl@pl _pl in the direc-

tory prefix/bin . Theppl _pl executable is simply the SWI-Prolog shell with the Parma Polyhedra
library statically linked: from withinppl _pl all the services of the library are available without further
action.

Loading the SWI-Prolog Interface Dynamically In order to dynamically load the library from SWiI-
Prolog you should simply loagrefix/lib/ppl/ppl _swiprolog.pl . This will invoke ppl _-
initialize/0 automatically but, at least for SWI-Prolog versions up to 5.0.7, it is the programmer’s
responsibility to calppl _finalize/O . Alternatively, you can load the library directly with

- load_foreign_library('prefix/lib/ppl/libppl_swiprolog’).
This will call ppl _initialize/0 automatically. Analogously,
- unload_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

will, as part of the unload process, invogpl _finalize/0

Notice that, for dynamic linking to work, you should have configured the library with the
--enable-shared option.

XSB The XSB Prolog interface to the PPL library is available as a dynamically linked
module. Only CVS versions of XSB from August 2002 onward are supported. See
http://lwww.cs.unipr.it/pipermail/ppl-devel/2002-July/002201.html for infor-
mation about a bug in XSB 2.5 that has bitten several people.

In order to dynamically load the library from XSB you should load pipé xsb module and import the
predicates you need. For things to work, you may have to copy thefidis/lib/ppl/ppl xsh.O
andprefix/lib/ppl/ppl _Xsh.so inyour current directory or in one of the XSB library directories.

YAP The YAP Prolog interface to the PPL library is available as a dynamically linked module. Only
YAP version 4.4 or later is supported.

In order to dynamically load the library from YAP you should simply Iqaéfix/lib/ppl/ppl -
yap.pl . This will invoke ppl _initialize/0 automatically; it is the programmer’s responsibility to
call ppl _finalize/O when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with thenable-shared option.

6.5 PPL License Pages
6.5.1 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages 53

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program”, below,
refers to any such program or work, and a "work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification”.) Each licensee is addressed as "you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages

54

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

¢ a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

e b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

o c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not

derived from the Program, and can be reasonably considered independent and separate works in themselves,

then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the

distribution of the whole must be on the terms of this License, whose permissions for other licensees extend

to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

e a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

e b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

e c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7.1f, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6.5 PPL License Pages 56

to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS I1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 PPL Namespace Documentation 57

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commandshow w’ and'show ¢’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something othshthanw’ and
‘show ¢’ ;they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copy-
right disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this

License.

7 PPL Namespace Documentation

7.1 ParmaPolyhedra Library Namespace Reference

The entire library is confined into this namespace.

Compounds

e classVariable
A dimension of the space.

e structVariable::Compare
Binary predicate defining the total ordering on variables.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.1 ParmaPolyhedra Library Namespace Reference

58

e classLinExpression
A linear expression.

o classConstraint
A linear equality or inequality.

e classGenerator
A line, ray, point or closure point.

e classPoly_Con_Relation
The relation between a polyhedron and a constraint.

e classPoly_Gen_Relation
The relation between a polyhedron and a generator.

e classPolyhedron
The base class for convex polyhedra.

e classC_Polyhedron
A closed convex polyhedron.

e classNNC_Polyhedron
A not necessarily closed convex polyhedron.

e classDeterminate
Wrap a polyhedron class into a determinate constraint system interface.

o classPowerSet
The powerset construction on constraint systems.

Typedefs

o typedef mpzclassinteger
See the GMP’s manual available faitp://swox.com/gmp/

o typedef std::set Variable, Variable::Compare > Variables_Set
An std::set containing variables in increasing order of dimension index.

Functions

e const chak version ()
Returns a character string containing the PPL version.

e const chak banner ()

Returns a character string containing information about the PPL version, the licensing, the lack of any
warranty whatsoever, the C++ compiler used to build the library, where to report bugs and where to look
for further information.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.2 ParmaPolyhedra Library::IO _Operators Namespace Reference 59

o templatectypename PH std::paik PH, PowerSek Determinate< NNC_Polyhedron > > >
linear_partition (const PH &p, const PH &q)

Partitions g with respect tg.

7.1.1 Detailed Description

The entire library is confined into this namespace.

7.1.2 Function Documentation
7.1.2.1 templatectypename PH> std::pair < PH, PowerSek Determinate< NNC_Polyhedron > >
> Parma_Polyhedra_Library::linear _partition (const PH & p, const PH & q)
Partitionsg with respect tg.
Let p andq be two polyhedra. The function returns an objecof type std::pair <PH, Power-
Set<Determinate<NNC_Polyhedron> > > such that

o r.first is the intersection gb andq;

e r.second has the property that all its elements are not empty, pairwise disjoint, and disjoint from
p;

e the union ofr.first with all the elements af.second givesq (i.e.,r is the representation of a
partition ofq).

7.2 ParmaPolyhedra Library::I0 _Operators Namespace Reference

All input/output operators are confined into this namespace.

7.2.1 Detailed Description

All input/output operators are confined into this namespace.

This is done so that the library’s input/output operators do not interfere with those the user might want
to define. In fact, it is highly unlikely that any pre-defined I/O operator will suit the needs of a client
application. On the other hand, those applications for which the PPL I/O operator are enough can easily
obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::10_Operators;

would suffice for most uses. In more complex situations, such as

const ConSys& cs = ...;
copy(cs.begin(), cs.end(),
ostream_iterator<Constraint>(cout, "\n"));

theParma_Polyhedra Library namespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
/I Import all the output operators into the main PPL namespace.
using |O_Operators::operator<<;

}

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 std Namespace Reference 60

7.3 std Namespace Reference

The standard C++ namespace.

7.3.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library templates swap() and gemap() (25.2.2, [lib.alg.swap]).

8 PPL Class Documentation

8.1 C_Polyhedron Class Reference

A closed convex polyhedron.

InheritsPolyhedron.

Public Member Functions

e C_Polyhedron (dimensiontype numdimensions=0DegenerateKind kind=UNIVERSE)

Builds either the universe or the empty C polyhedron.

e C_Polyhedron (const ConSys &cs)
Builds a C polyhedron from a system of constraints.

e C_Polyhedron (ConSys &cs)
Builds a C polyhedron recycling a system of constraints.

e C_Polyhedron (const GenSys &gs)
Builds a C polyhedron from a system of generators.

e C_Polyhedron (GenSys &gs)
Builds a C polyhedron recycling a system of generators.

e C_Polyhedron (constNNC_Polyhedron &y)
Builds a C polyhedron from the NNC polyhedmpn

o templatectypename Box C_Polyhedron (const Box &box, FromBoundingBox dummy)
Builds a C polyhedron out of a generic, interval-based bounding box.

e C_Polyhedron (const CPolyhedron &y)
Ordinary copy-constructor.

e C_Polyhedron &operator= (const CPolyhedron &y)
The assignment operatokthis andy can be dimension-incompatible.).

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C_Polyhedron Class Reference

61

e ~C_Polyhedron()
Destructor.

8.1.1 Detailed Description

A closed convex polyhedron.

An object of the clas€_Polyhedron represents gopologically closedcconvex polyhedron in the vector
spaceR™.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains atrict inequalityconstraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containiciggure point

Note:
Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the cl&NC_Polyhedron, the precise topological closure test
will be performed.

8.1.2 Constructor & Destructor Documentation

8.1.2.1 CPolyhedron::C_Polyhedron (dimensiontype num_dimensions= 0, DegenerateKind kind
= UNIVERSE) [explicit]

Builds either the universe or the empty C polyhedron.

Parameters:
num_dimensions The number of dimensions of the vector space enclosing the C polyhedron.

kind Specifies whether a universe or an empty C polyhedron should be built.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

8.1.2.2 CPolyhedron::C_Polyhedron (const ConSys &cs)
Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument thrown if the system of constraints contains strict inequalities.

8.1.2.3 CPolyhedron::C_Polyhedron (ConSys &c9)
Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 C_Polyhedron Class Reference 62

Parameters:
cs The system of constraints defining the polyhedron. It is not decleoedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument thrown if the system of constraints contains strict inequalities.

8.1.2.4 CPolyhedron::C_Polyhedron (const GenSys &g9)
Builds a C polyhedron from a system of generators.
The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument thrown if the system of generators is not empty but has no points, or if it
contains closure points.

8.1.2.5 CPolyhedron::C_Polyhedron (GenSys &gs)

Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.
Parameters:

gs The system of generators defining the polyhedron. It is not declawedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument thrown if the system of generators is not empty but has no points, or if it
contains closure points.

8.1.2.6 CPolyhedron::C_Polyhedron (const NNCPolyhedron & y) [explicit]
Builds a C polyhedron from the NNC polyhedrgn

Exceptions:
std::invalid_argument thrown if the polyhedroty is not topologically closed.

8.1.2.7 templatectypename Box> C_Polyhedron::C_Polyhedron (const Box & box, From._-
Bounding_Box dummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templatetypename Box Polyhedron::Polyhedron(Topology topol, const
Box& box);

Parameters:
box The bounding box representing the polyhedron to be built.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Constraint Class Reference

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:
std::invalid_argument thrown if box has intervals that are not topologically closed (i.e., having some
finite but open bounds).

8.2 Constraint Class Reference

A linear equality or inequality.

Public Types

o enumType { EQUALITY , NONSTRICT _INEQUALITY , STRICT _.INEQUALITY }
The constraint type.

Public Member Functions

e Constraint (const Constraint &c)
Ordinary copy-constructor.

e ~Constraint ()
Destructor.

e Constraint &operator= (const Constraint &c)
Assignment operator.

¢ dimensiontype spacedimension () const
Returns the dimension of the vector space enclosinig

e Type type () const
Returns the constraint type ethis

e boolis_equality () const
Returngrue if and only ifxthis is an equality constraint.

e boolis_inequality () const
Returngrue if and only ifxthis is an inequality constraint (either strict or non-strict).

e boolis_nonstrict_inequality () const
Returngrue if and only ifxthis is a non-strict inequality constraint.

e boolis_strict_inequality () const
Returngrue if and only ifxthis is a strict inequality constraint.

e constinteger & coefficient(Variable v) const
Returns the coefficient efin xthis

constinteger & inhomogeneougerm () const

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Constraint Class Reference 64

Returns the inhomogeneous ternxtifis

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e const Constraint &ero_dim false ()
The unsatisfiable (zero-dimension space) constfaiat1.

e const Constraint &ero_dim _positivity ()
The true (zero-dimension space) constrdint 1, also known apositivity constraint

Related Functions
(Note that these are not member functions.)

e std::ostream &operator< < (std::ostream &s, const Constraint &c)
Output operator.

e Constrainioperator== (constLinExpression &el, constLinExpression &e?2)
Returns the constrairgl = e2.

e Constrainoperator== (constLinExpression &e, constinteger &n)
Returns the constrairg = n.

e Constrainioperator== (constinteger &n, constLinExpression &e)
Returns the constraint = e.

e Constraintoperator<= (constLinExpression &el, constLinExpression &e2)
Returns the constrairgl <= e2.

e Constraintoperator<= (constLinExpression &e, constinteger &n)

Returns the constrairg <= n.

e Constraintoperator<= (constinteger &n, constLinExpression &e)
Returns the constraint <= e.

e Constraintoperator>= (constLinExpression &e1l, constLinExpression &e2)
Returns the constrail >= e2.

e Constraintoperator>= (constLinExpression &e, constinteger &n)
Returns the constrairg >= n.

e Constraintoperator>= (constinteger &n, constLinExpression &e)
Returns the constraint >= e.

The Parma Polyhedra Library User’s Manual (version 0.5).(8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Constraint Class Reference 65

e Constrainoperator< (constLinExpression &el, constLinExpression &e2)
Returns the constrairgl < e2.

e Constraintoperator< (constLinExpression &e, constinteger &n)
Returns the constrairg < n.

e Constraintoperator< (constinteger &n, constLinExpression &e)
Returns the constraint < e.

e Constrainoperator> (constLinExpression &el, constLinExpression &e2)
Returns the constrairgl > e2.

e Constraintoperator> (constLinExpression &e, constinteger &n)
Returns the constrairg > n.

e Constraintoperator> (constinteger &n, constLinExpression &e)
Returns the constraint > e.

e void swap (ParmaPolyhedraLibrary::Constraint &x, Parm#olyhedraLibrary::Constraint &y)
Specializestd::swap

8.2.1 Detailed Description

A linear equality or inequality.

An object of the clas€onstraint is either:

e an equality:>""" ' a;z; + b = 0;

n—
1=

e anon-strict inequality> "' a;z; + b > 0; or

e astrictinequality:>.""" a;z; + b > 0;

wheren is the dimension of the space; is the integer coefficient of variable; and b is the integer
inhomogeneous term.

How to build a constraint
Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equalitg€), non-strict inequalitiesX= and<=) and strict inequalities< and
>). The space-dimension of a constraint is defined as the maximum space-dimension of the arguments
of its constructor.

In the following examples it is assumed that variableg andz are defined as follows:
Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constraiat + 5y — z = 0, having space-dimensich

Constraint eq_c(3*x + 5*y - z == 0);

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Constraint Class Reference 66

The following code builds the (non-strict) inequality constrdint> 2y — 13, having space-dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);

The corresponding strict inequality constradnt > 2y — 13 is obtained as follows:
Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension sfielcean be specified as follows:

Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_c1(LinExpression::zero() == 1);
Constraint false_c2(LinExpression::zero() >= 1);
Constraint false_c3(LinExpression::zero() > 0);

In contrast, the following code defines an unsatisfiable constraint having space-dinmgznsion

Constraint false_c(0*z == 1);

How to inspect a constraint
Several methods are provided to examine a constraint and extract all the encoded information: its
space-dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this case— 5y + 3z <= 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraibty + 3z > 4).
Constraint c1(x - 5*y + 3*z <= 4),
cout << "Constraint cl: " << ¢l << endl;
if (cl.is_equality())
cout << "Constraint ¢l is not an inequality." << endl;

else {
LinExpression e;
for (int i = cl.space_dimension() - 1; i >= 0; i-)

e += cl.coefficient(Variable(i)) * Variable(i);
e += cl.inhomogeneous_term();
Constraint c2 = cl.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << ¢2 << endl;

}
The actual output is the following:

Constraint cl1: -A + 5*B - 3*C >= -4
Complement c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

8.2.2 Member Enumeration Documentation

8.2.2.1 enum ParmaPolyhedra Library::Constraint::Type

The constraint type.

Enumeration values:
EQUALITY The constraint is an equality.

NONSTRICT _JINEQUALITY The constraint is a non-strict inequality.
STRICT _INEQUALITY The constraint is a strict inequality.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 Determinate< PH > Class Template Reference

67

8.2.3 Member Function Documentation

8.2.3.1 const Integer& Constraint::coefficient (Variablev) const

Returns the coefficient of in xthis
Exceptions:
std::invalid_argument thrown if the index ofv is greater than or equal to the space-dimension of
xthis

8.3 Determinate< PH > Class Template Reference

Wrap a polyhedron class into a determinate constraint system interface.

Public Member Functions

o dimensiontype spacedimension() const
Returns the dimension of the vector space enclosinig

e const ConSys &onstraints () const
Returns the system of constraints.

e const ConSys &ninimized_constraints () const
Returns the system of constraints, with no redundant constraint.

e const GenSys &enerators() const
Returns the system of generators.

e const GenSys &ninimized_generators() const
Returns the system of generators, with no redundant generator.

¢ void add_constraint (constConstraint &c)
Intersectskthis with (a copy of) constraint.

¢ void add_constraints (ConSys &cs)
Intersectstthis with the constraints ics .

¢ void add_dimensionsand_embed(dimensiontype m)
Addsmnew dimensions and embeds the old polyhedron into the new space.

¢ void add_dimensionsand_project (dimensiontype m)
Addsmnew dimensions to the polyhedron and does not embed it in the new space.

¢ void remove dimensions(constVariables_Set&to_be removed)
Removes all the specified dimensions.

¢ void remove higher_dimensions(dimensiontype newdimension)
Removes the higher dimensions so that the resulting space will have dimeesiatimension

void H79_widening_assign(const Determinate &y)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 Determinate< PH > Class Template Reference 68

Assigns torthis the result of computing thid79-widening betweenxthis andy.
¢ void limited _H79_extrapolation_assign(const Determinate &y, ConSys &cs)
Limits theH79-widening computation betweesthis andy by enforcing constraintss and assigns the

result toxthis

e boolOK () const
Checks if all the invariants are satisfied.

Friends

e bool operator== (const Determinate PH > &x, const Determinate PH > &y)
Returngrue if and only ifx andy are the same polyhedron.

e booloperator!= (const Determinate PH > &X, const Determinate PH > &y)
Returngrue if and only ifx andy are different polyhedra.

e boollcompare (const Determinate &%, const Determinate &y)

Related Functions
(Note that these are not member functions.)
e Determinate: PH > operator+ (const Determinate PH > &x, const Determinate PH > &y)

e Determinate: PH > operator x (const Determinate PH > &x, const Determinate PH > &y)
e std::ostream &operator<< (std::ostream &, const DeterminatédPH > &)

8.3.1 Detailed Description
template<typename PH> class Determinate< PH >

Wrap a polyhedron class into a determinate constraint system interface.

8.3.2 Member Function Documentation

8.3.2.1 templatectypename PH> void Determinate< PH >::add_constraint (const Constraint & c)

Intersectscthis with (a copy of) constraint.

Exceptions:
std::invalid_argument thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 Determinate< PH > Class Template Reference

8.3.2.2 templatectypename PH> void Determinate< PH >::add_constraints (ConSys &c9)
Intersectscthis with the constraints iics .

Parameters:
cs The constraints to intersect with. This parameter is not dectaoest because it can be modified.

Exceptions:
std::invalid_argument thrown if «this and cs are topology-incompatible or dimension-
incompatible.

8.3.2.3 templatectypename PH> void Determinate< PH >::remove_dimensions (const Variables-
Set & to_be.removed

Removes all the specified dimensions.

Parameters:
to_beremoved The set ofVariable objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument thrown if xthis is dimension-incompatible with one of théariable objects
contained irto _be _removed .

8.3.2.4 templatectypename PH> void Determinate< PH >::remove_higher_dimensions (dimen-
sion_type new.dimension

Removes the higher dimensions so that the resulting space will have dimepsgicdimension

Exceptions:
std::invalid_argument thrown if new_dimensions is greater than the space dimensiorxibifis

8.3.2.5 templatectypename PH> void Determinate< PH >:H79_widening.assign (const
Determinate< PH > & y)

Assigns toxthis the result of computing thE79-widening betweenkthis andy.

Parameters:
y A polyhedron thatnustbe contained inthis

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.3.2.6 templatectypename PH> void Determinate< PH >:limited _H79_extrapolation_assign
(const Determinate< PH > & y, ConSys &c9

Limits the H79-widening computation betweesthis andy by enforcing constraintss and assigns the
result toxthis

Parameters:
y A polyhedron thatnustbe contained irthis

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 70

cs The system of constraints that limits the widened polyhedron. It is not dectaresi because it
can be modified.

Exceptions:
std::invalid_argument thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.

8.3.3 Friends And Related Function Documentation

8.3.3.1 templatectypename PH> bool operator== (const Determinatec PH > & X, const
Determinate< PH > & y) [friend]

Returngrue if and only if x andy are the same polyhedron.

<PH>

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.3.3.2 templatectypename PH> bool operator!= (const Determinatec PH > & X, const
Determinate< PH > & y) [friend]

Returngrue if and only if x andy are different polyhedra.
<PH>

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.3.3.3 templatectypename PH> bool Icompare (const Determinatec PH > & X, const
Determinate< PH > & y) [friend]

<PH>

8.3.3.4 templatectypename PH> Determinate< PH > operator+ (const Determinate< PH > & X,
const Determinate< PH > & y) [related]

<PH>

8.3.3.5 templatectypename PH> Determinate< PH > operator x (const Determinate< PH > & X,
const Determinate< PH > & y) [related]

<PH>

8.3.3.6 templatectypename PH> std::ostream & operator<< (std:ostream &, const
Determinate< PH > &) [related]

<PH>

8.4 Generator Class Reference

A line, ray, point or closure point.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference

71

Public Types

e enumType { LINE, RAY, POINT, CLOSURE_POINT }
The generator type.

Public Member Functions

e Generator (const Generator &g)
Ordinary copy-constructor.

e ~Generator ()
Destructor.

e Generator &perator= (const Generator &g)
Assignment operator.

e dimensiontype spacedimension() const

Returns the dimension of the vector space enclosihig

e Type type() const
Returns the generator type sthis

e boolis_line () const
Returngtrue if and only if«this is aline.

e boolis_ray () const
Returngrue if and only ifxthis is aray.

e boolis_point () const
Returngtrue if and only if«this is a point.

e boolis_closure point () const
Returngrue if and only ifxthis is a closure point.

e constinteger & coefficient(Variable v) const
Returns the coefficient efin xthis

e constinteger & divisor () const
If xthis is either a point or a closure point, returns its divisor.

e boolOK () const
Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference

72

Static Public Member Functions

e Generatotine (constLinExpression &e)
Shorthand foiGenerator Generator::line(const LInExpression& e)

e Generatoray (constLinExpression &e)
Shorthand foiGenerator Generator::ray(const LinExpression& e).

e Generatorpoint (const LinExpression &e=LinExpression::zero(), condnteger &d=Integer-
one())

Shorthand foiGenerator Generator::point(const LinExpression& e, const Integer& d).

e Generator closurepoint (const LinExpression &e=LinExpression::zero(), constinteger
&d=Integerone())

Shorthand foiGenerator Generator::closure point(const LinExpression& e, const Integer& d).

e const Generator &ero_dim_point ()

Returns the origin of the zero-dimensional sp&e

e const Generator &ero_dim _closure_point ()
Returns, as a closure point, the origin of the zero-dimensional spéce

Related Functions
(Note that these are not member functions.)

e std::ostream &operator< < (std::ostream &s, const Generator &g)
Output operator.

e void swap (ParmaPolyhedraLibrary::Generator &x, Parm&olyhedralLibrary::Generator &y)
Specializestd::swap

8.4.1 Detailed Description

A line, ray, point or closure point.

An object of the clas&enerator is one of the following:

e alinel = (ag,...,an_1)7;

e arayr = (ag,-..,an-1)"%;

e apointp = (%,..., =T,

e aclosure point = (%, ...,)T

wheren is the dimension of the space and, for points and closure pdints) is the divisor.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 73

A note on terminology.
As observed in SectioRepresentations of Convex Polyhedrathere are cases when, in order to
represent a polyhedroR using the generator systeth= (L, R, P,C), we need to include in the
finite setP even points ofP that arenot vertices of P. This situation is even more frequent when
working with NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other
libraries use the word ‘vertex'.

How to build a generator.
Each type of generator is built by applying the corresponding functioe (, ray , point or
closure _point) to a linear expression, representing a direction in the space; the space-dimension
of the generator is defined as the space-dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply
ignored). When defining points and closure points, an optional Integer argument can be used as a
commondivisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variabdeg andz are defined as follows:
Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds a line with direction— y — z and having space-dimensién

Generator | = line(x - y - 2);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator | = line(x - y - z + 15);
By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator | = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the poigt = (1,0,2)T € R?:

Generator p = point(1*x + O*y + 2*z);
The same effect can be obtained by using the following code:
Generator p = point(x + 2*z);
Similarly, the origin0 € R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, naneliR?:

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference 74

Generator origin2 = point(0*y);

The following two lines of code both define the only point having space-dimension zero, namely
0 € R° In the second case we exploit the fact that the first argument of the furmion is
optional.

Generator originO = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4
The pointp specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the funptamt (the divisor):

Generator p = point(2*x + 0%y + 4*z, 2);
Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-

nal) coordinates. For instance, the pajnt (—1.5,3.2,2.1)T € R? can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5
Closures points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure point= (1,0,2)T € R? is defined by

Generator ¢ = closure_point(1*x + 0*y + 2*z);

For the particular case of the (only) closure point having space-dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

How to inspect a generator
Several methods are provided to examine a generator and extract all the encoded information: its
space-dimension, its type and the value of its integer coefficients.

Example 6
The following code shows how it is possible to access each single coefficient of a generatbr. If
is a point having coordinates,, ..., a,_1)T, we construct the closure poig2 having coordinates
(ag,2ai,...,(i+1)as,...,nap_1)".

if (gl.is_point()) {
cout << "Point gl: " << gl << endl;
LinExpression e;
for (int i = gl.space_dimension() - 1; i >= 0; i--)
e += (i + 1) * gl.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, gl.divisor());
cout << "Closure point g2: " << g2 << endl;

}

else
cout << "Generator gl is not a point." << endl;

Therefore, for the point
Generator gl = point(2*x - y + 3*z, 2);
we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the noti@oefficientwith the notion
of coordinate these are equivalent only when the divisor of the (closure) pointis 1.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Generator Class Reference

8.4.2 Member Enumeration Documentation

8.4.2.1 enum ParmaPolyhedra Library::Generator::Type

The generator type.

Enumeration values:
LINE The generator is aline.

RAY The generator is a ray.
POINT The generator is a point.
CLOSURE_POINT The generator is a closure point.

8.4.3 Member Function Documentation

8.4.3.1 Generator line (const LinExpression &) [static]

Shorthand foiGenerator Generator::line(const LinExpression& e)

Exceptions:
std::invalid_argument thrown if the homogeneous part efrepresents the origin of the vector space.

8.4.3.2 Generator ray (const LinExpression &) [static]

Shorthand folGenerator Generator::ray(const LinExpression& e).

Exceptions:
std::invalid_argument thrown if the homogeneous part efrepresents the origin of the vector space.

8.4.3.3 Generator point (const LinExpression &e = LinExpression::zero(), const Integer & d =
Integer_one()) [static]

Shorthand foiGenerator Generator::point(const LinExpression& e, const Integer& d).
Both e andd are optional arguments, with default valugaExpression::zero() and Integerone(), re-
spectively.

Exceptions:
std::invalid_argument thrown if d is zero.

8.4.3.4 Generator closurepoint (const LinExpression & e = LinExpression::zero(), const Integer &
d = Integer_one()) [static]

Shorthand foGenerator Generator::closure point(const LinExpression& e, const Integer& d).
Both e andd are optional arguments, with default valugsExpression::zero() and Integerone(), re-
spectively.

Exceptions:
std::invalid_argument thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 LinExpression Class Reference

76

8.4.3.5 const Integer& Generator::coefficient (Variablev) const

Returns the coefficient of in *this

Exceptions:
std::invalid_argument thrown if the index ofv is greater than or equal to the space-dimension of
xthis

8.4.3.6 const Integer& Generator::divisor () const
If xthis is either a point or a closure point, returns its divisor.
Exceptions:
std::invalid_argument thrown if xthis is neither a point nor a closure point.

8.5 LinExpression Class Reference

A linear expression.

Public Member Functions

e LinExpression ()
Default constructor: returns a copy &fnExpression::zero().

e LinExpression (const LinExpression &e)
Ordinary copy-constructor.

o virtual ~LinExpression ()
Destructor.

e LinExpression (constinteger &n)
Builds the linear expression corresponding to the inhomogeneousterm

e LinExpression (constVariable v)
Builds the linear expression corresponding to the variahle

e LinExpression (constConstraint &c)
Builds the linear expression corresponding to constraint

e LinExpression (constGenerator &Q)

Builds the linear expression corresponding to generatgfor points and closure points, the divisor is not
copied).

o dimensiontype spacedimension() const
Returns the dimension of the vector space enclosinig

e constinteger & coefficient(Variable v) const
Returns the coefficient afin xthis

e constinteger & inhomogeneousterm () const
Returns the inhomogeneous termxtifis

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 LinExpression Class Reference 77

Static Public Member Functions

e const LinExpression &ero ()
Returns the (zero-dimension space) constant 0.

Related Functions
(Note that these are not member functions.)

e LinExpressioroperator+ (const LinExpression &el, const LinExpression &e2)
Returns the linear expressi@l + e2.

e LinExpressioroperator+ (constinteger &n, const LinExpression &e)
Returns the linear expression+ e.

e LinExpressioroperator+ (const LinExpression &e, conitteger &n)
Returns the linear expressien+ n.

e LinExpressioroperator+ (const LinExpression &e)
Returns the linear expressi@n

e LinExpressioroperator- (const LinExpression &e)
Returns the linear expressiore:

e LinExpressioroperator- (const LinExpression &e1l, const LinExpression &e2)
Returns the linear expressi@i - e2.

e LinExpressioroperator- (constinteger &n, const LinExpression &e)
Returns the linear expressian- e.

e LinExpressioroperator- (const LinExpression &e, congiteger &n)
Returns the linear expressi@n- n.

e LinExpressioroperator * (constinteger &n, const LinExpression &e)
Returns the linear expression« e.

e LinExpressioroperator x (const LinExpression &e, consiteger &n)
Returns the linear expressi@nx n.

e LinExpression &operator+= (LinExpression &el, const LinExpression &e2)
Returns the linear expressi@l + e2 and assigns it t@1.

e LinExpression &operator+= (LinExpression &e, cons¥ariable v)
Returns the linear expressi@n+ v and assigns it t@.

e LinExpression &operator+= (LinExpression &e, condnteger &n)
Returns the linear expressi@+ n and assigns it t@.

e LinExpression &operator-= (LinExpression &e1l, const LinExpression &e2)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.5 LinExpression Class Reference 78

Returns the linear expressi@l - e2 and assigns it te1.

LinExpression &operator-= (LinExpression &e, constariable v)
Returns the linear expressi@n- v and assigns it t@.

e LinExpression &operator-= (LinExpression &e, condnteger &n)
Returns the linear expressi@n- n and assigns it te.

LinExpression &operator = (LinExpression &e, condnteger &n)
Returns the linear expression« e and assigns it te.

void swap (ParmaPolyhedralibrary::LinExpression &x, Parm#olyhedralibrary::Lin-
Expression &y)

Specializestd::swap

8.5.1 Detailed Description

A linear expression.

An object of the claskinExpression represents the linear expression

n—1
Z a;r; +b
=0

wheren is the dimension of the space, eaghs the integer coefficient of thie -th variablex; andb is the
integer for the inhomogeneous term.

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classe¥ariable and Integer: available operators include unary negation, binary addition and sub-
traction, as well as multiplication by an Integer. The space-dimension of a linear expression is defined as
the maximum space-dimension of the arguments used to build it: in particular, the space-dimension of a
Variable x is defined ax.id()+1 , whereas all the objects of the class Integer have space-dimension
zero.

Example
The following code builds the linear expressibn— 2y — z + 14, having space-dimensidh

LinExpression e = 4*x - 2*y - z + 14;
Another way to build the same linear expression is:

LinExpression el
LinExpression e2 2*y;
LinExpression e3 = z;

LinExpression e = LinExpression(14);
e += el - e2 - e3;

4*%x;

Note thatel, e2 ande3 have space-dimension 1, 2 and 3, respectively; also, in the fourth line of
code,e is created with space-dimension zero and then extended to space-dimension 3.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.6 NNC_Polyhedron Class Reference 79

8.5.2 Constructor & Destructor Documentation

8.5.2.1 LinExpression::LinExpression (const Constraint &c) [explicit]
Builds the linear expression corresponding to consti@int

n—1

Given the constraint = (3!, a;z; + b > 0), wherexi € {=,>,>}, builds the linear expression

Z?:_[)l a;x; + b. If ¢ is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

8.5.2.2 LinExpression::LinExpression (const Generator &) [explicit]

Builds the linear expression corresponding to genemidor points and closure points, the divisor is not
copied).

Given the generatay = (“2,.. ., “’"T*l)T (where, for lines and rays, we hade= 1), builds the linear

expressionzz;_o1 a;x;. The inhomogeneous term of the linear expression will always be @.idfa ray,
point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

8.6 NNC Polyhedron Class Reference

A not necessarily closed convex polyhedron.

InheritsPolyhedron.

Public Member Functions

¢ NNC_Polyhedron (dimensiontype numdimensions=0DegenerateKind kind=UNIVERSE)
Builds either the universe or the empty NNC polyhedron.

¢ NNC_Polyhedron (const ConSys &cs)
Builds an NNC polyhedron from a system of constraints.

e NNC_Polyhedron (ConSys &cs)

Builds an NNC polyhedron recycling a system of constraints.

e NNC_Polyhedron (const GenSys &gs)
Builds an NNC polyhedron from a system of generators.

e NNC_Polyhedron (GenSys &gs)
Builds an NNC polyhedron recycling a system of generators.

e NNC_Polyhedron (constC_Polyhedron &y)
Builds an NNC polyhedron from the C polyhedson

o templatectypename Box NNC_Polyhedron (const Box &box, FromBoundingBox dummy)
Builds an NNC polyhedron out of a generic, interval-based bounding box.

e NNC_Polyhedron (const NNCPolyhedron &y)
Ordinary copy-constructor.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.6 NNC_Polyhedron Class Reference 80

¢ NNC_Polyhedron &operator= (const NNCPolyhedron &y)
The assignment operatokthis andy can be dimension-incompatible.).

e ~NNC_Polyhedron()
Destructor.

8.6.1 Detailed Description

A not necessarily closed convex polyhedron.
An object of the clas8INC_Polyhedron represents aot necessarily closeNNC) convex polyhedron in
the vector spacR”.

Note:
Since NNC polyhedra are a generalization of closed polyhedra, any object of th€ dRadghedron
can be (explicitly) converted into an object of the cl&84C_Polyhedron. The reason for defining
two different classes is that objects of the cl@s®olyhedron are characterized by a more efficient
implementation, requiring less time and memory resources.

8.6.2 Constructor & Destructor Documentation

8.6.2.1 NNCPolyhedron::NNC_Polyhedron (dimensiontype num_dimensions= 0, Degenerate-
Kind kind = UNIVERSE) [explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:
num_dimensions The number of dimensions of the vector space enclosing the NNC polyhedron.

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

8.6.2.2 NNCPolyhedron::NNC_Polyhedron (const ConSys &9
Builds an NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.
Parameters:

cs The system of constraints defining the polyhedron. It is not declanedt because its data-
structures will be recycled to build the polyhedron.

8.6.2.3 NNCPolyhedron::NNC_Polyhedron (ConSys &cs9)

Builds an NNC polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.
Parameters:

cs The system of constraints defining the polyhedron. It is not declanedt because its data-
structures will be recycled to build the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.5).(8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.7 Poly Con_Relation Class Reference

81

8.6.2.4 NNCPolyhedron::NNC_Polyhedron (const GenSys &gs)
Builds an NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.
Parameters:

gs The system of generators defining the polyhedron. It is not declzoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument thrown if the system of generators is not empty but has no points.

8.6.2.5 NNCPolyhedron::NNC_Polyhedron (GenSys &g9)

Builds an NNC polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.
Parameters:

gs The system of generators defining the polyhedron. It is not declsoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument thrown if the system of generators is not empty but has no points.

8.6.2.6 templatectypename Box> NNC_Polyhedron::NNC_Polyhedron (const Box &box, From_-
Bounding_Box dummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation

of the protected method: templatedypename Box Polyhedron::Polyhedron(Topology topol, const
Box& box);

Parameters:
box The bounding box representing the polyhedron to be built.

dummy A dummy tag to syntactically differentiate this one from the other constructors.

8.7 Poly Con_Relation Class Reference

The relation between a polyhedron and a constraint.

Public Member Functions

e boolimplies (const PolyCon Relation &y) const
True if and only if«this impliesy.

e boolOK () const
Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.5). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.8 Poly.Gen Relation Class Reference 82

Static Public Member Functions

e Poly_ConRelationnothing ()
The assertion that says nothing.

Poly_Con Relationis_disjoint ()
The polyhedron and the set of points satisfying the constraint are disjoint.

Poly_Con Relationstrictly _intersects()
The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

Poly_Con Relationis_included ()
The polyhedron is included in the set of points satisfying the constraint.

Poly_Con Relationsaturates()
The polyhedron is included in the set of points saturating the constraint.

Related Functions
(Note that these are not member functions.)

e booloperator== (const PolyCon Relation &x, const PolyCon Relation &y)
True if and only ifx andy are logically equivalent.

bool operator!= (const PolyCon Relation &%, const PolyCon Relation &y)
True if and only ifx andy are not logically equivalent.

Poly_Con Relationoperator && (const PolyCon Relation &x, const PolyCon Relation &y)
Yields the logical conjunction of andy.

Poly_Con Relationoperator- (const PolyCon Relation &x, const PolyCon Relation &y)
Yields the assertion with all the conjunctsxofhat are not iny.

std::ostream &operator< < (std::ostream &s, const Palgon Relation &r)
Output operator.

8.7.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

8.8 Poly.Gen_Relation Class Reference

The relation between a polyhedron and a generator.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference

83

Public Member Functions

e boolimplies (const PolyGenRelation &y) const
True if and only if<this impliesy.

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e Poly_GenRelationnothing ()
The assertion that says nothing.

e Poly GenRelationsubsumesy)
Adding the generator would not change the polyhedron.

Related Functions
(Note that these are not member functions.)

e booloperator== (const PolyGenRelation &x, const PolyGenRelation &y)
True if and only ifx andy are logically equivalent.

bool operator!= (const PolyGenRelation &%, const PolyGenRelation &y)
True if and only ifx andy are not logically equivalent.

Poly_GenRelationoperator && (const PolyGenRelation &x, const PolyGenRelation &y)
Yields the logical conjunction of andy.

Poly_GenRelationoperator- (const PolyGenRelation &x, const PolyGen Relation &y)
Yields the assertion with all the conjunctsxofhat are not iny.

std::ostream &operator< < (std::ostream &s, const PalgenRelation &r)
Output operator.

8.8.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

8.9 Polyhedron Class Reference

The base class for convex polyhedra.
Inherited byC_Polyhedron, andNNC_Polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference

84

Public Types

e enumDegenerateKind { UNIVERSE, EMPTY }
Kinds of degenerate polyhedra.

Public Member Functions
Member Functions that Do Not Modify the Polyhedron

¢ dimensiontype spacedimension() const
Returns the dimension of the vector space enclosing

e const ConSys &onstraints () const
Returns the system of constraints.

e const ConSys &ninimized_constraints () const
Returns the system of constraints, with no redundant constraint.

e const GenSys &enerators() const
Returns the system of generators.

e const GenSys &ninimized_generators() const
Returns the system of generators, with no redundant generator.

e Poly_Con_Relation relation_with (constConstraint &c) const
Returns the relations holding between the polyheddtiis and the constraint.

¢ Poly_Gen Relation relation_with (constGenerator &g) const
Returns the relations holding between the polyheddtiis and the generatog.

e boolis_.empty () const
Returngrue if and only ifxthis is an empty polyhedron.

e boolis_universe() const
Returngtrue if and only ifxthis is a universe polyhedron.

e boolis_topologically_closed() const

Returngrue if and only ifxthis is a topologically closed subset of the vector space.

¢ boolis_disjoint_from (const Polyhedron &y) const
Returngtrue if and only if«this andy are disjoint.

e boolis_bounded() const
Returngrue if and only ifxthis is a bounded polyhedron.

¢ boolbounds from _above(constLinExpression &expr) const
Returngtrue if and only ifexpr is bounded from above isthis

e boolbounds from _below (constLinExpression &expr) const
Returngtrue if and only ifexpr is bounded from below irthis

e bool contains(const Polyhedron &y) const

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference

85

Returngrue if and only ifxthis containsy.

¢ boolstrictly _contains(const Polyhedron &y) const
Returngtrue if and only ifxthis strictly containsy.

e templatectypename Box void shrink _bounding_box (Box &box, ComplexityClass complex-
ity=ANY) const
Usesxkthis to shrink a generic, interval-based bounding box.

e boolOK (bool checknot empty=false) const
Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Polyhedron

e void add_constraint (constConstraint &c)
Adds a copy of constraimt to the system of constraintsethis (without minimizing the result).

¢ booladd_constraint_and_minimize (constConstraint &c)
Adds a copy of constraimt to the system of constraintsethis , minimizing the result.

e void add_generator (constGenerator &9)
Adds a copy of generatgy to the system of generatorssahis (without minimizing the result).

¢ booladd_generator.and_minimize (constGenerator &g)
Adds a copy of generatay to the system of generators:ghis , minimizing the result.

e void add_constraints (ConSys &cs)
Adds the constraints ios to the system of constraintsgthis , minimizing the result.

¢ booladd_constraints_and_minimize (ConSys &cs)
Adds the constraints ios to the system of constraintsthis (without minimizing the result).

e void add_generators(GenSys &gs)
Adds the generators igs to the system of generatorssghis (without minimizing the result).

¢ booladd_generatorsand_minimize (GenSys &gs)
Adds the generators igs to the system of generators-gthis , minimizing the result.

e void intersection assign(const Polyhedron &y)
Assigns tocthis the intersection ofthis andy. The result is not guaranteed to be minimized.

¢ boolintersection.assignand_minimize (const Polyhedron &y)
Assigns tocthis the intersection okthis andy, minimizing the result.

e void poly_hull _assign(const Polyhedron &y)
Assigns tocthis the poly-hullxthis andy. The result is not guaranteed to be minimized.

¢ bool poly_hull _assignand_minimize (const Polyhedron &y)
Assigns tocthis the poly-hull of«this andy, minimizing the result.

¢ void poly_difference_assign(const Polyhedron &y)

Assigns tosthis thepoly-difference of xthis andy. The result is not guaranteed to be minimized.

¢ void affine_image (Variable var, constLinExpression &expr, constlInteger &denomina-
tor=Integerone())

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 86

Assigns torthis the affine imageof «xthis under the function mapping variablar into the affine
expression specified lBxpr anddenominator

¢ void affine_preimage (Variable var, constLinExpression &expr, constinteger &denomina-
tor=Integerone())

Assigns to«this the affine preimage of «this under the function mapping variablear into the
affine expression specified bypr anddenominator

e void generalizedaffine.image (Variable var, const RelatiotBymbol relsym, const.in-
Expression&expr, constinteger &denominator=Integeone())
Assigns torthis the image ofthis with respect to thgeneralized affine transfer functionvar’ <
CXPE wherexq is the relation symbol encoded bgisym .

denominator’

¢ void generalizedaffine_image(constLinExpression &lhs, const RelatiorSymbol relsym, const
LinExpression &rhs)

Assigns torthis the image ofthis with respect to thgeneralized affine transfer functionlhs’ 0
rhs, wherex is the relation symbol encoded bgisym .

¢ void time_elapseassign(const Polyhedron &y)
Assigns tocthis the result of computing thiime-elapsebetweerxthis andy.

e Vvoid topological closure assign()
Assigns torthis its topological closure.

¢ void BHRZ03_widening_assign(const Polyhedron &y, unsignedp=0)
Assigns torthis the result of computing thBHRZ03-widening betweenkthis andy.

¢ void limited BHRZ03_extrapolation_assign(const Polyhedron &y, const ConSys &cs, unsigned
xtp=0)
Improves the result of thBHRZ03-widening computation by also enforcing those constraintcén
that are satisfied by all the points ethis

¢ void bounded BHRZ03_ extrapolation_assign (const Polyhedron &y, const ConSys &cs, un-
signed«tp=0)
Improves the result of thBHRZ03-widening computation by also enforcing those constraintcsn
that are satisfied by all the points ethis , plus all the constraints of the forshz < r and+x < r,
with » € Q, that are satisfied by all the points ethis

¢ void H79_widening_assign(const Polyhedron &y, unsignedp=0)
Assigns torthis the result of computing thid79-widening betweenxthis andy.

e void limited _H79_extrapolation_assign (const Polyhedron &y, const ConSys &cs, unsigned
xtp=0)
Improves the result of thd79-widening computation by also enforcing those constraintssnthat are
satisfied by all the points etthis

e void bounded H79_extrapolation_assign(const Polyhedron &y, const ConSys &cs, unsigned
xtp=0)
Improves the result of thd79-widening computation by also enforcing those constraintssnthat are
satisfied by all the points ofthis , plus all the constraints of the forsiz < r and+x < r, with
r € Q, that are satisfied by all the points ethis

Member Functions that May Modify the Dimension of the Vector Space

¢ void add_dimensionsand_embed(dimensiontype m)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 87

Addsmnew dimensions and embeds the old polyhedron into the new space.

¢ void add_dimensionsand_project (dimensiontype m)
Addsmnew dimensions to the polyhedron and does not embed it in the new space.

¢ void concatenateassign(const Polyhedron &y)

Seeing a polyhedron as a set of tuples (its points), assigathi® all the tuples that can be obtained
by concatenating, in the order given, a tuple«tiiis with a tuple ofy.

¢ void remove dimensions(constVariables_Set&to _be removed)
Removes all the specified dimensions.

¢ void remove_higher_dimensions(dimensiontype newdimension)
Removes the higher dimensions so that the resulting space will have dimeesgiatimension

o templatectypename PartialFunctionvoid map_dimensions(const PartialFunction &pfunc)
Remaps the dimensions of the vector space according#otal function .

Miscellaneous Member Functions

e ~Polyhedron()
Destructor.

¢ void swap (Polyhedron &y)
Swapskthis with polyhedrory. (xthis andy can be dimension-incompatible.).

Protected Member Functions

e Polyhedron (Topology topol, dimensiattype numdimensionspegenerateKind kind)
Builds a polyhedron having the specified properties.

e Polyhedron (const Polyhedron &y)
Ordinary copy-constructor.

e Polyhedron (Topology topol, const ConSys &cs)
Builds a polyhedron from a system of constraints.

e Polyhedron (Topology topol, ConSys &cs)
Builds a polyhedron recycling a system of constraints.

e Polyhedron (Topology topol, const GenSys &gs)
Builds a polyhedron from a system of generators.

e Polyhedron (Topology topol, GenSys &gs)
Builds a polyhedron recycling a system of generators.

o templatectypename Box Polyhedron (Topology topol, const Box &box)
Builds a polyhedron out of a generic, interval-based bounding box.

e Polyhedron &operator= (const Polyhedron &y)
The assignment operatokthis andy can be dimension-incompatible.).

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference

88

Related Functions

(Note that these are not member functions.)

std::ostream Soperator< < (std::ostream &s, const Polyhedron &ph)
Output operator.

bool operator== (const Polyhedron &x, const Polyhedron &y)
Returngrue if and only ifx andy are the same polyhedron.

bool operator!= (const Polyhedron &x, const Polyhedron &y)
Returngrue if and only ifx andy are different polyhedra.

void swap (ParmaPolyhedralibrary::Polyhedron &x, Parm&olyhedraLibrary::Polyhedron &y)
Specializestd::swap

8.9.1 Detailed Description

The base class for convex polyhedra.
An object of the clasPolyhedron represents a convex polyhedron in the vector sjidce

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
SectionRepresentations of Convex Polyhedrgand it is always possible to obtain either representation.

That is, if we know the system of constraints, we can obtain from this the system of generators that define
the same polyhedron and vice versa. These systems can contain redundant members: in this case we say
that they are not in the minimal form. Most operators on polyhedra are provided with two implementa-
tions: one of these, denotedoperator-name >_and _minimize , also enforces the minimization of

the representations, and returns the Boolean viallse whenever the resulting polyhedron turns out to

be empty.

Two key attributes of any polyhedron are its topological kind (recording whether i€i$alyhedron or
anNNC_Polyhedronobject) and its space dimension (the dimensian N of the enclosing vector space):

¢ all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

e most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see SeRépnesentations of Convex
Polyhedra);

e there is no way to change the topology of a polyhedron; rather, there are constructors of the two de-
rived classes that builds a new polyhedron having a topology when provided with the corresponding
polyhedron of the other topology;

o the only ways to change the space dimension of a polyhedron are:

— explicit calls to operators provided for that purpose;
— standard copy, assignment and swap operators.

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedRS again either closed or NNC.

The Parma Polyhedra Library User’s Manual (version 0.5).(8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 89

In all the examples it is assumed that variableendy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a squak?jrgiven as a system of con-
straints:

ConSys cs;
cs.add_constraint(x >= 0);
cs.add_constraint(x <= 3);
cs.add_constraint(y >= 0);
cs.add_constraint(y <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

GenSys gs;
gs.add_generator(point(0*x + 0*y));
gs.add_generator(point(0*x + 3*y));
gs.add_generator(point(3*x + 0*y));
gs.add_generator(point(3*x + 3*y));
C_Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-stip, igiven as a
system of constraints:

ConSys cs;

cs.add_constraint(x >= 0);
cs.add_constraint(x - y <= 0);
cs.add_constraint(x - y + 1 >= 0);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

GenSys gs;
gs.add_generator(point(0*x + 0*y));
gs.add_generator(point(0*x + y));
gs.add_generator(ray(x - y));
C_Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to an half-plane by adding a single constraint
to the universe polyhedron iR?:

C_Polyhedron ph(2);
ph.add_constraintly >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spac&®? and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0%y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 90

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
point (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functemtd _dimensions _and _embed:
C_Polyhedron ph(1);

ph.add_constraint(x == 2);
ph.add_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension sgacélhen we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singletof2set R. After the last line
of code, the resulting polyhedron is

{(2,y)TER2|yER}.

Example 5
The following code shows the use of the functemtd _dimensions _and _project

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_dimensions_and_project(1);

The first two lines of code are the same as in Example 4dior_dimensions _and _embed. After
the last line of code, the resulting polyhedron is the singletod €0)" } C R?.

Example 6
The following code shows the use of the functaffine _image :

C_Polyhedron ph(2, Polyhedron:EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
LinExpression coeff = x + 4;
ph.affine_image(x, coeff);

In this example the starting polyhedron is a squarRinthe considered variable isand the affine
expression i + 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variaklis = + y:

LinExpression coeff = x + v;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line— y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expresgion

LinExpression coeff = vy;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functaffine _preimage :

C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraintly >= 0);
ph.add_constraint(ly <= 3);
LinExpression coeff = x + 4;
ph.affine_preimage(x, coeff);

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference

In this example the starting polyhedrorar and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation faris « + y

LinExpression coeff = x + v;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line+ y. Instead, if we do not use an invertible transformation for the
same variable, for example, the affine expressign

LinExpression coeff = y;

the resulting polyhedron is a line that corresponds ta,thgis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functr@move _dimensions

GenSys gs;

gs.add_generator(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);

set<Variable> to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_dimensions(to_be_removed);

The starting polyhedron is the singleton §cé3, 1,0, 2)T} C R*, while the resulting polyhedron is
{(3, 2)T} C R2. Be careful when removing dimensioimerementally since dimensions are auto-
matically renamed after each application of thenove _dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> to_be removedl;
to_be_removedLl.insert(y);
ph.remove_dimensions(to_be_removed1l);
set<Variable> to_be removed2;
to_be_removed2.insert(z);
ph.remove_dimensions(to_be_removed2);

In this case, the result is the polyhedrpf8,0)™ } C R?: when removing the set of dimensiotus _-

be _removed2 we are actually removing variable of the original polyhedron. For the same reason,
the operatoremove _dimensions is not idempotent: removing twice the same set of dimensions
iS never a no-op.

8.9.2 Member Enumeration Documentation

8.9.2.1 enum ParmaPolyhedra Library::Polyhedron::Degenerate Kind

Kinds of degenerate polyhedra.

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 92

8.9.3 Constructor & Destructor Documentation

8.9.3.1 Polyhedron::Polyhedron (Topologytopol, dimensiontype num_dimensions Degenerate-
Kind kind) [protected]

Builds a polyhedron having the specified properties.

Parameters:
topol The topology of the polyhedron;

num_dimensions The number of dimensions of the vector space enclosing the polyhedron;
kind Specifies whether the universe or the empty polyhedron has to be built.

8.9.3.2 Polyhedron::Polyhedron (Topologyopol, const ConSys &cs) [protected]
Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument thrown if the topology ots is incompatible withtopology

8.9.3.3 Polyhedron::Polyhedron (Topologyopol, ConSys &cs) [protected]
Builds a polyhedron recycling a system of constraints.
The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not decleoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument thrown if the topology ots is incompatible withtopology

8.9.3.4 Polyhedron::Polyhedron (Topologyopol, const GenSys &9 [protected]
Builds a polyhedron from a system of generators.
The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 93

8.9.3.5 Polyhedron::Polyhedron (Topologyopol, GenSys &gs) [protected]
Builds a polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declawedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

8.9.3.6 templatectypename Box> Polyhedron::Polyhedron (Topology topol, const Box & box)
[protected]

Builds a polyhedron out of a generic, interval-based bounding box.

Parameters:
topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

Exceptions:
std::invalid_argument thrown if box has intervals that are incompatible witipol

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

bool is_empty() const

returnstrue if and only if the bounding box describes the empty set. iEhempty() method will always
be called before the methods below. Howeveisiémpty() returnstrue , none of the functions below
will be called.

bool get_lower_bound(dimension_type k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to theth dimension. If] is not bounded from below, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the lower boundary of
Iisclosed and is set false otherwisen andd are assigned the integet@andd such that the canonical
fractionn/d corresponds to the greatest lower bound ofThe fractionn/d is in canonical form if and
only if n andd have no common factors amds positive,0/1 being the unique representation for zero.

bool get_upper_bound(dimension_type k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to theth dimension. IfI is not bounded from above, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the upper boundary of

lisclosed and is set false otherwisen andd are assigned the integetsindd such that the canonical

fractionn/d corresponds to the least upper bound of

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference

94

8.9.4 Member Function Documentation

8.9.4.1 PolyCon_Relation Polyhedron::relation_with (const Constraint & c¢) const

Returns the relations holding between the polyheditbis and the constrairt.

Exceptions:
std::invalid_argument thrown if xthis and constraint are dimension-incompatible.

8.9.4.2 PolyGen_ Relation Polyhedron::relation_with (const Generator & g) const

Returns the relations holding between the polyhedithis and the generatay.

Exceptions:
std::invalid_argument thrown if «this and generatay are dimension-incompatible.

8.9.4.3 bool Polyhedron::isdisjoint _from (const Polyhedron & y) const

Returngrue if and only if xthis andy are disjoint.

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible or dimension-incompatible.

8.9.4.4 bool Polyhedron::boundsrom _above (const LinExpression &expr) const

Returngrue if and only if expr is bounded from above irthis

Exceptions:
std::invalid_argument thrown if expr andsxthis are dimension-incompatible.

8.9.4.5 bool Polyhedron::boundsrom _below (const LinExpression &expr) const

Returngtrue if and only if expr is bounded from below inthis

Exceptions:
std::invalid_argument thrown if expr andsxthis are dimension-incompatible.

8.9.4.6 bool Polyhedron::contains (const Polyhedron &) const

Returngrue if and only if xthis containsy.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.7 bool Polyhedron::strictly.contains (const Polyhedron &y) const

Returngrue if and only if xthis strictly containgy.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 95

8.9.4.8 templatectypename Box> void Polyhedron::shrink _bounding_box (Box & box, Complex-
ity _Classcomplexity= ANY) const

Usesxthis to shrink a generic, interval-based bounding box.

Parameters:
box The bounding box to be shrunk.

complexity The complexity class of the algorithm to be used.
The template class Box must provide the following methods, whose return value, if any, is simply ignored.
set_empty()
causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to theh dimension with[n/d, +oc0) if closed is true , with
(n/d,+o0) if closed isfalse

lower_upper_bound(dimension_type k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to theh dimension with(—oco,n/d] if closed is true , with
(—o0,n/d) if closed isfalse

The functionraise _lower _bound(k, closed, n, d) will be called at most once for each possi-
ble value fork and for all such calls the fractiom/d will be in canonical form, that isp andd have no
common factors and is positive,0/1 being the unique representation for zero. The same guarantee is
offered for the functiolower _upper _bound(k, closed, n, d)

8.9.4.9 bool Polyhedron::OK (boolcheck not empty= false) const

Checks if all the invariants are satisfied.

Parameters:
checknot_empty true if and only if, in addition to checking the invariantghis must be checked
to be not empty.

Returns:
true if and only if «this satisfies all the invariants and eithelteck _not _empty is false or
«this is not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are writtstdacerr in case invariants are violated. This is
useful for the purpose of debugging the library.

8.9.4.10 void Polyhedron::addconstraint (const Constraint & c)
Adds a copy of constrairt to the system of constraints ethis (without minimizing the result).
Exceptions:

std::invalid_argument thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference

96

8.9.4.11 bool Polyhedron::addconstraint_and_minimize (const Constraint & c)

Adds a copy of constrairt to the system of constraints ethis , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

8.9.4.12 void Polyhedron::addgenerator (const Generator &Q)

Adds a copy of generatgy to the system of generators-ghis (without minimizing the result).

Exceptions:
std::invalid_argument thrown if «this and generatog are topology-incompatible or dimension-
incompatible, or ifsthis is an empty polyhedron arglis not a point.

8.9.4.13 bool Polyhedron::addgenerator.and_minimize (const Generator & g)

Adds a copy of generatagy to the system of generators gthis , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument thrown if «this and generatog are topology-incompatible or dimension-
incompatible, or if«this is an empty polyhedron arglis not a point.

8.9.4.14 void Polyhedron::addconstraints (ConSys &c9)

Adds the constraints ios to the system of constraints ethis , minimizing the result.

Parameters:
cs The constraints that will be added to the current system of constraints. This parameter is not
declaredconst because it can be modified.

Exceptions:
std::invalid_argument thrown if «this and cs are topology-incompatible or dimension-
incompatible.

8.9.4.15 bool Polyhedron::addconstraints.and_minimize (ConSys &cs9)

Adds the constraints ios to the system of constraints ethis (without minimizing the result).

Returns:
false if and only if the result is empty.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 97

Parameters:
cs The constraints that will be added to the current system of constraints. This parameter is not
declaredconst because it can be modified.

Exceptions:
std::invalid_argument thrown if «this and cs are topology-incompatible or dimension-
incompatible.

8.9.4.16 void Polyhedron::addgenerators (GenSys &g9)
Adds the generators igs to the system of generators:ghis (without minimizing the result).
Parameters:

gs The generators that will be added to the current system of generators. This parameter is not declared
const because it can be modified.

Exceptions:
std::invalid_argument thrown if «this and gs are topology-incompatible or dimension-
incompatible, or ifxthis is empty and the system of generatgss is not empty, but has no
points.

8.9.4.17 bool Polyhedron::addgeneratorsand_minimize (GenSys &gs)

Adds the generators igs to the system of generatorsghis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs The generators that will be added to the current system of generators. The parameter is not declared
const because it can be modified.

Exceptions:
std::invalid_argument thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or ifxthis is empty and the the system of generaggss not empty, but has no
points.

8.9.4.18 void Polyhedron::intersectionassign (const Polyhedron &)

Assigns toxthis the intersection ofthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.19 bool Polyhedron::intersectiomassignand_minimize (const Polyhedron &Y)

Assigns tokthis the intersection ofthis andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 98

8.9.4.20 void Polyhedron::polyhull _assign (const Polyhedron &)

Assigns tokthis the poly-hull«this andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.21 bool Polyhedron::polyhull _assignand_minimize (const Polyhedron &Y)

Assigns tokthis the poly-hull of«this andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.22 void Polyhedron::polydifference_assign (const Polyhedron &)

Assigns toxthis the poly-difference of «this andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.23 void Polyhedron::affineimage (Variable var, const LinExpression & expr, const Integer &
denominator= Integer_one())

Assigns toxthis the affine imageof xthis under the function mapping variabl@r into the affine
expression specified Bxpr anddenominator

Parameters:
var The variable to which the affine expression is assigned.

expr The numerator of the affine expression.
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument thrown if denominator is zero or ifexpr and xthis are dimension-
incompatible or ifvar is not a dimension ofthis

8.9.4.24 void Polyhedron::affinepreimage (Variablevar, const LinExpression & expr, const Integer
& denominator= Integer_one())

Assigns toxthis theaffine preimageof xthis under the function mapping variablar into the affine
expression specified lxpr anddenominator

Parameters:
var The variable to which the affine expression is substituted.

expr The numerator of the affine expression.
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument thrown if denominator is zero or ifexpr and xthis are dimension-
incompatible or ifvar is not a dimension ofthis

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 99

8.9.4.25 void Polyhedron::generalizedaffine_.image (Variable var, const RelationSymbol relsym
const LinExpression & expr, const Integer & denominator= Integer_one())

Assigns toxthis the image of«this with respect to thgeneralized affine transfer functionvar’ >
oxpr wherex is the relation symbol encoded bgisym .

denominator’

Parameters:
var The left hand side variable of the generalized affine transfer function.

relsym The relation symbol.
expr The numerator of the right hand side affine expression.

denominator The denominator of the right hand side affine expression (optional argument with default
value 1.)

Exceptions:
std::invalid_argument thrown if denominator is zero or ifexpr and xthis are dimension-
incompatible or ifvar is not a dimension ofthis or if «this is a C_Polyhedron and
relsym is a strict relation symbol.

8.9.4.26 void Polyhedron::generalizedaffine_image (const LinExpression &lhs, const Relation-
Symbolrelsym const LinExpression & rhs)

Assigns tosthis the image ofsthis with respect to thgeneralized affine transfer functionlhs’
rhs, wherex is the relation symbol encoded bgisym .

Parameters:
Ihs The left hand side affine expression.

relsym The relation symbol.
rhs The right hand side affine expression.

Exceptions:
std::invalid_argument thrown if xthis is dimension-incompatible witths orrhs or if «xthis is
aC_Polyhedronandrelsym is a strict relation symbol.

8.9.4.27 void Polyhedron::timeelapseassign (const Polyhedron &)
Assigns toxthis the result of computing thiéme-elapsebetweenxthis andy.

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

8.9.4.28 void Polyhedron::BHRZ03widening_assign (const Polyhedron &y, unsigneds tp = 0)
Assigns toxthis the result of computing thBHRZ03-widening betweenkthis andy.

Parameters:
y A polyhedron thatnustbe contained irthis
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens delay technique).

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 100

8.9.4.29 void Polyhedron::limitedBHRZ03_ extrapolation_assign (const Polyhedron &y, const
ConSys &cs unsignedx tp = 0)

Improves the result of thBHRZ03-widening computation by also enforcing those constraintssnthat
are satisfied by all the points ethis

Parameters:
y A polyhedron thatustbe contained ixthis

cs The system of constraints used to improve the widened polyhedron.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens delay technique).

Exceptions:
std::invalid_argument thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

8.9.4.30 void Polyhedron::boundedBHRZ03_extrapolation_assign (const Polyhedron &y, const
ConSys &cs unsignedx tp = 0)

Improves the result of thBHRZ03-widening computation by also enforcing those constraintednthat
are satisfied by all the points ethis , plus all the constraints of the formaz < r and+x < r, with
r € Q, that are satisfied by all the points:ahis

Parameters:
y A polyhedron thamustbe contained irthis

cs The system of constraints used to improve the widened polyhedron.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens delay technique).

Exceptions:
std::invalid_argument thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.

8.9.4.31 void Polyhedron::H79widening_assign (const Polyhedron &, unsignedsx tp = 0)

Assigns toxthis the result of computing thid79-widening betweenxthis andy.

Parameters:
y A polyhedron thatnustbe contained irthis

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens delay technique).

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5).8gse//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 101

8.9.4.32 void Polyhedron::limited H79_extrapolation_assign (const Polyhedron &y, const ConSys
& cs unsignedx* tp = 0)

Improves the result of thel79-widening computation by also enforcing those constraintssnthat are
satisfied by all the points aithis

Parameters:
y A polyhedron thatustbe contained ixthis

cs The system of constraints used to improve the widened polyhedron.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens delay technique).

Exceptions:
std::invalid_argument thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

8.9.4.33 void Polyhedron::boundedH79_extrapolation_assign (const Polyhedron &y, const ConSys
& cs unsignedsx tp = 0)

Improves the result of thel79-widening computation by also enforcing those constraintssnthat are
satisfied by all the points afthis , plus all the constraints of the fortaz < r and+x < r, withr € Q,
that are satisfied by all the points ghis

Parameters:
y A polyhedron thamustbe contained irthis

cs The system of constraints used to improve the widened polyhedron.

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokens delay technique).

Exceptions:
std::invalid_argument thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.

8.9.4.34 void Polyhedron::adddimensionsand_embed (dimensiontype m)

Addsmnew dimensions and embeds the old polyhedron into the new space.

Parameters:
m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are not constrained.
For instance, when starting from the polyhedf@rC R? and adding a third dimension, the result will be
the polyhedron

{ (z,y,2)T € R3 ‘ (z,y)T € P }.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference 102

8.9.4.35 void Polyhedron::adddimensionsand_project (dimension_type m)

Addsmnew dimensions to the polyhedron and does not embed it in the new space.

Parameters:
m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the polyhe®ranh R? and adding a third dimension,

the result will be the polyhedron

{(z,y,O)T e R? | (z,y)" € P}.

8.9.4.36 void Polyhedron::concatenat@ssign (const Polyhedron &)

Seeing a polyhedron as a set of tuples (its points), assigthig all the tuples that can be obtained by
concatenating, in the order given, a tuplextifis with a tuple ofy.

Let P C R™ and@ C R™ be the polyhedra represented, on entryxthyis andy, respectively. Upon
successful completionthis will represent the polyhedroR C R such that

def
R é {(x17"'amn7yl7"'aym)T (xla--wxn)TEPa(yl7"'aym)T€Q}'

Another way of seeing it is as follows: firstincreases the space dimensithisf by addingy.space _-
dimension() new dimensions; then adds to the system of constraintthaf a renamed-apart version
of the constraints of .

Exceptions:
std::invalid_argument thrown if «this andy are topology-incompatible.

8.9.4.37 void Polyhedron::removedimensions (const VariablesSet & to_be removed

Removes all the specified dimensions.

Parameters:
to_beremoved The set ofVariable objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument thrown if xthis is dimension-incompatible with one of théariable objects
contained irto _be _removed .

8.9.4.38 void Polyhedron::removehigher_dimensions (dimensiontype new.dimension

Removes the higher dimensions so that the resulting space will have dimeesiatimension

Exceptions:
std::invalid_argument thrown if new_dimensions is greater than the space dimensiorxibifis

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.9 Polyhedron Class Reference

103

8.9.4.39 templatectypename PartialFunction> void Polyhedron::map_dimensions (const Partial-
Function & pfunc)

Remaps the dimensions of the vector space accordingaotel function .

Parameters:
pfunc The partial function specifying the destiny of each dimension.

The template class PartialFunction must provide the following methods.

bool has_empty_codomain() const

returnstrue if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). Thehas _empty codomain() method will always be called before the methods below.
However, ifhas _empty _.codomain() returnstrue , none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function.
bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function ahde the value of . If f is defined ink, then f(k) is assigned t
andtrue is returned. Iff is undefined irk, thenfalse is returned.

The result is undefined {ffunc does not encode a partial function with the properties described in the
specification of the mapping operator

8.9.4.40 void Polyhedron::swap (Polyhedron &)

Swapssthis with polyhedrony. (xthis andy can be dimension-incompatible.).

Exceptions:
std::invalid_argument thrown if x andy are topology-incompatible.

8.9.5 Friends And Related Function Documentation

8.9.5.1 std::ostream & operatok < (std::ostream & s, const Polyhedron &ph) [related]
Output operator.

Writes a textual representation ph ons: false s written if ph is an empty polyhedrorntrue is
written if ph is a universe polyhedron; a minimized system of constraints defpting written otherwise,

all constraints in one row separated by ", ”.
8.9.5.2 bool operator== (const Polyhedron &, const Polyhedron &y) [related]

Returngrue if and only if x andy are the same polyhedron.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
false is returned.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.10 PowerSet CS > Class Template Reference 104

8.9.5.3 bool operator!= (const Polyhedron &, const Polyhedron &y) [related]
Returngrue if and only if x andy are different polyhedra.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
true isreturned.

8.10 PowerSet CS > Class Template Reference

The powerset construction on constraint systems.

Public Member Functions

e PowerSet(dimensiontype numdimensions=0, bool universe=true)
Builds a universe (top) or empty (bottoPywerSet

e PowerSet(const ConSys &cs)
Creates aPowerSetwith the same information contents &s.

e PowerSet &inject (const CS &c)
Injectsc into xthis

e void upper_bound_assign(const PowerSet &y)
Assigns tocthis an upper bound ofthis andy.

¢ void meetassign(const PowerSet &y)
Assigns torthis the meet okthis andy.

¢ bool definitely_entails (const PowerSet &y) const

Returndgrue if xthis definitely entaily/. Returndalse if xthis may not entaiy (i.e., if xthis does
not entaily or if entailment could not be decided).

o dimensiontype spacedimension() const
Returns the dimension of the vector space enclosthig

e void add_constraint (constConstraint &c)
Intersectskthis with (a copy of) constraint.

¢ void add_constraints (ConSys &cs)
Intersectstthis with the constraints ircs .

¢ void add_dimensionsand_embed(dimensiontype m)
Addsmnew dimensions and embeds the old polyhedron into the new space.

¢ void add_dimensionsand_project (dimensiontype m)
Addsmnew dimensions to the polyhedron and does not embed it in the new space.

¢ void remove dimensions(constVariables_Set&to_be removed)
Removes all the specified dimensions.

o void remove higher_dimensions(dimensiontype newdimension)

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.10 PowerSet CS > Class Template Reference 105

Removes the higher dimensions so that the resulting space will have dimeesiatimension

¢ void H79_extrapolation_assign(const PowerSet &y)
Assigns torthis the result of computing thid79-widening betweenxthis andy.

¢ void limited _H79_extrapolation_assign(const PowerSet &y, const ConSys &cs)

Limits theH79-widening computation betweesthis andy by enforcing constraintss and assigns the
result toxthis

bool OK () const
Checks if all the invariants are satisfied.

Friends
e CSproject (const PowerSet &x)

e int Icompare (const PowerSet &%, const PowerSet &y)

Related Functions

(Note that these are not member functions.)

PowerSet CS> operator+ (const PowerSet CS> &, const PowerSet CS> &)
PowerSet CS > operator x (const PowerSet CS> &, const PowerSet CS> &)
bool operator== (const PowerSet CS > &x, const PowerSet CS > &y)
std::ostream &operator< < (std::ostream &, const PowerSeCS > &)

8.10.1 Detailed Description
template<typename CS> class PowerSet CS >

The powerset construction on constraint systems.

8.10.2 Constructor & Destructor Documentation

8.10.2.1 templatectypename CS> PowerSek CS >::PowerSet (dimensiontype num_dimensions=
0, booluniverse=true) [explicit]
Builds a universe (top) or empty (bottoripwerSet

Parameters:
num_dimensions The number of dimensions of the vector space enclosing the powerset.

universe If true , a universdPowerSetis built; an emptyPowerSetis built otherwise.
8.10.3 Member Function Documentation

8.10.3.1 templatectypename CS> void PowerSek CS >::add_constraint (const Constraint & c)

Intersectscthis with (a copy of) constraint.

The Parma Polyhedra Library User’s Manual (version 0.5). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.10 PowerSet CS > Class Template Reference 106

Exceptions:
std::invalid_argument thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

8.10.3.2 templatectypename CS> void PowerSek CS >::add_constraints (ConSys &cs)
Intersectscthis ~ with the constraints is .

Parameters:
¢s The constraints to intersect with. This parameter is not dectzoest because it can be modified.

Exceptions:
std::invalid_argument thrown if «this and cs are topology-incompatible or dimension-
incompatible.

8.10.3.3 templatectypename CS> void PowerSek CS >::remove_dimensions (const VariablesSet
& to_beremoved

Removes all the specified dimensions.

Parameters:
to_beremoved The set ofvVariable objects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument thrown if xthis is dimension-incompatible with one of thariable objects
contained irto _be removed .

8.10.3.4 templatectypename CS> void PowerSek CS >::remove_higher_dimensions (dimension-
type new.dimension

Removes the higher dimensions so that the resulting space will have dimeesiodimension

Exceptions:
std::invalid_argument thrown if new_dimensions is greater than the space dimensiorxibfis

8.10.3.5 templatectypename CS> void PowerSek CS >::H79 _extrapolation_assign (const Power-
Set CS> & y)

Assigns toxthis the result of computing thEl79-widening betweenkthis andy.

Parameters:
y A polyhedron thamustbe contained irthis

Exceptions:
std::invalid_argument thrown if xthis andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.11 Variable Class Reference 107

8.10.3.6 templatectypename CS> void PowerSek CS >::limited _H79_extrapolation_assign (const
PowerSek CS > & vy, const ConSys &c9)

Limits theH79-widening computation betweesthis andy by enforcing constraintss and assigns the
result toxthis

Parameters:
y A polyhedron thatnustbe contained irthis

cs The system of constraints that limits the widened polyhedron. It is not deataresi because it
can be modified.

Exceptions:
std::invalid_argument thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.

8.10.4 Friends And Related Function Documentation

8.10.4.1 templatectypename CS> CS project (const PowerSet CS > & X) [friend]
<CS>

8.10.4.2 templatectypename CS> int Icompare (const PowerSet CS > & X, const PowerSet. CS
> & y) [friend]

<CS>

8.10.4.3 templatectypename CS> PowerSek CS > operator+ (const PowerSet CS > &, const
PowerSek CS > &) [related]

<CS>

8.10.4.4 templatectypename CS> PowerSek CS > operator * (const PowerSet CS > &, const
PowerSek CS > &) [related]

<CS>

8.10.4.5 templatectypename CS> bool operator== (const PowerSet CS > & X, const PowerSet
CS> & y) [related]

<CS>

8.10.4.6 templatectypename CS> std::ostream & operator<< (std::ostream &, const PowerSek
CS> &) [related]

<CS>

8.11 \Variable Class Reference

A dimension of the space.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.11 Variable Class Reference 108

Public Types

o typedef voidOutput _Function_Type (std::ostream &s, Variable v)
Type of output functions.

Public Member Functions

e Variable (dimensiontype i)

Builds the variable corresponding to the Cartesian axis of index

e dimensiontypeid () const

Returns the index of the Cartesian axis associated to the variable.

Static Public Member Functions

¢ void setoutput_function (Output_Function_Type *p)
Set the output function to be used for printiigriable objects.

e Output _Function_Type x get.output_function ()
Returns the pointer to the current output function.

Related Functions

(Note that these are not member functions.)

e std::ostream &operator<< (std::ostream &s, Variable v)
Output operator.

e boolless(Variable v, Variable w)
Defines a total ordering on variables.

8.11.1 Detailed Description

A dimension of the space.

An object of the clas¥ariable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as base blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0).

Note that the “meaning” of an object of the clagariable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressiais ande2 are equivalent, since the two variablesndz

denote the same Cartesian axis.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.12 Compare Struct Reference 109

Variable x(0);
Variable y(1);
Variable z(0);
LinExpression el
LinExpression e2

X +y;
y +z

8.12 Compare Struct Reference

Binary predicate defining the total ordering on variables.

Public Member Functions

e booloperator() (Variable x, Variable y) const
Returngrue if and only ifx comes beforg.

8.12.1 Detailed Description

Binary predicate defining the total ordering on variables.

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index

add.constraint

ParmaPolyhedralLibrary:
ParmaPolyhedralibrary:
ParmaPolyhedral ibrary:
ParmaPolyhedraLibrary:

add.constraintandminimize

ParmaPolyhedraLibrary:

addconstraints

ParmaPolyhedralibrary:
ParmaPolyhedral ibrary:
ParmaPolyhedralibrary:
ParmaPolyhedraLibrary:

add.constraintsandminimize

ParmaPolyhedraLibrary:

adddimensionsand embed

ParmaPolyhedraLibrary:

add.dimensionsand project

ParmaPolyhedralLibrary:

add generator

ParmaPolyhedralLibrary:

add generatorand minimize

ParmaPolyhedralLibrary:

addgenerators

ParmaPolyhedralLibrary:

add generatorsand.minimize

ParmaPolyhedraLibrary:

affineiimage

ParmaPolyhedraLibrary:

affine_preimage

ParmaPolyhedraLibrary:

:Determinate68
:Polyhedron95
:PowerSet105
:PowerSet105
:Polyhedron95
:Determinate68
:Polyhedron96
:PowerSet106
:PowerSet106
:Polyhedron96
:Polyhedron101
:Polyhedronl101
:Polyhedron96
:Polyhedron96
:Polyhedron97
:Polyhedron97
:Polyhedron98

:Polyhedron98

ParmaPolyhedraLibrary::
ParmaPolyhedralibrary::

concatenat&ssign

ParmaPolyhedraLibrary::

contains

ParmaPolyhedraLibrary::

Degenerateind

ParmaPolyhedraLibrary::

divisor

ParmaPolyhedraLibrary::

EMPTY

ParmaPolyhedraLibrary::

EQUALITY

ParmaPolyhedraLibrary::

generalizedaffineiimage

ParmaPolyhedraLibrary::

99

H79_extrapolationassign

ParmaPolyhedraLibrary::
ParmaPolyhedraLibrary::

H79_widening assign

ParmaPolyhedraLibrary::
ParmaPolyhedraLibrary::

intersectionassign

ParmaPolyhedralLibrary:

Constraintg7
Generator/5

Polyhedron102

Polyhedron94

Polyhedron91

Generator76

Polyhedron91

Constraintt6

Polyhedron,98,

PowerSet]106
PowerSet106

Determinate69
Polyhedron100

:Polyhedron97

intersectionassignand minimize

BHRZ03 wideningassign
ParmaPolyhedralibrary::Polyhedron99
boundedBHRZ03 extrapolationassign
ParmaPolyhedraLibrary::Polyhedron100
boundedH79_extrapolationassign
ParmaPolyhedraLibrary::Polyhedron101
boundsfrom_above
ParmaPolyhedralibrary::Polyhedron94
boundsfrom_below
ParmaPolyhedraLibrary::Polyhedron94

C Language Interfacd,5

C_Polyhedron
ParmaPolyhedraLibrary::C_Polyhedron,

61, 62

CLOSUREPOINT
ParmaPolyhedralibrary::Generator75

closurepoint
ParmaPolyhedraLibrary::Generator75

coefficient

ParmaPolyhedraLibrary::Polyhedron97
is_disjoint from
ParmaPolyhedraLibrary::Polyhedron94

Icompare
ParmaPolyhedralLibrary::Determinate70
ParmaPolyhedralibrary::PowerSet107
ParmaPolyhedraLibrary::PowerSet107

Library Defines15

limited_ BHRZ03 extrapolationassign
ParmaPolyhedraLibrary::Polyhedron99

limited_H79_extrapolationassign
ParmaPolyhedralibrary::Determinate9
ParmaPolyhedraLibrary::Polyhedron100
ParmaPolyhedraLibrary::PowerSet106
ParmaPolyhedraLibrary::PowerSet106

LINE
ParmaPolyhedraLibrary::Generator75

line
ParmaPolyhedraLibrary::Generator75

linear_partition

INDEX

111

ParmaPolyhedraLibrary
LinExpression
ParmaPolyhedraLibrary
79

ParmaPolyhedraLibrary:

79

mapdimensions

ParmaPolyhedralLibrary:

NNC_Polyhedron

ParmaPolyhedraLibrary:

Polyhedrong0, 81
NONSTRICT.INEQUALITY

ParmaPolyhedralLibrary:

OK

ParmaPolyhedraLibrary:

operatorx

ParmaPolyhedraLibrary:
ParmaPolyhedraLibrary:
ParmaPolyhedraLibrary:

operator!=

ParmaPolyhedralLibrary:
ParmaPolyhedraLibrary:

operator+

ParmaPolyhedralLibrary:
ParmaPolyhedraLibrary:
ParmaPolyhedralLibrary:

operatok <

ParmaPolyhedralibrary:
ParmaPolyhedraLibrary:
ParmaPolyhedralLibrary:
ParmaPolyhedraLibrary:

operator==

ParmaPolyhedralibrary:
ParmaPolyhedral ibrary:
ParmaPolyhedralLibrary:
ParmaPolyhedraLibrary:

ParmaPolyhedraLibrary, 57
linear partition,59

,59
::LinExpression,

:LinExpression,

:Polyhedron102

‘NNC_-

:Constraint66

:Polyhedron95

:Determinate70
:PowerSet107
:PowerSet]107

:Determinate70
:Polyhedron103

:Determinate70
:PowerSet]107
:PowerSet]107

:Determinatey0
:Polyhedron103
:PowerSet107
:PowerSet107

:Determinatey0
:Polyhedron103
:PowerSet107
:PowerSet107

ParmaPolyhedraLibrary::C_Polyhedron50

C_Polyhedrong1, 62

ParmaPolyhedraLibrary::Constraint63

coefficient,67
EQUALITY, 66

NONSTRICTINEQUALITY, 66
STRICTIINEQUALITY, 66

Type,66
ParmaPolyhedraLibrary::Det

add constraint68

add constraintsg8

H79.wideningassign69

erminate67

Icompare,70
limited_H79_extrapolationassign 69
operatorx, 70
operator!=,70
operator+,/0
operatok <, 70
operator==y/0
removedimensionsf9
removehigherdimensionsf9
ParmaPolyhedraLibrary::Generator70
CLOSUREPOINT, 75
closurepoint, 75
coefficient,75
divisor, 76
LINE, 75
line, 75
POINT, 75
point, 75
RAY, 75
ray, 75
Type,75
ParmaPolyhedraLibrary::10_Operators59
ParmaPolyhedralLibrary::LinExpressiony6
LinExpression,79
ParmaPolyhedraLibrary::LinExpression
LinExpression/9
ParmaPolyhedraLibrary::NNC_Polyhedron9
NNC_Polyhedron80, 81
ParmaPolyhedralibrary::Poly Con Relation,
81
ParmaPolyhedraLibrary::Poly GenRelation,
82
ParmaPolyhedralLibrary::Polyhedron83
addconstraint95
add constraintandminimize,95
add constraints96
add constraintsand minimize, 96
add dimensionsandembed, 101
adddimensionsand project,101
add generator96
add generatarand minimize, 96
add generators97
add generatorsand minimize, 97
affineimage,98
affine_preimage98
BHRZ03 wideningassign99
boundedBHRZ03 extrapolationassign,
100
boundedH79_extrapolationassign,101
boundsfrom_above 94
boundsfrom_below, 94
concatenatassign,102
contains 94
Degenerateind, 91

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

112

EMPTY, 91

generalizedaffineimage,98, 99

H79.wideningassign,100

intersectionassign97

intersectionassignand minimize, 97

is_disjoint.from, 94

limited_BHRZ03 extrapolationassign 99

limited_H79_extrapolationassign, 100

mapdimensions102

OK, 95

operator!=103

operatok <, 103

operator==103

poly_differenceassign 98

poly_hull_assign97

poly_hull_assignand. minimize, 98

Polyhedron92, 93

relationwith, 94

removedimensions102

removehigherdimensions102

shrink boundingbox, 94

strictly_contains 94

swap,103

time_elapseassign99

UNIVERSE,91
ParmaPolyhedraLibrary::PowerSet104

add constraint,105

add.constraints106

H79_extrapolationassign,106

Icompare 107

limited_H79_extrapolationassign, 106

operatorx, 107

operator+,107

operatok <, 107

operator==107

PowerSet105

project,107

removedimensions106

removehigherdimensions106
ParmaPolyhedralibrary::PowerSet

add constraint, 105

add constraints;106

H79_extrapolationassign, 106

Icompare, 107

limited_H79_extrapolationassign, 106

operatorx, 107

operator+,107

operatox <, 107

operator==107

PowerSet105

project,107

removedimensions106

removehigherdimensions106
ParmaPolyhedraLibrary::Variable,107

ParmaPolyhedralLibrary::Variable::Compare,
109
POINT
ParmaPolyhedraLibrary::Generator75
point
ParmaPolyhedral ibrary::Generator75
poly_differenceassign
ParmaPolyhedralibrary::Polyhedron98
poly_hull_assign
ParmaPolyhedraLibrary::Polyhedron97
poly_hull_assignand minimize
ParmaPolyhedraLibrary::Polyhedron98
Polyhedron
ParmaPolyhedraLibrary::Polyhedron,92,
93
PowerSet
ParmaPolyhedraLibrary::PowerSet105
ParmaPolyhedralibrary::PowerSet105
PPL License Page5
PPL C_interface
PPLCONSTRAINT.TYPE.EQUAL, 31
PPLCONSTRAINT.TYPE.GREATER -
THAN, 31
PPLCONSTRAINT.TYPE.GREATER -
THAN_OR EQUAL, 31
PPLCONSTRAINT.TYPE LESSTHAN,
31
PPLCONSTRAINT.TYPELESS-
THAN_OR EQUAL, 31
ppl_.enumConstraintType, 31
ppl.enumerror.code,31
ppl.enumGeneratorType, 31
PPLERRORINTERNAL_ERROR,31
PPLERRORINVALID _ARGUMENT, 31
PPLERROROUT_OF.MEMORY, 31
PPLERRORUNEXPECTEDERROR,31
PPLERRORUNKNOWN_STANDARD -
EXCEPTION,31
PPLGENERATORTYPE.CLOSURE-
POINT, 31
PPLGENERATORTYPE.LINE, 31
PPLGENERATORTYPE POINT, 31
PPLGENERATORTYPE RAY, 31
ppl-new.C_Polyhedronfrom_bounding-
box, 32
ppl_new.C_Polyhedronrecycle ConSys31
ppl_new.C_Polyhedronrecycle GenSys32
ppl_.new.NNC_Polyhedronfrom_-
boundingbox, 33
ppl_-new.NNC_Polyhedronrecycle-
ConSys32
ppl_-new.NNC_Polyhedronrecycle-
GenSys32
ppl_Polyhedronadd constraints35

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

ppl_Polyhedronadd constraintsand.-
minimize, 35
ppl_Polyhedronadd generators35
ppl_Polyhedronadd generatorsand -
minimize,35
ppl_Polyhedronaffineiimage,35
ppl_Polyhedronaffine preimage 36
ppl_PolyhedronequalsPolyhedron35
ppl_Polyhedrongeneralizedaffine.image,
36
ppl_Polyhedrongeneralizedhaffine.image-
Ihs_rhs,36
ppl_Polyhedronmapdimensions36
ppl_Polyhedronrelationwith_Constraint,
34
ppl_Polyhedronrelationwith_Generator,
34
ppl_Polyhedronshrink boundingbox, 34
ppl_seterrorhandler31
PPLCONSTRAINT_TYPE_EQUAL
PPL C._interface 31
PPLCONSTRAINT.TYPE.GREATERTHAN
PPLC.interface,31
PPLCONSTRAINT.TYPE.GREATER -
THAN_OR_EQUAL
PPL C._interface 31
PPL.CONSTRAINT.TYPELESSTHAN
PPL C.interface,31
PPLCONSTRAINT.TYPELESSTHAN _-
OR.EQUAL
PPL_C.interface 31
ppl.enumConstraintType
PPL C.interface,31
ppl_.enumerror.code
PPL C_interface 31
ppl.enumGeneratofType
PPL C._interface 31
PPLERRORINTERNAL_ERROR
PPL C.interface,31
PPLERRORINVALID _ARGUMENT
PPL C_interface 31
PPLERROROUT_.OF. MEMORY
PPL C._interface 31
PPLERRORUNEXPECTEDERROR
PPL C_interface 31
PPLERRORUNKNOWN_STANDARD -
EXCEPTION
PPL C._interface 31
PPLGENERATORTYPE CLOSUREPOINT
PPL C_interface 31
PPLGENERATORTYPELINE
PPL C_interface 31
PPLGENERATORTYPE_POINT
PPL C._interface 31

PPLGENERATORTYPE.RAY
PPL C_interface 31
ppl_new.C_Polyhedronfrom_boundingbox
PPL C_interface 32
ppl_.new C_Polyhedronrecycle ConSys
PPL C.interface,31
ppl_-new.C_Polyhedronrecycle GenSys
PPL C_interface 32
ppl_-new.NNC_Polyhedronfrom_boundingbox
PPL C.interface,33
ppl_.new NNC_PolyhedronrecycleConSys
PPLC.interface,32
ppl_-new. NNC_Polyhedronrecycle GenSys
PPL C_interface 32
ppl_Polyhedronadd constraints
PPL C._interface,35
ppl-Polyhedronadd constraintsand minimize
PPL C_interface 35
ppl_Polyhedronadd generators
PPL C_interface 35
ppl_Polyhedronadd generatorsand minimize
PPL C._interface,35
ppl_-Polyhedronaffine.image
PPL C_interface 35
ppl_Polyhedronaffine_preimage
PPL C.interface,36
ppl_PolyhedronequalsPolyhedron
PPL C.interface,35
ppl_Polyhedrongeneralizedaffine.image
PPL C_interface 36
ppl_Polyhedrongeneralizedaffine.imagelhs -
rhs
PPL C._interface,36
ppl_Polyhedronmapdimensions
PPL C_interface 36
ppl_Polyhedronrelationwith_Constraint
PPL C.interface34
ppl_Polyhedronrelationwith_Generator
PPLC.interface 34
ppl_Polyhedronshrink boundingbox
PPL C_interface 34
ppl_seterrorhandler
PPL C.interface,31
project
ParmaPolyhedralibrary::PowerSet107
ParmaPolyhedraLibrary::PowerSet107
Prolog Language Interfacdy

RAY

ParmaPolyhedral ibrary::Generator75
ray

ParmaPolyhedraLibrary::Generator75
relationwith

ParmaPolyhedralLibrary::Polyhedron94

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

114

removedimensions

ParmaPolyhedralLibrary:
ParmaPolyhedralibrary:
ParmaPolyhedral ibrary:
ParmaPolyhedraLibrary:

removehigherdimensions

ParmaPolyhedralLibrary:
ParmaPolyhedralibrary:
ParmaPolyhedral ibrary:
ParmaPolyhedral ibrary:

shrink boundingbox

ParmaPolyhedraLibrary:

std, 60
STRICT.INEQUALITY

ParmaPolyhedraLibrary:

strictly_contains

ParmaPolyhedraLibrary:

swap

ParmaPolyhedralLibrary:

The Library,15
time_elapseassign

ParmaPolyhedralLibrary:

Type

ParmaPolyhedralibrary:
ParmaPolyhedraLibrary:

UNIVERSE

ParmaPolyhedralibrary:

:Determinate69
:Polyhedron102
:PowerSet106
:PowerSet106
:Determinate69
:Polyhedron]102

:PowerSet106
:PowerSet106

:Polyhedron94

:Constraintp6
:Polyhedron94

:Polyhedron103

:Polyhedron99

:Constraint66
:Generator75

:Polyhedron91

The Parma Polyhedra Library User’s Manual (version 0.5).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

	Convex Polyhedra and the PPL
	PPL Module Index
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Compound Index
	PPL Module Documentation
	PPL Namespace Documentation
	PPL Class Documentation

