The Parma Polyhedra Library
User’'s Manual
(version 0.6)

Roberto Bagnara
Patricia M. Hill
Enea Zaffanella
based on previous work also by
Elisa Ricci
and
Sara Bonini
Andrea Pescetti
Angela Stazzone
Tatiana Zolo

August 18, 2004

*This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification of
Reactive Systems”.

Tbagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

Thill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.

§ zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS 1

Copyright(©) 2001-2004 Roberto Bagnara (bagnara@cs.unipr.it).
This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published byrfeSoftware Foundatipwith

no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitledGNU Free Documentation Licerise

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theee Software Foundatipeither version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section enti@dJ' GENERAL
PUBLIC LICENSE.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 Convex Polyhedra and the PPL 1
2 PPL Module Index 15
3 PPL Namespace Index 15
4 PPL Hierarchical Index 16
5 PPL Class Index 17
6 PPL Page Index 18
7 PPL Module Documentation 18
8 PPL Namespace Documentation 65
9 PPL Class Documentation 68
10 PPL Page Documentation 134

1 Convex Polyhedra and the PPL

1.1 A Library for Convex Polyhedra

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of rational convex poly-
hedra. Informally, a rational convex polyhedron is a set of points (in sedignensional vector space)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1.2 An Introduction to Convex Polyhedra 2

that satisfies a finite number of linear inequalities having rational coefficients. The domain of convex
polyhedra is employed in several systems for the analysis and verification of hardware and software com-
ponents, with applications spanning imperative, functional and logic programming languages, synchronous
languages and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not
meant to target a particular problem, the design of its interface has been largely influenced by the needs
of the above class of applications. That is the reason why the library implements a few operators that are
more or less specific to static analysis applications, while lacking some other operators that might be useful
when working, e.g., in the field of computational geometry.

The main features of the library are the following:

e itisuser friendly: you writex + 2xy + 5xz <= 7 when you mean it;

e itis fully dynamic: available virtual memory is the only limitation to the dimension of anything;

e it provides full support for the manipulation of convex polyhedra that are not topologically closed;
e itis written in standard C++: meant to be portable;

e itis exception-safe: never leaks resources or leaves invalid object fragments around;

e itis rather efficient: and we hope to make it even more so;

e itis thoroughly documented: perhaps not literate programming but close enough;

e itis free software: distributed under the terms of the GNU General Public License.

In the following sections we describe the polyhedra and the different representations and operations sup-
ported by the PPL in more detail. For more information about the definitions and results stated here see
[BRZHO02b], [Fuk98], [NW88], and[Wil93].

1.2 An Introduction to Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail.
Vectors, Matrices and Scalar Products

We denote bR™ then-dimensional vector space on the field of real numBersndowed with the standard
topology. The set of all non-negative reals is denote@®by For each € {0,...,n — 1}, v; denotes the

i-th component of the (column) vector = (vy,...,v,_1)T € R™. We denote by the vector ofR",
calledthe origin, having all components equal to zero. A veatoer R™ can be also interpreted as a matrix

in R™*! and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted'by

Thescalar productof v, w € R", denotedv, w), is the real number
n—1
’UT’UJ = Z V;W; .
=0

For anyS;, Se C R™, theMinkowski's sunof S; andSs is: S1 + S2 = { vy + va | v] € S1,v2 € 52 }.
Affine Hyperplanes and Half-spaces

For each vectoe € R™ and scalab € R, wherea # 0, and for each relation symbet € {=,>, >}, the
linear constrainta, x) i b defines:

e an affine hyperplane if it is an equality constraint, i.exdie {=};

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 3

e atopologically closed affine half-space if it is a non-strict inequality constraint, ire. gf{>};

¢ atopologically open affine half-space if it is a strict inequality constraint, i.eq,df {>}.
Note that each hyperplarde,) = b can be defined as the intersection of the two closed affine half-spaces
(a,xz) > band(—a,x) > —b. Also note that, whem = 0, the constraint0, x) x b is either a tautology

(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vectdR8pmace
the empty sep.

Convex Polyhedra

The setP C R™ is anot necessarily closed convex polyhed(®NC polyhedronfor short) if and only if
eitherP can be expressed as the intersection of a finite number of (open or closed) affine half-sjikdces of
orn = 0andP = @. The set of all NNC polyhedra on the vector sp&éeis denotedP,,.

The setP € P, is aclosed convex polyhedrgnlosed polyhedrorfor short) if and only if eithefP can be
expressed as the intersection of a finite number of closed affine half-spaRésoofn = 0 andP = 2.
The set of all closed polyhedra on the vector sgaées denotedCP,,.

When ordering NNC polyhedra by the set inclusion relation, the empty setd the vector spade™ are,
respectively, the smallest and the biggest elements offlhpindCP,,. The vector spacR™ is also called
theuniversepolyhedron.

In theoretical termdP,, is alattice under set inclusion an@P,, is asub-latticeof P,,.
Bounded Polyhedra
An NNC polyhedrorP € P,, is boundedf there exists a € R, such that

PC{xzeR"|-A<z;<Aforj=0,...,n—-1}.

A bounded polyhedron is also calleghalytope

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

Constraints representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequalityasatraint

By definition, each polyhedro® € P, is the set of solutions to eonstraint systerri.e., a finite number
of constraints. By using matrix notation, we have

P:{CC e R"” | Alm:bl,AQm Zb27A3$>b3},

where, for alli € {1,2,3}, 4, € R™ x R™ andb; € R™:, andmy,ms,m3 € N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

Combinations and Hulls

Let S = {x,...,zx} C R™ be a finite set of vectors. For all scalaxs,...,\; € R, the vector
v = E?:l Ajx; is said to be dinear combination of the vectors ii. Such a combination is said to be

e apositive(or conic) combination, ifvj € {1,...,k}: A\; € Ry;
e anaffinecombination, |ij:1 Ay =1;

e aconvexcombination, if it is both positive and affine.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 4

We denote byinear.hull(S) (resp. conic.hull(S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors.in

Let P,C C R", whereP U C = S. We denote byinc.hull(P, C') the set of all convex combinations of
the vectors inS such thath; > 0 for somex; € P (informally, we say that there exists a vectorfothat
plays an active role in the convex combination). Note thathull(P, C') = nnc.hull(P, P U C) so that,
if C C P,

convex.hull(P) = nnc.hull(P, @) = nnc.hull(P, P) = nnc.hull(P, C).

It can be observed théinear.hull(S) is an affine spacesonic.hull(S) is a topologically closed convex
cone,convex.hull(S) is a topologically closed polytope, angc.hull(P, C) is an NNC polytope.

Points, Closure Points, Rays and Lines
LetP € P, be an NNC polyhedron. Then

e avectorp € P is called gpoint of P;
e avectorc € R" is called aclosure pointof P if it is a point of the topological closure G?;

e avectorr € R", wherer # 0, is called aay (or direction of infinity) of P if P # @ andp+Ar € P,
for all pointsp € P and allA € R_;

e avectorl € R" is called dine of P if both I and—1 are rays ofP.

A point of an NNC polyhedror? € P, is avertexif and only if it cannot be expressed as a convex
combination of any other pair of distinct points# A ray » of a polyhedrorP is anextreme rayf and
only if it cannot be expressed as a positive combination of any otherpaindr. of rays of P, where

T # Ary, T # Arg andr; # Arp for all A € R, (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

Generators Representation

Each NNC polyhedroP € P,, can be represented by finite sets of lidgsays R, points P and closure
pointsC of P. The 4-tupleG = (L, R, P, C) is said to be generator systerfor P, in the sense that

P = linear.hull(L) 4 conic.hull(R) + nnc.hull(P, C),

where the symbolH' denotes the Minkowski’s sum.

WhenP € CP, is a closed polyhedron, then it can be represented by finite sets ofllineys R and
points P of P. In this case, the 3-tuplé = (L, R, P) is said to be @enerator systerfor P since we have

P = linear.hull(L) + conic.hull(R) 4 convex.hull(P).

Thus, in this case, every closure point/@is a point ofP.

For anyP € PP, and generator systeéh= (L, R, P, C) for P, we haveP = @ if and only if P = @. Also
P must contain all the vertices &f althoughP can be non-empty and have no vertices. In this cask,ias
necessarily non-empty, it must contain pointstofhat arenot vertices. For instance, the half-spaceRaf
corresponding to the single constraint 0 can be represented by the generator sysiem(L, R, P, C)
such thatL = {(1,0)"}, R = {(0,1)"}, P = {(0,0)T}, andC' = @. Itis also worth noting that the
only ray in R is notan extreme ray oP.

Minimized Representations

A constraints syster@ for an NNC polyhedrorP € P, is said to baninimizedif no proper subset af is
a constraint system fap.

Similarly, a generator systegi = (L, R, P, C') for an NNC polyhedrorP < P, is said to beminimized
if there does not exist a generator systéfm= (L', R', P/, C") # G for P such thatl’ C L, R’ C R,
P’ C PandC’ C C.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 5

Double Description

Any NNC polyhedrorP can be described by using a constraint systera generator systed, or both

by means of thelouble description pair (DD pair}C, G). Thedouble description methad a collection

of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

Topologies and Topological-compatibility

As indicated above, when an NNC polyhedrBris necessarily closed, we can ignore the closure points
contained in its generator syste&dn= (L, R, P, C) (as every closure point is also a point) and represent

P by the triple(L, R, P). Similarly, P can be represented by a constraint system that has no strict in-
equalities. Thus a necessarily closed polyhedron can have a smaller representation than one that is not
necessarily closed. Moreover, operators restricted to work on closed polyhedra only can be implemented
more efficiently. For this reason the library provides two alternative “topological kinds” for a polyhedron,
NNCandC. We shall abuse terminology by referring to the topologcal kind of a polyhedrontapit®gy

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the followingtopological-compatibilityrules:

e polyhedra are topologically-compatible if and only if they have the same topology;

o all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

e strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.
Space Dimensions and Dimension-compatibility

The space dimensionf an NNC polyhedron® € P,, (resp., a C polyhedro® € CP,,) is the dimension
n € N of the corresponding vector spa&. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following spacdimension-compatibilityules:

e polyhedra are dimension-compatible if and only if they have the same space dimension;

e the constraint{a, x) > b wherexi € {=,>,>} anda,z € R™, is dimension-compatible with a
polyhedron having space dimensiorif and only if m < n;

o the generatox € R™ is dimension-compatible with a polyhedron having space dimensiband
only if m <mn;

e a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 6

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

Rational Polyhedra

An NNC polyhedron is calledational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.
Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedr®,, P, € P,,, theintersectionof P; andP,, defined as the set intersection
P1 NPy, is the biggest NNC polyhedron included in b@h andP,; similarly, theconvex polyhedral hull
(or poly-hull) of P; andP,, denoted byP; © Ps, is the smallest NNC polyhedron that includes bith
and?P,. The intersection and poly-hull of any pair of closed polyhedr@l#, is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the rhetgnd the
binaryjoin operators on the latticés, andCP,,.

Convex Polyhedral Difference

For any pair of NNC polyhedr®,, P, € P, theconvex polyhedral differender poly-differencg of P,
and?P; is defined as the smallest convex polyhedron containing the set-theoretic differghcardP,.

In general, even thougR;, P, € CP,, are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formallycdheatenatiorof the polyhedra
P € P, andQ € P, (taken in this order) is the polyhedréd € P,,,,, such that

def
R = {(l’o,-~-a$n—1,y07~--7ym—1)T ER™™ | (20, ,2n-1)" €P, (Y05, Ym—1)" € Q}-

Another way of seeing it is as follows: first embed polyhedfomto a vector space of dimensiord+ m
and then add a suitably renamed-apart version of the constraints defining

Adding New Dimensions to the Vector Space

The library provides two operators for adding a numbef space dimensions to an NNC polyhedron
P € P,, therefore transforming it into a new NNC polyhedréh € P, ;. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operatoadd_dimensions_and_embed embedghe polyhedrorP into the new vector space of
dimension: + n and returns the polyhedro@ defined by all and only the constraints definifg(the
variables corresponding to the added dimensions are unconstrained). For instance, when starting from a
polyhedronP C R? and adding a third dimension, the result will be the polyhedron

Q= { ($0,$1,$2)T S R3 ’ ((L‘(),l’l)T < P}

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 7

In contrast, the operat@dd_dimensions_and_project projectsthe polyhedrorP into the new
vector space of dimensiary- n and returns the polyhedra® whose constraint system, besides the con-
straints defining?, will include additional constraints on the added dimensions. Namely, the corresponding
variables are all constrained to be equal to 0. For instance, when starting from a polyRedr@&? and
adding a third dimension, the result will be the polyhedron

Q= {(mo,xl,O)T eR3 ’ (mo,atl)T IS 73}.

Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from an NNC polyhgde®,,,
therefore transforming it into a new NNC polyhedr@ne P,,, wherem < n.

Given a set of variables, the operatemove_dimensions removes all the space dimensions specified
by the variables in the set. For instance, lettidge P, be the singleton sef(3,1,0,2)"} C R*, then
after invoking this operator with the set of variables , z» } the resulting polyhedron is

0={33,2)"} CRrR%.

Given a space dimension less than or equal to that of the polyhedron, the operatapve_higher_-
dimensions removes the dimensions having indices greater than or equal tBor instance, letting
P € P, defined as before, by invoking this operator with= 2 the resulting polyhedron will be

o={@31"} CRrR%.

Mapping the Dimensions of the Vector Space

The operatomap_dimensions provided by the library maps the dimensions of the vector sfiite
according to a partial injective functign {0,...,n—1} — Nsuchthap({0,...,n—1}) ={0,...,m—
1} with m < n. Dimensions corresponding to indices that are not mappedasg removed.

If m = 0, i.e., if the functiorp is undefined everywhere, then the operator projects the argument polyhedron
P € PP, onto the zero-dimension spaké; otherwise the result i§) € P,,, given by

def T
Q= {(Up71(0),...,1}p71(m_1)) ’ (Uo,...,vn_l)TEP}.
Expanding One Dimension of the Vector Space to Multiple Dimensions

The operatoexpand_dimension provided by the library adds: new dimensions to a polyhedron
P € P,, withn > 0, so that dimensions, n + 1, ..., n + m — 1 of the resultQ are exact copies of the
i-th dimension ofP. More formally,

Jv,weP.u;, =v;
Qdéf u € RvT™ AVji=nn+1,....,n+m-—1:u; =w;
AVE=0,....n—1:k#i = up =vr = wyg
This operation has been proposed@DMDRS04]
Folding Multiple Dimensions of the Vector Space into One Dimension

The operatofold_dimensions provided by the library, given a polyhedrghe P, withn > 0, folds
a set of dimensiond = {jo,...,Jm-1}, Withm < n andj < n for eachj € J, into dimension < n,
wherei ¢ J. The resultis given by

ef "
Q= |4 Qi
d=0
where
Q,, %)y cgrom |FVEP i =i .
AVE=0,....,.n—1:k#i = up =vy

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 8

and, ford =0,...,m—1,

def —
=JueckR"™
Q { AVE=0,....n—1:k#i = up =g

v eP . uy =y, }
)

and, finally, fork =0, ..., n — 1,

K k—#{jed|k>j},
(# S denotes the cardinality of the finite st
This operation has been proposed@DMDRS04]
Affine Images and Preimages

For each function mapping: R” — R™, we denote by (S) C R™ theimageunder¢ of the setS C R";
formally,

$(S) = {p(v) eR™ |ve S}

Similarly, we denote by ~*(S’) C R" the preimageunderg of S’ C R™, that is the largest st C R”
such thatp(S) C S’; formally,

¢ H(S)={veR"|¢p(v) €S }.

The function mapping: R™ — R™ is anaffine transformatiorif there exist a matrixd € R™ x R™ and
avectorb € R™ such that, for alle € R™, we havep(x) = Ax + b. If n = m, then the functior is said
to bespace-dimension preserving

Both P,, andCP,, are closed under the application of any space-dimension preserving affine image and
preimage operators.

The library provides two operators, one computes an affine image and the other an affine preimage of a
polyhedronP € P, for a given variabler;, and linear expressiosxpr = Z;:Ol a;x; + b. This variable

and expression determine the affine transformatidhat is to be used by the operator. Thatdds the
transformation defined by the matrix and vector

1 0 0 - .. 0 0
0 1 0 .- 0 0
A= |ag ap—1 Ak Oyl an-1 |, b=]b
0 0 1 0 0
0 -« .. 0 0 1 0

where theu; (resp.,b) occurs in the(k + 1)st row in A (resp., position irb). Thus¢ transforms any point
(zg,...,2,_1)T in the polyhedrorP to

T
((L’(), ey (Z?;Olail'i + b), . ,(L’n,1> .

The affine image operator computes the affine image ahder¢. For instance, suppose the polyhedron
P to be transformed is the squareR3 generated by the set of poin{$0,0)™, (0,3)™, (3,0)T, (3,3)™}.
Then, for example if the considered variablerisand the linear expressiaty + 21 + 4 (so thatk = 0,

ag = l,a1 = 2,b = 4), the affine image operator will translafe to the parallelogranP; generated
by the set of point{(4,0), (10,3)T, (7,0)T, (13,3)™ } with height equal to the side of the square and
obligue sides parallel to the ling — 2z, . If the considered variable is as before (ile= 0) but the linear
expression i (so thatag = 0,a; = 1,b = 0), then the resulting polyhedrd®; is the positive diagonal
of the square.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 9

The affine preimage operator computes the affine preima@ewfderg. For instance, suppose now that
we apply the affine preimage operator as given in the first example using varigdhal linear expression
o + 221 + 4 to the parallelograr®; ; then we get the original squafe back. If, on the other hand, we
apply the affine preimage operator as given in the second example using vagiaold linear expression
x1 to Po, then the resulting polyhedron is a line that corresponds ta tlaxes.

Observe that provided the coefficient of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

Generalized Affine Images

The library provides another operator which is a generalization of the affine image operator. Given a
n—1 !

polyhedronP < P, an affine expressiolhs = > ., a;x; + V', arelation symbak € {<, <, =,>, >},

n—1

and an affine expressiaths =) ", a;z; + b, the image ofP with respect to the transfer function
lhs < rhs is defined as

(UO, Ce ,Un_l)T S P,
(wo, ..., wp_1)T € R" (l €{0,....,n—=1}Aa, =0 = w; :UZ'),
S w4+ b b X g+ b
Note that, wherihs = z;, and< € {=}, then the above operator is equivalent to the application of the

standard affine image @ with respect to the variable, and the affine expressiatis (hence the name
given to this operator).

Time-Elapse Operator

The time-elapseoperator has been defined [iAPR97] Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedraP, Q € P, the time-elapse betweéhandQ, denoted” ~ Q, is the smallest NNC polyhedron
containing the set

{p+XeR" |peP,qc QNER, }.

Note that, if?, Q@ € CP,, are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

Relation-with Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

SupposeP is an NNC polyhedron and an arbitrary constraint system representiigSuppose also that
¢ = ((a,x) > b) is a constraint with< € {=, >, >} and Q the set of points that satisfy The possible
relations betweef® andc are as follows.

e Pisdisjointfrom cif P N Q = &; that is, adding: to C gives us the empty polyhedron.

e P strictly intersects: if PN Q # @ andP N Q C P; that is, adding: to C gives us a non-empty
polyhedron strictly smaller thaR.

e Pisincludedin cif P C Q; that s, adding: to C leavesP unchanged.

e P saturates if P C H, whereH is the hyperplane induced by constraini.e., the set of points
satisfying the equality constraia,) = b; that is, adding the constraigt,) = b to C leavesP
unchanged.

The polyhedror? subsumeshe generatoy if adding g to any generator system representfdgloes not
changep.

Intervals, boxes and bounding boxes

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 10

An intervalin R is a pair ofbounds calledlower andupper. Each bound can be either (&psed and
bounded (2) open and boundear (3) open and unboundedf the bound isbounded then it has a value
in R. An n-dimensionaboxB in R™ is a sequence of intervals inR.

The polyhedrorP represents a bo¥ in R™ if P is described by a constraint systemi# that con-
sists of one constraint for each bounded bound (lower and upper) in an interigal iretting e; =
0,...,1,...,0)T be the vector ifR™ with 1 in thei'th position and zeroes in every other position; if
the lower bound of théth interval in B is bounded, the corresponding constraint is define@gas:) > b,
whereb is the value of the bound amdis > if itis a closed bound and if it is an open bound. Similarly, if
the upper bound of théth interval in B is bounded, the corresponding constraint is defing@ase) i b,
whereb is the value of the bound and is < if it is a closed bound ang if it is an open bound.

If every bound in the intervals defining a b#s either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

Thebounding boxof an NNC polyhedrorP is the smallest-dimensional box containing.

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

Widening Operators

The library provides two widening operators for the domain of NNC polyhedra. The first one, that we
call H79-widening mainly follows the specification provided in the PhD thesis of N. Halbwdgldias7 9],

also described iIfHPR97] There are a few differences between the H79-widening and the widening
described in the cited paper. In particular, the H79-widening of an NNC polyh&drenP,, using the

NNC polyhedronQ € P,,:

o allows for equalities inP andQ (the original definition is restricted to inequalities);

e requires as a precondition thatC P.

The second widening operator, that we &HRZ03-wideningis an instance of the specification provided
in [BHRZ03a] This operator also requires as a precondition haf P and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to polyhedra that are not topologically closed. The user is warned
that, in such a case, the results may not closely match the geometric intuition which is at the base of the
specification of the two widenings. The reason is that, in the current implementation, the widenings are not
directly applied to the NNC polyhedra, but rather to their internal representations. Implementation work is

in progress and future versions of the library may provide an even better integration of the two widenings

with the domain of NNC polyhedra.

Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parametek and only apply widenings starting from tleth iteration.

The library also supports an improved widening delay strategy, that wewed#ining with tokens
[BHRZ03a] A token is a sort of wildcard allowing for the replacement of the widening application by
the exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed tpdtemtial precision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed numbek of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

Extrapolation Operators

Besides the two widening operators, the library also implements sexdrapolationoperators, which

The Parma Polyhedra Library User’s Manual (version 0.6).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 11

differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponlifimited extrapolation operator, which

can be used to implement thédening “up to” technique as described[iHPR97] Each limited extrapola-

tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97]this set is fixed once and for all before starting the computation of the upward iteration sequence.

The boundedextrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above, by ensuring that their results cannot be worse than the shalleding boxenclosing the
two argument polyhedra.

A Note on the Implementation of the Operators

When adopting the double description method, the implementation of the above operators on polyhedra
may require an explicit conversion from one of the two representations into the other one, leading to
algorithms having a worst-case exponential complexity. However, thanks to the adoption of lazy and
incremental computation techniques, the library turns out to be rather efficient in many practical cases.

In earlier versions of the library, a number of operators were introduced in two flavdezy aersion

and aneagerversion, the latter having the operator name ending wihd_minimize . In principle,

only the lazy versions should be used. The eager versions were added to help a knowledgeble user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

The only case when an eager computation still makes sense is when the well-failsfiret principle

comes into play. For instance, if you have to compute the intersection of several polyhedra and you strongly

suspect that the result will become empty after a few of these intersections, then you may obtain a better

performance by calling the eager version of the intersection operator, since the minimization process also

enforces an emptyness check. Note anyway that the same effect can be obtained by interleaving the calls
of the lazy operator with explicit emptyness checks.

On Const-Correctness: A Warning about the Use of References and lterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

/I Find a reference to the first point of the non-empty polyhedron ‘ph'’.
const GenSys& gs = ph.generators();

GenSys::const_iterator i = gs.begin();
for (GenSys::const_iterator gs_end = gs.end(); i !'= gs_end; ++i)
if (i->is_point())
break;

const Generator& p = *i

/I Get the constraints of ‘ph’.

const ConSys& cs = ph.constraints();

/I Both the const iterator ‘i and the reference ‘p’

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 Bibliography 12

/I are no longer valid at this point.
cout << p.divisor() << endl; // Undefinded behavior!
++i; /I Undefinded behavior!

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the
iteratori and the referencp. Anyway, if really needed, it is always possible to take a copy of, instead of

a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

GenSys gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.

1.5 Bibliography

[Bag98] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-based
languagesScience of Computer Programmirgp(1-2):119-155, 1998.

[BGP99] T.Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental résDisTransactions
on Programming Languages and Systefig4):747-789, 1999.

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In R. Cousot, editdBtatic Analysis: Proceedings of the 10th International Sympasium
volume 2694 ofLecture Notes in Computer Sciengages 337-354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

[BHRz03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno 312, Dipartimento di Matematica, Universita di Parma, Italy, 2003. Available
at http://www.cs.unipr.it/Publications/

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Universita di Parma,
Italy, 2002. Available abttp://www.cs.unipr.it/Publications/

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editBrceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systempages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Politécnica de Madrid, Facultad de Informatica.

[BHZ03a] R.Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, eBitocgedings of
the 3rd Workshop on Automated Verification of Critical Systerages 161-176, Southampton, UK,
2003. Published as TR Number DSSE-TR-2003-2, University of Southampton.

[BHZ03b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In
B. Steffen and G. Levi, editor®roceedings of the Fifth International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI 2004)lume 2937 of_ecture Notes in Com-
puter Sciencgpages 135-148, Venice, Italy, 2003. Springer-Verlag, Berlin.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/ppl/

1.5 Bibliography 13

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains.
Quaderno 349, Dipartimento di Matematica, Universita di Parma, Italy, 2004. Available at
http://www.cs.unipr.it/Publications/

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Filé, editorStatic Analysis: Proceedings of the 6th International Sympasium
volume 1694 ofLecture Notes in Computer Sciengages 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BRZHO02a] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, ed&tac Analysis: Pro-
ceedings of the 9th International Symposjwmlume 2477 olecture Notes in Computer Science
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZHO2b] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Universita di Parma, Italy,
2002. See alsfBRZH02c]. Available athttp://www.cs.unipr.it/Publications/

[BRZHO2c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286". Available athttp://www.cs.unipr.it/Publications/ , 2002. Se¢BRZH02b].

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editBreceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programmiange
631 ofLecture Notes in Computer Scienpages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. InConference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languagespages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equationgJ.S.S.R. Computational Mathematics and Mathematical Phy${d%151-
158, 1964.

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities.U.S.S.R. Computational Mathematics and Mathematical Physics
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem.U.S.S.R. Computational Mathematics and Mathematical Phy&i6%282-293, 1968.

[Dan63] G. B. Dantzig.Linear Programming and ExtensianBrinceton University Press, Princeton, NJ,
1963.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and Y.
Manoussakis, editor§ombinatorics and Computer Science, 8th Franco-Japanese and 4th Franco-
Chinese Conference, Brest, France, July 3-5, 1995, Selected Papkmne 1120 ot.ecture Notes
in Computer Sciencgages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral = computation FAQ. Swiss Federal Insti-
tute of Technology, Lausanne and Zurich, Switzerland, available at
http://www.ifor.math.ethz.ch/ ~fukuda/fukuda.html , 1998.

[GDD* 04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In K. Jensen and A. Podelski, editdomls and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 20#ine 2988 of_ecture Notes in
Computer Scienc@ages 512-529. Springer-Verlag, Berlin, 2004.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.ifor.math.ethz.ch/~fukuda/fukuda.html
http://www.cs.unipr.it/ppl/

1.5 Bibliography 14

[GJO0] E. Gawrilow and M. Joswig.polymake : a framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editorsRolytopes - Combinatorics and Computatiqgrages 43-74.
Birkh&auser, 2000.

[GJO1] E. Gawrilow and M. Joswigpolymake : an approach to modular software design in computa-
tional geometry. IrProceedings of the 17th Annual Symposium on Computational Gegqmpatygs
222-231, Medford, MA, USA, 2001. ACM.

[Hal79] N. Halbwachs.Détermination Automatique de Relations Linéaires Vérifiées par les Variables
d’'un ProgrammeThése de 3éme cycle d’informatique, Université scientifique et médicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, ditoputer
Aided Verification: Proceedings of the 5th International Conferenofume 697 ofLecture Notes
in Computer Scien¢pages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editbigghrid Systems |lvolume 999 of
Lecture Notes in Computer Scienpages 252-264. Springer-Verlag, Berlin, 1995.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. ProypOLyhedra INtegrated Environmenterimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interne830, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, edit&tatic Analysis: Proceedings of the 1st Inter-
national Symposiummvolume 864 ofLecture Notes in Computer Sciengages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysisFormal Methods in System Desigiil (2):157-185, 1997.

[HPWTO1] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Compiagles 2887-2892. IEEE
Computer Society Press, 2001.

[Jea02] B. Jeannet. Convex Polyhedra Library release 1.1.3c edition,
March 2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html .

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequaliie®rican Math-
ematical Monthly63:217-232, 1956.

[Le 92] 92 H. Le Verge. A note on Chernikova’s algorithfublication internes35, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/ ~loechner/polylib/ , March 1999. Declares itself to be
a continuation ofWwil93].

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their verficesnational Journal
of Parallel Programming25(6):525-549, 1997.

[Mas92] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences.
In Proceedings of the 6th ACM International Conference on Supercompptiggs 226-235, Wash-
ington, DC, USA, 1992. ACM Press.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html
http://icps.u-strasbg.fr/~loechner/polylib/
http://www.cs.unipr.it/ppl/

2 PPL Module Index 15

[Mas93] F. Masdupuy.Array Indices Relational Semantic Analysis Using Rational Cosets and Trape-
zoids Thése d’informatique, Ecole Polytechnique, Palaiseau, France, December 1993.

[MRTT53] T.S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editor§ontributions to the Theory of Games - Volumelimber
28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

[NROO] S.P. K. Nookala and T. Risset. A library for Z-polyhedral operatidhshlication internel 330,
IRISA, Campus de Beaulieu, Rennes, France, 2000.

[NW88] G.L.Nemhauserand L. A. Wolselteger and Combinatorial OptimizatioViley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Sch99] A. Schrijver. Theory of Linear and Integer Programmin@Viley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, 1999.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraintsAnnals of Mathematics and Artificial Intelligend®(3-4):315-343, 1993.

[SW70] J. Stoer and C. WitzgallConvexity and Optimization in Finite DimensionsSpringer-Verlag,
Berlin, 1970.

[Wey35] H. Weyl. Elementare theorie der konvexen polyed@ommentarii Mathematici Helvetici
7:290-306, 1935. English translation[Wey50].

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, ed@ontributions to
the Theory of Games - Volumaiumber 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated[inew35] by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRE/lication interne785, Rennes,
France, 1993.

2 PPL Module Index

2.1 PPL Modules

Here is a list of all modules:

The Library 18
Library Defines 18
C Language Interface 19
Prolog Language Interface 47

3 PPL Namespace Index

3.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

4 PPL Hierarchical Index 16

Parma_Polyhedra_Library (The entire library is confined to this namespace) 65

Parma_Polyhedra_Library::10_Operators (All input/output operators are confined to this
namespace) 67

std (The standard C++ namespace) 67

4 PPL Hierarchical Index

4.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Parma_Polyhedra_Library::AskTell < CS > 68
Parma_Polyhedra_Library::AskTell_Pair < CS > 71
Parma_Polyhedra_Library::BHRZ03_Certificate 71
Parma_Polyhedra_Library::BHRZ03_ Certificate::Compare 72
Parma_Polyhedra_Library::Constraint 76
Parma_Polyhedra_Library::Determinate < PH > 80
Parma_Polyhedra_Library::Generator 84
Parma_Polyhedra_Library::H79_Certificate 89
Parma_Polyhedra_Library::H79_Certificate::Compare 20
Parma_Polyhedra_Library::LinExpression 90
Parma_Polyhedra_Library::Poly _Con_Relation 96
Parma_Polyhedra_Library::Poly _Gen_Relation 97
Parma_Polyhedra_Library::Polyhedron 105

Parma_Polyhedra_Library::C_Polyhedron 73

Parma_Polyhedra_Library::NNC_Polyhedron 94
Parma_Polyhedra_Library::PowerSet< CS > 130

Parma_Polyhedra_Library::PowerSet< Parma_Polyhedra_Library::Determinate< PH > >130

Parma_Polyhedra_Library::Polyhedra_PowerSek PH > 98
Parma_Polyhedra_Library::Variable 132
Parma_Polyhedra_Library::Variable::Compare 134

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

5 PPL Class Index 17

5 PPL Class Index

5.1 PPL Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma_Polyhedra_Library::AskTell < CS > (The ask and tell construction on constraint sys-

tems) 68
Parma_Polyhedra_Library::AskTell_Pair < CS > (A pair of (ask and tell) constraints) 71
Parma_Polyhedra_Library::BHRZ03_Certificate (The convergence certificate for the

BHRZ03 widening operator) 71
Parma_Polyhedra_Library::BHRZ03_Certificate::Compare (A total ordering on BHRZ03

certificates) 72
Parma_Polyhedra_Library::C_Polyhedron (A closed convex polyhedron) 73
Parma_Polyhedra_Library::Constraint (A linear equality or inequality) 76

Parma_Polyhedra_Library::Determinate < PH > (Wraps a PPL class into a determinate con-
straint system interface) 80

Parma_Polyhedra_Library::Generator (A line, ray, point or closure point) 84

Parma_Polyhedra_Library::H79_Certificate (A convergence certificate for the H79 widening

operator) 89
Parma_Polyhedra_Library::H79_Certificate::Compare (A total ordering on H79 certificates

) 90
Parma_Polyhedra_Library::LinExpression (A linear expression) 90

Parma_Polyhedra_Library::NNC_Polyhedron (A not necessarily closed convex polyhedron P4

Parma_Polyhedra_Library::Poly _Con_Relation (The relation between a polyhedron and a
constraint) 96

Parma_Polyhedra_Library::Poly _Gen_Relation (The relation between a polyhedron and a
generator) 97

Parma_Polyhedra_Library::Polyhedra_PowerSek PH > (The powerset construction instan-
tiated on PPL polyhedra) 98

Parma_Polyhedra_Library::Polyhedron (The base class for convex polyhedra) 105

Parma_Polyhedra_Library::PowerSet< CS > (The powerset construction on constraint sys-
tems) 130

Parma_Polyhedra_Library::Variable (A dimension of the space) 132

Parma_Polyhedra_Library::Variable::Compare (Binary predicate defining the total ordering
on variables) 134

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6 PPL Page Index 18

6 PPL Page Index

6.1 PPL Related Pages

Here is a list of all related documentation pages:
GNU General Public License 134

GNU Free Documentation License 139

7 PPL Module Documentation

7.1 The Library

The core implementation of the Parma Polyhedra Library is written in C++. The library is mainly a col-
lection of so-called “concrete data types”: while providing the user with a clean and friendly interface,
these types are not meant to — i.e., they should not — be used polymorphically (since, e.g., most of the
destructors are not declaremitual). In practice, this restriction means that the library types should not

be used apublic base classet® be derived from. A user willing to extend the library types, adding new
functionalities, often can do so by usisgntainmeninstead of inheritance; even when there is the need

of overriding aprotected method, non-public inheritance should suffice. See Namespace, Hierarchical
and Compound indexes for additional information about each single data type.

7.2 Library Defines

Defines

o #definePPL_VERSION_MAJOR

The major number of the PPL version.

o #definePPL_VERSION_MINORG
The minor number of the PPL version.

e #definePPL_VERSION_REVISIOND
The revision number of the PPL version.

o #definePPL_VERSION_BETAO

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

#definePPL_VERSION'0.6"

A string containing the PPL version.

7.2.1 Define Documentation

7.2.1.1 #define PPL_VERSION "0.6"

A string containing the PPL version.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 19

Let Mandmdenote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSIONI4 "." m if both PPL_VERSION_REVISIONr() and
PPL_VERSION_BETA lf)are zeroM "* m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zerayl ".* m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zeroM "." m "" r "pre" b if neither PPL_VERSION_REVISION

nor PPL_VERSION_BETA are zero.

7.3 C Language Interface

Some details about the C Interface

Version Checking

e #definePPL_VERSION_ MAJOR
The major number of the PPL version.

o #definePPL_VERSION_MINORG
The minor number of the PPL version.

e #definePPL_VERSION_REVISIOND
The revision number of the PPL version.

o #definePPL_VERSION_BETAD

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

o #definePPL_VERSION'0.6"

A string containing the PPL version.

e int ppl_version_majofvoid)
Returns the major number of the PPL version.

e int ppl_version_minofvoid)
Returns the minor number of the PPL version.

e int ppl_version_revisioifvoid)
Returns the revision number of the PPL version.

e int ppl_version_betévoid)
Returns the beta number of the PPL version.

e int ppl_version(const chakxp)
Writes toma pointer to a character string containing the PPL version.

e int ppl_banne(const chakxp)
Writes toma pointer to a character string containing the PPL banner.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 20

Simple 1/0O Functions

o typedef const chat ppl_io_variable output_function_tygppl_dimension_typear)
The type of output functions used for printing variables.

e int ppl_io_print_variablgppl_dimension_typgar)
Pretty-printsx to stdout

e int ppl_io_fprint_variablgFILE xstreamppl_dimension_typ&ar)
Pretty-printsvar to the given outpustream .

e int ppl_io_print_Coefficienfppl_const_Coefficient x)
Printsx to stdout

e int ppl_io_fprint_Coefficien{FILE «streamppl_const_Coefficient x)
Printsx to the given outpustream .

e int ppl_io_print_LinExpressiofppl_const_LinExpression xj
Printsx to stdout

e intppl_io_fprint_LinExpressiofFILE xstreamppl_const_LinExpressionx)
Printsx to the given outpustream .

e intppl_io_print_Constrainfppl_const_Constraint X
Printsx to stdout

o int ppl_io_fprint_Constrain(FILE xstreamppl_const_Constraint x)
Printsx to the given outpustream .

e int ppl_io_print_ConSygppl_const_ConSys X)
Prints x to stdout

e int ppl_io_fprint_ConSy¢FILE xstreamppl_const_ConSys X)
Prints x to the given outpustream .

e int ppl_io_print_Generatdippl_const_Generatorx)
Printsx to stdout

e int ppl_io_fprint_GeneratofFILE xstreamppl_const_Generatorx)
Printsx to the given outpustream .

e int ppl_io_print_GenSy§ppl_const_GenSysx)
Prints x to stdout

e int ppl_io_fprint_GenSy$FILE «streamppl_const_GenSys x)
Printsx to the given outpustream .

e int ppl_io_print_Polyhedrofppl_const_Polyhedronx)
Printsx to stdout

The Parma Polyhedra Library User’s Manual (version 0.6).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 21

e int ppl_io_fprint_PolyhedrofFILE xstreamppl_const_Polyhedronx)
Printsx to the given outpustream .

e int ppl_io_set variable_ output_functigppl_io_variable_output_function_type)
Sets the output function to be used for printing variableg.to

e intppl_io_get variable output_functigppl_io_variable output_function_typepp)
Writes a pointer to the current variable output functiorpi.

Initialization, Error Handling and Auxiliary Functions

e int ppl_max_space_dimensi¢ppl_dimension_typem)
Writes tomthe maximum space dimension this library can handle.

int ppl_not_a_dimensio(ppl_dimension_typem)
Writes toma value that does not designate a valid dimension.

int ppl_initialize (void)
Initializes the Parma Polyhedra Library. This function must be called before any other function.

int ppl_finalize(void)
Finalizes the Parma Polyhedra Library. This function must be called after any other function.

int ppl_set_error_handl€void(xh)(enumppl_enum_error_codende, const chardescription))
Installs the user-defined error handler pointedhy

Functions Related to Coefficients

¢ int ppl_new_Coefficienfppl_Coefficient_tpc)
Creates a new coefficient with value 0 and writes an handle for the newly created coefficient at pddress

e int ppl_new_Coefficient_from_mpz(ppl_Coefficient_tpc, mpz_t z)

Creates a new coefficient with the value given by the GMP integand writes an handle for the newly
created coefficient at addreps .

e int ppl_new_Coefficient_from_Coefficie(ipl_Coefficient_tpc, ppl_const_Coefficient d)
Builds a coefficient that is a copy of writes an handle for the newly created coefficient at addpess

e int ppl_assign_Coefficient_from_mpzppl_Coefficient_dst, mpz_t z)
Assign tadst the value given by the GMP integer

e int ppl_assign_Coefficient_from_Coefficigippl_Coefficient_dst,ppl_const_Coefficient grc)
Assigns a copy of the coefficiesrt todst .

e int ppl_delete_Coefficien(ppl_const_Coefficient a)
Invalidates the handle: this makes sure the corresponding resources will eventually be released.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 22

e int ppl_Coefficient_to_mpz_(ppl_const_Coefficient ¢, mpz_t z)
Sets the value of the GMP integeto the value ot.

e int ppl_Coefficient_OKppl_const_Coefficient d)

Returns a positive integer & is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise i broken. Useful for debugging purposes.

Functions Related to Linear Expressions

e int ppl_new_LinExpressio(ppl_LinExpression_kple)

Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes an
handle for the new linear expression at addrps .

e int ppl_new_LinExpression_with_dimensi@opl_LinExpression_kple, ppl_dimension_typé)

Creates a new linear expression corresponding to the constant @-4dienensional space; writes an handle
for the new linear expression at addrgde .

e int ppl_new_LinExpression_from_LinExpressiofppl_LinExpression_t xple, ppl_const_Lin-
Expression_le)

Builds a linear expression that is a copylef; writes an handle for the newly created linear expression at
addresle .

e int ppl_new_LinExpression_from_Constra{ppl_LinExpression_kple, ppl_const_Constraint d

Builds a linear expression corresponding to constraintwrites an handle for the newly created linear
expression at addregde .

e intppl_new_LinExpression_from_Generafppl_LinExpression_skple, ppl_const_Generatorg)

Builds a linear expression corresponding to generagorwrites an handle for the newly created linear
expression at addregse .

e int ppl_delete_LinExpressiofppl_const_LinExpression le)
Invalidates the handlie: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_LinExpression_from_LinExpressiqppl_LinExpression_tdst, ppl_const_Lin-
Expression_src)

Assigns a copy of the linear expressgns to dst .

e int ppl_LinExpression_add_to_coefficiefpl_LinExpression_te, ppl_dimension_typear, ppl_-
const_Coefficient_m)

Addsn to the coefficient of variablear in the linear expressiote . The space dimension is set to be the
maximum betweevar + 1 and the old space dimension.

e int ppl_LinExpression_add_to_inhomogene@ud_LinExpression_le, ppl_const_Coefficient rt)
Addsn to the inhomogeneous term of the linear expresion

e int ppl_add_LinExpression_to_LinExpressionppl_LinExpression_t dst, ppl_const Lin-
Expression_src)
Adds the linear expressia@rc todst .

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 23

int ppl_subtract_LinExpression_from_LinExpressi@ppl_LinExpression_tdst, ppl_const_Lin-
Expression_src)

Subtracts the linear expressienc fromdst .

int ppl_multiply LinExpression_by Coefficierippl_LinExpression_te, ppl_const_Coefficient_-
tn)
Multiply the linear expressiodst byn.

int ppl_LinExpression_space_dimensig@pl_const_LinExpressionl¢)
Returns the space dimensionef.

int ppl_LinExpression_coefficienfppl_const_LinExpression_le, ppl_dimension_typevar, ppl_-
Coefficient_t)

Copies inton the coefficient of variablear in the linear expressiote .

int ppl_LinExpression_inhomogeneous_tgippl_const_LinExpressionlé¢, ppl_Coefficient_n)
Copies inton the inhomogeneous term of linear expresdeon

int ppl_LinExpression_OKppl_const_LinExpression le)

Returns a positive integerlié is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noistif is broken. Useful for debugging purposes.

Functions Related to Constraints

e int ppl_new_Constrain{ppl_Constraint_t«pc, ppl_const_LinExpression le, enumppl_enum_-

Constraint_Typeel)

Creates the new constrairie'rel 0’ and writes an handle for it at addregx . The space dimension of
the new constraint is equal to the space dimenside of

int ppl_new_Constraint_zero_dim_falgepl_Constraint_pc)

Creates the unsatisfiable (zero-dimension space) constdaiatl and writes an handle for it at address
pc.

int ppl_new_Constraint_zero_dim_positivifgpl_Constraint_&pc)

Creates the true (zero-dimension space) constr@irt 1, also known agositivity constraint An handle
for the newly created constraint is written at address

int ppl_new_Constraint_from_Constraijppl_Constraint_&pc, ppl_const_Constraint d)
Builds a constraint that is a copy af writes an handle for the newly created constraint at addss

int ppl_delete_Constrairfppl_const_Constraint cf
Invalidates the handle: this makes sure the corresponding resources will eventually be released.

int ppl_assign_Constraint_from_Constrajppl_Constraint_tist,ppl_const_Constraint sirc)
Assigns a copy of the constraiic to dst .

int ppl_Constraint_space_dimensi(pl_const_Constraint d)
Returns the space dimensioncof

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 24

e int ppl_Constraint_typéppl_const_Constraint d)
Returns the type of constraiat

e int ppl_Constraint_coefficierfppl_const_Constraintct ppl_dimension_typear,ppl_Coefficient_t
n)

Copies inton the coefficient of variablear in constraintc.

e int ppl_Constraint_inhomogeneous_tefppl_const Constraint ¢, ppl_Coefficient_t)
Copies inton the inhomogeneous term of constraint

e int ppl_Constraint_ OKppl_const_Constraint d)

Returns a positive integer & is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise i broken. Useful for debugging purposes.

Functions Related to Constraint Systems

e int ppl_new_ConSy§ppl _ConSys_kpcs)
Builds an empty system of constraints and writes an handle to it at adoltsss

e intppl_new_ConSys_zero_dim_emgppl_ConSys_%pcs)
Builds a zero-dimensional, unsatisfiable constraint system and writes an handle to it at guithess

e int ppl_new_ConSys_from_Constrafippl_ConSys_#pcs,ppl_const_Constraint)

Builds the singleton constraint system containing only a copy of constraimtites an handle for the newly
created system at addregss .

e intppl_new_ConSys_from_ConSgspl_ConSys_#pcs,ppl_const_ConSys ds)

Builds a constraint system that is a copyosf; writes an handle for the newly created system at address
pcs .

e int ppl_delete_ConSygpl_const_ConSys ds)
Invalidates the handles: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_ConSys_from_ConSyppl_ConSys_tst,ppl_const_ConSys srrc)
Assigns a copy of the constraint systerm to dst .

e int ppl_ConSys_space_dimensifppl_const_ConSys ds)
Returns the dimension of the vector space enclosing

e int ppl_ConSys_clegippl_ConSys_ts)
Removes all the constraints from the constraint systerand sets its space dimension to 0.

e int ppl_ConSys_insert_Constraifpl_ConSys_ts,ppl_const_Constraint d)
Inserts a copy of the constraintinto cs ; the space dimension is increased, if necessary.

e int ppl_ConSys_OHKppl_const_ConSys d)

Returns a positive integerdfs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisesfis broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.6). (8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 25

e int ppl_new_ConSys_const_itera{@pl_ConSys_const_iteratorkpcit)
Builds a new ‘const iterator’ and writes an handle to it at addrpsi

e int ppl_new ConSys_const_iterator_from_ConSys_const_itergpgi_ConSys_const_iterator_-
t xpcit, ppl_const_ConSys_const_iteratocit)
Builds a const iterator that is a copy oit ; writes an handle for the newly created const iterator at address
pcit
e int ppl_delete_ConSys_const_iterafppl_const_ConSys_const_iteratocit)
Invalidates the handleit: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_ConSys_const_iterator_from_ConSys_const_itdggibrConSys_const_iterator_-
t dst,ppl_const_ConSys_const_iteratosrc)
Assigns a copy of the const iteratenc to dst .

e int ppl_ConSys_begi(ppl_const_ConSys ds,ppl_ConSys_const_iteratorcit)
Assigns tait a const iterator "pointing" to the beginning of the constraint systsm

e int ppl_ConSys_enpl_const _ConSys ds,ppl_ConSys_const_iteratorcit)
Assigns tait a const iterator "pointing” past the end of the constraint systsm

e int ppl_ConSys_const_iterator_dereferer(ppl_const_ConSys_const_iteratorcit, ppl_const_-
Constraint_t«pc)

Dereferencesit writing a const handle to the resulting constraint at addrpss

e int ppl_ConSys_const_iterator_increméopl_ConSys_const_iteratorcit)
Incrementcit so that it "points” to the next constraint.

e int ppl_ConSys_const_iterator_equal_tgspl_const_ConSys_const_iteratok,tppl_const_Con-
Sys_const_iterator W)
Returns a positive integer if the iterators corresponding tandy are equal; return O if they are different.

Functions Related to Generators

e int ppl_new_Generatofppl_Generator_t&pg, ppl_const_LinExpression_le, enumppl_enum_-
Generator_Typg ppl_const_Coefficient d)
Creates a new generator of directite and typet . If the generator to be created is a point or a closure
point, the divisod is applied tole . For other types of generatorsis simply disregarded. An handle for
the new generator is written at addresg. The space dimension of the new generator is equal to the space
dimension ofe .

e int ppl_new_Generator_zero_dim_pof{ppl_Generator_fpg)

Creates the point that is the origin of the zero-dimensional sfécéNrites an handle for the new generator
at addresgg.

e int ppl_new_Generator_zero_dim_closure_p@upl_Generator_tpg)

Creates, as a closure point, the point that is the origin of the zero-dimensional Bat#rites an handle
for the new generator at addrepg.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 26

int ppl_new_Generator_from_Generafppl_Generator_fpg, ppl_const_Generatorg)
Builds a generator that is a copy gf writes an handle for the newly created generator at addpss

int ppl_delete_Generat@ppl_const_Generatorg)
Invalidates the handlg: this makes sure the corresponding resources will eventually be released.

int ppl_assign_Generator_from_Generdfapl_Generator_dst,ppl_const_Generatorstc)
Assigns a copy of the generatenc to dst .

int ppl_Generator_space_dimensi@pl_const_Generatorg)
Returns the space dimensiongof

int ppl_Generator_typéopl_const_Generatorg)
Returns the type of generatgr

int ppl_Generator_coefficielfppl_const_Generatorgt ppl_dimension_typear, ppl_Coefficient_t
n)

Copies inton the coefficient of variablear in generatorg.

int ppl_Generator_divisdippl_const_Generator gt ppl_Coefficient_n)
If g is a point or a closure point assigns its divisorro

int ppl_Generator_OKppl_const_Generatorg)

Returns a positive integer ¢ is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisg i broken. Useful for debugging purposes.

Functions Related to Generator Systems

int ppl_new_GenSy§pl_GenSys_pgs)
Builds an empty system of generators and writes an handle to it at adatyess

int ppl_new_GenSys_from_Generafppl_GenSys_%pgs,ppl_const_Generatord)

Builds the singleton generator system containing only a copy of geneyavaites an handle for the newly
created system at addreggs .

int ppl_new_GenSys_from_GenSfgpl_GenSys_fpgs,ppl_const_GenSysgs)
Builds a generator system that is a copygsf; writes an handle for the newly created system at address
pgs.

int ppl_delete_GenSy@pl_const_GenSys gs)
Invalidates the handlgs: this makes sure the corresponding resources will eventually be released.

int ppl_assign_GenSys_from_Gen3gpl_GenSys_gst, ppl_const_GenSys stc)
Assigns a copy of the generator systanm to dst .

int ppl_GenSys_space_dimensigpl_const_GenSysgs)
Returns the dimension of the vector space encloging

int ppl_GenSys_cledppl_GenSys_¢s)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 27

Removes all the generators from the generator sygermand sets its space dimension to 0.

e intppl_GenSys_insert Genera{ppl_GenSys_gs,ppl_const_Generatorg)
Inserts a copy of the generatgrinto gs ; the space dimension is increased, if necessary.

e int ppl_GenSys_OKppl_const_GenSysc)

Returns a positive integergfs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisgsf is broken. Useful for debugging purposes.

e int ppl_new_GenSys_const_iterafppl_GenSys_const_iteratorxpgit)
Builds a new ‘const iterator’ and writes an handle to it at addrpgg .

e int ppl_new_GenSys_const_iterator_from_GenSys_const_itergipt GenSys_const_iterator_-
t xpgit, ppl_const_GenSys_const_iteratogit)
Builds a const iterator that is a copy git ; writes an handle for the newly created const iterator at address
pgit .

e int ppl_delete_GenSys_const_iteraopl_const_GenSys_const_iteratogit)
Invalidates the handlgit: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_GenSys_const_iterator_from_GenSys_const_it¢pgtioiGenSys_const_iterator_-
t dst,ppl_const_GenSys_const_iteratosrd)

Assigns a copy of the const iteratenc to dst .

e int ppl_GenSys_begifppl_const_GenSysgs,ppl_GenSys_const_iteratorgit)
Assigns tajit a const iterator "pointing" to the beginning of the generator sysgsm

e int ppl_GenSys_enppl_const_GenSys gs,ppl_GenSys_const_iteratorgit)
Assigns tajit a const iterator "pointing" past the end of the generator sysism

e int ppl_GenSys_const_iterator_derefererfppl_const_GenSys_const_iteratogit, ppl_const_-
Generator_#pg)

Dereferencagit writing a const handle to the resulting generator at addregs

e int ppl_GenSys_const_iterator_increm@upl_GenSys_const_iteratomit)
Incremenfit so that it "points” to the next generator.

e int ppl_GenSys_const_iterator_equal_t@sl_const_GenSys_const_iteratok, tppl_const_Gen-
Sys_const_iterator yf)

Return a positive integer if the iterators correspondingtandy are equal; return 0O if they are different.

Functions Related to Polyhedra

e int ppl_new_C_Polyhedron_from_dimensigupl_Polyhedron_pph, ppl_dimension_typd)
Builds an universe closed polyhedron of dimensiand writes an handle to it at addrepgh.

e int ppl_new_NNC_Polyhedron_from_dimensigupl_Polyhedron_gpph, ppl_dimension_typd)
Builds an universe NNC polyhedron of dimensiband writes an handle to it at addrepph .

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 28

e int ppl_new_ C_Polyhedron_empty from_dimens{ppl_Polyhedron_kpph, ppl_dimension_type
d)

Builds an empty closed polyhedron of dimensicemd writes an handle to it at addrepgh.

e int ppl_new NNC_Polyhedron_empty from_dimensjppl_Polyhedron_kpph,ppl_dimension_-
typed)
Builds an empty NNC polyhedron of dimensgband writes an handle to it at addrepph.

e intppl_new_C_Polyhedron_from_C_Polyhed(ppl_Polyhedron_spph,ppl_const_Polyhedron_t
ph)
Builds a closed polyhedron that is a copypif; writes an handle for the newly created polyhedron at
addresspph.

e int ppl_new_C Polyhedron_from_NNC_Polyhedrofppl_Polyhedron_t xpph, ppl_const -
Polyhedron_ph)

Builds a closed polyhedron that is a copy of of the NNC polyhegionwrites an handle for the newly
created polyhedron at addrepph.

e int ppl_new_NNC_Polyhedron_from_C_Polyhedrofppl_Polyhedron_t xpph, ppl_const -
Polyhedron_ph)

Builds an NNC polyhedron that is a copy of of the closed polyhephgnwrites an handle for the newly
created polyhedron at addrepgph.

e int ppl_new NNC_Polyhedron_from_NNC_Polyhedrdppl_Polyhedron_txpph, ppl_const -
Polyhedron_ph)

Builds an NNC polyhedron that is a copy jifi; writes an handle for the newly created polyhedron at
addresspph.

e intppl_new_C_Polyhedron_from_ConSypl_Polyhedron_spph,ppl_const ConSys cs)

Builds a new closed polyhedron from the system of constresngnd writes an handle for the newly created
polyhedron at addregsph.

e int ppl_new_C_Polyhedron_recycle_Con%ypl_Polyhedron_spph,ppl_ConSys_ts)

Builds a new closed polyhedron recycling the system of constresntnd writes an handle for the newly
created polyhedron at addrepgph.

e int ppl_new_NNC_Polyhedron_from_ConSypl_Polyhedron_spph,ppl_const_ConSys ds)

Builds a new NNC polyhedron from the system of constramtand writes an handle for the newly created
polyhedron at addressph.

e int ppl_new_NNC_Polyhedron_recycle_Con%ppl_Polyhedron_spph,ppl_ConSys_ts)

Builds a new NNC polyhedron recycling the system of constragtand writes an handle for the newly
created polyhedron at addrepph.

e int ppl_new_C_Polyhedron_from_GenSyppl_Polyhedron_spph,ppl_const_GenSys gs)

Builds a new closed polyhedron from the system of genergtoesid writes an handle for the newly created
polyhedron at addregsph .

e intppl_new_C_Polyhedron_recycle_Gen®ygl_Polyhedron_spph,ppl_GenSys_{Is)

Builds a new closed polyhedron recycling the system of genergsoed writes an handle for the newly
created polyhedron at addrepgph.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 29

e int ppl_new_NNC_Polyhedron_from_GenSppl_Polyhedron_kpph,ppl_const_GenSys gs)

Builds a new NNC polyhedron from the system of generg®rand writes an handle for the newly created
polyhedron at addresgsph.

e int ppl_new_NNC_Polyhedron_recycle_Gen@ysl_Polyhedron_tpph,ppl_GenSys_gs)

Builds a new NNC polyhedron recycling the system of genergrand writes an handle for the newly
created polyhedron at addrepgph.

e int ppl_new_C_Polyhedron_from_bounding_bofppl_Polyhedron_t xpph, ppl_dimension_-
type(xspace_dimension)(void), ini§_empty)(void), int¢get_lower_boundppl_dimension_type
k, int closed ppl_Coefficient_n, ppl_Coefficient_d), int(xget_upper_bound)pl_dimension_type
k, int closed ppl_Coefficient_n, ppl_Coefficient_t))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addrepgph.

e int ppl_new_ NNC_Polyhedron_from_bounding_b@spl_Polyhedron_t«pph, ppl_dimension_-
type(xspace_dimension)(void), ini6_empty)(void), int¢get lower_boundppl_dimension_type
k, int closed ppl_Coefficient_n, ppl_Coefficient_d), int(xget_upper_bound)pl_dimension_type
k, int closedppl_Coefficient_tn, ppl_Coefficient_d))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addrepgph.

e intppl_assign_C_Polyhedron_from_C_Polyhedjmpl_Polyhedron_dst,ppl_const_Polyhedron_t
src)

Assigns a copy of the closed polyhedsoa to the closed polyhedroast .

e int ppl_assign_NNC_Polyhedron_from_NNC_Polyhedr{wpl_Polyhedron_tdst, ppl_const -
Polyhedron_src)

Assigns a copy of the NNC polyhedne to the NNC polyhedrodst .

e int ppl_delete_Polyhedrofppl_const_Polyhedron ph)
Invalidates the handlph: this makes sure the corresponding resources will eventually be released.

e int ppl_Polyhedron_space_dimensigpl_const_Polyhedron pth)
Returns the dimension of the vector space enclgsing

e int ppl_Polyhedron_constrainfppl_const_Polyhedron ph, ppl_const_ConSys #pcs)
Writes a const handle to the constraint system defining the polyhetiram addresgpcs .

e int ppl_Polyhedron_minimized_constraiiffpl_const_Polyhedronph,ppl_const_ConSys #pcs)

Writes a const handle to the minimized constraint system defining the polyhgdeiraddresscs .

e int ppl_Polyhedron_generatofispl_const_Polyhedron ph, ppl_const_GenSys #pgs)
Writes a const handle to the generator system defining the polyhptrahaddresggs .

e int ppl_Polyhedron_minimized_generat@ppl_const_Polyhedronph, ppl_const_GenSys #pgs)

Writes a const handle to the minimized generator system defining the polymddatraddrespgs .

e int ppl_Polyhedron_relation_with_Constraipipl_const_Polyhedron gh, ppl_const_Constraint_t
c)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 30

Checks the relation between the polyhedpbnwith the constraint.

e int ppl_Polyhedron_relation_with_Generafgpl_const_Polyhedron gh, ppl_const_Generator_t
9)
Checks the relation between the polyhedpbnwith the generatog.

e int ppl_Polyhedron_shrink_bounding_bdppl_const_Polyhedron_gh, unsigned int complexity,
void(xset_empty)(void), void{aise_lower_boundppl_dimension_typd, int closed,ppl_const_-
Coefficient_tn, ppl_const_Coefficient_d), void¢lower_upper_boundppl_dimension_typd, int
closedppl_const_Coefficient i, ppl_const_Coefficient d))

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by means
of the parameters.

e int ppl_Polyhedron_is_emp{ppl_const_Polyhedron ph)
Returns a positive integerfifh is empty; returns 0 iph is not empty.

e int ppl_Polyhedron_is_univergppl_const_Polyhedron ph)
Returns a positive integerifh is a universe polyhedron; returns 0 if it is not.

e int ppl_Polyhedron_is_bounddéppl_const_Polyhedron ph)
Returns a positive integer jifh is bounded; returns 0 ibh is unbounded.

e int ppl_Polyhedron_bounds_from_abof@pl_const_Polyhedron gh, ppl_const_LinExpression_t
le)

Returns a positive integerlé is bounded from above iph; returns 0 otherwise.

e int ppl_Polyhedron_bounds_from_beldppl_const_Polyhedron gh, ppl_const_LinExpression_t
le)

Returns a positive integerlé is bounded from below iph; returns 0 otherwise.

e int ppl_Polyhedron_maximizépl_const_Polyhedron_gih, ppl_const_LinExpression_le, ppl_-
Coefficient_tsup_nppl_Coefficient_sup_d, intspmaximum ppl_const_Generator«ppoint)

Returns a positive integer ifh is not empty ande is bounded from above iph, in which case the
supremum value and a point whéee reaches it are computed.

e int ppl_Polyhedron_minimizéppl_const_Polyhedron gh, ppl_const_LinExpression_le, ppl_-
Coefficient_tinf_n, ppl_Coefficient_inf_d, int xpminimum,ppl_const_Generator xppoint)

Returns a positive integerjifh is not empty ante is bounded from above jph, in which case the infimum
value and a point wherke reaches it are computed.

e int ppl_Polyhedron_is_topologically clos§apl_const_Polyhedron ph)
Returns a positive integer jifh is topologically closed; returns 0 h is not topologically closed.

e int ppl_Polyhedron_contains_Polyhedrgpl_const_Polyhedronxt ppl_const_Polyhedronyd
Returns a positive integerxf contains or is equal tg; returns 0 if it does not.

e int ppl_Polyhedron_strictly _contains_Polyhedrofppl_const_Polyhedron_tx, ppl_const -
Polyhedron_t)

Returns a positive integerXf strictly containsy; returns 0 if it does not.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 31

e int ppl_Polyhedron_is_disjoint_from_Polyhedrorfppl_const_Polyhedron_tx, ppl_const -
Polyhedron_t)

Returns a positive integerxf andy are disjoint; returns O if they are not.

e int ppl_Polyhedron_equals_Polyhedi@pl_const_Polyhedronxt ppl_const_Polyhedrony)
Returns a positive integerxf andy are the same polyhedron; return O if they are different.

e int ppl_Polyhedron_OKppl_const_Polyhedron ph)

Returns a positive integer fifh is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noiselif is broken. Useful for debugging purposes.

e int ppl_Polyhedron_add_constraippl_Polyhedron_ph, ppl_const_Constraint d)
Adds a copy of the constraintto the system of constraints joifi.

e intppl_Polyhedron_add_constraint_and_mininf@zel_Polyhedron_ph, ppl_const_Constraint c)

Adds a copy of the constraintto the system of constraintsoii. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful rgptiris guaranteed to be minimized.

e int ppl_Polyhedron_add_generaftppl_Polyhedron_ph, ppl_const_Generatorg)
Adds a copy of the generatgrto the system of generatorsati.

¢ int ppl_Polyhedron_add_generator_and_mininfma_Polyhedron_ph, ppl_const_Generatorg)

Adds a copy of the generatgrto the system of generatorspi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful repliris guaranteed to be minimized.

e int ppl_Polyhedron_add_constrairispl_Polyhedron_ph, ppl_const_ConSys cs)
Adds a copy of the system of constraicgsto the system of constraints joffi.

e int ppl_Polyhedron_add_constraints_and_mininffz@_Polyhedron_ph, ppl_const_ConSys ds)

Adds a copy of the system of constraicgsto the system of constraintsjoii. Returns a positive integer if
the resulting polyhedron is non-empty; returns O if it is empty. Upon successful rptuia,guaranteed to
be minimized.

e int ppl_Polyhedron_add_generat@ppl_Polyhedron_ph, ppl_const_GenSys gs)
Adds a copy of the system of generaigssto the system of generatorsf.

e intppl_Polyhedron_add generators_and_minir(iigé_Polyhedron_ph, ppl_const_GenSysgs)

Adds a copy of the system of generatgssto the system of generatorsifi. Returns a positive integer if
the resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful rptuis,guaranteed to
be minimized.

e int ppl_Polyhedron_add_recycled_constra{pisl_Polyhedron_ph, ppl_ConSys_ts)
Adds the system of constraims to the system of constraints offi.

e int ppl_Polyhedron_add_recycled_constraints_and_minifpgke Polyhedron_ph, ppl_ConSys _t
Ccs)
Adds the system of constraints to the system of constraints ph. Returns a positive integer if the

resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful rgtiris, guaranteed to be
minimized.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 32

e int ppl_Polyhedron_add_recycled_generafprs_Polyhedron_ph, ppl_GenSys_¢s)
Adds the system of generat@s to the system of generatorsuif.

e int ppl_Polyhedron_add_recycled _generators_and_mini(pize Polyhedron_ph, ppl_GenSys t
gs)
Adds the system of generatgs to the system of generatorspif. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful rgpliris guaranteed to be minimized.

e int ppl_Polyhedron_intersection_assigpl_Polyhedron_x, ppl_const_Polyhedrony)
Intersectsx with polyhedrory and assigns the resutt

e int ppl_Polyhedron_intersection_assign_and_minimid@pl_Polyhedron_t x, ppl_const_-
Polyhedron_y)

Intersect with polyhedrory and assigns the result Returns a positive integer if the resulting polyhedron
is non-empty; returns O if it is empty. Upon successful returis,also guaranteed to be minimized.

o int ppl_Polyhedron_poly_hull_assidppl_Polyhedron_x, ppl_const_Polyhedrony)
Assigns toc the poly-hull ofx andy.

e int ppl_Polyhedron_poly hull_assign_and_minimigpl_Polyhedron_x, ppl_const_Polyhedron_t
y)

Assigns tax the poly-hull ofx andy. Returns a positive integer if the resulting polyhedron is non-empty;
returns O if it is empty. Upon successful retuxnis also guaranteed to be minimized.

e int ppl_Polyhedron_poly_difference_assigmpl_Polyhedron_x, ppl_const_Polyhedrony)
Assigns to thepoly-differenceof x andy.

e int ppl_Polyhedron_affine_imaggpl_Polyhedron_ph, ppl_dimension_typear, ppl_const_Lin-
Expression_te, ppl_const_Coefficient d)

Transforms the polyhedrgoh, assigning an affine expression to the specified variable.

e int ppl_Polyhedron_affine_preimadppl_Polyhedron_ph, ppl_dimension_typear, ppl_const_-
LinExpression_te, ppl_const_Coefficient d)

Transforms the polyhedrgoh, substituting an affine expression to the specified variable.

e int ppl_Polyhedron_generalized_affine_ima@apl_Polyhedron_tph, ppl_dimension_typevar,
enumppl_enum_Constraint_Typeelsym, ppl_const_LinExpression lg, ppl_const_Coefficient_t
d)

Assigns tgph the image oph with respect to thgeneralized affine transfer functiear’ pq ;=P
wherex is the relation symbol encoded bgisym .

e int ppl_Polyhedron_generalized_affine_image_lhs_(ppl_Polyhedron_t ph, ppl_const_Lin-
Expression_ths, enumppl_enum_Constraint_Tygelsym,ppl_const_LinExpressionrhs)

Assigns tgh the image oph with respect to thgeneralized affine transfer functidhs’ > rhs, wheres
is the relation symbol encoded bglsym .

e int ppl_Polyhedron_time_elapse_ass{gpl_Polyhedron_x, ppl_const_Polyhedrony)
Assigns tx thetime-elapséetween the polyhedraandy.

e int ppl_Polyhedron_ BHRZ03_ widening_assign_with_tokgppl_Polyhedron_tx, ppl_const_-
Polyhedron_t, unsignedktp)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 33

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the BHRZ03-wideningf x
andy. If tp is not the null pointer, thevidening with tokendelay technique is applied wititp available
tokens.

e int ppl_Polyhedron_BHRZ03_widening_assigmpl_Polyhedron_x, ppl_const_Polyhedrony)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the BHRZ03-wideningf x
andy.

e int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_toképpl_Polyhedron_t x,
ppl_const_Polyhedronyt ppl_const_ConSys ds, unsignecetp)

If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-wideningf
x andy intersected with the constraints @3 that are satisfied by all the points gf If tp is not the null
pointer, thewidening with tokendelay technique is applied wititp available tokens.

e int ppl_Polyhedron_limited BHRZ03_extrapolation_assi¢ppl_Polyhedron_tx, ppl_const_-
Polyhedron_t, ppl_const_ConSys ds)

If the polyhedrory is contained in (or equal to) the polyhedranassigns tox the BHRZ03-wideningf x
andy intersected with the constraints @3 that are satisfied by all the points »f

e int ppl_Polyhedron_bounded BHRZO03_extrapolation_assign_with_tokepls Polyhedron_tx,
ppl_const_Polyhedronyt ppl_const_ConSys ds, unsigneetp)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the BHRZ03-wideningf x
andy intersected with the constraints @s that are satisfied by all the points »f further intersected with
all the constraints of the formv < r and+v < r, withr € Q, that are satisfied by all the points »f If
tp is not the null pointer, thevidening with tokendelay technique is applied witiip available tokens.

e int ppl_Polyhedron_bounded BHRZ03_extrapolation_asgigm_Polyhedron_tx, ppl_const -
Polyhedron_t, ppl_const_ConSys ds)

If the polyhedrory is contained in (or equal to) the polyhedranassigns toax the BHRZ03-wideningf x
andy intersected with the constraints @ that are satisfied by all the points »f further intersected with
all the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points »f

e int ppl_Polyhedron_H79 widening_assign_with_toker{ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t, unsignedktp)
If the polyhedrory is contained in (or equal to) the polyhedranassigns to the H79-wideningof x and

y. If tp is not the null pointer, thevidening with tokenslelay technique is applied witktp available
tokens.

e int ppl_Polyhedron_H79_widening_assi@pl_Polyhedron_x, ppl_const_Polyhedronyj

If the polyhedrory is contained in (or equal to) the polyhedranassigns to« the H79-wideningof x and
y.

e int ppl_Polyhedron_limited_H79_extrapolation_assign_with_tokéyd_Polyhedron_tx, ppl_-
const_Polyhedron \t, ppl_const_ConSys ds, unsignectp)
If the polyhedrory is contained in (or equal to) the polyhedranassigns toc the H79-wideningof x and

y intersected with the constraints @$ that are satisfied by all the points »f If tp is not the null pointer,
thewidening with tokendelay technique is applied wititp available tokens.

e int ppl_Polyhedron_limited_H79_extrapolation_assig(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_¥, ppl_const_ConSys ds)

If the polyhedrory is contained in (or equal to) the polyhedranassigns tok the H79-wideningof x and
y intersected with the constraints @3 that are satisfied by all the points wf

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 34

e int ppl_Polyhedron_bounded_H79_extrapolation_assign_with_tofmsisPolyhedron_«, ppl_-
const_Polyhedron yt, ppl_const_ConSys ds, unsignedtp)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to the H79-wideningof x and
y intersected with the constraints @3 that are satisfied by all the points »f further intersected with all
the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points »f If tp
is not the null pointer, thevidening with tokendelay technique is applied wititp available tokens.

e int ppl_Polyhedron_bounded_H79 extrapolation_assi¢ppl Polyhedron_t x, ppl_const_-
Polyhedron_t, ppl_const_ConSys cs)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to the H79-wideningof x and
y intersected with the constraints @3 that are satisfied by all the points »f further intersected with all
the constraints of the formtv < r» and+v < r, withr € Q, that are satisfied by all the points »f

e int ppl_Polyhedron_topological_closure_assijgpl_Polyhedron_ph)
Assigns toh its topological closure.

e int ppl_Polyhedron_add_dimensions_and_enm{ppdl Polyhedron_ph, ppl_dimension_typd)
Addsd new dimensions to the space enclosing the polyheghoand toph itself.

e int ppl_Polyhedron_add_dimensions_and_profppt_Polyhedron_ph, ppl_dimension_type)
Addsd new dimensions to the space enclosing the polyheginon

e int ppl_Polyhedron_concatenate_asdigpl_Polyhedron_x, ppl_const_Polyhedrony)

Seeing a polyhedron as a set of tuples (its points), assignsat the tuples that can be obtained by
concatenating, in the order given, a tuplexofvith a tuple ofy.

e int ppl_Polyhedron_remove_dimensidippl_Polyhedron_ph, ppl_dimension_types[], size_t n)

Removes fromph and its containing space the dimensions that are specified imfjpsisitions of the array
ds. The presence of duplicatesds is a waste but an innocuous one.

e int ppl_Polyhedron_remove_higher_dimensi¢msl_Polyhedron_ph, ppl_dimension_typd)

Removes the higher dimensions frph and its enclosing space so that, upon successful return, the new
space dimension @.

e int ppl_Polyhedron_map_dimensiogpl_Polyhedron_ph, ppl_dimension_typenaps[], size_-
tn)

Remaps the dimensions of the vector space accordingpartéal function This function is specified by
means of thenaps array, which has entries.

e int ppl_Polyhedron_expand_dimensiappl_Polyhedron_tph, ppl_dimension_typed, ppl_-
dimension_typen)
Expandghe d-th dimension oph to mnew dimensions.

e int ppl_Polyhedron_fold_dimensiongpl_Polyhedron_tph, ppl_dimension_typels[], size t n,
ppl_dimension_typ€)
Modifiesph by folding the dimensions contained in the firspositions of the arrayls into dimensiord.
The presence of duplicatesdis is a waste but an innocuous one.

The Parma Polyhedra Library User’s Manual (version 0.6).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface

35

Typedefs

o typedef size_ppl_dimension_type
An unsigned integral type for representing space dimensions.

o typedef ppl_Coefficient_tagppl_Coefficient_t
Opaque pointer.

o typedef ppl_Coefficient_tag consippl_const_Coefficient_t
Opaque pointer to const object.

o typedef ppl_LinExpression_tagppl_LinExpression_t
Opaque pointer.

e typedef ppl_LinExpression_tag consppl_const_LinExpression_t
Opaque pointer to const object.

o typedef ppl_Constraint_tagppl_Constraint_t
Opaque pointer.

o typedef ppl_Constraint_tag consppl_const_Constraint_t
Opaque pointer to const object.

o typedef ppl_ConSys_tagppl_ConSys t
Opaque pointer.

o typedef ppl_ConSys_tag consppl_const ConSys t
Opaque pointer to const object.

o typedef ppl_ConSys_const_iterator_tagpl ConSys_const_iterator _t
Opaque pointer.

o typedef ppl_ConSys_const_iterator_tag cangpl_const_ConSys_const_iterator_t
Opaque pointer to const object.

o typedef ppl_Generator_tagppl_Generator_t
Opaque pointer.

o typedef ppl_Generator_tag corgppl_const_Generator_t
Opaque pointer to const object.

o typedef ppl_GenSys_tagppl_GenSys_t
Opaque pointer.

o typedef ppl_GenSys_tag consppl_const_GenSys _t
Opaque pointer to const object.

o typedef ppl_GenSys_const_iterator_tagpl GenSys_const_iterator_t
Opaque pointer.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 36

o typedef ppl_GenSys_const_iterator_tag cerngpl_const_GenSys_const_iterator_t
Opaque pointer to const object.

o typedef ppl_Polyhedron_tagppl_Polyhedron_t
Opaque pointer.

o typedef ppl_Polyhedron_tag consppl_const_Polyhedron_t
Opaque pointer to const object.

Enumerations

e enumppl_enum_error_code

PPL_ERROR_OUT_OF MEMORY PPL_ERROR_INVALID_ARGUMENT PPL_ERROR_-
LENGTH_ERRORPPL_ARITHMETIC_OVERFLOW

PPL_STDIO_ERROR PPL_ERROR_INTERNAL ERROR PPL_ERROR_UNKNOWN_-
STANDARD_EXCEPTION PPL_ERROR_UNEXPECTED_ERROR

Defines the error codes that any function may return.

e enumppl_enum_Constraint_Tygde

PPL_CONSTRAINT_TYPE_LESS_THAN PPL_CONSTRAINT_TYPE_LESS_THAN_OR_-
EQUAL, PPL_CONSTRAINT TYPE_EQUAL PPL_CONSTRAINT _TYPE_GREATER_ -
THAN_OR_EQUAL,

PPL_CONSTRAINT_TYPE_GREATER_THAN
Describes the relations represented by a constraint.

e enum ppl_enum_Generator_Typ¢ PPL_GENERATOR_TYPE_LINE PPL_GENERATOR_-
TYPE_RAY, PPL_GENERATOR_TYPE_POINT PPL_GENERATOR_TYPE_ CLOSURE -
POINT}

Describes the different kinds of generators.

Variables

e unsigned inPPL_COMPLEXITY_CLASS_POLYNOMIAL
Code of the worst-case polynomial complexity class.

unsigned inPPL_COMPLEXITY_CLASS_SIMPLEX
Code of the worst-case exponential but typically polynomial complexity class.

unsigned inPPL_COMPLEXITY_CLASS_ANY
Code of the universal complexity class.

unsigned inPPL_POLY_CON_RELATION_IS_DISJOINT
Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

e unsigned inPPL_POLY_CON_RELATION_STRICTLY_INTERSECTS

Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 37

e unsigned inPPL_POLY_CON_RELATION_IS_INCLUDED
Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

e unsigned inPPL_POLY_CON_RELATION_SATURATES
Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

e unsigned inPPL_POLY_GEN_RELATION_SUBSUMES
Individual bit saying that adding the generator would not change the polyhedron.

7.3.1 Detailed Description

Some details about the C Interface

All the declarations needed for using the PPL's C interface (preprocessor symbols, data types, variables and
functions) are collected in the header filpl_c.h . This file, which is designed to work with pre-ANSI

and ANSI C compilers as well as C99 and C++ compilers, should be included, either directly or via some
other header file, with the directive

#include <ppl_c.h>

If this directive does not work, then your compiler is unable to find thepfile c.h . So check that the
library is installed (if it is not installed, you may wantitaake install , perhaps with root privileges);

that it is installed in the right place (if not you may want to reconfigure the library using the appropriate
pathname for theprefix ~ option); and that your compiler knows where it is installed (if not you should
add the path to the directory whepel_c.h is located to the compiler’s include file search path; this is
usually done with thel option).

The name space of the PPL's C interfacd®BL_x for preprocessor symbols, enumeration values and
variables; angpl_ « for data types and function names. The interface systematicallyopsegie data
types(generic pointers that completely hide the internal representations from the client code) and provides
all required access functions. By using just the interface, the client code can exploit all the functionalities
of the library yet avoid directly manipulating the library’s data structures. The advantages are that (1)
applications do not depend on the internals of the library (these may change from release to release), and
(2) the interface invariants can be thoroughly checked (by the access functions).

The PPL's C interface is initialized by means of ty@_initialize function. This function must be
calledbefore using any other interface of the librarfhe application can release the resources allocated
by the library by calling theopl_finalize function. After this function is calledo other interface of

the library may be usedntil the interface is re-initialized usingpl_initialize

Any application using the PPL should make sure that only the intended version(s) of the library are ever
used. The version used can be checked at compile-time thanks to the macros PPL_VERSION_MAJOR,
PPL_VERSION_MINOR, PPL_VERSION_REVISION and PPL_VERSION_BETA, which give, respec-
tively major, minor, revision and beta numbers of the PPL version. This is an example of their use:

#if PPL_VERSION_MAJOR == 0 && PPL_VERSION_MINOR < 6
error "PPL version 0.6 or following is required"
#endif

Compile-time checking, however, is not normally enough, particularly in an environment where there is dy-
namic linking. Run-time checking can be performed by means of the fungtighsersion_major ,
ppl_version_minor , ppl_version_revision , andppl_version_beta . The PPL's C inter-

face also provides functioqpl_version |, returning character string containing the full version number,

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 38

andppl_banner , returning a string that, in addition, provides (pointers to) other useful information for
the library user.

All programs using the PPL's C interface must link with the following libraribppl_c =~ (PPLs C
interface)libppl (PPL's core)libgmpxx (GMP’s C++ interface), anbbgmp (GMP’s library core).
On most Unix-like systems, this is done by addifgpl ¢ , -lppl , -lgmpxx , and-lgmp to the
compiler’s or linker's command line. For example:

gcc myprogram.o -lppl_c -lppl -lgmpxx -lgmp

If this does not work, it means that your compiler/linker is not finding the libraries where it expects. Again,
this could be because you forgot to install the library or you installed it in a non-standard location. In the
latter case you will need to use the appropriate options (ustlalyand, if you use shared libraries, some
sort of run-time path selection mechanisms. Consult your compiler's documentation for details. Notice
that the PPL is built usingibtool and an application can exploit this fact to significantly simplify the
linking phase. See Libtool's documentation for details. Those working under Linux can find a lot of useful
information on how to use program libraries (including static, shared, and dynamically loaded libraries) in
theProgram Library HOWTO .

For examples on how to use the functions provided by the C interface, you are referred to the
interfaces/C/lpenum/ directory in the source distribution. It contains a tapear Programming
solver written in C. In order to use this solver you will need to instalPK(the GNU Linear Programming

Kit): this is used to read linear programs in MPS format.

7.3.2 Define Documentation

7.3.2.1 #define PPL_VERSION "0.6"
A string containing the PPL version.

Let Mandmdenote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSIONI4 "." m if both PPL_VERSION_REVISIONr() and
PPL_VERSION_BETA lf)are zeroM """ m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zerayl "." m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zeroM "." m "" r "pre" b if neither PPL_VERSION_REVISION

nor PPL_VERSION_BETA are zero.

7.3.3 Typedef Documentation

7.3.3.1 typedef const char ppl_io_variable output_function_typegppl_dimension_typevar)
The type of output functions used for printing variables.

An output function for variables must write a textual representatiorvéor to a character buffer, null-
terminate it, and return a pointer to the beginning of the buffer. In case the operation fails, 0 should be
returned and perhagsrno should be set in a meaningful way. The library does nothing with the buffer,
besides printing its contents.

7.3.4 Enumeration Type Documentation

7.3.4.1 enunppl_enum_error_code

Defines the error codes that any function may return.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/software/libtool/
http://www.dwheeler.com/program-library/
http://www.gnu.org/software/glpk/
http://www.cs.unipr.it/ppl/

7.3 C Language Interface 39

Enumeration values:
PPL_ERROR_OUT_OF_MEMORY The virtual memory available to the process has been ex-
hausted.

PPL_ERROR_INVALID_ARGUMENT A function has been invoked with an invalid argument.

PPL_ERROR_LENGTH_ERROR The construction of an object that would exceed its maximum
permitted size was attempted.

PPL_ARITHMETIC_OVERFLOW An arithmetic overflow occurred and the computation was con-
sequently interrupted. This camly happen in library’s incarnations using bounded integers as
coefficients.

PPL_STDIO_ERROR An error occurred during a C input/output operation. A more precise indica-
tion of what went wrong is availble viarrno .

PPL_ERROR_INTERNAL_ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL_ERROR_UNKNOWN_STANDARD_EXCEPTIONA standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL_ERROR_UNEXPECTED_ERRORA totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

7.3.4.2 enunmppl_enum_Constraint_Type
Describes the relations represented by a constraint.

Enumeration values:
PPL_CONSTRAINT_TYPE_LESS THANThe constraint is of the forrma < 0.

PPL_CONSTRAINT_TYPE_LESS_THAN_OR_EQUALThe constraint is of the forra < 0.
PPL_CONSTRAINT_TYPE_EQUAL The constraint is of the forra = 0.
PPL_CONSTRAINT_TYPE_GREATER_THAN_OR_EQUALThe constraint is of the form > 0.

PPL_CONSTRAINT_TYPE_GREATER_THANThe constraint is of the forrma > 0.

7.3.4.3 enunppl_enum_Generator_Type
Describes the different kinds of generators.

Enumeration values:
PPL_GENERATOR_TYPE_LINE The generator is a line.

PPL_GENERATOR_TYPE_RAY The generator is a ray.
PPL_GENERATOR_TYPE_POINT The generator is a point.
PPL_GENERATOR_TYPE_CLOSURE_POINTThe generator is a closure point.

7.3.5 Function Documentation

7.3.5.1 int ppl_banner (const chagx p)
Writes toma pointer to a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 40

7.3.5.2 int ppl_initialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

Returns:
PPL_ERROR_INVALID_ARGUMENfTthe library was already initialized.

7.3.5.3 int ppl_finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

Returns:
PPL_ERROR_INVALID_ARGUMEN(Tthe library was already finalized.

7.3.5.4 int ppl_set _error_handler (void¢ h)(enum ppl_enum_error_code code, const char
«xdescription))

Installs the user-defined error handler pointedhby

The error handler takes an error code and a textual description that gives further information about the
actual error. The C string containing the textual description is read-only and its existence it not guaranteed
after the handler has returned.

7.3.5.5 int ppl_new_C_Polyhedron_from_ConSysppl_Polyhedron_t « pph, ppl_const_ConSys t
c9)

Builds a new closed polyhedron from the system of constraist@&nd writes an handle for the newly
created polyhedron at addrggsh .

The new polyhedron will inherit the space dimensiortsf

7.3.5.6 intppl_new_C_Polyhedron_recycle ConSypgl_Polyhedron_tx pph, ppl_ConSys tcg

Builds a new closed polyhedron recycling the system of constraintend writes an handle for the newly
created polyhedron at addrggsh.

Sincecs will be thesystem of constraints of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

7.3.5.7 int ppl_new_NNC_Polyhedron_from_ConSysp¢l_Polyhedron_t « pph, ppl_const_Con-
Sys_tcs)

Builds a new NNC polyhedron from the system of constraistand writes an handle for the newly created
polyhedron at addreggph.

The new polyhedron will inherit the space dimensiortsf

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 41

7.3.5.8 intppl_new_NNC_Polyhedron_recycle_ConSypfgl_Polyhedron_t« pph, ppl_ConSys_tcs)

Builds a new NNC polyhedron recycling the system of constraiatand writes an handle for the newly
created polyhedron at addrggsh.

Sincecs will be thesystem of constraints of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

7.3.5.9 int ppl_new_C_Polyhedron_from_GenSysppl_Polyhedron_t x pph, ppl_const_GenSys t
99

Builds a new closed polyhedron from the system of generagsrand writes an handle for the newly
created polyhedron at addrggsh.

The new polyhedron will inherit the space dimensiomsf

7.3.5.10 int ppl_new_C_Polyhedron_recycle_GenSypql_Polyhedron_t « pph, ppl_GenSys_tg9

Builds a new closed polyhedron recycling the system of genergsoed writes an handle for the newly
created polyhedron at addrggsh .

Sincegs will be thesystem of generators of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the generator system referenceddy upon return, no assumption can be
made on its value.

7.3.5.11 int ppl_new_NNC_Polyhedron_from_GenSypl_Polyhedron_t « pph, ppl_const_Gen-
Sys_tg9

Builds a new NNC polyhedron from the system of generagsrand writes an handle for the newly created
polyhedron at addresxph.

The new polyhedron will inherit the space dimensionysf

7.3.5.12 int ppl_new_NNC_Polyhedron_recycle_GenSyppl_Polyhedron_t « pph, ppl_GenSys t
99

Builds a new NNC polyhedron recycling the system of generagerand writes an handle for the newly
created polyhedron at addrggsh .

Sincegs will be thesystem of generators of the new polyhedron, the space dimension is also inherited.

Warning:
This function modifies the generator system referencedsy upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 42

7.3.5.13 int ppl_new_C_Polyhedron_from_bounding_box ppl_Polyhedron_t =« pph, ppl_-
dimension_typdx space_dimensiofvoid), int(x is_empty(void), int(x get lower_bouny{ppl -
dimension_typek, int closed,ppl_Coefficient_tn, ppl_Coefficient_td), int(x get_upper_bouni{ppl_-
dimension_typek, int closed, ppl_Coefficient_tn, ppl_Coefficient_td))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addreggsh .

If an interval of the bounding box is provided with any finite but open bound, then the polyhedron is not
built and the value°PPL_ERROR_INVALID ARGUMENS returned. The bounding box is accessed by
using the following functions, passed as arguments:

ppl_dimension_type space_dimension()
returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.
int is_empty()

returns O if and only if the bounding box describes a non-empty set. The furistiempty() will
always be called before the other functions. Howeveis iempty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type Kk, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. IfI is not bounded from below, simply return 0.
Otherwise, setlosed , n andd as follows:closed s set to O if the lower boundary dfis open and
is set to a value different from zero otherwiseandd are assigned the integersandd such that the
canonical fractiom/d corresponds to the greatest lower bound.cfhe fractionn/d is in canonical form

if and only if n andd have no common factors amlis positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Iff is not bounded from above, simply return 0.
Otherwise, setlosed , n andd as follows:closed is set to O if the upper boundary 6fis open and is
set to a value different from O otherwiseandd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the least upper bound of

7.3.5.14 int ppl_new_NNC_Polyhedron_from_bounding_box ppl_Polyhedron_t « pph, ppl_-
dimension_typdx space_dimensiofvoid), int(x is_empty(void), int(x get lower_bouny{ppl -
dimension_typek, int closed,ppl_Coefficient_tn, ppl_Coefficient_td), int(x get_upper_bouni{ppl_-
dimension_typek, int closed, ppl_Coefficient_tn, ppl_Coefficient_td))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addreggsh .

The bounding box is accessed by using the following functions, passed as arguments:
ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 43

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The funstiempty() will
always be called before the other functions. Howeveis iempty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Ifl is not bounded from below, simply return 0.
Otherwise, setlosed , n andd as follows: closed is set to O if the lower boundary dfis open and
is set to a value different from zero otherwiseandd are assigned the integersandd such that the
canonical fractiom/d corresponds to the greatest lower bound.of he fractionn/d is in canonical form

if and only if n andd have no common factors amlis positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth dimension. Ifl is not bounded from above, simply return O.
Otherwise, setlosed , n andd as follows:closed is set to O if the upper boundary éfis open and is
set to a value different from 0 otherwiseandd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the least upper bound of

7.3.5.15 int ppl_Polyhedron_relation_with_Constraint ppl_const_Polyhedron_tph, ppl_const_-
Constraint_t ¢)

Checks the relation between the polyhedpbnwith the constraint.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (cho-
sen among PPL_POLY_CON_RELATION_IS_DISJOINT PPL_POLY_CON_RELATION_STRICTLY_-
INTERSECTS, PPL_POLY_CON_RELATION_IS_INCLUDED, and PPL_POLY_CON_RELATION_-
SATURATES) that describe the relation betwgdnandc.

7.3.5.16 int ppl_Polyhedron_relation_with_Generator fpl_const_Polyhedron_tph, ppl_const_-
Generator_tQ)

Checks the relation between the polyhedpbnwith the generatog.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (only PPL_POLY_-
GEN_RELATION_SUBSUMES, at present) that describe the relation betpleemdg.

7.3.5.17 int ppl_Polyhedron_shrink_bounding_boxgpl_const_Polyhedron_tph, unsigned intcom-
plexity, void(x set_empty(void), void(x raise_lower_bouni{ppl_dimension_typek, int closed, ppl_-
const_Coefficient_tn, ppl_const_Coefficient_td), void(x lower_upper_bouni{ppl_dimension_typek,
int closed,ppl_const_Coefficient_tn, ppl_const_Coefficient_td))

Use ph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters.

Parameters:
ph The polyhedron that is used to shrink the bounding box;

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 44

complexity The code of the complexity class of the algorithm to be used. Must be one of
PPL_COMPLEXITY_CLASS_POLYNOMIAL, PPL_COMPLEXITY_CLASS_SIMPLEX, or
PPL_COMPLEXITY_CLASS_ANY;

set_emptyA pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set;

raise_lower_boundA pointer to a void function with argumen{®pl_dimension_type Kk,
int closed, ppl_const_Coefficient_t n, ppl_const Coefficient t
d) that intersects the interval corresponding to khth dimension within/d, +00) if closed
is non-zero, within/d, +c0) if closed is zero. The fractiom/d is in canonical form, that is,
n andd have no common factors ards positive,0/1 being the unique representation for zero;

lower_upper_bounda pointer to a void function with argumefppl_dimension_type K,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t
d) that intersects the interval corresponding tolthilh dimension with(—oco, n/d] if closed
is non-zero, with —oo, n/d) if closed is zero. The fractiom/d is in canonical form.

7.3.5.18 intppl_Polyhedron_maximizegpl_const_Polyhedron_tph, ppl_const_LinExpression_te,
ppl_Coefficient_tsup_n ppl_Coefficient_tsup_d int x pmaximum ppl_const_Generator_tx ppoint)

Returns a positive integer gh is not empty ande is bounded from above iph, in which case the
supremum value and a point wheee reaches it are computed.

Parameters:
ph The polyhedron constraining ;

le The linear expression to be maximized subjeqttio

sup_n Will be assigned the numerator of the supremum value;

sup_d Will be assigned the denominator of the supremum value;

pmaximum Will store 1 in this location if the supremum is also the maximum, will store O otherwise;

ppoint When nonzero, a point or closure point whéze reaches the extremum value will be stored
here. Ifph is empty orle is not bounded from above, 0 is returned awup n, sup _d,
xpmaximum ands=ppoint are left untouched.

7.3.5.19 int ppl_Polyhedron_minimize ppl_const_Polyhedron_tph, ppl_const_LinExpression_tle,
ppl_Coefficient_tinf_n, ppl_Coefficient_tinf_d, int « pminimum, ppl_const_Generator_t« ppoint)

Returns a positive integer gh is not empty ande is bounded from above iph, in which case the
infimum value and a point whete reaches it are computed.

Parameters:
ph The polyhedron constraining ;

le The linear expression to be minimized subjegpig

inf_n Will be assigned the numerator of the infimum value;

inf_d Will be assigned the denominator of the infimum value;

pminimum Will store 1 in this location if the infimum is also the minimum, will store O otherwise;

ppoint When nonzero, a point or closure point whére reaches the extremum value will be stored
here. Ifph is empty orle is not bounded from below, O is returned aimfl n , inf d ,
xpminimum andxppoint are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 45

7.3.5.20 int ppl_Polyhedron_equals_Polyhedron pfl_const Polyhedron_t x, ppl_const -
Polyhedron_ty)

Returns a positive integer¥f andy are the same polyhedron; return O if they are different.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value 0
is returned.

7.3.5.21 intppl_Polyhedron_add_recycled_constraintppl_Polyhedron_tph, ppl_ConSys_tc9

Adds the system of constraints to the system of constraints ph.

Warning:
This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

7.3.5.22 intppl_Polyhedron_add_recycled_constraints_and_minimizegl_Polyhedron_tph, ppl_-
ConSys_tcs)

Adds the system of constraints to the system of constraints ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful retiaris, guaranteed to be
minimized.

Warning:
This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

7.3.5.23 int ppl_Polyhedron_add_recycled_generatorggl_Polyhedron_tph, ppl_GenSys_tg9

Adds the system of generatags to the system of generators (offi.

Warning:
This function modifies the generator system referencedsy upon return, no assumption can be
made on its value.

7.3.5.24 int ppl_Polyhedron_add_recycled_generators_and_minimizpgl_Polyhedron_tph, ppl_-
GenSys_1g9

Adds the system of generatogs to the system of generators ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful retiaris, guaranteed to be
minimized.

Warning:
This function modifies the generator system referencedsy upon return, no assumption can be
made on its value.

7.3.5.25 int ppl_Polyhedron_affine_imageppl_Polyhedron_t ph, ppl_dimension_typevar, ppl_-
const_LinExpression_tle, ppl_const_Coefficient_td)

Transforms the polyhedrgoh, assigning an affine expression to the specified variable.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.3 C Language Interface 46

Parameters:
ph The polyhedron that is transformed;

var The variable to which the affine expression is assigned;
le The numerator of the affine expression;
d The denominator of the affine expression.

7.3.5.26 intppl_Polyhedron_affine_preimageipl_Polyhedron_tph, ppl_dimension_typevar, ppl_-
const_LinExpression_tle, ppl_const_Coefficient_td)

Transforms the polyhedrgoh, substituting an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed;

var The variable to which the affine expression is substituted;
le The numerator of the affine expression;
d The denominator of the affine expression.

7.3.5.27 int ppl_Polyhedron_generalized_affine_imagepgl_Polyhedron_t ph, ppl_dimension_-
type var, enum ppl_enum_Constraint_Type relsym ppl_const_LinExpression_t le, ppl _const_-
Coefficient_td)

Assigns toph the image ofh with respect to thgeneralized affine transfer functiear’ <
wherex is the relation symbol encoded bgisym .

expr
denominator’

Parameters:
ph The polyhedron that is transformed;

var The left hand side variable of the generalized affine transfer function;
relsym The relation symbol,

le The numerator of the right hand side affine expression;

d The denominator of the right hand side affine expression.

7.3.5.28 int ppl_Polyhedron_generalized_affine_image_lhs_rhggl_Polyhedron_tph, ppl_const_-
LinExpression_tlhs, enumppl_enum_Constraint_Typerelsym ppl_const_LinExpression_trhs)

Assigns taph the image oph with respect to thgeneralized affine transfer functidins’ > rhs, wheres
is the relation symbol encoded bgisym .

Parameters:
ph The polyhedron that is transformed;

Ihs The left hand side affine expression;
relsym The relation symbol;
rhs The right hand side affine expression.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 47

7.3.5.29 int ppl_Polyhedron_map_dimensiongpl_Polyhedron_tph, ppl_dimension_typemapg],
size_tn)

Remaps the dimensions of the vector space according#otal function This function is specified by
means of thenaps array, which has entries.

The partial function is defined on dimensioiif i < nandmaps[i] != ppl_not_a_dimension ;
otherwise it is undefined on dimension If the function is defined on dimension then dimension is
mapped onto dimensianapsi]

The result is undefined haps does not encode a partial function with the properties described in the
specification of the mapping operator

7.4 Prolog Language Interface

The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization
of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The system-independent features of the library are described in S&ytgiam-Independent Features
SectionCompilation and Installatiomxplains how the various incarnations of the Prolog interface are
compiled and installed. Secti@®ystem-Dependent Featuiidigstrates the system-dependent features of
the interface for all the supported systems.

System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in Séclidmsry

for Convex PolyhedraAn Introduction to Convex Polyhedr&epresentations of Convex Polyhedrad
Operations on Convex Polyhedo&this manual. Here we just describe those aspects that are specific to
the Prolog interface.

Overview First, here is a list of notes with general information and advice on the use of the interface.

e The Prolog interface to the PPL is initialized and finalized by the prediggteitialize/0
andppl_finalize/0 . Thus the only interface predicates callable aftglr finalize/O are
ppl_finalize/0 itself (this further call has no effect) ambl_initialize/0 , after which
the interface’s services are usable again. Some Prolog systems allow the specification of initializa-
tion and deinitialization functions in their foreign language interfaces. The corresponding incarna-
tions of the PPL-Prolog interface have been written so pipatinitialize/0 and/orppl_-
finalize/0 are called automatically. Secti®@ystem-Dependent Featunadl detail in which
cases initialization and finalization is automatically performed or is left to the Prolog programmer’s
responsibility. However, for portable applications, it is best to invpgk initialize/0 and
ppl_finalize/0 explicitly: since they can be called multiple times without problems, this will
result in enhanced portability at a cost that is, by all means, negligible.

e A PPL polyhedron can only be accessed by means of a Prolog term chiedie Note, however,
that the data structure of a handle, is implementation-dependent, system-dependent and version-
dependent, and, for this reason, deliberately left unspecified. What we do guarantee is that the
handle requires very little memory.

e A Prolog term can be bound to a valid handle by using:

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 48

ppl_new_Polyhedron_from_dimension/3,
ppl_new_Polyhedron_empty_from_dimension/3,
ppl_new_Polyhedron_from_Polyhedron/4,
ppl_new_Polyhedron_from_constraints/3,
ppl_new_Polyhedron_from_generators/3.
ppl_new_Polyhedron_from_bounding_box/3.

These predicates will create or copy a PPL polyhedron and construct a valid handle for referenc-
ing it. The first argument (in the case @bl_new_Polyhedron_from_Polyhedron/4 , the

first and third arguments) denotes the topology and can be eitbennc indicating a C or NNC
polyhedron, respectively. The third argument (in the casgpbfnew_Polyhedron_from_-
Polyhedron/4 , the fourth argument) is a Prolog term that is unified with a new valid handle for
accessing this polyhedron.

e As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicatepl_delete_Polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argumelirdelete_Polyhedron/1 , it becomes in-
valid.

e For a PPL polyhedron with space dimenslonthe identifiers used for the PPL variables must lie
between 0 an& — 1 and correspond to the indices of the associated Cartesian axes. When using the
predicates that combine PPL polyhedra or add constraints or generators to a representation of a PPL
polyhedron, the polyhedra referenced and any constraints or generators in the call should follow all
the space dimension-compatibility rules stated in Sed®epresentations of Convex Polyhedra

e As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in SectidRepresentations of Convex Polyhedra

e Any application using the PPL should make sure that only the intended version(s) of the library are
ever used. Predicates

ppl_version_major/1,
ppl_version_minor/1,
ppl_version_revision/1,
ppl_version_beta/1,
ppl_version/1,
ppl_banner.

allow run-time checking of information about the version being used.

PPL Predicate List Here is a list of all the PPL predicates provided by the Prolog interface.
ppl_version_major(?Integer)

ppl_version_minor(?Integer)

ppl_version_revision(?Integer)

ppl_version_beta(?Integer)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface

49

ppl_version(?Atom)

ppl_banner(?Atom)

ppl_max_space_dimension(?Integer)

ppl_initialize

ppl_finalize

ppl_set_timeout_exception_atom(+Atom)

ppl_set_timeout(+Integer)

ppl_reset_timeout

ppl_new_Polyhedron_from_dimension(+Topology, +Integer, -Handle)
ppl_new_Polyhedron_empty from_dimension(+Topology, +Integer, -Handle)

ppl_new_Polyhedron_from_Polyhedron(+Topology 1, +Handle_1, +Topology_ -
2, -Handle_2)

ppl_new_Polyhedron_from_constraints(+Topology, +Constraint_System,
-Handle)

ppl_new_Polyhedron_from_generators(+Topology, +Generator_System,
-Handle)

ppl_new_Polyhedron_from_bounding_box(+Topology, +Box, -Handle)
ppl_Polyhedron_swap(+Handlel, +Handle2)
ppl_delete_Polyhedron(+Handle)
ppl_Polyhedron_space_dimension(+Handle, -Integer)
ppl_Polyhedron_get constraints(+Handle, -Constraint_System)
ppl_Polyhedron_get _minimized_constraints(+Handle, -Constraint_System)
ppl_Polyhedron_get generators(+Handle, -Generator_System)
ppl_Polyhedron_get _minimized_generators(+Handle, -Generator_System)

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint,
-Relation)

ppl_Polyhedron_relation_with_generator(+Handle, +Generator,
-Relation)

ppl_Polyhedron_get bounding_box(+Handle, +Complexity, -Box)
ppl_Polyhedron_is_empty(+Handle)
ppl_Polyhedron_is_universe(+Handle)
ppl_Polyhedron_is_bounded(+Handle)
ppl_Polyhedron_bounds_from_above(+Handle, +LinExpr)
ppl_Polyhedron_bounds_from_below(+Handle, +LinExpr)
ppl_Polyhedron_maximize(+Handle, +LinExpr, ?Integer, ?Integer, ?Bool)

ppl_Polyhedron_maximize_with_point(+Handle, +LinExpr, ?Integer,
?Integer, ?Bool, ?Poaint)

ppl_Polyhedron_minimize(+Handle, +LinExpr, ?Integer, ?Integer, ?Bool)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 50

ppl_Polyhedron_minimize_with_point(+Handle, +LinExpr, ?Integer,
?Integer, ?Bool, ?Point)

ppl_Polyhedron_is_topologically closed(+Handle)
ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_strictly contains_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_OK(+Handle)
ppl_Polyhedron_add_constraint(+Handle, +Constraint)
ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint)
ppl_Polyhedron_add_generator(+Handle, +Generator)
ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator)
ppl_Polyhedron_add_constraints(+Handle, +Constraint_System)

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System)

ppl_Polyhedron_add_generators(+Handle, +Generator_System)

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_-
System)

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)
ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)
ppl_Polyhedron_poly hull_assign(+Handle_1, +Handle 2)
ppl_Polyhedron_poly _hull_assign_and_minimize(+Handle_1, +Handle_2)
ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle_2)
ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +LinExpr, +Integer)
ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +LinExpr, +Integer)

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-
Symbol, +LinExpr, +Integer)

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +LinExprl,
+Relation_Symbol, +LinExpr2)

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_BHRZ03_widening_assign_with_token(+Handle_1, +Handle_2,
?Integer)

ppl_Polyhedron_BHRZ03_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_-
token(+Handle_1, +Handle_2, +Constraint_System, ?Integer)

ppl_Polyhedron_limited BHRZ03_extrapolation_assign(+Handle 1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_-
token(+Handle_1, +Handle_2, +Constraint_System, ?Integer)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 51

ppl_Polyhedron_bounded_BHRZO03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_H79 widening_assign_with_token(+Handle_1, +Handle_2,
?Integer)

ppl_Polyhedron_H79_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited _H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System, ?Integer)

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System)

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_bounded H79 extrapolation_assign(+Handle_1, +Handle 2,
+Constraint_System, ?Integer)

ppl_Polyhedron_topological_closure_assign(+Handle)
ppl_Polyhedron_add_dimensions_and_embed(+Handle, +Integer)
ppl_Polyhedron_add_dimensions_and_project(+Handle, +Integer)
ppl_Polyhedron_concatenate_assign(+Handlel, +Handle2)
ppl_Polyhedron_remove_dimensions(+Handle, +List _of PPL_Vars)
ppl_Polyhedron_remove_higher_dimensions(+Handle, +Integer))
ppl_Polyhedron_expand_dimension(+Handle, +PPL_Var, +Integer))
ppl_Polyhedron_fold_dimensions(+Handle, +List of PPL_Vars, +PPL_Var))

ppl_Polyhedron_map_dimensions(+Handle, +P_Func))

PPL Predicate Specifications The PPL predicates provided by the Prolog interface are specified below.
The specification uses the following grammar rules:

Handle --> Prolog term
Topology -> c | nnc
Varld --> number | + number variable identifier
PPL_Var --> "$VAR’(Varld) PPL variable
LinExpr --> PPL_Var PPL variable
| number
| + LinExpr unary plus
| - LinExpr unary minus
| LinExpr + LinExpr addition
| LinExpr - LinExpr subtraction
| number * LinExpr multiplication
| LinExpr * number multiplication

Relation_Symbol

> = equals
=< less than or equal
>= greater than or equal
strictly less than
strictly greater than

<
>

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface

Denominator --> number
| + number | - number number must be non-zero

Constraint --> LinExpr Relation_Symbol LinExpr

constraint
Constraint_System list of constraints
- []
| [Constraint | Constraint_System]
Generator --> point(LinExpr) point
| point(LinExpr, Denominator)
point
| closure_point(LinExpr) closure point

| closure_point(LinExpr, Denominator)
closure point
(the point or closure point is defined by LinExpr/Denominator.)

| ray(LinExpr) ray
| line(LinExpr) line
Generator_System list of generators
-— []
| [Generator | Generator_System]
Atom --> Prolog atom
Relation --> is_disjoint between a constraint and a polyhedron
| strictly_intersects between a constraint and a polyhedron
| is_included between a constraint and a polyhedron
| saturates between a constraint and a polyhedron
| subsumes between a generator and a polyhedron
Relation_List list of relations
- I]

| [Relation | Relation_List]

Complexity --> polynomial | simplex | any

Rational_Numerator
--> number | + number | - number

Rational_Denominator
--> number number must be non-zero

Rational --> Rational_Numerator rational number
| Rational_Numerator/Rational_Denominator

Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction
Interval --> i(Bound, Bound) rational interval
Box ->] list of intervals

| [Interval | Box]
Vars_Pair --> PPLVar - PPLVar map relation

P_Func -->] list of map relations
| [Vars_Pair | P_Func].

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 53

Below is a short description of each of the interface predicates. For full definitions of terminology used
here, see SectiomsLibrary for Convex PolyhedraAn Introduction to Convex PolyhedrRepresentations
of Convex PolyhedrandOperations on Convex Polyheds&this manual.

ppl_version_major(?Integer) UnifiesInteger with the major number of the PPL version.
ppl_version_minor(?Integer) Unifiesinteger with the minor number of the PPL version.
p_pl_version_revision(?lnteger) Unifiesinteger with the revision number of the PPL ver-
sion.

ppl_version_beta(?Integer) Unifiesinteger with the beta number of the PPL version.
ppl_version(?Atom) Unifies Atom with the PPL version.

ppl_banner(?Atom) Unifies Atom with information about the PPL version, the licensing, the lack

of any warranty whatsoever, the C++ compiler used to build the library, where to report bugs and where to
look for further information.

ppl_max_space_dimension(?Integer) Unifies Integer with the maximum space dimen-
sion this library can handle.

ppl_initialize Initializes the PPL interface. Multiple calls ppl_initialize does no harm.
ppl_finalize Finalizes the PPL interface. Once this is executed, the next call to an interface pred-
icate must either be tppl_initialize or to ppl_finalize . Multiple calls toppl_finalize

does no harm.

ppl_set_timeout_exception_atom(+Atom) Sets the atom to be thrown by timeout exceptions
to Atom. The default value iEme_out

ppl_timeout_exception_atom(?Atom) The atom to be thrown by timeout exceptions is unified
with Atom.
ppl_set_timeout(+Integer) Computations taking exponential time will be interrupted some

time afterinteger ms after that call. If the computation is interrupted that way, the current timeout
exception atom will be throwrinteger must be strictly greater than zero.

ppl_reset_timeout Resets the timeout time so that the computation is not interrupted.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 54

ppl_new_Polyhedron_from_dimension(+Topology, +Integer, -Handle) Creates a
new universe C or NNC polyhedrdn, depending on the value @bpology , with Integer dimensions.
Handle is unified with the handle foP. Thus the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X).

creates the C polyhedron defining the 3-dimensional vector paeegth X bound to a valid handle for
accessing it.

ppl_new_Polyhedron_empty_from_dimension(+Topology, +Integer, -Handle)
Creates a new empty C or NNC polyhedrBn depending on the value dfopology , with Integer
dimensionsHandle is unified with the handle foP. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, 3, X).

creates an empty NNC polyhedron embeddeRwith X bound to a valid handle for accessing it.

ppl_new_Polyhedron_from_Polyhedron(+Topology 1, +Handle_1, +Topology -

2, -Handle_2) If Handle_1 refers to a C or NNC polyhedrof; (depending on the value of
Topology_1), then this creates a co, of P; with topology C or NNC, depending on the value of
Topology 2 . Handle_2 is unified with the handle foP,. Thus the query

?- ppl_new_Polyhedron_empty_from_dimension(nnc, 3, X),
ppl_new_Polyhedron_from_Polyhedron(c, X, nnc, Y).

creates an empty C polyhedron embedde®&irreferenced by and then makes a copy, converting the
topology to an NNC polyhedron. with bound to a valid handle for accessing it.

When usingppl_new_Polyhedron_from_Polyhedron/2 , when the source polyhedron is NNC
and the copy is C, care must be taken that the source polyhedron referendaddigl is topologically
closed.

ppl_new_Polyhedron_from_constraints(+Topology, +Constraint_System,
-Handle) Creates a polyhedrdR represented bZonstraint_System with topology C or NNC,
depending on the value dbpology . Handle is unified with the handle foP.

ppl_new_Polyhedron_from_generators(+Topology, +Generator_System,
-Handle) Creates a polyhedroP represented byGenerator_System with topology C or
NNC, depending on the value @bpology . Handle is unified with the handle faP.

ppl_new_Polyhedron_from_bounding_box(+Topology, +Box, -Handle) Creates a
polyhedronP represented box with topology C or NNC, depending on the valueTadpology , and
Handle is unified with the handle foP. A bound of the formo(Rational) can be included in an
interval inBox only if Topology isnnc.

ppl_Polyhedron_swap(+Handlel, +Handle2) Swaps the polyhedron referenced by
Handlel with the one referenced iyandle2 . The polyhedrg® and Q must have the same topology.

ppl_delete_Polyhedron(+Handle) Deletes the polyhedron referencedHibgndle . After exe-
cution,Handle is no longer a valid handle for a PPL polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 55

ppl_Polyhedron_space_dimension(+Handle, ?Integer) Unifies the space dimension
of the polyhedron referenced bjandle with Integer

ppl_Polyhedron_get_constraints(+Handle, ?Constraint_System) Unifies
Constraint_System with a list of the constraints in the constraints system representing the
polyhedron referenced byandle .

ppl_Polyhedron_get _minimized_constraints(+Handle, ?Constraint_System)
Unifies Constraint_System with a minimized list of the constraints in the constraints system
representing the polyhedron referencecHandle .

ppl_Polyhedron_get generators(+Handle, ?Generator_System) Unifies
Generator_System with a list of the generators in the generators system representing the poly-
hedron referenced kiyandle .

ppl_Polyhedron_get _minimized_generators(+Handle, ?Generator_System)
Unifies Generator_System with a minimized list of the generators in the generators system
representing the polyhedron referencecHandle .

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint,

?Relation_List) Unifies Relation_List with the list of relations the polyhedron refer-
enced byHandle has withConstraint . The possible relations are listed in the grammar rules above;
their meaning is given in the paragrappecifying the relation_with operatiofs SectionOperations on
Convex Polyhedra

ppl_Polyhedron_relation_with_generator(+Handle, +Generator,

?Relation_List) Unifies Relation_List with the list of relations the polyhedron refer-
enced byHandle has withGenerator . The possible relations are listed in the grammar rules above;
their meaning is given in the paragrappecifying the relation_with operatiois SectionOperations on
Convex Polyhedra

ppl_Polyhedron_get bounding_box(+Handle, +Complexity, ?Box) Succeeds |f
and only if the bounding box of the polyhedron referencedHaydle unifies with the box defined by
Box. E.g.,

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].
Note that the rational numbersBox are in canonical form. E.g., the following will fail:

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box),

Box = [i(o(minf), c(2/4)), i(0(0), o(pinf))].

The complexity clas€omplexity determining the algorithm to be used has the following meaning:

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 56

e polynomial allows code of the worst-case polynomial complexity class;
e simplex allows code of the worst-case exponential but typically polynomial complexity class;

e any allows code of the universal complexity class.

ppl_Polyhedron_is_empty(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is empty.

ppl_Polyhedron_is_universe(+Handle) Succeeds if and only if the polyhedron referenced
by Handle is the universe.

ppl_Polyhedron_is_bounded(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is bounded.

ppl_Polyhedron_bounds_from_above(+Handle, +LinExpr) Succeeds if and only if
LinExpr is bounded from above in the polyhedron referencediagdle .

ppl_Polyhedron_bounds_from_below(+Handle, +LinExpr) Succeeds if and only if
LinExpr is bounded from below in the polyhedron referencedHayndle .

ppl_Polyhedron_maximize(+Handle, +LinExpr, ?Integer, ?Integer, ?Bool)
Succeeds if and only if the polyhedréhreferenced byHandle is not empty andLinExpr is bounded
from above inP.

Integerl s unified with the numerator of the supremum value artdger2 with the denominator
of the supremum value. If the supremum is also the maxinRwo] is unified with the atontrue and,
otherwise, unified with the atofalse

ppl_Polyhedron_maximize_with_point(+Handle, +LinExpr, ?Integerl,
?Integer2, ?Bool, ?Point) Succeeds if and only if the polyhedrdhreferenced byHandle
is not empty andLinExpr is bounded from above if.

Integerl s unified with the numerator of the supremum vallrgeger2 with the denominator of
the supremum value, arRbint with a point or closure point whelenExpr reaches this value. If the
supremum is also the maximurBpol is unified with the atontrue and, otherwise, unified with the
atomfalse

ppl_Polyhedron_minimize(+Handle, +LinExpr, ?Integer, ?Integer, ?Bool)
Succeeds if and only if the polyhedrénreferenced byHandle is not empty and.inExpr is bounded
from below inP.

Integerl is unified with the numerator of the infimum value dntkger2 with the denominator of the
infimum value. If the infimum is also the minimumBpol is unified with the atomrue and, otherwise,
unified with the atonfalse

ppl_Polyhedron_minimize_with_point(+Handle, +LinExpr, ?Integer,
?Integer, ?Bool, ?Point) Succeeds if and only if the polyhedréhreferenced byHandle is
not empty andLinExpr is bounded from below .

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 57

Integerl s unified with the numerator of the infimum vallaeteger2 with the denominator of the
infimum value, andPoint with a point or closure point wheteanExpr reaches this value. If the infimum
is also the minimumBool is unified with the atontrue and, otherwise, unified with the atdiase

ppl_Polyhedron_is_topologically closed(+Handle) Succeeds if and only if the poly-
hedron referenced liyandle is topologically closed.

ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2) Succeeds if and
only if the polyhedron referenced Byandle_1 is included in or equal to the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_strictly contains_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referencedHgndle_1 is included in but not equal to the polyhedron
referenced byHandle_2 .

ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referencedHgndle_1 is disjoint from the polyhedron referenced
by Handle_2 .

ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2) Succeeds if and only if
the polyhedron referenced biandle_1 is equal to the polyhedron referencedtigndle 2 .

ppl_Polyhedron_OK(+Handle) Succeeds only if the polyhedron referencedHandle is well
formed, i.e., if it satisfies all its implementation invariants. Useful for debugging purposes.

ppl_Polyhedron_add_constraint(+Handle, +Constraint)

ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint) Up-
dates the polyhedron referenced Hgindle to one obtained by addinGonstraint to its constraint
system. Thus, the query

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = '$VAR’(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handkto consist of the set of points in the vector sp&cesatisfying
the constrainix + y — 2z >=5.

Note thatppl_Polyhedron_add_constraint_and_minimize/2 will fail if, after adding the
constraint, the polyhedron is empty.

ppl_Polyhedron_add_generator(+Handle, +Generator)

ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator) Updates
the polyhedron referenced Byandle to one obtained by addinGenerator to its generator system.
Thus, after the query

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 58

?- ppl_new_Polyhedron_from_dimension(c, 3, X),
A = '$VAR’(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handXto be the single point—12.5, —0.625,0)T in the vector space
R3.

ppl_Polyhedron_add_constraints(+Handle, +Constraint_System) Updates the
polyhedron referenced biyandle to one obtained by adding to its constraint system the constraints in
Constraint_System . E.g.,

| ?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = '$VAR’(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referenced Handle can be empty and a query will succeed even when
Constraint_System is unsatisfiable.

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System) Updates the polyhedron referencediBgndle to one obtained by adding to its constraint
system the constraints {Donstraint_System . E.g.,

?- ppl_new_Polyhedron_from_dimension(c, 2, X),
A = '$VAR’(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]
This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_dimension(c, 2, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A = 0, B =< 0)),
ppl_Polyhedron_get_constraints(X, CS).

ppl_Polyhedron_add_generators(+Handle, +Generator_System) Updates the poly-
hedron referenced bidandle to one obtained by adding to its generator system the generators in
Generator_System

If the system of generators representing a polyhedron is non-empty, then it must include a point (see the
paragraph on generator representation in Se®igpresentations of Convex Polyhedrahus care must

be taken to ensure that, before calling this predicate, either the polyhedron referertaddby is non-

empty or that wheneveBenerator_System is non-empty the first element defines a point. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 59

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_System)
Updates the polyhedron referenced Hgndle to one obtained by adding to its generator system the
generators itcenerator_System

Unlike the predicatepl_add_generators , the order of the generators @enerator_System is
not important. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)
Assigns to the polyhedron referenced Hgndle_1 its intersection with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_poly hull_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_poly_hull_assign_and_minimize(+Handle_1, +Handle_2) As-
signs to the polyhedron referenced biandle 1 its poly-hull with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle 2) Assigns to the
polyhedron referenced byandle_1 its poly-difference with the polyhedron referencedHigndle_2 .

ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +LinExpr, +Integer)
Transforms the polyhedron referencedtbgndle assigning the affine expressieimExpr /Integer
toPPL_Var.

ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +LinExpr, +Integer)
This is the inverse transformation to that fipl_affine_image

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-

Symbol +LinExpr, +Integer) Transforms the polyhedron referenced Hgndle assigning
the generalized affine image with respect to the transfer fund®Bh_Var Relation_Symbol
LinExpr /Integer

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +LinExprl,

+Relation_Symbol +LinExpr2) Transforms the polyhedron referenced Hgndle assigning
the generalized affine image with respect to the transfer fundtinExprl Relation_Symbol
LinExpr2

The Parma Polyhedra Library User’s Manual (version 0.6).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 60

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedronP referenced byHandle_1 the time-elapséP ,~ Q) with the polyhedronQ referenced by
Handle_2 .

ppl_Polyhedron_ BHRZ03_ widening_assign_with_token(+Handle_1, +Handle 2,

?Integer) The polyhedra referenced hbiandle_1 and Handle_2 are unaltered. The token
Integer is 0 if a BHRZ03 widening would have changed the polyhedron referencéthbgle 1 and
is 1 otherwise.

ppl_Polyhedron_BHRZ03_widening_assign(+Handle_1, +Handle_2) Assigns to the
polyhedron referenced byandle_1 its BHRZ03-widening with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_limited_ BHRZ03_extrapolation_assign_with_token(

+Handle_1, +Handle_2, +Constraint_System, ?Integer) The polyhedra referenced
by Handle_1 andHandle 2 are unaltered. The tokdmteger is O if a BHRZ03-widening with
the polyhedron referenced ttyandle_2 , improved by enforcing those constraintsGonstraint_-
System would have changed the polyhedron referencetiagdle_1 and is 1 otherwise.

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign(+Handle_1,

+Handle_2, +Constraint_System) Assigns to the polyhedrof® referenced byHandle 1
the result of its BHRZ03-widening with the polyhedron referencetiibpdle 2 , improved by enforcing
those constraints i@onstraint_System

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_token(
+Handle_1, +Handle_2, +Constraint_System, ?Integer) The polyhedra P; and
P, referenced bHandle_1 andHandle_2 , respectively are unaltered. The toketeger is O if a
BHRZ03-widening withP, , improved by enforcing all the constraints of the fofitm < r and+z < r
that are satisfied by all the points Bf together with the constraints @onstraint_System would
have changed the polyhedron referencedHapdle_1 and is 1 otherwise.

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign(+Handle_1,

+Handle_2, +Constraint_System) Assigns to the polyhedrof? referenced byHandle_1
the result of its BHRZ03-widening with the polyhedron referencetibpdle_2 improved by enforcing
all the constraints of the forntz < r and+x < r that are satisfied by all the points Bftogether with
the constraints ifConstraint_System

ppl_Polyhedron_H79 widening_assign_with_token(+Handle_1, +Handle 2,

?Integer) The polyhedra referenced hbijandle_1 and Handle_2 are unaltered. The token
Integer is 0 if an H79 widening would have changed the polyhedron referencéthbgle 1 and is
1 otherwise.

ppl_Polyhedron_H79_widening_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedron referenced biyandle_1 its H79-widening with the polyhedron referencedtgndle_2 .

ppl_Polyhedron_limited_H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System, ?Integer) The polyhedra referenced hyandle 1

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 61

andHandle_2 are unaltered. The tokdnteger is 0 if a H79-widening with the polyhedron referenced
by Handle_2 , improved by enforcing those constraintgdonstraint_System would have changed
the polyhedron referenced biandle_1 and is 1 otherwise.

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,

+Constraint_System) Assigns to the polyhedrorP referenced byHandle 1 its H79-
widening with the polyhedron referenced blandle_2 , improved by enforcing those constraints in
Constraint_System

ppl_Polyhedron_bounded_H79 extrapolation_assign_with_token(+Handle_1,

+Handle_2, +Constraint_System, ?Integer) The polyhedraP; and P, referenced by
Handle_1 andHandle_2 , respectively are unaltered. The toketeger is 0 if a H79-widening with
P- , improved by enforcing all the constraints of the fotm < r and+z < r that are satisfied by all the
points of P; together with the constraints fPonstraint_System would have changed the polyhedron
referenced byHandle_1 and is 1 otherwise.

ppl_Polyhedron_bounded H79 extrapolation_assign(+Handle_1, +Handle 2,
+Constraint_System) Assigns to the polyhedro® referenced byHandle_1 the result of its
H79-widening with the polyhedron referenced Hgndle_2 improved by enforcing all the constraints
of the form+z < r and+z < r that are satisfied by all the points Bftogether with the constraints in
Constraint_System

ppl_Polyhedron_topological_closure_assign(+Handle) Assigns to the polyhedron
referenced bydlandle its topological closure.

ppl_Polyhedron_add_dimensions_and_embed(+Handle, +Integer) Embeds the
polyhedron referenced byandle in a space that is enlarged byteger dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

cs =1l
GS = [point(0),line(1*A),line(1*B)]
ppl_Polyhedron_concatenate_assign(+Handlel, +Handle2) Updates the polyhedron

P1 referenced byHandlel by first embedding?; in a new space enlarged by the space dimensions of the
polyhedronP; referenced bylandle2 , and then adds to its system of constraints a renamed-apart version
of the constraints oPs.

E.g.,

?- ppl_new_Polyhedron_from_dimension(nnc, 2, X),
A = '$VAR’(0), B = '$VAR'(1), C = '$VAR'(2),
D = '$VAR'(3), E = '$VAR'(4),
ppl_new_Polyhedron_from_constraints(nnc, [A > 1, B >= 0, C >= 0], V),
ppl_Polyhedron_concatenate_assign(X, Y),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= 0]

The Parma Polyhedra Library User’s Manual (version 0.6).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 62

ppl_Polyhedron_add_dimensions_and_project(+Handle, +Integer) Projects the
polyhedron referenced bdyandle onto a space that is enlarged ljyeger dimensions, E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 0, X),
ppl_Polyhedron_add_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [1*A = 0, 1*B = (],
GS = [point(0)]

ppl_Polyhedron_remove_dimensions(+Handle, +List_of PPL_Vars) Removes the
space dimensions given by the identifiers of the PPL variables ihikstof PPL_Vars from the
polyhedron referenced biyandle . The identifiers for the remaining PPL variables are renumbered so
that they are consecutive and the maximum index is less than the number of dimensions. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 3, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’(2),
ppl_Polyhedron_remove_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K = 2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl_Polyhedron_remove_higher_dimensions(+Handle, +Integer)) Projects the
polyhedron referenced to byandle onto the firsinteger dimension. E.g.,

?- ppl_new_Polyhedron_empty_from_dimension(c, 5, X),
ppl_Polyhedron_remove_higher_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

ppl_Polyhedron_expand_dimension(+Handle, +PPL_Var, +Integer)) Integer
copies of the space dimension referencedPBL_Var are added to the polyhedron referenced to by
Handle .

ppl_Polyhedron_fold_dimensions(+Handle, +List_of PPL_Vars, +PPL_Var))

The space dimensions referenced by the PPL variables ihigistof PPL_Vars are folded into the
dimension referenced YPL_Var and removed. The result is undefined.iét_of PPL_Vars does
not have the properties described in the paraggpdtifying the fold_dimensions operatior Section
Operations on Convex Polyhedra

ppl_Polyhedron_map_dimensions(+Handle, +P_Func)) Maps the dimensions of the
polyhedron referenced liyandle using the partial function defined B Func. The result is undefined
if P_Func does not encode a partial function with the properties described in the paragegpftying the
map_dimensions operatior SectionOperations on Convex Polyhedra

Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 63

In the sequelprefix is the prefix under which you have installed the library (typicdlgr or
Jusr/local).

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library addiDBROLOG_TRACK_ALLOCATION the
options passed to the C++ compiler. Your configure command would then look like

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

System-Dependent Features

CIAO Prolog Support for CIAO Prolog is under development and will be available in a future release.
Only Ciao Prolog 1.9 #44 or later is supported.

GNU Prolog The GNU Prolog interface to the PPL library is available both as “PPL enhanced” GNU
Prolog interpreter and as a library that can be linked to GNU Prolog programs. Only GNU Prolog version
1.2.12 or later is supported.

Notice that GNU Prolog version 1.2.12 suffers from a serious limitation as far as for-
eign code is concerned. In order to be safe you must configure GNU Prolog with
the -disable-ebp option (note that this has a negative effect on performance). See
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001777 .html ,
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001780.html ,

http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001788.html and
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001789.html for more
information.

We have experienced other serious problems with the GNU Pro-
log interface, up to and including GNU Prolog version 1.2.16: see
http://www.cs.unipr.it/pipermail/ppl-devel/2002-October/002657.html

for more information.

The ppl_gprolog Executable If an appropriate version of GNU Prolog is installed on the machine
on which you compiled the library, the commantake install will install the executablepl_-

gprolog in the directoryprefix/bin . Theppl_gprolog executable is simply the GNU Prolog
interpreter with the Parma Polyhedra library linked in. The only thing you should do to use the library is
to call ppl_initialize/0 before any other PPL predicate and to ggdl_finalize/0 when you

are done with the library.

Linking the Library To GNU Prolog Programs In order to allow linking GNU Prolog programs to the
PPL, the following files are installed in the directqsefix/lib/ppl . ppl_gprolog.pl contains

the required foreign declaratiorigyppl_gprolog. x contain the executable code for the GNU Prolog
interface in various formats (static library, shared library, libtool library). If your GNU Prolog program
is constituted by, saygourcel.pl andsource2.pl and you want to create the executabigprog ,

your compilation command may look like

gplc -0 myprog prefix/lib/ppl/ppl_gprolog.pl sourcel.pl source2.pl \
-L -Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmpxx -lgmp -Istdc++’

SICStus Prolog The SICStus Prolog interface to the PPL library is available both as a statically linked
module or as a dynamically linked one. Only SICStus Prolog version 3.9.0 or later is supported.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001777.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001780.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001788.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-June/001789.html
http://www.cs.unipr.it/pipermail/ppl-devel/2002-October/002657.html
http://www.cs.unipr.it/ppl/

7.4 Prolog Language Interface 64

The Statically Linked ppl_sicstus Executable If an appropriate version of SICStus Prolog is in-
stalled on the machine on which you compiled the library, the commaaice install will install the
executablgpl_sicstus in the directoryprefix/bin . Theppl_sicstus executable is simply the
SICStus Prolog system with the Parma Polyhedra library statically linked. The only thing you should do to
use the library is to loagrefix/lib/ppl/ppl_sicstus.pl .

Loading the SICStus Interface Dynamically In order to dynamically load the library from SICStus Pro-
log you should simply loagrefix/lib/ppl/ppl_sicstus.pl . Notice that, for dynamic linking
to work, you should have configured the library with te@able-shared option.

SWI-Prolog The SWiI-Prolog interface of the library is available both as a statically linked module or as
a dynamically linked one. Only SWI-Prolog version 5.0 or later is supported.

The ppl_pl Executable If an appropriate version of SWI-Prolog is installed on the machine on which
you compiled the library, the commanubke install will install the executabl@pl_pl in the direc-

tory prefix/bin . Theppl_pl executable is simply the SWI-Prolog shell with the Parma Polyhedra
library statically linked: from withinppl_pl all the services of the library are available without further
action.

Loading the SWI-Prolog Interface Dynamically In order to dynamically load the library from SWiI-
Prolog you should simply loagdrefix/lib/ppl/ppl_swiprolog.pl . This will invoke ppl_-
initialize/0 automatically but, at least for SWI-Prolog versions up to 5.0.7, it is the programmer’s
responsibility to calppl_finalize/0 . Alternatively, you can load the library directly with

- load_foreign_library('prefix/lib/ppl/libppl_swiprolog’).
This will call ppl_initialize/0 automatically. Analogously,
;- unload_foreign_library('prefix/lib/ppl/libppl_swiprolog’).

will, as part of the unload process, invogpl_finalize/0

Notice that, for dynamic linking to work, you should have configured the library with the
-enable-shared option.

XSB The XSB Prolog interface to the PPL library is available as a dynamically linked module. Only
XSB version 2.5 and following is supported.

In order to dynamically load the library from XSB you should load pipé xsb module and import the
predicates you need. For things to work, you may have to copy thepfitfi/lib/ppl/ppl_-

xsb.xwam and prefix/lib/ppl/ppl_xsb.so in your current directory or in one of the XSB li-
brary directories.

YAP The YAP Prolog interface to the PPL library is available as a dynamically linked module. Only
YAP version 4.4 or later is supported.

In order to dynamically load the library from YAP you should simply Iqaéfix/lib/ppl/ppl_-

yap.pl . This will invoke ppl_initialize/0 automatically; it is the programmer’s responsibility to
call ppl_finalize/0O when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with Hemable-shared option.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8 PPL Namespace Documentation 65

8 PPL Namespace Documentation

8.1 Parma_Polyhedra_Library Namespace Reference

The entire library is confined to this namespace.

Classes

e classParma_Polyhedra_Library::Variable
A dimension of the space.

e structParma_Polyhedra_Library::Variable::Compare

Binary predicate defining the total ordering on variables.

e classParma_Polyhedra_Library::LinExpression
A linear expression.

e classParma_Polyhedra_Library::Constraint
A linear equality or inequality.

e classParma_Polyhedra_Library::Generator
A line, ray, point or closure point.

e classParma_Polyhedra_Library::Poly Con_Relation
The relation between a polyhedron and a constraint.

e classParma_Polyhedra_Library::Poly _Gen_Relation
The relation between a polyhedron and a generator.

e classParma_Polyhedra_Library::BHRZ03_Certificate
The convergence certificate for the BHRZ03 widening operator.

e structParma_Polyhedra_Library::BHRZ03_ Certificate::Compare
A total ordering on BHRZO03 certificates.

e classParma_Polyhedra_Library::H79_Certificate
A convergence certificate for the H79 widening operator.

e structParma_Polyhedra_Library::H79_Certificate::Compare

A total ordering on H79 certificates.

e classParma_Polyhedra_Library::Polyhedron
The base class for convex polyhedra.

e classParma_Polyhedra_Library::C_Polyhedron
A closed convex polyhedron.

e classParma_Polyhedra_Library::NNC_Polyhedron
A not necessarily closed convex polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.1 Parma_Polyhedra_Library Namespace Reference 66

e classParma_Polyhedra_Library::Determinat®H >
Wraps a PPL class into a determinate constraint system interface.

e classParma_Polyhedra_Library::PowerSetS >
The powerset construction on constraint systems.

e classParma_Polyhedra_Library::AskTell_PaiCS >
A pair of (ask and tell) constraints.

e classParma_Polyhedra_Library::AskTellCS >
The ask and tell construction on constraint systems.

e classParma_Polyhedra_Library::Polyhedra_PowetSeH >
The powerset construction instantiated on PPL polyhedra.

Typedefs

o typedef mpz_claskteger
See the GMP’s manual available fatp://swox.com/gmp/

o typedef std::set Variable Variable::Compare- Variables_Set
An std::set containing variables in increasing order of dimension index.

Functions

e unsignedversion_majox)
Returns the major number of the PPL version.

e unsignedversion_minol)
Returns the minor number of the PPL version.

e unsignedversion_revisior()
Returns the revision number of the PPL version.

e unsignedversion_betd)
Returns the beta number of the PPL version.

e const chak version()
Returns a character string containing the PPL version.

e const chas bannen)
Returns a character string containing the PPL banner.

8.1.1 Detailed Description

The entire library is confined to this namespace.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://swox.com/gmp/
http://www.cs.unipr.it/ppl/

8.2 Parma_Polyhedra_Library::10_Operators Namespace Reference 67

8.1.2 Function Documentation

8.1.2.1 const chat banner ()
Returns a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

8.2 Parma_Polyhedra_Library::10_Operators Namespace Reference

All input/output operators are confined to this namespace.

8.2.1 Detailed Description

All input/output operators are confined to this namespace.

This is done so that the library’s input/output operators do not interfere with those the user might want
to define. In fact, it is highly unlikely that any pre-defined I/O operator will suit the needs of a client
application. On the other hand, those applications for which the PPL I/O operator are enough can easily
obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::10_Operators;

would suffice for most uses. In more complex situations, such as

const ConSys& cs = ..;
copy(cs.begin(), cs.end(),
ostream_ijterator<Constraint>(cout, "\n"));

theParma_Polyhedra_Libranamespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
/I Import all the output operators into the main PPL namespace.
using IO_Operators::operator<<;

}

8.3 std Namespace Reference

The standard C++ namespace.

8.3.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library templates swap() and iter_swap() (25.2.2, [lib.alg.swap]).

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9 PPL Class Documentation 68

9 PPL Class Documentation

9.1 Parma_Polyhedra_Library::AskTell< CS > Class Template Reference

The ask and tell construction on constraint systems.

Public Member Functions

e AskTell (dimension_type num_dimensions=0, bool universe=true)
Builds a universe (top) or empty (bottom) ask-and-tell agent.

o AskTell (constAskTell &y)
Ordinary copy-constructor.

e AskTell & operator5constAskTell &y)
The assignment operatokthis andy can be dimension-incompatible.).

e void swap(AskTell &y)
Swapskthis withy.

e AskTell (const ConSys &cs)
Creates an ask-and-tell constraint system with the same information contes¥s as

e AskTell & add_pairconst CS &ask, const CS &tell)
Adds toxthis the pair constituted bgsk andtell

e void upper_bound_assigoonstAskTell &y)
Assigns tocthis an upper bound ofthis andy.

¢ void meet_assigiiconstAskTell &y)
Assigns tosthis the meet okthis andy.

e void concatenate_assioonstAskTell &y)
Assigns torthis the concatenation ofthis andy.

e booldefinitely_entail{constAskTell &y) const

Returngrue if xthis definitely entaily/. Returndalse if xthis may not entail (i.e., if xthis does
not entaily or if entailment could not be decided).

e boolis_top() const

Returndgrue if and only ifxthis is the top element of the ask-and-tell constraint system (i.e., it represents
the universe).

e boolis_bottom() const

Returnstrue if and only if xthis is the bottom element of the ask-and-tell constraint system (i.e., it
represents the empty set).

e dimension_typepace_dimensiof) const
Returns the dimension of the vector space enclosinig

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::AskTell< CS > Class Template Reference 69

e void add_constrainfconstConstraint&c)
Intersectskthis ~ with (a copy of) constraint.

e void add_constraintéconst ConSys &cs)
Intersectskthis with (a copy of) the constraints its .

¢ void add_dimensions_and_embf@iimension_type m)
Addsmnew dimensions and embeds the old polyhedron in the new space.

e void add_dimensions_and_projg¢dimension_type m)
Addsmnew dimensions to the polyhedron and does not embed it in the new space.

e void remove_dimensiongonstVariables Se&to be removed)
Removes all the specified dimensions.

e void remove_higher_dimensiotidimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimeesiodimension

e bool OK () const
Checks if all the invariants are satisfied.

Related Functions
(Note that these are not member functions.)

¢ void swap(Parma_Polyhedra_Library::AskTellCS > &%, Parma_Polyhedra_Library::AskTell
CS> &y)

Specializestd::swap

9.1.1 Detailed Description

template<typename CS> class Parma_Polyhedra_Library::AskTell< CS >

The ask and tell construction on constraint systems.

This class offers a generic implementatioragk-and-tell constraint systeras defined ifBag98]
9.1.2 Constructor & Destructor Documentation

9.1.2.1 templatectypename CS> Parma_Polyhedra_Library::AskTell< CS >:AskTell
(dimension_typenum_dimensions= 0, bool universe=true) [explicit]

Builds a universe (top) or empty (bottom) ask-and-tell agent.

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the ask-and-tell agent;

universe If true , a universe ask-and-tell agent is built; an empty agent is built otherwise.

The Parma Polyhedra Library User’s Manual (version 0.6).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.1 Parma_Polyhedra_Library::AskTell< CS > Class Template Reference 70

9.1.3 Member Function Documentation

9.1.3.1 templatectypename CS> void Parma_Polyhedra_Library::AskTell < CS >::concatenate_-
assign (consAskTell< CS> & y)

Assigns toxthis the concatenation afthis andy.

Seeing an ask-and-tell agent as a set of tuples, this method assigtiésto all the tuples that can be
obtained by concatenating, in the order given, a tupletlois ~ with a tuple ofy.

9.1.3.2 templatectypename CS> void Parma_Polyhedra_Library::AskTell< CS >:add_-
constraint (constConstraint & ¢)

Intersectscthis with (a copy of) constraint .

Exceptions:
std::invalid_argument Thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

9.1.3.3 templatectypename CS> void Parma_Polyhedra_Library::AskTell< CS >:add_-
constraints (const ConSys &cs)

Intersectscthis with (a copy of) the constraints its .

Parameters:
cs Contains the constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if x«this and cs are topology-incompatible or dimension-
incompatible.

9.1.3.4 templatectypename CS> void Parma_Polyhedra_Library::AskTell < CS >:remove._-
dimensions (consWVariables_Set& to_be_removed

Removes all the specified dimensions.

Parameters:
to_be_removedrlhe set ofVariableobjects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if «this is dimension-incompatible with one of tMariableobjects
contained irto_be_removed

9.1.3.5 templatectypename CS> void Parma_Polyhedra_Library::AskTell < CS >:remove_-
higher_dimensions (dimension_typ&ew_dimensioh

Removes the higher dimensions so that the resulting space will have dimeesgiodimension

Exceptions:
std::invalid_argument Thrown if new_dimensions is greater than the space dimensiortbiis

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.2 Parma_Polyhedra_Library::AskTell_Pair< CS > Class Template Reference 71

9.2 Parma_Polyhedra_Library::AskTell_Pair< CS > Class Template Reference

A pair of (ask and tell) constraints.

Public Member Functions

e AskTell_Pair(const CS &ask, const CS &tell)
Pair constructor.

const CS &ask() const
Const accessor to theskcomponent.

CS & ask()
Non-const accessor to tleskcomponent.

const CS &tell () const
Const accessor to theskcomponent.

CS &tell ()
Non-const accessor to ttiell component.

e booldefinitely_entail{constAskTell_Pair&y) const

Returngrue if xthis definitely entaily/. Returndalse if xthis may not entaiy (i.e., if xthis does
not entaily or if entailment could not be decided).

9.2.1 Detailed Description
template<typename CS> class Parma_Polyhedra_Library::AskTell_Pair< CS >

A pair of (ask and tell) constraints.

9.3 Parma_Polyhedra_Library::BHRZ03_ Certificate Class Reference

The convergence certificate for the BHRZ03 widening operator.

Public Member Functions

e BHRZ03_Certificatd)
Default constructor.

e BHRZ03_Certificatg¢constPolyhedron&ph)
Constructor: computes the certificate fain.

e BHRZ03_Certificat§constBHRZ03_Certificatey)

Copy constructor.

e ~BHRZ03_Certificatd)
Destructor.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.4 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference 72

e int compargconstBHRZ03_Certificatey) const
The comparison function for certificates.

e int compargconstPolyhedron&ph) const
Compareskthis with the certificate for polyhedroph.

9.3.1 Detailed Description

The convergence certificate for the BHRZ03 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:
Each convergence certificate has to be used together with a compatible widening operator. In particular,
BHRZz03_Certificatecan certify the convergence of both the BHRZ03 and the H79 widenings.

9.3.2 Member Function Documentation

9.3.2.1 intParma_Polyhedra_Library::BHRZ03_Certificate::compare (consBHRZ03_Certificate
& y) const

The comparison function for certificates.

Returns:
—1, 0 or 1 depending on whetheithis is smaller than, equal to, or greater thamespectively.

Comparesthis with y, using a total ordering which is a refinement of the Igo relation for the BHRZ03
widening.
9.4 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference

A total ordering on BHRZO03 certificates.

Public Member Functions

e booloperator(XconstBHRZ03_Certificateé&x, constBHRZ03_Certificatey) const

Returngrue if and only ifx comes beforg.

9.4.1 Detailed Description

A total ordering on BHRZO03 certificates.

This binary predicate defines a total ordering on BHRZO03 certificates which is used when storing informa-
tion about sets of polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 73

9.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference

A closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron

Public Member Functions

e C_Polyhedroridimension_type num_dimensionsfegenerate_Kin&ind=UNIVERSE)
Builds either the universe or the empty C polyhedron.

C_Polyhedror{const ConSys &cs)
Builds a C polyhedron from a system of constraints.

C_Polyhedror{ConSys &cs)
Builds a C polyhedron recycling a system of constraints.

C_Polyhedror{const GenSys &gs)
Builds a C polyhedron from a system of generators.

C_Polyhedror{GenSys &gs)
Builds a C polyhedron recycling a system of generators.

C_Polyhedror{constNNC_ Polyhedror&y)
Builds a C polyhedron from the NNC polyhedmpn

templatectypename Box C_Polyhedror{const Box &box, From_Bounding_Box dummy)
Builds a C polyhedron out of a generic, interval-based bounding box.

C_Polyhedror{constC_Polyhedror&y)
Ordinary copy-constructor.

C_Polyhedror& operator5constC_Polyhedror&y)
The assignment operatokthis andy can be dimension-incompatible.).

~C_Polyhedror)
Destructor.

Static Public Member Functions

e dimension_typenax_space_dimensidh
Returns the maximum space dimensidd d&olyhedrorcan handle.

9.5.1 Detailed Description

A closed convex polyhedron.

An object of the clas€_Polyhedrorrepresents gopologically closedconvex polyhedron in the vector
spaceR™.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 74

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains atrict inequalityconstraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containicigsure point

Note:
Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the cl&NC _Polyhedronthe precise topological closure test
will be performed.

9.5.2 Constructor & Destructor Documentation

9.5.2.1 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (dimension_type num_-
dimensions= 0, Degenerate_Kindkind = UNIVERSE [explicit]

Builds either the universe or the empty C polyhedron.

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the C polyhedron;

kind Specifies whether a universe or an empty C polyhedron should be built.

Exceptions:
std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

9.5.2.2 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const ConSys &9)
Builds a C polyhedron from a system of constraints.
The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of constraints contains strict inequalities.

9.5.2.3 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (ConSys &9
Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.
Parameters:

cs The system of constraints defining the polyhedron. It is not declenedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of constraints contains strict inequalities.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.5 Parma_Polyhedra_Library::C_Polyhedron Class Reference 75

9.5.2.4 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const GenSys &9
Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

9.5.2.5 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (GenSys &9
Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declsoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

9.5.2.6 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (constNNC_Polyhedron & y)
[explicit]

Builds a C polyhedron from the NNC polyhedrgn

Exceptions:
std::invalid_argument Thrown if the polyhedroty is not topologically closed.

9.5.2.7 templatectypename Box> Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron
(const Box & box, From_Bounding_Boxdummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templateéypename Box Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:
box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:
std::invalid_argument Thrown if box has intervals that are not topologically closed (i.e., having
some finite but open bounds).

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Constraint Class Reference

76

9.6 Parma_Polyhedra_Library::Constraint Class Reference

A linear equality or inequality.

Public Types

e enumType{ EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY }

The constraint type.

Public Member Functions

e ConstrainfconstConstraint&c)
Ordinary copy-constructor.

e ~Constraint))
Destructor.

e Constraini& operator=constConstraint&c)
Assignment operator.

e dimension_typepace_dimensiof) const
Returns the dimension of the vector space enclostinig

e Typetype() const
Returns the constraint type ethis

e boolis_equality() const
Returngrue if and only ifxthis is an equality constraint.

e boolis_inequality() const
Returngrue if and only ifxthis is an inequality constraint (either strict or non-strict).

e boolis_nonstrict_inequality) const
Returngrue if and only ifxthis is a non-strict inequality constraint.

e boolis_strict_inequality) const
Returngrue if and only ifxthis is a strict inequality constraint.

e constinteger& coefficient(Variablev) const
Returns the coefficient fin xthis

e constinteger& inhomogeneous_ter const
Returns the inhomogeneous termxtifis

e bool OK () const
Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Constraint Class Reference

77

Static Public Member Functions

e constConstraini& zero_dim_fals€)
The unsatisfiable (zero-dimension space) constfaiat1.

e constConstraint& zero_dim_positivity)
The true (zero-dimension space) constraint 1, also known agositivity constraint

Related Functions
(Note that these are not member functions.)

o std::ostream &peratok < (std::ostream &s, congtonstraini&c)
Output operator.

e Constraintoperator==constLinExpression&el, constLinExpression&e?)
Returns the constrairdl = e2.

e Constraintoperator==constLinExpression&e, constinteger&n)
Returns the constrairg = n.

e Constraintperator==constinteger&n, constLinExpression&e)
Returns the constraint = e.

e Constraintoperatox= (constLinExpression&el, constLinExpression&e?)
Returns the constrairdl <= e2.

e Constraintoperatox = (constLinExpressior&e, constinteger&n)
Returns the constrairg <= n.

e Constrainioperatok= (constinteger&n, constLinExpressione)
Returns the constraint <= e.

e Constraintoperator-= (constLinExpression&el, constLinExpression&e?)
Returns the constrairgl >= e2.

e Constraintoperator-= (constLinExpressior&e, constinteger&n)
Returns the constrairg >= n.

e Constraintoperator-= (constinteger&n, constLinExpression&e)
Returns the constraint >= e.

e Constraintoperatok (constLinExpression&el, constLinExpression&e?2)
Returns the constrairgl < e2.

e Constraintoperatok (constLinExpression&e, constinteger&n)
Returns the constrairg < n.

e Constraintoperatok (constinteger&n, constLinExpressior&e)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Constraint Class Reference 78

Returns the constraint < e.

Constrainbperator- (constLinExpression&el, constLinExpression&e2)
Returns the constrairgl > e2.

Constrainbperator- (constLinExpression&e, constinteger&n)
Returns the constrairg > n.

Constraintoperator- (constinteger&n, constLinExpression&e)
Returns the constraint > e.

void swap(Parma_Polyhedra_Library::Constrai®, Parma_Polyhedra_Library::Constragy)
Specializestd::swap

9.6.1 Detailed Description

A linear equality or inequality.

An object of the clas€onstraints either:

e an equality:zzzo1 a;x; +b=0;
e anon-strict inequality>""""" a;z; + b > 0; or
e astrictinequality> """ a;z; +b > 0;

wheren is the dimension of the space; is the integer coefficient of variable; and b is the integer
inhomogeneous term.

How to build a constraint
Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equality€), non-strict inequalitiesX= and <=) and strict inequalities< and
>). The space-dimension of a constraint is defined as the maximum space-dimension of the arguments
of its constructor.

In the following examples it is assumed that variableg andz are defined as follows:
Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constrabat + 5y — z = 0, having space-dimensich

Constraint eq_c(3*x + 5%y - z == 0);

The following code builds the (non-strict) inequality constrdint> 2y — 13, having space-dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);
The corresponding strict inequality constraint > 2y — 13 is obtained as follows:

Constraint strict_ineq_c(4*x > 2*y - 13);

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.6 Parma_Polyhedra_Library::Constraint Class Reference 79

An unsatisfiable constraint on the zero-dimension sfRicean be specified as follows:

Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_c1(LinExpression::zero() == 1);
Constraint false_c2(LinExpression::zero() >= 1);
Constraint false_c3(LinExpression::zero() > 0);

In contrast, the following code defines an unsatisfiable constraint having space-dinmgnsion

Constraint false_c(0*z == 1);

How to inspect a constraint
Several methods are provided to examine a constraint and extract all the encoded information: its
space-dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this case— 5y + 3z <= 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraibt + 3z > 4).

Constraint c1(x - 5%y + 3*z <= 4);
cout << "Constraint cl: " << cl << endl;
if (cl.is_equality())
cout << "Constraint ¢l is not an inequality." << endl;

else {
LinExpression e;
for (int i = cl.space_dimension() - 1; i >= 0; i-)

e += cl.coefficient(Variable(i)) * Variable(i);
e += cl.inhomogeneous_term();
Constraint c2 = cl.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << ¢2 << endl;

}
The actual output is the following:

Constraint c1: -A + 5*B - 3*C >= -4
Complement ¢c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

9.6.2 Member Enumeration Documentation

9.6.2.1 enumParma_Polyhedra_Library::Constraint::Type

The constraint type.

Enumeration values:
EQUALITY The constraint is an equality.

NONSTRICT_INEQUALITY The constraint is a hon-strict inequality.
STRICT_INEQUALITY The constraint is a strict inequality.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 80

9.6.3 Member Function Documentation

9.6.3.1 constnteger& Parma_Polyhedra_Library::Constraint::coefficient (Variable v) const
Returns the coefficient of in xthis
Exceptions:

std::invalid_argumentthrown if the index ofv is greater than or equal to the space-dimension of
xthis

9.7 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference

Wraps a PPL class into a determinate constraint system interface.

Public Member Functions
Constructors and Destructor

¢ Determinatgdimension_type num_dimensions=0, bool universe=true)
Builds either the top or the bottom of the determinate constraint system defined on the vector space
havingnum_dimensions dimensions.

Determinateconst PH &p)

Injection operator: builds the determinate constraint system element corresponding to the base-level
elemenp.

Determinateconst ConSys &cs)

Injection operator: builds the determinate constraint system element corresponding to the base-level
element represented log .

DeterminatgconstDeterminateky)
Copy constructor.

~Determinatg)
Destructor.

Member Functions that Do Not Modify the Domain Element

e dimension_typepace_dimensiof) const
Returns the dimension of the vector space enclosihig

const ConSys &onstraintg) const
Returns the system of constraints.

const ConSys &ninimized_constraint§ const
Returns the system of constraints, with no redundant constraint.

const PH &element() const
Returns a const reference to the embedded element.

PH & element()
Returns a reference to the embedded element.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 81

e boolis_top() const

Returngrue if and only ifxthis is the top of the determinate constraint system (i.e., the whole vector
space).

e boolis_bottom() const
Returngrue if and only ifthis is the bottom of the determinate constraint system (i.e., the emptyset).

bool definitely _entail§constDeterminatey) const
Returngtrue if and only ifxthis entailsy (i.e.,xthis is contained iny).

boolis_definitely _equivalent_tfconstDeterminate&y) const
Returngtrue if and only ifxthis andy are equivalent.

bool OK () const
Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Domain Element

e void upper_bound_assigoonstDeterminately)
Assigns torthis the upper bound ofthis andy.

e void meet_assiglconstDeterminateky)
Assigns tocthis the meet okthis andy.

e void add_constrainfconstConstraint&c)
Assigns tosthis the meet okthis and the element represented by constraint

e void add_constrainteConSys &cs)
Assigns tocthis the meet ofkthis and the element represented by the constraintsin

Member Functions that May Modify the Dimension of the Vector Space

e Determinate& operator=constDeterminateky)
Assignment operator.

¢ void swap(Determinate&y)
Swapstthis withy.

¢ void add_dimensions_and_emb(@iimension_type m)
Addsmnew dimensions and embeds the old domain element in the new vector space.

e void add_dimensions_and_projg¢dimension_type m)
Addsmnew dimensions to the domain element and does not embed it in the new vector space.

¢ void concatenate_assigoonstDeterminateky)
Assigns tocthis theconcatenatiorof xthis andy, taken in this order.

e void remove_dimension&onstVariables_Se&to _be removed)
Removes all the specified dimensions.

¢ void remove_higher_dimensioifidimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimeesiodimension

o templatectypename PartialFunctionvoid map_dimensiongonst PartialFunction &pfunc)
Remaps the dimensions of the vector space according to a partial function.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 82

Friends

e booloperator==constDeterminate: PH > &x, constDeterminate: PH > &y)
Returngrue if and only ifx andy are the same domain element.

e booloperator!=(constDeterminate: PH > &x, constDeterminate: PH > &y)
Returngrue if and only ifx andy are different domain elements.

Related Functions
(Note that these are not member functions.)

e std::ostream &operatox < (std::ostream &, conddeterminate: PH > &)
Output operator.

e void swap (Parma_Polyhedra_Library::Determinate PH > &x, Parma_Polyhedra_-
Library::Determinate: PH > &y)

Specializestd::swap

9.7.1 Detailed Description
template<typename PH> class Parma_Polyhedra_Library::Determinate< PH >

Wraps a PPL class into a determinate constraint system interface.

9.7.2 Constructor & Destructor Documentation
9.7.2.1 templatectypename PH> Parma_Polyhedra_Library::Determinate< PH >::Determinate
(dimension_typenum_dimensions= 0, bool universe=true) [explicit]

Builds either the top or the bottom of the determinate constraint system defined on the vector space having
num_dimensions dimensions.

The top element, corresponding to the whole vector space, is builiverse istrue ; otherwise the
bottom element, corresponding to the emptyset, is built. By default, the top of a zero-dimension vector
space is built.

9.7.3 Member Function Documentation

9.7.3.1 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH >:add -
constraint (constConstraint & c)

Assigns toxthis the meet ofthis and the element represented by constraint

Exceptions:

std::invalid_argument Thrown if «this and constraint are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.7 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 83

9.7.3.2 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH >:add_-
constraints (ConSys &c9)

Assigns toxthis the meet ofthis and the element represented by the constraints in

Parameters:
cs The constraints to intersect with. This parameter is not dectayest because it can be modified.

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

9.7.3.3 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH
>::remove_dimensions (consVariables_Set& to_be removed

Removes all the specified dimensions.

Parameters:
to_be_removedrlhe set oiVariableobjects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if «this is dimension-incompatible with one of tMariableobjects
contained irto_be_removed

9.7.3.4 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH
>::remove_higher_dimensions (dimension_typaew_dimensioh

Removes the higher dimensions so that the resulting space will have dimeesgiodimension

Exceptions:
std::invalid_argument Thrown if new_dimensions s greater than the space dimensiortbiis

9.7.3.5 templatectypename PH> template<typename PartialFunction> void Parma_Polyhedra_-
Library::Determinate < PH >::map_dimensions (const PartialFunction &pfunc)

Remaps the dimensions of the vector space according to a partial function.

SeePolyhedron::map_dimensions

9.7.4 Friends And Related Function Documentation

9.7.4.1 templatectypename PH> bool operator== (constDeterminate< PH > & X, constDetermi-
nate< PH > & y) [friend]

Returngrue if and only if x andy are the same domain element.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.8 Parma_Polyhedra_Library::Generator Class Reference 84

9.7.4.2 templatectypename PH> bool operator!= (constDeterminate< PH > & X, constDetermi-
nate< PH > & y) [friend]

Returngrue if and only if x andy are different domain elements.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.
9.8 Parma_Polyhedra_Library::Generator Class Reference

A line, ray, point or closure point.

Public Types

e enumType{ LINE, RAY, POINT, CLOSURE_POINT}
The generator type.

Public Member Functions

e GeneratofconstGenerato&g)
Ordinary copy-constructor.

o ~GeneratoX)
Destructor.

e Generato& operator5constGenerato&g)
Assignment operator.

e dimension_typepace_dimensiof) const
Returns the dimension of the vector space enclosihig

e Typetype() const
Returns the generator type sthis

e boolis_line() const
Returngrue if and only if«this is aline.

e boolis_ray() const
Returngrue if and only ifxthis is a ray.

e boolis_point() const
Returngtrue if and only ifxthis is a point.

e boolis_closure_poinf) const
Returngrue if and only ifxthis is a closure point.

e constinteger& coefficient(Variablev) const
Returns the coefficient ofin xthis

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.8 Parma_Polyhedra_Library::Generator Class Reference 85

e constinteger& divisor () const
If xthis is either a point or a closure point, returns its divisor.

e bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e Generatotine (constLinExpression&e)
Shorthand foiGeneratorGenerator::line(const LinExpression& .e)

Generatoray (constLinExpressione)
Shorthand foiGeneratorGenerator::ray(const LinExpression&.e)

Generatopoint(constLinExpressior&e=LinExpression::zero(), coniiteger&d=Integer_one())
Shorthand foiGeneratorGenerator::point(const LinExpression& e, const Integer& d)

e Generator closure_point (const LinExpression &e=LinExpression::zero(), constinteger
&d=Integer_one())

Shorthand foiGeneratorGenerator::closure_point(const LinExpression& e, const Integer& d)

constGenerato& zero_dim_poinf)
Returns the origin of the zero-dimensional sp&fe

constGenerato® zero_dim_closure_poirf}
Returns, as a closure point, the origin of the zero-dimensional sRéce

Related Functions
(Note that these are not member functions.)

e std::ostream &operatox < (std::ostream &s, con§kenerato&g)

Output operator.

¢ void swap(Parma_Polyhedra_Library::Genera8ot, Parma_Polyhedra_Library::Generagy)

Specializestd::swap

9.8.1 Detailed Description

A line, ray, point or closure point.

An object of the clas&eneratois one of the following:
e alinel = (ag,...,an_1)"%;

e arayr = (ag,...,an_1)"%;

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.8 Parma_Polyhedra_Library::Generator Class Reference 86

e apointp = (%, ..)T,

an—1\T.

e aclosure point = (4,..., =%1) ",
wheren is the dimension of the space and, for points and closure pdints) is the divisor.

A note on terminology.
As observed in SectioRepresentations of Convex Polyhedifzere are cases when, in order to rep-
resent a polyhedro® using the generator systefh= (L, R, P, C), we need to include in the finite
set P even points ofP that arenot vertices ofP. This situation is even more frequent when working
with NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other libraries
use the word ‘vertex’.

How to build a generator.
Each type of generator is built by applying the corresponding functioe (, ray , point or
closure_point) to alinear expression, representing a direction in the space; the space-dimension
of the generator is defined as the space-dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply
ignored). When defining points and closure points, an optional Integer argument can be used as a
commondivisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variableg andz are defined as follows:
Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds a line with direction— y — z and having space-dimensién

Generator | = line(x - y - 2);

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator | = line(x - y - z + 15);
By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator | = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the poigt = (1,0,2)T € R?:

Generator p = point(1*x + O*y + 2*z);

The same effect can be obtained by using the following code:

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.8 Parma_Polyhedra_Library::Generator Class Reference 87

Generator p = point(x + 2*z);
Similarly, the origin0 € R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0O*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, nanelR?:
Generator origin2 = point(0*y);

The following two lines of code both define the only point having space-dimension zero, namely
0 € R° In the second case we exploit the fact that the first argument of the furmion is
optional.

Generator originO = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4
The pointp specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the funptémt (the divisor):

Generator p = point(2*x + 0%y + 4*z, 2);

Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-
nal) coordinates. For instance, the pajnt (—1.5,3.2,2.1)T € R? can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);
If a zero divisor is provided, an exception is thrown.
Example 5

Closures points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure point (1,0,2)T € R? is defined by

Generator ¢ = closure_point(1*x + 0*y + 2*z);

For the particular case of the (only) closure point having space-dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

How to inspect a generator
Several methods are provided to examine a generator and extract all the encoded information: its
space-dimension, its type and the value of its integer coefficients.

Example 6
The following code shows how it is possible to access each single coefficient of a genergtbr. If
is a point having coordinat€®,, . .., a,_1)T, we construct the closure poig2 having coordinates
(ag,2ay,...,(i +a;,...,nan_1)T

if (gl.is_point()) {
cout << "Point gl: " << gl << endl;
LinExpression e;
for (int i = gl.space_dimension() - 1; i >= 0; i--
e += (i + 1) * gl.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, gl.divisor());
cout << "Closure point g2: " << g2 << endl;
}
else
cout << "Generator gl is not a point." << endl;

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.8 Parma_Polyhedra_Library::Generator Class Reference 88

Therefore, for the point
Generator g1 = point(2*x - y + 3*z, 2);
we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the noti@moefficientwvith the notion
of coordinate these are equivalent only when the divisor of the (closure) pointis 1.

9.8.2 Member Enumeration Documentation

9.8.2.1 enumParma_Polyhedra_Library::Generator::Type

The generator type.

Enumeration values:
LINE The generator is a line.

RAY The generator is a ray.
POINT The generator is a point.
CLOSURE_POINT The generator is a closure point.

9.8.3 Member Function Documentation

9.8.3.1 Generator line (constLinExpression & €) [static]

Shorthand foiGeneratoGenerator::line(const LinExpression&. €)

Exceptions:
std::invalid_argument Thrown if the homogeneous partefrepresents the origin of the vector space.

9.8.3.2 Generator ray (constLinExpression & €) [static]

Shorthand folGeneratoGenerator::ray(const LinExpression& e)

Exceptions:
std::invalid_argument Thrown if the homogeneous partefrepresents the origin of the vector space.

9.8.3.3 Generator point (constLinExpression & e = LinExpression::zero() , constinteger &
d=Integer_one()) [static]

Shorthand foGeneratoGenerator::point(const LinExpression& e, const Integer& d)
Bothe andd are optional arguments, with default valugsExpression::zero@nd Integer_one(), respec-
tively.

Exceptions:
std::invalid_argument Thrown if d is zero.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.9 Parma_Polyhedra_Library::H79_Certificate Class Reference 89

9.8.3.4 Generator closure_point (constLinExpression & e = LinExpression::zero() , const
Integer & d=Integer_one()) [static]

Shorthand foiGeneratoGenerator::closure_point(const LinExpression& e, const Integer& d)

Bothe andd are optional arguments, with default valugsExpression::zero@nd Integer_one(), respec-
tively.

Exceptions:
std::invalid_argument Thrown if d is zero.

9.8.3.5 consinteger& Parma_Polyhedra_Library::Generator::coefficient (Variable v) const

Returns the coefficient of in *this

Exceptions:
std::invalid_argument Thrown if the index ofv is greater than or equal to the space-dimension of
xthis

9.8.3.6 consinteger& Parma_Polyhedra_Library::Generator::divisor () const

If xthis is either a point or a closure point, returns its divisor.

Exceptions:
std::invalid_argument Thrown if xthis is neither a point nor a closure point.

9.9 Parma_Polyhedra_Library::H79_Certificate Class Reference

A convergence certificate for the H79 widening operator.

Public Member Functions

e H79 Certificatd)
Default constructor.

e H79 CertificatdconstPolyhedron&ph)
Constructor: computes the certificate fain.

e H79 CertificatgdconstH79 _Certificate&y)
Copy constructor.

e ~H79_ Certificate)
Destructor.

e int compargconstH79_Certificate&y) const
The comparison function for certificates.

e int compargconstPolyhedron&ph) const
Comparesctthis with the certificate for polyhedroph.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.10 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference 90

9.9.1 Detailed Description

A convergence certificate for the H79 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:
The convergence of the H79 widening can also be certifieBHRZ03_Certificate

9.9.2 Member Function Documentation

9.9.2.1 int Parma_Polyhedra_Library::H79 Certificate::compare (const H79_Certificate & YY)
const

The comparison function for certificates.

Returns:
—1, 0 or 1 depending on whetheithis is smaller than, equal to, or greater thanespectively.

Comparestthis with y, using a total ordering which is a refinement of the Igo relation for the H79
widening.
9.10 Parma_Polyhedra_Library::H79 Certificate::Compare Struct Reference

A total ordering on H79 certificates.

Public Member Functions

e booloperator()constH79_Certificate®x, constH79_Certificate&y) const
Returngrue if and only ifx comes beforg.

9.10.1 Detailed Description

A total ordering on H79 certificates.

This binary predicate defines a total ordering on H79 certificates which is used when storing information
about sets of polyhedra.

9.11 Parma_Polyhedra_Library::LinExpression Class Reference

A linear expression.

Public Member Functions

e LinExpression)
Default constructor: returns a copy @fnExpression::zero()

e LinExpression(constLinExpressione)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.11 Parma_Polyhedra_Library::LinExpression Class Reference 91

Ordinary copy-constructor.

e ~LinExpression)
Destructor.

e LinExpression(constinteger&n)
Builds the linear expression corresponding to the inhomogeneousterm

e LinExpression(constVariablev)
Builds the linear expression corresponding to the variahle

e LinExpression(constConstraint&c)
Builds the linear expression corresponding to constraint

e LinExpressionconstGenerato&g)

Builds the linear expression corresponding to generatgfor points and closure points, the divisor is not
copied).

e dimension_typepace_dimensiof) const
Returns the dimension of the vector space enclosihig

e constinteger& coefficient(Variablev) const
Returns the coefficient ofin «xthis

e constinteger& inhomogeneous_ter) const
Returns the inhomogeneous termxtifis

Static Public Member Functions

e constLinExpression zero()
Returns the (zero-dimension space) constant 0.

Related Functions
(Note that these are not member functions.)

e LinExpressioroperator+H{constLinExpression&el, constLinExpression&e2)
Returns the linear expressi@i + e2.

e LinExpressioroperator+constinteger&n, constLinExpressior&e)
Returns the linear expression+ e.

e LinExpressioroperator+H{constLinExpression&e, constinteger&n)
Returns the linear expressi@n+ n.

e LinExpressioroperatorH{constLinExpression&e)
Returns the linear expressi@n

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.11

Parma_Polyhedra_Library::LinExpression Class Reference 92

LinExpressioroperator{constLinExpression&e)
Returns the linear expressiore-

LinExpressioroperator{constLinExpression&el, constLinExpression&e2)
Returns the linear expressi@i - e2.

LinExpressioroperator{constinteger&n, constLinExpression&e)
Returns the linear expression- e.

LinExpressioroperator{constLinExpression&e, constinteger&n)
Returns the linear expressien- n.

LinExpressioroperator« (constinteger&n, constLinExpressionke)
Returns the linear expressionx e.

LinExpressioroperator« (constLinExpression&e, constinteger&n)
Returns the linear expressi@nx n.

LinExpression% operator+=LinExpression&el, constLinExpressionke2)
Returns the linear expressi@l + e2 and assigns it tel.

LinExpression& operator+<LinExpression&e, constVariablev)
Returns the linear expressi@n+ v and assigns it te.

LinExpression& operator+=LinExpression&e, constinteger&n)
Returns the linear expressi@n+ n and assigns it te.

LinExpression& operator-5LinExpression&el, constLinExpression&e?2)
Returns the linear expressi@i - e2 and assigns it tel.

LinExpression& operator-=LinExpression&e, constVariablev)
Returns the linear expressi@n- v and assigns it t@.

LinExpression& operator-=LinExpression&e, constinteger&n)
Returns the linear expressi@n- n and assigns it t@.

LinExpression& operator«= (LinExpression&e, constinteger&n)
Returns the linear expression« e and assigns it t@.

std::ostream &operatok < (std::ostream &s, consinExpression&e)
Output operator.

void swap (Parma_Polyhedra_Library::LinExpressio&x, Parma_Polyhedra_Library::Lin-
Expressior&y)

Specializestd::swap

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.11 Parma_Polyhedra_Library::LinExpression Class Reference 93

9.11.1 Detailed Description

A linear expression.

An object of the claskinExpressiorrepresents the linear expression

n—1
1=0

wheren is the dimension of the space, eaghis the integer coefficient of thie -th variablex; andb is the
integer for the inhomogeneous term.

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classe¥ariableand Integer: available operators include unary negation, binary addition and sub-
traction, as well as multiplication by an Integer. The space-dimension of a linear expression is defined
as the maximum space-dimension of the arguments used to build it: in particular, the space-dimension of
aVariablex is defined ax.id()+1 , whereas all the objects of the class Integer have space-dimension
zero.

Example
The following code builds the linear expressibn— 2y — z + 14, having space-dimensidh

LinExpression e = 4*x - 2*y - z + 14,
Another way to build the same linear expression is:

LinExpression el
LinExpression e2 2%y,
LinExpression e3 = z;

LinExpression e = LinExpression(14);
e += el - e2 - e3;

4*x;

Note thatel, e2 ande3 have space-dimension 1, 2 and 3, respectively; also, in the fourth line of
code,e is created with space-dimension zero and then extended to space-dimension 3.

9.11.2 Constructor & Destructor Documentation

9.11.2.1 Parma_Polyhedra_Library::LinExpression::LinExpression (const Constraint &)
[explicit]
Builds the linear expression corresponding to consti@int

n—1

Given the constraint = (Zi:o a;x; + b O), wherext € {=,>, >}, builds the linear expression

Z?:_ol a;x; + b. If ¢ is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

9.11.2.2 Parma_Polyhedra_Library::LinExpression::LinExpression (const Generator & Q)
[explicit]

Builds the linear expression corresponding to genemtdor points and closure points, the divisor is not
copied).

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 94

Given the generatay = (“2,. .., “"’d*l)T (where, for lines and rays, we hade= 1), builds the linear

expressionzfz’o1 a;x;. The inhomogeneous term of the linear expression will always be @.idfa ray,

point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

9.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference

A not necessarily closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron

Public Member Functions

e NNC_Polyhedror{dimension_type num_dimensions£kgenerate_Kin#ind=UNIVERSE)
Builds either the universe or the empty NNC polyhedron.

e NNC_Polyhedror{const ConSys &cs)
Builds an NNC polyhedron from a system of constraints.

e NNC_Polyhedror{ConSys &cs)
Builds an NNC polyhedron recycling a system of constraints.

e NNC_Polyhedror{const GenSys &gs)
Builds an NNC polyhedron from a system of generators.

e NNC_Polyhedror{GenSys &gs)
Builds an NNC polyhedron recycling a system of generators.

e NNC_Polyhedror{constC_Polyhedror&y)
Builds an NNC polyhedron from the C polyhedson

o templatectypename Box NNC_Polyhedror{const Box &box, From_Bounding_Box dummy)
Builds an NNC polyhedron out of a generic, interval-based bounding box.

e NNC_Polyhedror{constNNC_Polyhedror&y)
Ordinary copy-constructor.

e NNC_Polyhedror& operator5constNNC_Polyhedror&y)
The assignment operatokthis andy can be dimension-incompatible.).

e ~NNC_Polyhedror)
Destructor.

Static Public Member Functions

e dimension_typenax_space_dimensidh
Returns the maximum space dimensidd &olyhedrorcan handle.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 95

9.12.1 Detailed Description

A not necessarily closed convex polyhedron.

An object of the clas8INC_Polyhedromepresents aot necessarily closeNNC) convex polyhedron in
the vector spacR”.

Note:
Since NNC polyhedra are a generalization of closed polyhedra, any object of th€cRsk/hedron
can be (explicitly) converted into an object of the cl&88C_Polyhedron The reason for defining
two different classes is that objects of the cl&@dPolyhedrorare characterized by a more efficient
implementation, requiring less time and memory resources.

9.12.2 Constructor & Destructor Documentation

9.12.2.1 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (dimension_type
num_dimensions= 0, Degenerate_Kindkind = UNIVERSB [explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the NNC polyhedron;

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Exceptions:
std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

9.12.2.2 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const ConSys &s)
Builds an NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declenedt because its data-
structures will be recycled to build the polyhedron.

9.12.2.3 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (ConSys &9)
Builds an NNC polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:

cs The system of constraints defining the polyhedron. It is not declenedt because its data-
structures will be recycled to build the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.13 Parma_Polyhedra_Library::Poly _Con_Relation Class Reference 96

9.12.2.4 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const GenSys &9
Builds an NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declzoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points.

9.12.2.5 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (GenSys &9
Builds an NNC polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declsoadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points.

9.12.2.6 templatectypename Box> Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Box &box, From_Bounding_Boxdummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templateéypename Box Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:
box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.

9.13 Parma_Polyhedra_Library::Poly Con_Relation Class Reference

The relation between a polyhedron and a constraint.

Public Member Functions

e boolimplies(constPoly Con_Relatioi&y) const

True if and only if«this impliesy.

e bool OK () const
Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.14 Parma_Polyhedra_Library::Poly _Gen_Relation Class Reference 97

Static Public Member Functions

e Poly_Con_Relatiomothing()
The assertion that says nothing.

Poly_Con_Relatiots_disjoint()
The polyhedron and the set of points satisfying the constraint are disjoint.

Poly _Con_Relatiostrictly intersectg)
The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

Poly_Con_Relatioms_included()
The polyhedron is included in the set of points satisfying the constraint.

Poly_Con_Relatiosaturateg)
The polyhedron is included in the set of points saturating the constraint.

Related Functions
(Note that these are not member functions.)

e booloperator==constPoly _Con_Relatio&x, constPoly _Con_Relatio&y)
True if and only ifx andy are logically equivalent.

bool operator!=(constPoly _Con_Relatioi&x, constPoly Con_Relatioi&y)
True if and only ifx andy are not logically equivalent.

Poly_Con_Relatiomperator &&(constPoly _Con_Relatio&x, constPoly _Con_Relatioy)

Yields the logical conjunction of andy.

Poly _Con_Relatiomperator{constPoly Con_Relatio&x, constPoly_Con_Relatio&y)

Yields the assertion with all the conjunctsxofhat are not iny.

std::ostream &operatox < (std::ostream &s, con§toly _Con_Relatioi&r)

Output operator.

9.13.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

9.14 Parma_Polyhedra_Library::Poly Gen_Relation Class Reference

The relation between a polyhedron and a generator.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference

98

Public Member Functions

e boolimplies(constPoly _Gen_Relatio&y) const
True if and only if«this impliesy.

e bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e Poly Gen_Relationothing()
The assertion that says nothing.

e Poly Gen_Relatiosubsumes)
Adding the generator would not change the polyhedron.

Related Functions
(Note that these are not member functions.)

e booloperator==constPoly _Gen_Relatio&x, constPoly Gen_Relatio&y)
True if and only ifx andy are logically equivalent.

bool operator!=(constPoly _Gen_Relatio&x, constPoly Gen_Relatio&y)
True if and only ifx andy are not logically equivalent.

Yields the logical conjunction of andy.

Poly _Gen_Relationperator{constPoly Gen_Relatio&x, constPoly _Gen_Relatio&y)
Yields the assertion with all the conjunctsxofhat are not iny.

e std::ostream &operatok < (std::ostream &s, con§toly_Gen_Relatio&r)
Output operator.

9.14.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

Poly_Gen_Relationperator && (constPoly _Gen_Relatio&x, constPoly Gen_Relatio&y)

9.15 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template

Reference

The powerset construction instantiated on PPL polyhedra.

InheritsParma_Polyhedra_Library::PowerSegParma_Polyhedra_Library::Determinat®H > >.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 99

Public Member Functions
Constructors

e Polyhedra_PowerSet(dimension_type num_dimensions=0Polyhedron::Degenerate_Kind
kind=Polyhedron::UNIVERSE)

Builds a universe (top) or empty (bottoP)lyhedra_PowerSet

e Polyhedra_PowerSétonstPolyhedra PowerSéty)
Ordinary copy-constructor.

e Polyhedra_PowerSétonst ConSys &cs)
Creates aPolyhedra_PowerSetith the same information contents &s.

Member Functions that Do Not Modify the Powerset of Polyhedra

e dimension_typapace_dimensiof) const
Returns the dimension of the vector space enclosing

e boolsemantically _contain@onstPolyhedra_PowerSély) const
Returngrue if and only ifxthis semantically (i.e., geometrically) contaips

e boolsemantically _equalgonstPolyhedra_PowerSély) const
Returngrue if and only ifxthis is semantically (i.e., geometrically) equalyto

e boolOK () const
Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Powerset of Polyhedra

e void add_constrainfconstConstraint&c)
Intersectstthis with constraintc.

e booladd_constraint_and_minimiZeonstConstraint&c)
Intersectstthis with the constraint, minimizing the result.

e void add_constraintéconst ConSys &cs)
Intersectsrthis with the constraints irts .

e booladd_constraints_and_minimigeonst ConSys &cs)
Intersects«this with the constraints ircs , minimizing the result.

o templatectypename Widening void BGP99 extrapolation_assigoonstPolyhedra_PowerSet
&y, Widening wf, unsigned max_disjuncts)
Assigns tokthis the result of applying the BGP99 extrapolation operatoxtbis andy, using the
widening functiorwf and the cardinality thresholthax_disjuncts

e templatectypename Cert, typename Widening void BHZO03_widening_assign(const
Polyhedra_PowerSé&ty, Widening wf)

Assigns tocthis the result of computing the BHZ03-widening betwettiis andy, using the widen-
ing functionwf certified by the convergence certificaiert .

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 100

e templatectypename Widening void BHZ03_widening_assig(constPolyhedra_PowerSéty,
Widening wf)
An instance of the BHZ03 framework using the widening funetiboertified byBHRZ03_Certificate

Member Functions that May Modify the Dimension of the Vector Space

e Polyhedra_PowerSét operator5constPolyhedra_PowerSéty)
The assignment operatokthis andy can be dimension-incompatible).

¢ void swap(Polyhedra_PowerSéty)
Swapskthis withy.

e void add_dimensions_and_emb(@imension_type m)
Addsmnew dimensions and embeds the old polyhedron in the new space.

e void add_dimensions_and_projg¢dimension_type m)
Addsmnew dimensions to the polyhedron and does not embed it in the new space.

e void concatenate_assigoonstPolyhedra_PowerSély)
Assigns tocthis the concatenation ofthis andy.

e void remove_dimensiong&onstVariables_Se&to _be_ removed)
Removes all the specified dimensions.

e void remove_higher_dimensioifdimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimeegiodimension

e templatectypename PartialFunctionvoid map_dimension&onst PartialFunction &pfunc)
Remaps the dimensions of the vector space according to a partial function.

Static Public Member Functions

e dimension_typenax_space_dimensidh
Returns the maximum space dimension a Polyhedra_Powg?set can handle.

Related Functions
(Note that these are not member functions.)

e Widening_Functior: PH > widen_fun(void(PH::xwm)(const PH &, unsigned))
Wraps a widening method into a function object.

e Limited_Widening_Functios PH > widen_fun(void(PH::xlwm)(const PH &, const ConSys &,
unsignedk), const ConSys &cs)

Wraps a limited widening method into a function object.

e void swap (Parma_Polyhedra_Library::Polyhedra_PowetSé&®H > &x, Parma_Polyhedra -
Library::Polyhedra_PowerSetPH > &y)

Specializestd::swap

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 101

e std::paik PH, Polyhedra_PowerSetNNC_Polyhedron> > linear_partition(const PH &p, const
PH &q)

Partitionsg with respect tg.

9.15.1 Detailed Description
template<typename PH> class Parma_Polyhedra_Library::Polyhedra_PowerSet PH >

The powerset construction instantiated on PPL polyhedra.

9.15.2 Constructor & Destructor Documentation

9.15.2.1 templatectypename PH> Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::Polyhedra_PowerSefdimension_typenum_dimensions= 0, Polyhedron::Degenerate_Kindkind
= Polyhedron::UNIVERSE) [explicit]

Builds a universe (top) or empty (bottoRplyhedra_PowerSet

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the powerset;

kind Specifies whether the universe or the empty powerset has to be built.

9.15.3 Member Function Documentation
9.15.3.1 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::semantically_contains (consPolyhedra_PowerSet PH > & y) const

Returngrue if and only if «this semantically (i.e., geometrically) contains

Exceptions:
std::invalid_argument Thrown if =«this and y are topology-incompatible or dimension-
incompatible.

Warning:
This may beeally expensive!

9.15.3.2 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::semantically_equals (consPolyhedra_PowerSet PH > & y) const

Returngrue if and only if «this is semantically (i.e., geometrically) equalyto

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

Warning:
This may beeally expensive!

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 102

9.15.3.3 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::add_constraint (constConstraint & c)

Intersectscthis with constraintc.
Exceptions:

std::invalid_argument Thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

9.15.3.4 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::add_constraint_and_minimize (constConstraint & c)

Intersectscthis with the constraint, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::iinvalid_argument Thrown if «this and ¢ are topology-incompatible or dimension-
incompatible.

9.15.3.5 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::add_constraints (const ConSys &cs)

Intersectscthis with the constraints igs .

Parameters:
cs The constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

9.15.3.6 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::add_constraints_and_minimize (const ConSys &9

Intersectscthis ~ with the constraints is , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs The constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if x«this and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 103

9.15.3.7 templatectypename PH> template<typename Widening> void Parma_Polyhedra_-
Library::Polyhedra_PowerSet< PH >::BGP99_extrapolation_assign (consPolyhedra_PowerSet
PH > & y, Widening wf, unsignedmax_disjunct3

Assigns toxthis the result of applying the BGP99 extrapolation operatoxttos andy, using the
widening functiorwf and the cardinality thresholdax_disjuncts

Parameters:
y A finite powerset of polyhedra. thustdefinitely entail«this ;

wf The widening function to be used on polyhedra objects. It is obtained from the corresponding
widening method by using the helper function Parma_Polyhedra_Library::widen_fun. Legal
values are, e.gwiden_fun(&Polyhedron::H79_widening_assign) andwiden_-
fun(&Polyhedron::limited_H79_extrapolation_assign, cs) ;

max_disjuncts The maximum number of disjuncts occurring in the powesslis beforestarting
the computation. If this number is exceeded, some of the disjunethi are collapsed (i.e.,
joined together).

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

For a description of the extrapolation operator, [g@P99]and[BHZ03b].

9.15.3.8 templatectypename PH> template<typename Cert, typename Widening- void Parma_-
Polyhedra_Library::Polyhedra_PowerSet PH >::BHZ03_widening_assign (constPolyhedra_-
PowerSek PH > & y, Widening wf)

Assigns toxthis the result of computing the BHZ03-widening betwedinis andy, using the widening
functionwf certified by the convergence certificaert .

Parameters:
y The finite powerset of polyhedra computed in the previous iteration stapudtdefinitely entail
«this ;
wf The widening function to be used on polyhedra objects. It is obtained from the cor-
responding widening method by using the helper function widen_fun. Legal val-
ues are, e.g.widen_fun(&Polyhedron::H79_widening_assign) and widen_-
fun(&Polyhedron::limited_H79_extrapolation_assign, cs)

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

The BHZ03 widening framework is instantiated using two extrapolation heuristics: first, the least up-
per bound is tried; second, the BGP99 extrapolation operator is tried, possibly applying pairwise reduc-
tion. If both heuristics fail to converge according to the certificd®t , then an attempt is made to
apply the base-level wideningf to the poly-hulls of«this andy, possibly improving the result us-

ing Polyhedron::poly_difference_assighor more details and a justification of the overall approach, see
[BHZ03b] and[BHZ04].

Warning:
In order to obtain a proper widening operator, the template para@et¢r should be a finite con-
vergence certificate for the base-level widening functidn otherwise, an extrapolation operator is
obtained. For a description of the methods that should be provid€ghy, seeBHRZ03 Certificate
or H79_Certificate

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.15 Parma_Polyhedra_Library::Polyhedra_PowerSet PH > Class Template Reference 104

9.15.3.9 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::.concatenate_assign (condRolyhedra_PowerSet PH > & y)

Assigns tokthis the concatenation afthis andy.

Seeing a powerset as a set of tuples, this method assigdtisiso all the tuples that can be obtained by
concatenating, in the order given, a tuplextifis with a tuple ofy.

Intuitively, the result is obtained by computing the pair-wtsscatenatiof each polyhedron irthis
with each polyhedron iy.

9.15.3.10 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::remove_dimensions (consVariables_Set& to_be removed

Removes all the specified dimensions.

Parameters:
to_be_removedrlhe set ofVariableobjects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if xthis is dimension-incompatible with one of tMariableobjects
contained irto_be_removed

9.15.3.11 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_PowerSek PH
>::remove_higher_dimensions (dimension_typeew_dimensioh

Removes the higher dimensions so that the resulting space will have dimeesiodimension

Exceptions:
std::invalid_argument Thrown ifnew_dimensions is greater than the space dimensiortbiis

9.15.3.12 templatetypename PH> template<typename PartialFunction> void Parma_-
Polyhedra_Library::Polyhedra_PowerSet PH >:map_dimensions (const PartialFunction &
pfunc)

Remaps the dimensions of the vector space according to a partial function.

See alsd?olyhedron::map_dimensions

9.15.4 Friends And Related Function Documentation
9.15.4.1 templatectypename PH> std::pair < PH, Polyhedra_PowerSet. NNC_Polyhedron > >
linear_partition (const PH & p, const PH & q) [related]
Partitionsg with respect t@.
Let p and g be two polyhedra. The function returns an objectof type std::pair <PH,
Polyhedra_PowerSet <NNC_Polyhedron > > such that

o r.first is the intersection g andq;

e r.second has the property that all its elements are not empty, pairwise disjoint, and disjoint from
p;

o the union ofr.first with all the elements af.second givesq (i.e.,r is the representation of a
partition ofq).

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 105

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference

The base class for convex polyhedra.

Inherited by Parma_Polyhedra_Library::C_Polyhedronand Parma_Polyhedra_Library::NNC_-
Polyhedron
Public Types

e enumDegenerate_Kin§l UNIVERSE EMPTY }
Kinds of degenerate polyhedra.

Public Member Functions
Member Functions that Do Not Modify the Polyhedron

e dimension_typespace_dimensiof) const
Returns the dimension of the vector space enclosihig

e const ConSys &onstraintg) const
Returns the system of constraints.

e const ConSys &ninimized_constraint§) const
Returns the system of constraints, with no redundant constraint.

e const GenSys &eneratorg) const
Returns the system of generators.

e const GenSys &ninimized_generator§ const
Returns the system of generators, with no redundant generator.

e Poly Con_Relatiomelation_with(constConstraini&c) const
Returns the relations holding between the polyheditsis and the constraint.

e Poly Gen_Relatiorelation_with(constGenerato&g) const
Returns the relations holding between the polyhedithis and the generatog.

e boolis_empty() const
Returngrue if and only ifxthis is an empty polyhedron.

e boolis_universe) const
Returngrue if and only ifxthis is a universe polyhedron.

e boolis_topologically closeg) const
Returngtrue if and only ifxthis is a topologically closed subset of the vector space.

e boolis_disjoint_from(constPolyhedron&y) const
Returngtrue if and only if«this andy are disjoint.

e boolis_bounded) const
Returngtrue if and only ifxthis is a bounded polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 106

boolbounds_from_abovionstLinExpression&expr) const
Returngrue if and only ifexpr is bounded from above igthis

boolbounds_from_beloconstLinExpression&expr) const
Returngtrue if and only ifexpr is bounded from below igthis

bool maximize(constLinExpression&expr, Integer&sup_n,Integer&sup_d, bool &maximum)
const

Returnstrue if and only if«this is not empty an@éxpr is bounded from above ithis , in which
case the supremum value is computed.

bool maximize(constLinExpression&expr, Integer&sup_n,Integer&sup_d, bool &maximum,
constGeneratokxconst pppoint) const

Returnstrue if and only ifxthis is not empty an@éxpr is bounded from above ithis , in which
case the supremum value and a point whetpr reaches it are computed.

bool minimize (constLinExpression&expr, Integer&inf_n, Integer&inf_d, bool &minimum)
const

Returnstrue if and only ifxthis is not empty an@xpr is bounded from below irthis , in which
case the infimum value is computed.

bool minimize (constLinExpression&expr, Integer&inf_n, Integer&inf_d, bool &minimum,
constGeneratorsxconst pppoint) const

Returnstrue if and only ifxthis is not empty anéxpr is bounded from below irthis , in which
case the infimum value and a point whesgr reaches it are computed.

bool containg(constPolyhedron&y) const
Returngtrue if and only ifxthis containsy.

bool strictly _containgconstPolyhedron&y) const
Returngrue if and only ifxthis strictly containsy.

templatectypename Box void shrink_bounding_boxBox &box, Complexity_Class complex-
ity=ANY) const
Usesxkthis to shrink a generic, interval-based bounding box.

bool OK (bool check_not_empty=false) const
Checks if all the invariants are satisfied.

Space-Dimension Preserving Member Functions that May Modify the Polyhedron

void add_constrainfconstConstraint&c)
Adds a copy of constraimt to the system of constraintsethis (without minimizing the result).

booladd_constraint_and_minimifeonstConstraini&c)
Adds a copy of constraimt to the system of constraintsethis , minimizing the result.

void add_generatdiconstGenerato&g)
Adds a copy of generat@r to the system of generatorssghis (without minimizing the result).

booladd_generator_and_minimigeonstGeneratok.g)
Adds a copy of generatagy to the system of generatorssghis , minimizing the result.

void add_constraintéconst ConSys &cs)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 107

Adds a copy of the constraints @s to the system of constraints efhis (without minimizing the
result).

¢ void add_recycled_constrainf€onSys &cs)
Adds the constraints ios to the system of constraintsethis (without minimizing the result).

e booladd_constraints_and_minimigeonst ConSys &cs)
Adds a copy of the constraints @ to the system of constraintsehis , minimizing the result.

e booladd_recycled_constraints_and_minim{@onSys &cs)
Adds the constraints ios to the system of constraintsethis , minimizing the result.

e void add_generator&onst GenSys &gs)
Adds a copy of the generatorsgs to the system of generatorssghis (without minimizing the result).

e void add_recycled_generatdiGenSys &gs)
Adds the generators igs to the system of generators-ghis (without minimizing the result).

e booladd_generators_and_minimi@nst GenSys &gs)
Adds a copy of the generatorsgs to the system of generators:ghis , minimizing the result.

e booladd_recycled_generators_and_minin(i@enSys &gs)
Adds the generators igs to the system of generators-gthis , minimizing the result.

e void intersection_assigftonstPolyhedrony)
Assigns tocthis the intersection ofthis andy. The result is not guaranteed to be minimized.

e boolintersection_assign_and_minimi@®nstPolyhedronky)
Assigns tocthis the intersection ofthis andy, minimizing the result.

e void poly_hull_assigrfconstPolyhedron&y)
Assigns tocthis the poly-hull of«this andy. The result is not guaranteed to be minimized.

e bool poly_hull_assign_and_minimiZeonstPolyhedroniy)
Assigns tocthis the poly-hull of«this andy, minimizing the result.

e void poly_difference_assigftonstPolyhedronky)
Assigns tocthis the poly-differenceof xthis andy. The result is not guaranteed to be minimized.

e void affine_image (Variable var, const LinExpression &expr, const Integer
&denominator=Integer_one())

Assigns toxthis the affine imageof «this under the function mapping variablar to the affine
expression specified lBxpr anddenominator

e void affine_preimage (Variable var, const LinExpression &expr, const Integer
&denominator=Integer_one())

Assigns torthis the affine preimagef «this under the function mapping variablar to the affine
expression specified ®xpr anddenominator

e void generalized_affine_imag¥ariablevar, const Relation_Symbol relsym, coh8tExpression
&expr, constinteger&denominator=Integer_one())

Assigns tosthis the image ofkthis with respect to th@eneralized affine transfer functiomr’ >
CXPT wherex is the relation symbol encoded bsisym .

denominator’

¢ void generalized_affine_imadeonstLinExpression&lhs, const Relation_Symbol relsym, const
LinExpression&rhs)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 108

Assigns tathis the image ofthis with respect to thgeneralized affine transfer functidins’ > rhs,
whererx is the relation symbol encoded bsisym .

void time_elapse_assigoeonstPolyhedrony)
Assigns tothis the result of computing théme-elapséetweerxthis andy.

void topological_closure_assidh
Assigns torthis its topological closure.

void BHRZ03_widening_assigftonstPolyhedron&y, unsignedx«tp=0)
Assigns tocthis the result of computing thBHRZ03-widenindpetweenxthis andy.

void limited_ BHRZ03_extrapolation_assigconstPolyhedrorn&y, const ConSys &cs, unsigned
xtp=0)
Improves the result of tiBHRZ03-wideningomputation by also enforcing those constraintssnthat
are satisfied by all the points ethis

void bounded_BHRZ03_extrapolation_assifgonst Polyhedron&y, const ConSys &cs, un-
signed«tp=0)
Improves the result of thBHRZ03-wideningomputation by also enforcing those constraintssnthat
are satisfied by all the points ethis , plus all the constraints of the forthz < r and+x < r, with
r € Q, that are satisfied by all the points ethis

void H79_widening_assig(constPolyhedron&y, unsigneds«tp=0)
Assigns tocthis the result of computing thid79-wideningbetweenkthis andy.

void limited_H79 extrapolation_assigftonst Polyhedron&y, const ConSys &cs, unsigned
xtp=0)
Improves the result of thid79-wideningcomputation by also enforcing those constraintssnthat are
satisfied by all the points etthis

void bounded_H79_extrapolation_assifponst Polyhedron&y, const ConSys &cs, unsigned
xtp=0)
Improves the result of thid79-wideningcomputation by also enforcing those constraintssnthat are
satisfied by all the points ofthis , plus all the constraints of the forsiz < r and+z < r, with
r € Q, that are satisfied by all the points ethis

Member Functions that May Modify the Dimension of the Vector Space

void add_dimensions_and_emb@iimension_type m)
Addsmnew dimensions and embeds the old polyhedron in the new space.

void add_dimensions_and_projg¢dimension_type m)
Addsmnew dimensions to the polyhedron and does not embed it in the new space.

void concatenate_assigoonstPolyhedron&y)
Assigns tocthis theconcatenatiorof xthis andy, taken in this order.

void remove_dimensiongonstVariables_Se&to_be_removed)
Removes all the specified dimensions.

void remove_higher_dimensioiidimension_type new_dimension)
Removes the higher dimensions so that the resulting space will have dimeesgiodimension

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 109

e templatectypename PartialFunctionvoid map_dimensiongonst PartialFunction &pfunc)
Remaps the dimensions of the vector space accordingéatal function

¢ void expand_dimensio(Variablevar, dimension_type m)
Createsmcopies of the dimension corresponding/ar .

¢ void fold_dimensiongconstVariables_Se&to_be_folded\Variablevar)
Folds the dimensions ito_be_folded intovar .

Miscellaneous Member Functions

e ~Polyhedron()
Destructor.

e void swap(Polyhedron&y)
Swapstthis with polyhedrory. (xthis andy can be dimension-incompatible.).

Static Public Member Functions

e dimension_typenax_space_dimensidh
Returns the maximum space dimension all kind@abfhedroncan handle.

Protected Member Functions

e Polyhedron(Topology topol, dimension_type num_dimensiobegenerate_Kin#ind)
Builds a polyhedron having the specified properties.

e PolyhedronconstPolyhedrony)
Ordinary copy-constructor.

e Polyhedron(Topology topol, const ConSys &cs)
Builds a polyhedron from a system of constraints.

e Polyhedron(Topology topol, ConSys &cs)
Builds a polyhedron recycling a system of constraints.

e PolyhedronTopology topol, const GenSys &gs)
Builds a polyhedron from a system of generators.

e PolyhedronTopology topol, GenSys &gs)
Builds a polyhedron recycling a system of generators.

o templatectypename Box Polyhedron(Topology topol, const Box &box)
Builds a polyhedron out of a generic, interval-based bounding box.

e Polyhedron& operator=constPolyhedrony)
The assignment operatokthis andy can be dimension-incompatible.).

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 110

Related Functions
(Note that these are not member functions.)

e std::ostream &operatox < (std::ostream &s, con$tolyhedron&ph)
Output operator.

bool operator==constPolyhedron&x, constPolyhedron&y)
Returngrue if and only ifx andy are the same polyhedron.

bool operator!=constPolyhedron&x, constPolyhedroniy)
Returngrue if and only ifx andy are different polyhedra.

void swap(Parma_Polyhedra_Library::Polyhedr@r, Parma_Polyhedra_Library::Polyhedr&y)

Specializestd::swap

templatectypename PH boolpoly hull_assign_if _exa¢PH &p, const PH &q)
If the poly-hull betweep andq is exact it is assigned tp.

9.16.1 Detailed Description

The base class for convex polyhedra.
An object of the clas®olyhedrorrepresents a convex polyhedron in the vector sfidtce

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
SectionRepresentations of Convex Polyhexdaad it is always possible to obtain either representation. That

is, if we know the system of constraints, we can obtain from this the system of generators that define the
same polyhedron and vice versa. These systems can contain redundant members: in this case we say that
they are not in the minimal form. Most operators on polyhedra are provided with two implementations:
one of these, denotedoperator-name >_and_minimize , also enforces the minimization of the
representations, and returns the Boolean védise whenever the resulting polyhedron turns out to be
empty.

Two key attributes of any polyhedron are its topological kind (recording whether i€isRolyhedroror
anNNC_Polyhedrombject) and its space dimension (the dimension N of the enclosing vector space):

¢ all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

e most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see SeR@pmesentations of Convex
Polyhedry;

o there is no way to change the topology of a polyhedron; rather, there are constructors of the two de-
rived classes that builds a new polyhedron having a topology when provided with the corresponding
polyhedron of the other topology;

e the only ways to change the space dimension of a polyhedron are:

— explicit calls to operators provided for that purpose;
— standard copy, assignment and swap operators.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 111

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedR%n again either closed or NNC.

In all the examples it is assumed that variableandy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a squaR?jrgiven as a system of con-
straints:

ConSys cs;
cs.insert(x >= 0);
cs.nsert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

GenSys gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
C_Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-stip, igiven as a
system of constraints:

ConSys cs;

cs.insert(x >= 0);
cs.nsert(x - y <= 0);
cs.insert(x -y + 1 >= 0);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

GenSys gs;
gs.insert(point(0*x + 0%y));
gs.insert(point(0*x + y));

gs.insert(ray(x - y));
C_Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to an half-plane by adding a single constraint
to the universe polyhedron R?:

C_Polyhedron ph(2);
ph.add_constraintly >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spac@®? and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, Polyhedron:EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 112

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise

the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
point (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functaatd_dimensions_and_embed
C_Polyhedron ph(1);

ph.add_constraint(x == 2);
ph.add_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension sgacélhen we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singletoj2 k&t R. After the last line
of code, the resulting polyhedron is

{(Q,y)T€R2‘y€R}.

Example 5
The following code shows the use of the functaatd_dimensions_and_project
C_Polyhedron ph(1);

ph.add_constraint(x == 2);
ph.add_dimensions_and_project(1);

The first two lines of code are the same as in Example 4ddr dimensions_and_embed . After
the last line of code, the resulting polyhedron is the singletod €0)" } C R?.

Example 6
The following code shows the use of the functaffine_image

C_Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0%y));
ph.add_generator(point(3*x + 3*y));
LinExpression coeff = x + 4;
ph.affine_image(x, coeff);

In this example the starting polyhedron is a squarRinthe considered variable isand the affine
expression i 4+ 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variablis = + y:

LinExpression coeff = x + v;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line— y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expresgion

LinExpression coeff = vy;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functatffine_preimage

C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(ly >= 0);
ph.add_constraint(ly <= 3);
LinExpression coeff = x + 4;
ph.affine_preimage(x, coeff);

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 113

In this example the starting polyhedrorar and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation faris « + y

LinExpression coeff = x + v;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line+ y. Instead, if we do not use an invertible transformation for the
same variable, for example, the affine expressign

LinExpression coeff = y;

the resulting polyhedron is a line that corresponds ta,thgis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functr@move_dimensions

GenSys gs;

gs.insert(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);

set<Variable> to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_dimensions(to_be_removed);

The starting polyhedron is the singleton §cé3, 1,0, 2)T} C R*, while the resulting polyhedron is
{(3, 2)T} C R2. Be careful when removing dimensioimerementally since dimensions are auto-
matically renamed after each application of teenove_dimensions operator, unexpected results
can be obtained. For instance, by using the following code we would obtain a different result:

set<Variable> to_be removedl;
to_be_removedLl.insert(y);
ph.remove_dimensions(to_be_removed1l);
set<Variable> to_be removed2;
to_be_removed2.insert(z);
ph.remove_dimensions(to_be_removed2);

In this case, the result is the polyhedr{)(rji, O)T} C R2: when removing the set of dimensiotus -
be_removed2 we are actually removing variable of the original polyhedron. For the same reason,
the operatoremove_dimensions is not idempotent: removing twice the same set of dimensions
iS never a no-op.

9.16.2 Member Enumeration Documentation

9.16.2.1 enunParma_Polyhedra_Library::Polyhedron::Degenerate_Kind

Kinds of degenerate polyhedra.

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 114

9.16.3 Constructor & Destructor Documentation
9.16.3.1 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, dimension_type
num_dimensionsDegenerate_Kindkind) [protected]

Builds a polyhedron having the specified properties.

Parameters:
topol The topology of the polyhedron;

num_dimensionsThe number of dimensions of the vector space enclosing the polyhedron;
kind Specifies whether the universe or the empty polyhedron has to be built.

9.16.3.2 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topologytopol, const ConSys &cs)
[protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the topology ots is incompatible withtopol

9.16.3.3 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, ConSys & c9
[protected]

Builds a polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not declanedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the topology ofs is incompatible withtopol

9.16.3.4 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topologyopol, const GenSys &gs)
[protected]

Builds a polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 115

9.16.3.5 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, GenSys & g9
[protected]

Builds a polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declawedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

9.16.3.6 templatectypename Box> Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topol-
ogytopol, const Box &box) [protected]

Builds a polyhedron out of a generic, interval-based bounding box.

Parameters:
topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

Exceptions:
std::invalid_argument Thrown if box has intervals that are incompatible withpol

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

bool is_empty() const

returnstrue if and only if the bounding box describes the empty set. iBhempty() method will
always be called before the methods below. Howeves, #mpty() returngtrue , none of the functions
below will be called.

bool get_lower_bound(dimension_type k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to tHeth dimension. Iff is not bounded from below, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the lower boundary of
Iisclosed and is set false otherwisen andd are assigned the integetsandd such that the canonical
fractionn/d corresponds to the greatest lower bound ofThe fractionn/d is in canonical form if and
only if n andd have no common factors alds positive,0/1 being the unique representation for zero.

bool get_upper_bound(dimension_type k, bool closed,
Integer& n, Integer& d) const

Let I the interval corresponding to theth dimension. IfI is not bounded from above, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the upper boundary of

lisclosed and is set false otherwisen andd are assigned the integetsindd such that the canonical

fractionn/d corresponds to the least upper bound of

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 116

9.16.4 Member Function Documentation

9.16.4.1 Poly_Con_Relation Parma_Polyhedra_Library::Polyhedron::relation_with (const Con-
straint & c¢) const

Returns the relations holding between the polyhedtbis and the constraint.

Exceptions:
std::invalid_argument Thrown if xthis and constraint are dimension-incompatible.

9.16.4.2 Poly_Gen_RelationParma_Polyhedra_Library::Polyhedron::relation_with (const Gener-
ator & @) const

Returns the relations holding between the polyhedthis and the generatay.

Exceptions:
std::invalid_argument Thrown if xthis and generatay are dimension-incompatible.

9.16.4.3 bool Parma_Polyhedra_Library::Polyhedron::is_disjoint_from (constPolyhedron &)
const

Returngrue if and only if xthis andy are disjoint.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

9.16.4.4 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_above (condtinExpression
& expr) const

Returngrue if and only if expr is bounded from above irthis

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

9.16.4.5 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_below (constinExpression
& expr) const

Returngrue if and only if expr is bounded from below inthis

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

9.16.4.6 bool Parma_Polyhedra_Library::Polyhedron::maximize (constinExpression & expr, In-
teger& sup_n Integer & sup_d bool & maximum) const

Returnstrue if and only if xthis is not empty andéxpr is bounded from above igthis , in which
case the supremum value is computed.

Parameters:
expr The linear expression to be maximized subjectttos ;

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 117

sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from abovdalse is returned andup _n, sup_d and
maximum are left untouched.

9.16.4.7 bool Parma_Polyhedra_Library::Polyhedron::maximize (constinExpression & expr, In-
teger& sup_n Integer & sup_d bool & maximum, constGenerator xxconstpppoinf const

Returnstrue if and only if xthis is not empty andgxpr is bounded from above igthis , in which
case the supremum value and a point wheqer reaches it are computed.

Parameters:
expr The linear expression to be maximized subjectttos ;

sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value;

pppoint When nonzero and maximization succeeds, a pointer to a point or closure pointexpere
reaches its supremum value will be written at this address.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from abovéalse isreturned andup_n , sup_d , maximum
andpppoint are left untouched.

9.16.4.8 bool Parma_Polyhedra_Library::Polyhedron::minimize (constLinExpression & expr, In-
teger& inf_n, Integer & inf_d, bool & minimum) const

Returnstrue if and only if xthis is not empty andxpr is bounded from below inthis , in which
case the infimum value is computed.

Parameters:
expr The linear expression to be minimized subjecttias ;

inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;
minimum true if and only if the infimum is also the minimum value.

Exceptions:
std::invalid_argument Thrown if expr andxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from belowfalse is returned andnf n ,inf. d and
minimum are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 118

9.16.4.9 bool Parma_Polyhedra_Library::Polyhedron::minimize (constLinExpression & expr, In-
teger& inf_n, Integer & inf_d, bool & minimum, constGenerator xxconstpppoinf) const

Returnstrue if and only if xthis is not empty angxpr is bounded from below irthis , in which
case the infimum value and a point whesgr reaches it are computed.

Parameters:
expr The linear expression to be minimized subjecttiois ;

inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;
minimum true if and only if the infimum is also the minimum value;

pppoint When nonzero and minimization succeeds, a pointer to a point or closure pointexipere
reaches its infimum value will be written at this address.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from belovalse isreturned anthf_n ,inf_d , minimum
andpppoint are left untouched.

9.16.4.10 bool Parma_Polyhedra_Library::Polyhedron::contains (consPolyhedron & y) const

Returngrue if and only if xthis containsy.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.16.4.11 bool Parma_Polyhedra_Library::Polyhedron::strictly contains (constolyhedron & y)
const

Returngrue if and only if xthis strictly containgy.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.16.4.12 templatetypename Box> void Parma_Polyhedra_Library::Polyhedron::shrink_-
bounding_box (Box & box, Complexity Classcomplexity= ANY) const

Usesxthis to shrink a generic, interval-based bounding box.

Parameters:
box The bounding box to be shrunk;
complexity The complexity class of the algorithm to be used.

The template class Box must provide the following methods, whose return value, if any, is simply ignored.

set_empty()

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 119

causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to #hh dimension with[n/d, +c0) if closed is true , with
(n/d,+o0) if closed isfalse

lower_upper_bound(dimension_type k, bool closed,
const Integer& n, const Integer& d)

intersects the interval corresponding to #hh dimension with(—oo,n/d] if closed is true , with
(—o0,n/d) if closed isfalse

The functionraise_lower_bound(k, closed, n, d) will be called at most once for each pos-
sible value fork and for all such calls the fraction/d will be in canonical form, that isp andd have

no common factors andlis positive,0/1 being the unique representation for zero. The same guarantee is
offered for the functiodower_upper_bound(k, closed, n, d)

9.16.4.13 bool Parma_Polyhedra_Library::Polyhedron::OK (bool check_not_empty= false)
const

Checks if all the invariants are satisfied.

Returns:
true if and only if xthis satisfies all the invariants and eithelreck_not_empty isfalse or
xthis is not empty.

Parameters:
check_not_emptytrue if and only if, in addition to checking the invariantghis must be checked
to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are writtstdaerr in case invariants are violated. This is
useful for the purpose of debugging the library.

9.16.4.14 void Parma_Polyhedra_Library::Polyhedron::add_constraint (consConstraint & c)

Adds a copy of constraint to the system of constraints ethis (without minimizing the result).

Exceptions:
std::invalid_argument Thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

9.16.4.15 bool Parma_Polyhedra_Library::Polyhedron::add_constraint_and_minimize (const
Constraint & c)

Adds a copy of constraint to the system of constraints ethis , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if «this and constraint are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 120

9.16.4.16 void Parma_Polyhedra_Library::Polyhedron::add_generator (consGenerator & Q)

Adds a copy of generatagy to the system of generatorsgthis (without minimizing the result).

Exceptions:
std::invalid_argument Thrown if xthis and generatog are topology-incompatible or dimension-
incompatible, or ifsthis is an empty polyhedron arglis not a point.

9.16.4.17 bool Parma_Polyhedra_Library::Polyhedron::add_generator_and_minimize (const
Generator & @)

Adds a copy of generatagr to the system of generators gthis , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and generatog are topology-incompatible or dimension-
incompatible, or ifsthis is an empty polyhedron arglis not a point.

9.16.4.18 void Parma_Polyhedra_Library::Polyhedron::add_constraints (const ConSys &s)

Adds a copy of the constraints@s to the system of constraints ethis (without minimizing the result).

Parameters:
cs Contains the constraints that will be added to the system of constraistisisf .

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

9.16.4.19 void Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints (ConSys &9

Adds the constraints ios to the system of constraints ethis (without minimizing the result).

Parameters:
cs The constraint system that will be recycled, adding its constraints to the system of constraints of
xthis

Exceptions:
std::invalid_argument Thrown if «this and cs are topology-incompatible or dimension-
incompatible.

Warning:
The only assumption that can be madecsnupon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 121

9.16.4.20 bool Parma_Polyhedra_Library::Polyhedron::add_constraints_and_minimize (const
ConSys &c9

Adds a copy of the constraints @3 to the system of constraints ethis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs Contains the constraints that will be added to the system of constraistsisf .

Exceptions:
std::invalid_argument Thrown if «this and cs are topology-incompatible or dimension-
incompatible.

9.16.4.21 bool Parma_Polyhedra_Library::Polyhedron::add recycled_constraints_and_minimize
(ConSys &cg)

Adds the constraints ios to the system of constraints efhis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs The constraint system that will be recycled, adding its constraints to the system of constraints of
«this

Exceptions:
std::invalid_argument Thrown if x«this and cs are topology-incompatible or dimension-
incompatible.

Warning:
The only assumption that can be madeosnupon successful or exceptional return is that it can be
safely destroyed.

9.16.4.22 void Parma_Polyhedra_Library::Polyhedron::add _generators (const GenSys §5)

Adds a copy of the generatorsds to the system of generators-gthis (without minimizing the result).

Parameters:
gs Contains the generators that will be added to the system of generatdhssof .

Exceptions:
std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or if«this is empty and the system of generatgss is not empty, but has no
points.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 122

9.16.4.23 void Parma_Polyhedra_Library::Polyhedron::add_recycled_generators (GenSys §9

Adds the generators igs to the system of generatorsgthis (without minimizing the result).

Parameters:
gs The generator system that will be recycled, adding its generators to the system of generators of
xthis

Exceptions:
std::invalid_argument Thrown if «this and gs are topology-incompatible or dimension-
incompatible, or ifxthis is empty and the system of generatgss is not empty, but has no
points.

Warning:
The only assumption that can be madegsnupon successful or exceptional return is that it can be
safely destroyed.

9.16.4.24 bool Parma_Polyhedra_Library::Polyhedron::add_generators_and_minimize (const
GenSys &g9)

Adds a copy of the generatorsgs to the system of generatorshis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs Contains the generators that will be added to the system of generatdhssof .

Exceptions:
std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or ifkthis is empty and the the system of generaggss not empty, but has no
points.

9.16.4.25 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_generators_and_minimize
(GenSys &g9

Adds the generators igs to the system of generatorsgthis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs The generator system that will be recycled, adding its generators to the system of generators of
xthis

Exceptions:
std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or ifsthis is empty and the the system of generaggds not empty, but has no
points.

Warning:
The only assumption that can be madegsnupon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 123

9.16.4.26 void Parma_Polyhedra_Library::Polyhedron::intersection_assign (condPolyhedron &
y)

Assigns tokthis the intersection ofthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if =«this and y are topology-incompatible or dimension-
incompatible.

9.16.4.27 bool Parma_Polyhedra_Library::Polyhedron::intersection_assign_and_minimize (const
Polyhedron &)

Assigns toxthis the intersection ofthis andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.16.4.28 void Parma_Polyhedra_Library::Polyhedron::poly_hull_assign (consPolyhedron & y)

Assigns toxthis the poly-hull ofxthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.16.4.29 bool Parma_Polyhedra_Library::Polyhedron::poly_hull_assign_and_minimize (const
Polyhedron & y)

Assigns toxthis the poly-hull ofxthis andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.16.4.30 void Parma_Polyhedra_Library::Polyhedron::poly_difference_assign (congtolyhedron
&y)
Assigns toxthis thepoly-differenceof xthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 124

9.16.4.31 void Parma_Polyhedra_Library::Polyhedron::affine_image Variable var, const Lin-
Expression& expr, constinteger & denominator= Integer_one())

Assigns toxthis the affine imageof «this under the function mapping variablar to the affine
expression specified xpr anddenominator

Parameters:
var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr andxthis are dimension-
incompatible or ifvar is not a dimension athis

9.16.4.32 void Parma_Polyhedra_Library::Polyhedron::affine_preimage Variable var, constLin-
Expression& expr, constinteger & denominator= Integer_one())

Assigns toxthis the affine preimagef «this under the function mapping variablar to the affine
expression specified lgxpr anddenominator

Parameters:
var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr and=xthis are dimension-
incompatible or ifvar is not a dimension ofthis

9.16.4.33 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_imageVériable var,
const Relation_Symbolrelsym const LinExpression & expr, const Integer & denominator =
Integer_one())

Assigns toxthis the image ofxthis with respect to theyeneralized affine transfer functioar’ >
—=P—— wherep is the relation symbol encoded bgisym .

denominator

Parameters:
var The left hand side variable of the generalized affine transfer function;

relsym The relation symbol;
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr and=xthis are dimension-
incompatible orifvar is not a dimension ofthis or if «this isaC_Polyhedromndrelsym
is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 125

9.16.4.34 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (constLin-
Expression& lhs, const Relation_Symborelsym constLinExpression & rhs)

Assigns tosthis the image ofthis with respect to thgeneralized affine transfer functidins’ < rhs,
wherex is the relation symbol encoded bgisym .

Parameters:
Ihs The left hand side affine expression;

relsym The relation symbol;
rhs The right hand side affine expression.

Exceptions:
std::invalid_argument Thrown if «this is dimension-incompatible withhs orrhs orif xthis is
aC_Polyhedrorandrelsym is a strict relation symbol.

9.16.4.35 void Parma_Polyhedra_Library::Polyhedron::time_elapse_assign (conBolyhedron &
y)

Assigns toxthis the result of computing thiéme-elapsédetween<this andy.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.16.4.36 void Parma_Polyhedra_Library::Polyhedron::BHRZ03_ widening_assign (cong?olyhe-
dron & y, unsignedsx tp = 0)

Assigns toxthis the result of computing thBHRZ03-wideningbetweenxthis andy.

Parameters:
y A polyhedron thamustbe contained ixthis ;
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if =«this and y are topology-incompatible or dimension-
incompatible.

9.16.4.37 void Parma_Polyhedra_Library::Polyhedron::limited BHRZ03 extrapolation_assign
(constPolyhedron & y, const ConSys &cs, unsignedsx tp = 0)

Improves the result of thBHRZ03-wideningcomputation by also enforcing those constraintsdnthat
are satisfied by all the points efthis

Parameters:
y A polyhedron thatmustbe contained inthis ;
cs The system of constraints used to improve the widened polyhedron;
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 126

9.16.4.38 void Parma_Polyhedra_Library::Polyhedron::bounded BHRZ03_extrapolation_assign
(constPolyhedron & y, const ConSys &cs, unsignedsx tp = 0)

Improves the result of thBHRZ03-wideningcomputation by also enforcing those constraintsdnthat
are satisfied by all the points ethis , plus all the constraints of the formaz < r and+z < r, with
r € Q, that are satisfied by all the points:ghis

Parameters:
y A polyhedron thatnustbe contained irthis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.

9.16.4.39 void Parma_Polyhedra_Library::Polyhedron::H79_widening_assign (cond®olyhedron
& y, unsignedx tp = 0)

Assigns toxthis the result of computing thel79-wideningbetweenxthis andy.

Parameters:
y A polyhedron thatnustbe contained irthis ;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

9.16.4.40 void Parma_Polyhedra_Library::Polyhedron::limited_H79_extrapolation_assign (const
Polyhedron & y, const ConSys &cs, unsignedx tp = 0)

Improves the result of thel79-wideningcomputation by also enforcing those constraintssnthat are
satisfied by all the points afthis

Parameters:
y A polyhedron thatnustbe contained irthis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.6). (8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 127

9.16.4.41 void Parma_Polyhedra_Library::Polyhedron::bounded_H79_extrapolation_assign
(constPolyhedron & y, const ConSys &cs, unsignedsx tp = 0)

Improves the result of thel79-wideningcomputation by also enforcing those constraintssnthat are
satisfied by all the points afthis , plus all the constraints of the fortaz < r and+x < r, withr € Q,
that are satisfied by all the points his

Parameters:
y A polyhedron thatnustbe contained irthis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.
9.16.4.42 void Parma_Polyhedra_Library::Polyhedron::add_dimensions_and_embed

(dimension_typem)

Addsmnew dimensions and embeds the old polyhedron in the new space.

Parameters:
m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are not constrained.
For instance, when starting from the polyhedfrc R? and adding a third dimension, the result will be
the polyhedron

{ (z,y,2)T € R3 ‘ (z,y)T € P}

9.16.4.43 void Parma_Polyhedra_Library::Polyhedron::add_dimensions_and_project
(dimension_typem)

Addsmnew dimensions to the polyhedron and does not embed it in the new space.

Parameters:
m The number of dimensions to add.

The new dimensions will be those having the highest indexes in the new polyhedron, which is characterized
by a system of constraints in which the variables running through the new dimensions are all constrained
to be equal to 0. For instance, when starting from the polyhe®rah R? and adding a third dimension,

the result will be the polyhedron

{(z,9,0)" €eR®| (z,y)" € P }.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 128

9.16.4.44 void Parma_Polyhedra_Library::Polyhedron:.concatenate_assign (conBlyhedron &
y)

Assigns toxthis the concatenatiowf xthis andy, taken in this order.

Exceptions:
std::invalid_argument Thrown if xthis andy are topology-incompatible.

9.16.4.45 void Parma_Polyhedra_Library::Polyhedron::remove_dimensions (constariables_Set
& to_be_removed

Removes all the specified dimensions.

Parameters:
to_be removedrlhe set ofVariableobjects corresponding to the dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if «this is dimension-incompatible with one of tMariableobjects
contained irto_be_removed

9.16.4.46 void Parma_Polyhedra_Library::Polyhedron::remove_higher_dimensions (dimension_
type new_dimensioh

Removes the higher dimensions so that the resulting space will have dimeesgiodimension

Exceptions:
std::invalid_argument Thrown if new_dimensions is greater than the space dimensiortbiis

9.16.4.47 templateitypename PartialFunction> void Parma_Polyhedra_-
Library::Polyhedron::map_dimensions (const PartialFunction & pfunc)

Remaps the dimensions of the vector space accordingé#otal function

Parameters:
pfunc The partial function specifying the destiny of each dimension.

The template class PartialFunction must provide the following methods.
bool has_empty_codomain() const

returnstrue if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). Thénas_empty codomain() method will always be called before the methods below.
However, ifhas_empty codomain() returnstrue , none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. mékein_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.16 Parma_Polyhedra_Library::Polyhedron Class Reference 129

Let f be the represented function ahde the value of . If f is defined ink, then f(k) is assigned to
j andtrue is returned. Iff is undefined ink, thenfalse s returned. This method is called at mast
times, wherer is the dimension of the vector space enclosing the polyhedron.

The result is undefined {fifunc does not encode a partial function with the properties described in the
specification of the mapping operator

9.16.4.48 void Parma_Polyhedra_Library::Polyhedron::expand_dimension \ariable var,
dimension_typem)

Createsncopies of the dimension corresponding/ar .

Parameters:
var The variable corresponding to the dimension to be replicated;

m The number of replica to be created.

Exceptions:
std::invalid_argument Thrown if var does not correspond to a dimension of the polyhedron.

If «this is n-dimensional, withn > 0, andi < nisvar.id() , then thei-th dimension iexpandedo
mnew dimensions, n+ 1, ...,n+m — 1.

9.16.4.49 void Parma_Polyhedra_Library::Polyhedron::fold_dimensions (consWariables_Set &
to_be_foldedVariable var)

Folds the dimensions ito_be_folded intovar .

Parameters:
to_be foldedThe set ofVariableobjects corresponding to the dimensions to be folded;

var The variable corresponding to the dimension that is the destination of the folding operation.

Exceptions:
std::invalid_argument Thrown if xthis is dimension-incompatible witkar or with one of the
Variableobjects contained ito_be folded . Also thrown ifvar is contained irto_be_-
folded

If xthis is n-dimensional, withn > 0, i < n is var.id() , to_be_folded is a set of variables
whoseid() is also less tham, andvar is not a member ofo_be folded , then the dimensions
corresponding to variables tn_be folded arefoldedinto dimension.

9.16.4.50 void Parma_Polyhedra_Library::Polyhedron::swap Polyhedron &)
Swapsx«this with polyhedrony. (xthis andy can be dimension-incompatible.).

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible.

9.16.5 Friends And Related Function Documentation

9.16.5.1 std::ostream & operatok < (std::ostream & s, constPolyhedron & ph) [related]

Output operator.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.17 Parma_Polyhedra_Library::PowerSek CS > Class Template Reference 130

Writes a textual representation ph ons: false s written if ph is an empty polyhedronyue is
written if ph is a universe polyhedron; a minimized system of constraints defpting written otherwise,

all constraints in one row separated by ", ".
9.16.5.2 bool operator== (consPolyhedron & x, constPolyhedron& y) [related]
Returngrue if and only if x andy are the same polyhedron.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
false is returned.

9.16.5.3 bool operator!= (consPolyhedron & X, constPolyhedron& y) [related]
Returngrue if and only if x andy are different polyhedra.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
true isreturned.

9.17 Parma_Polyhedra_Library::PowerSek CS > Class Template Reference

The powerset construction on constraint systems.

Public Member Functions

e PowerSef)
Default constructor.

e PowerSe{constPowerSety)

Ordinary copy-constructor.

e PowerSe®& operatorconstPowerSety)
The assignment operator.

¢ void swap(PowerSety)
Swapskthis withy.

e void add_disjunc{const CS &d)
Adds toxthis the disjuncd.

e void upper_bound_assigeonstPowerSe&y)
Assigns tocthis an upper bound ofthis andy.

e void meet_assiglconstPowerSety)
Assigns torthis the meet okthis andy.

e bool definitely _entail{constPowerSety) const

Returngrue if xthis definitely entaily/. Returndalse if xthis may not entail (i.e., if xthis does
not entaily or if entailment could not be decided).

e boolis_top() const

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.17 Parma_Polyhedra_Library::PowerSek CS > Class Template Reference 131

Returnstrue if and only ifxthis is the top element of the powerset constraint system (i.e., it represents
the universe).

e boolis_bottom() const

Returngrue if and only ifxthis is the bottom element of the powerset constraint system (i.e., it represents
the empty set).

e bool OK (bool disallow_bottom=false) const
Checks if all the invariants are satisfied.

¢ void collapse&()

If xthis is not empty (i.e., it is not the bottom element), it is reduced to a singleton obtained by computing
an upper-bound of all the disjuncts.

Protected Types

o typedef std::list CS > Sequence
A powerset is implemented as a sequence of elements.

Protected Member Functions

e void omega_reducg const
Erase fromxthis all the non-maximal elements.

e boolis_omega_reducgg const

Returngrue if and only ifxthis does not contain non-maximal elements.

Static Protected Member Functions

e void add_non_bhottom_disjun¢Bequenc&s, const CS &d, iterator &first, iterator last)

Adds toxthis the disjuncd, assumingl is not the bottom element and ensuring partial omega-reduction.

e void add_non_bottom_disjun¢Bequenc&s, const CS &d)

Adds toxthis the disjuncid, assumingl is not the bottom element.

Protected Attributes

e Sequencsequence
The sequence container holding powerset's elements.

e boolreduced
If true , xthis is omega-reduced.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.18 Parma_Polyhedra_Library::Variable Class Reference 132

Related Functions

(Note that these are not member functions.)

bool operator==constPowerSet CS> &x, constPowerSet CS> &y)
Returngtrue if and only ifx andy are equivalent.

bool operator!=(constPowerSet. CS> &x, constPowerSet. CS > &y)
Returngrue if and only ifx andy are not equivalent.

std::ostream &operatok < (std::ostream &s, congtowerSet. CS > &x)

Output operator.

void swap (Parma_Polyhedra_Library::Power8eCS > &x, Parma_Polyhedra_Library::Power-
Sek CS> &y)

Specializestd::swap

9.17.1 Detailed Description
template<typename CS> class Parma_Polyhedra_Library::PowerSet CS >

The powerset construction on constraint systems.

This class offers a generic implementatiorpofverset constraint systeras defined iriBag98]

9.17.2 Member Typedef Documentation

9.17.2.1 templatectypename CS> typedef std::list<CS> Parma_Polyhedra_Library::PowerSet<
CS >::Sequence [protected]

A powerset is implemented as a sequence of elements.

The particular sequence employed must support efficient deletion in any position and efficient back inser-
tion.

9.17.3 Member Function Documentation

9.17.3.1 templatectypename CS> void Parma_Polyhedra_Library::PowerSet< CS >::add_non_-
bottom_disjunct (Sequence& s, const CS & d, iterator & first, iterator last) [static,
protected]

Adds toxthis the disjunctd, assumingl is not the bottom element and ensuring partial omega-reduction.

If d is not the bottom element and is not redundant with respect to the elements in positions between
first andlast , addstosthis the disjuncd, erasing all the elements in the above mentioned positions
that are made omega-redundant by the additiash of

9.18 Parma_Polyhedra_Library::Variable Class Reference

A dimension of the space.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.18 Parma_Polyhedra_Library::Variable Class Reference 133

Public Types

o typedef voidoutput_function_typéstd::ostream &s, consfariable&v)
Type of output functions.

Public Member Functions

e Variable(dimension_type i)

Builds the variable corresponding to the Cartesian axis of index

e dimension_typed () const

Returns the index of the Cartesian axis associated to the variable.

Static Public Member Functions

e void set_output_functiofoutput_function_typep)
Sets the output function to be used for printWagiable objects.

e output_function_type get_output_functiorf)
Returns the pointer to the current output function.

Related Functions

(Note that these are not member functions.)

e std::ostream &operatox < (std::ostream &s, conafariable&v)
Output operator.

e boolless(Variablev, Variablew)
Defines a total ordering on variables.

9.18.1 Detailed Description

A dimension of the space.

An object of the clas¥/ariable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as base blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0).

Note that the “meaning” of an object of the claggriableis completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressiais ande2 are equivalent, since the two variablesndz

denote the same Cartesian axis.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.19 Parma_Polyhedra_Library::Variable::Compare Struct Reference 134

Variable x(0);
Variable y(1);
Variable z(0);
LinExpression el
LinExpression e2

X +y;
y +z

9.19 Parma_Polyhedra_Library::Variable::Compare Struct Reference

Binary predicate defining the total ordering on variables.

Public Member Functions

e booloperator()Variablex, Variabley) const
Returngrue if and only ifx comes beforg.

9.19.1 Detailed Description

Binary predicate defining the total ordering on variables.

10 PPL Page Documentation

10.1 GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 135

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program"”, below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification”.) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

¢ a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

e b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

o c)Ifthe modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 136

but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

e a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

e b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

e c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 137

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 GNU General Public License 138

TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show ¢’

for details.

The hypothetical commandshow w’ and'show ¢’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something othshthanw’ and
‘show ¢’ ;they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 139

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this

License.

10.2 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring

permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 140

The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (forimages composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation

to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements”, "Dedications”, "Endorsements”,
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may

have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 141

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

Itis requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

e A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

e B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

e C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
e D. Preserve all the copyright notices of the Document.
e E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

¢ F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

e G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

e H. Include an unaltered copy of this License.

e |. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 142

J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

e K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

e L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

e M. Delete any section Entitled "Endorsements”. Such a section may not be included in the Modified
Version.

¢ N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

e O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements”, and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 143

in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. Sge//www.gnu.org/copyleft/

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents To use this License in a document you have written,
include a copy of the License in the document and put the following copyright and license notices just after
the title page:

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/
http://www.cs.unipr.it/ppl/

10.2 GNU Free Documentation License 144

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index

add_constraint Parma_Polyhedra_Library::Polyhedron,
Parma_Polyhedra_Library::AskTel9 120
Parma_Polyhedra_Library::Determinate, add_recycled_generators
81 Parma_Polyhedra_Library::Polyhedron,
Parma_Polyhedra_Library::Polyhedra_- 120
PowerSet100 add_recycled_generators_and_minimize
Parma_Polyhedra_Library::Polyhedron, Parma_Polyhedra_Library::Polyhedron,
118 121
add_constraint_and_minimize affine_image
Parma_Polyhedra_Library::Polyhedra_- Parma_Polyhedra_Library::Polyhedron,
PowerSet101 122
Parma_Polyhedra_Library::Polyhedron, affine_preimage
118 Parma_Polyhedra_Library::Polyhedron,
add_constraints 123
Parma_Polyhedra_Library::AskTefi9 AskTell
Parma_Polyhedra_Library::Determinate, Parma_Polyhedra_Library::AskTe@l9
81
Parma_Polyhedra_Library::Polyhedra_- banner
PowerSet101 Parma_Polyhedra_Librarg6
Parma_Polyhedra_Library::Polyhedron, BGP99_extrapolation_assign
119 Parma_Polyhedra_Library::Polyhedra_-
add_constraints_and_minimize PowerSet101
Parma_Polyhedra_Library::Polyhedra_- BHRZ03_widening_assign
PowerSet101 Parma_Polyhedra_Library::Polyhedron,
Parma_Polyhedra_Library::Polyhedron, 124
119 BHZ03_widening_assign
add dimensions and embed Parma_Polyhedra_Library::Polyhedra_-
Parma_Polyhedra_Library::Polyhedron, PowerSet102
126 bounded_BHRZ03_extrapolation_assign
add_dimensions_and_project Parma_Polyhedra_Library::Polyhedron,
Parma_Polyhedra_Library::Polyhedron, 124
126 bounded_H79_extrapolation_assign
add_generator Parma_Polyhedra_Library::Polyhedron,
Parma_Polyhedra_Library::Polyhedron, 125
118 bounds_from_above
add_genera’[or—and_minimize Parma_Polyhedra_Library::Polyhedron,
Parma_Polyhedra_Library::Polyhedron, 115
119 bounds_from_below
add_generators Parma_Polyhedra_Library::Polyhedron,
Parma_Polyhedra_Library::Polyhedron, 115
120
add_generators_and_minimize C Language Interface.8
Parma_Polyhedra_Library::Polyhedron, C_Polyhedron _
121 Parma_Polyhedra_Library::C_Polyhedron,
73,74

add_non_bottom_disjunct
Parma_Polyhedra_Library::PowerSE31 CLOSURE_POINT .
add_recycled_constraints Parma_Polyhedra_Library::Generai8v,
Parma_Polyhedra_Library::Polyhedron, closure_point _
119 Parma_Polyhedra_Library::Generai®y,
coefficient

add_recycled_constraints_and_minimize . .
Parma_Polyhedra_Library::Constrain,

INDEX 146
Parma_Polyhedra_Library::Generat®8, Library Defines 17
compare limited BHRZ03_extrapolation_assign
Parma_Polyhedra_Library::BHRZ03_- Parma_Polyhedra_Library::Polyhedron,
Certificate,71 124
Parma_Polyhedra_Library::H79_- limited_H79_extrapolation_assign
Certificate,89 Parma_Polyhedra_Library::Polyhedron,
concatenate_assign 125
Parma_Polyhedra_Library::AskTel9 LINE
Parma_Polyhedra_Library::Polyhedra_- Parma_Polyhedra_Library::Generatdr,
PowerSet102 line
Parma_Polyhedra_Library::Polyhedron, Parma_Polyhedra_Library::Generai®¥,
126 linear_partition
contains Parma_Polyhedra_Library::Polyhedra_-
Parma_Polyhedra_Library::Polyhedron, PowerSet103
117 LinExpression
Parma_Polyhedra_Library::LinExpression,
Degenerate_Kind 92
Parma_Polyhedra_Library::Polyhedron,

112
Determinate

Parma_Polyhedra_Library:

81
divisor

Parma_Polyhedra_Library:

EMPTY

Parma_Polyhedra_Library:

112
EQUALITY

Parma_Polyhedra_Library:

expand_dimension

Parma_Polyhedra_Library:

128

fold_dimensions

Parma_Polyhedra_Library:

128

generalized_affine_image

Parma_Polyhedra_Library:

123

H79_widening_assign

Parma_Polyhedra_Library:

125

intersection_assign

Parma_Polyhedra_Library:

121

:Determinate,

:Generat8,

:Polyhedron,

:Constraing

:Polyhedron,

:Polyhedron,

:Polyhedron,

:Polyhedron,

:Polyhedron,

intersection_assign_and_minimize

Parma_Polyhedra_Library:

122
is_disjoint_from

Parma_Polyhedra_Library:

115

:Polyhedron,

:Polyhedron,

map_dimensions

Parma_Polyhedra_Library::

82

Parma_Polyhedra_Library::

PowerSet103

Parma_Polyhedra_Library::

127
maximize

Parma_Polyhedra_Library::

115 116
minimize

Parma_Polyhedra_Library::

116

NNC_Polyhedron

Parma_Polyhedra_Library::

Polyhedron94, 95
NONSTRICT_INEQUALITY

Parma_Polyhedra_Library:

OK

Parma_Polyhedra_Library::

118
operator!=

Parma_Polyhedra_Library::

82

Parma_Polyhedra_Library::

129
operatok <

Parma_Polyhedra_Library::

128
operator==

Parma_Polyhedra_Library::

82

Parma_Polyhedra_Library::

129

Determinate,
Polyhedra_-

Polyhedron,

Polyhedron,

Polyhedron,

NNC_-

:Constraing

Polyhedron,

Determinate,

Polyhedron,

Polyhedron,

Determinate,

Polyhedron,

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

147

Parma_Polyhedra_Librarg4

banner66
Parma_Polyhedra_Library::AskTely
Parma_Polyhedra_Library::AskTell

add_constrain9

add_constraintg9

AskTell, 69

concatenate_assigh9

remove_dimension§9

remove_higher_dimensiond9
Parma_Polyhedra_Library::AskTell_Paif
Parma_Polyhedra_Library::BHRZ03_-

Certificate,70

compare/1

Parma_Polyhedra_Library::BHRZ03_-
Certificate::Comparé]1

Parma_Polyhedra_Library::C_Polyhedrag,

C_Polyhedrony3, 74
Parma_Polyhedra_Library::Constraint

EQUALITY, 78

NONSTRICT_INEQUALITY, 78

STRICT_INEQUALITY, 78
Parma_Polyhedra_Library::Constraiif

coefficient,79

Type,78
Parma_Polyhedra_Library::Determinai®,

add_constraini81

add_constraintsg§1

Determinate81

map_dimensiony2

operator!=82

operator==82

remove_dimension§2

remove_higher_dimensior2
Parma_Polyhedra_Library::Generator

CLOSURE_POINT87

LINE, 87

POINT, 87

RAY, 87
Parma_Polyhedra_Library::Generat83,

closure_point87

coefficient,88

divisor, 88

line, 87

point, 87

ray, 87

Type,87

Parma_Polyhedra_Library::H79_Certifica®,

compared9
Parma_Polyhedra_Library::H79_-
Certificate::Compare39
Parma_Polyhedra_Library::10_Operatd@s,
Parma_Polyhedra_Library::LinExpressi@$,
Parma_Polyhedra_Library::LinExpression

LinExpression92

Parma_Polyhedra_Library::NNC_Polyhedron,

93
NNC_Polyhedron94, 95

Parma_Polyhedra_Library::Poly _Con_Relation,

95

Parma_Polyhedra_Library::Poly Gen_Relation,

96

Parma_Polyhedra_Library::Polyhedra_-

PowerSet97

Parma_Polyhedra_Library::Polyhedra_Power-

Set
add_constraintl00
add_constraint_and_minimiz€)1
add_constraints,01
add_constraints_and_minimizZE)1
BGP99_extrapolation_assigi1
BHZ03_widening_assigri,02
concatenate_assighQ2
linear_partition, 103
map_dimensiong, 03
Polyhedra_PowerSetp0
remove_dimensiond,03
remove_higher_dimensions)3
semantically_containd,00
semantically_equald,00

Parma_Polyhedra_Library::Polyhedron

EMPTY, 112
UNIVERSE,112

Parma_Polyhedra_Library::Polyhedrdi®4

add_constraint] 18
add_constraint_and_minimiz&l8
add_constraintg,19
add_constraints_and_minimizZ&l9
add_dimensions_and_embé@6
add_dimensions_and_projetf6
add_generatof,18
add_generator_and_minimiZEl9
add_generatord,20
add_generators_and_minimide1
add_recycled_constraints]9
add_recycled_constraints_and_minimize,
120
add_recycled_generatof20
add_recycled_generators_and_minimize,
121
affine_image122
affine_preimagel23
BHRZ03_widening_assigi,24
bounded_BHRZO03_extrapolation_assign,
124
bounded_H79_extrapolation_assi@@b
bounds_from_abovéd,15
bounds_from_belowi 15

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX 148
concatenate_assigh?26 Polyhedron
contains,117 Parma_Polyhedra_Library::Polyhedron,
Degenerate_Kind,12 113 114

expand_dimensiori,28
fold_dimensions128
generalized_affine_imag#23
H79_widening_assigi,25
intersection_assigri21
intersection_assign_and_minimiAg2
is_disjoint_from,115
limited_BHRZ03_extrapolation_assign,
124
limited_H79_extrapolation_assigh25
map_dimensiong,27
maximize, 115, 116
minimize,116
OK, 118
operator!=,129
operatok <, 128
operator==129
poly_difference_assigi,22
poly_hull_assign122
poly_hull_assign_and_minimiz&22
Polyhedron113 114
relation_with,115
remove_dimensiond,27
remove_higher_dimensions27
shrink_bounding_box,.17
strictly_contains117
swap,128
time_elapse_assigh24
Parma_Polyhedra_Library::PowerSE?9
Parma_Polyhedra_Library::PowerSet
add_non_bottom_disjunct31
Sequencel31
Parma_Polyhedra_Library::VariablE31
Parma_Polyhedra_Library::Variable::Compare,
133
POINT
Parma_Polyhedra_Library::Generai8r,
point
Parma_Polyhedra_Library::Generai®y,
poly_difference_assign
Parma_Polyhedra_Library::Polyhedron,
122
poly hull_assign
Parma_Polyhedra_Library::Polyhedron,
122
poly_hull_assign_and_minimize
Parma_Polyhedra_Library::Polyhedron,
122
Polyhedra_PowerSet
Parma_Polyhedra_Library::Polyhedra_-
PowerSet100

PPL_ARITHMETIC_OVERFLOW
PPL_C interface38

ppl_banner
PPL_C interface39

PPL_C interface
PPL_ARITHMETIC_OVERFLOW 38
PPL_CONSTRAINT_TYPE_EQUAL38
PPL_CONSTRAINT_TYPE_GREATER_-

THAN, 38
PPL_CONSTRAINT_TYPE_GREATER_-

THAN_OR_EQUAL,38
PPL_CONSTRAINT _TYPE_LESS -

THAN, 38
PPL_CONSTRAINT_TYPE_LESS_-

THAN_OR_EQUAL,38
PPL_ERROR_INTERNAL_ERROR38
PPL_ERROR_INVALID_ARGUMENT,

38
PPL_ERROR_LENGTH_ERRORS
PPL_ERROR_OUT_OF_MEMORY38
PPL_ERROR_UNEXPECTED_ERROR,

38
PPL_ERROR_UNKNOWN_-

STANDARD_EXCEPTION,38
PPL_GENERATOR_TYPE_CLOSURE_-

POINT, 39
PPL_GENERATOR_TYPE_LINE39
PPL_GENERATOR_TYPE_POINTB9
PPL_GENERATOR_TYPE_RAY39
PPL_STDIO_ERROR38

PPL_C interface
ppl_banner39
ppl_enum_Constraint_Typ88
ppl_enum_error_codé&3
ppl_enum_Generator_Typ&g
ppl_finalize,39
ppl_initialize, 39
ppl_io_variable output_function_type3
ppl_new_C_Polyhedron_from_bounding_-

box,41

ppl_new_C_Polyhedron_from_ConSg$§,
ppl_new_C_Polyhedron_from_GenSys§,
ppl_new_C_Polyhedron_recycle_ConSys,

39
ppl_new_C_Polyhedron_recycle_GensSys,

40
ppl_new_NNC_Polyhedron_from_-

bounding_box42
ppl_new_NNC_Polyhedron_from_-

ConSys40

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

149

ppl_new_NNC_Polyhedron_from_-
GenSys40

ppl_new_NNC_Polyhedron_recycle_-
ConSys40

ppl_new_NNC_Polyhedron_recycle_-
GenSys4l

ppl_Polyhedron_add_recycled constraints,

44
ppl_Polyhedron_add_recycled_-
constraints_and_minimizé4

ppl_Polyhedron_add_recycled_generators,

44
ppl_Polyhedron_add_recycled -
generators_and_minimizé4
ppl_Polyhedron_affine_imagé5
ppl_Polyhedron_affine_preimagh
ppl_Polyhedron_equals_Polyhedrdd,
ppl_Polyhedron_generalized_affine_-
image 45
ppl_Polyhedron_generalized_affine_-
image_lhs_rhs45
ppl_Polyhedron_map_dimensiod§
ppl_Polyhedron_maximizd3
ppl_Polyhedron_minimizel3
ppl_Polyhedron_relation_with_Constraint,
42
ppl_Polyhedron_relation_with_Generator,
42
ppl_Polyhedron_shrink_bounding_ba¥3
ppl_set_error_handleB9
PPL_VERSION37
PPL_CONSTRAINT_TYPE_EQUAL
PPL_C _interface38
PPL_CONSTRAINT_TYPE_GREATER_-
THAN
PPL_C_interface38
PPL_CONSTRAINT_TYPE_GREATER_-
THAN_OR_EQUAL
PPL_C_interface38
PPL_CONSTRAINT_TYPE_LESS_THAN
PPL_C_interface38
PPL_CONSTRAINT_TYPE_LESS THAN_-
OR_EQUAL
PPL_C _interface38
PPL_defines
PPL_VERSION8
ppl_enum_Constraint_Type
PPL_C interface38
ppl_enum_error_code
PPL_C interface38
ppl_enum_Generator_Type
PPL_C_interface38
PPL_ERROR_INTERNAL_ERROR
PPL_C interface38

PPL_ERROR_INVALID_ARGUMENT
PPL_C interface38
PPL_ERROR_LENGTH_ERROR
PPL_C interface38
PPL_ERROR_OUT_OF MEMORY
PPL_C interface38
PPL_ERROR_UNEXPECTED_ERROR
PPL_C interface38
PPL_ERROR_UNKNOWN_STANDARD_-
EXCEPTION
PPL_C interface38
ppl_finalize
PPL_C interface39
PPL_GENERATOR_TYPE_CLOSURE._-
POINT
PPL_C interface39
PPL_GENERATOR_TYPE_LINE
PPL_C interface39
PPL_GENERATOR_TYPE_POINT
PPL_C interface39
PPL_GENERATOR_TYPE_RAY
PPL_C interface39
ppl_initialize
PPL_C interface39
ppl_io_variable_output_function_type
PPL_C interface38
ppl_new_C_Polyhedron_from_bounding_box
PPL_C_interface4l
ppl_new_C_Polyhedron_from_ConSys
PPL_C interface39
ppl_new_C_Polyhedron_from_GenSys
PPL_C interface40
ppl_new_C_Polyhedron_recycle_ConSys
PPL_C interface39
ppl_new_ C_Polyhedron_recycle _GenSys
PPL_C interface40
ppl_new_ NNC_Polyhedron_from_bounding_-
box
PPL_C_interface42
ppl_new NNC_Polyhedron_from_ConSys
PPL_C interface40
ppl_new_NNC_Polyhedron_from_GenSys
PPL_C interface40
ppl_new_NNC_Polyhedron_recycle_ConSys
PPL_C interface40
ppl_new NNC_Polyhedron_recycle_GenSys
PPL_C interface4l
ppl_Polyhedron_add_recycled_constraints
PPL_C interface44
ppl_Polyhedron_add_recycled_constraints_-
and_minimize
PPL_C interface44
ppl_Polyhedron_add_recycled_generators
PPL_C interface}4

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

150

ppl_Polyhedron_add_recycled_generators_-
and_minimize

PPL_C_interface44
ppl_Polyhedron_affine_image

PPL_C interface45
ppl_Polyhedron_affine_preimage

PPL_C interface45
ppl_Polyhedron_equals_Polyhedron

PPL_C_interface44
ppl_Polyhedron_generalized_affine_image

PPL_C interface45
ppl_Polyhedron_generalized_affine_image_-

Ilhs_rhs

PPL_C_interface45
ppl_Polyhedron_map_dimensions

PPL_C interface46
ppl_Polyhedron_maximize

PPL_C interface43
ppl_Polyhedron_minimize

PPL_C_interface43
ppl_Polyhedron_relation_with_Constraint

PPL_C interface42
ppl_Polyhedron_relation_with_Generator

PPL_C interface42
ppl_Polyhedron_shrink_bounding_box

PPL_C interface43
ppl_set_error_handler

PPL_C_interface39
PPL_STDIO_ERROR

PPL_C_interface38
PPL_VERSION

PPL_C interface37

PPL_defines]8
Prolog Language Interfacé6

RAY
Parma_Polyhedra_Library::Generatdr,
ray
Parma_Polyhedra_Library::Generatdr,
relation_with
Parma_Polyhedra_Library::Polyhedron,
115
remove_dimensions

Parma_Polyhedra_Library:
Parma_Polyhedra_Library:

82

Parma_Polyhedra_Library:

PowerSet103

Parma_Polyhedra_Library:

127
remove_higher_dimensions

Parma_Polyhedra_Library:
Parma_Polyhedra_Library:

82

:AskTel9
:Determinate,

:Polyhedra_-
:Polyhedron,

:AskTel9
:Determinate,

Parma_Polyhedra_Library::

PowerSet103

Parma_Polyhedra_Library::

127

semantically_contains

Parma_Polyhedra_Library::

PowerSet100
semantically_equals

Parma_Polyhedra_Library::

PowerSet100
Sequence

Parma_Polyhedra_Library::

shrink_bounding_box

Parma_Polyhedra_Library::

117
std,67
STRICT_INEQUALITY

Parma_Polyhedra_Library:

strictly _contains

Parma_Polyhedra_Library::

117
swap

Parma_Polyhedra_Library::

128

The Library,17
time_elapse_assign

Parma_Polyhedra_Library::

124
Type

Parma_Polyhedra_Library:
Parma_Polyhedra_Library:

UNIVERSE

Parma_Polyhedra_Library::

112

Polyhedra_-

Polyhedron,

Polyhedra_-

Polyhedra_-

PowerSE31

Polyhedron,

:Constraing

Polyhedron,

Polyhedron,

Polyhedron,

:Constraing
:Generatdyr,

Polyhedron,

The Parma Polyhedra Library User’s Manual (version 0.6). 8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

	Convex Polyhedra and the PPL
	PPL Module Index
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Class Index
	PPL Page Index
	PPL Module Documentation
	PPL Namespace Documentation
	PPL Class Documentation
	PPL Page Documentation

