The Parma Polyhedra Library
User’'s Manuai
(version 0.7)

Roberto Bagnara
Patricia M. HilF
Enea Zaffanella
based on previous work also by
Elisa Ricci
and
Sara Bonini
Andrea Pescetti
Angela Stazzone

Tatiana Zolo

December 24, 2004

*This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification of
Reactive Systems”; MURST project “Abstract Interpretation: Design and Applications”.

tbagnara@cs.unipr.it, Department of Mathematics, University of Parma, ltaly.
thill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS 1

Copyright(© 2001-2004 Roberto Bagnara (bagnara@cs.unipr.it).
This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published byrfeSoftware Foundatipwith

no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitledGNU Free Documentation Licerise

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theee Software Foundatipeither version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section enti@dJ' GENERAL
PUBLIC LICENSE.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 General Information on the PPL 2
2 PPL Module Index 19
3 PPL Directory Hierarchy 19
4 PPL Namespace Index 19
5 PPL Hierarchical Index 19
6 PPL Class Index 20
7 PPL Page Index 21
8 PPL Module Documentation 21
9 PPL Directory Documentation 69
10 PPL Namespace Documentation 70
11 PPL Class Documentation 75
12 PPL Page Documentation 153

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1 General Information on the PPL 2

1 General Information on the PPL

1.1 The Main Features

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of numerical information
that can be represented by points in serr@imensional vector space. For instance, one of the key domains
the PPL supports is that of rational convex polyhedra (Sedfionvex Polyhedia Such domains are
employed in several systems for the analysis and verification of hardware and software components, with
applications spanning imperative, functional and logic programming languages, synchronous languages
and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not meant
to target a particular problem, the design of its interface has been largely influenced by the needs of the
above class of applications. That is the reason why the library implements a few operators that are more or
less specific to static analysis applications, while lacking some other operators that might be useful when
working, e.g., in the field of computational geometry.

The main features of the library are the following:

e itis user friendly: you writex + 2xy + 5%z <= 7 when you mean it;

e itis fully dynamic: available virtual memory is the only limitation to the dimension of anything;

e it provides full support for the manipulation of convex polyhedra that are not topologically closed;
e it is written in standard C++: meant to be portable;

e it is exception-safe: never leaks resources or leaves invalid object fragments around;

e itis rather efficient; and we hope to make it even more so;

e itis thoroughly documented: perhaps not literate programming but close enough;

e it has interfaces to other programming languages: including C and a number of Prolog systems;

e itis free software: distributed under the terms of the GNU General Public License.

In addition to the basic domains, we also provide generic support for constructing new domains from
pre-existing domains. The following domains and domain constructors are provided by the PPL:

¢ the domain of topologically closed, rational convex polyhedra;
¢ the domain of rational convex polyhedra that are not necessarily closed;
e the powerset construction;

¢ the powerset construction, instantiated for rational convex polyhedra.

In the following sections we describe these domains and domain constructors together with their represen-
tations and operations that are available to the PPL user.

In the final section of this chapter (Sectitising the Library, we provide some additional advice on the
use of the library.

1.2 Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail. For more
information about the definitions and results stated her¢&RgH02b], [Fuk98], [NW88], and[Wil93].

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.2 Convex Polyhedra 3

Vectors, Matrices and Scalar Products

We denote byR" then-dimensional vector space on the field of real numBemsndowed with the standard
topology. The set of all non-negative reals is denote®by For each € {0,...,n — 1}, v; denotes the

i-th component of the (column) vecter = (vy,...,v,_1)T € R™. We denote by the vector ofR",
calledthe origin, having all components equal to zero. A vecato R™ can be also interpreted as a matrix

in R**! and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denotad'by

Thescalar productof v, w € R", denotedv, w), is the real number

n—1

UT’LUZ E VW«
i=0

For anyS;, So C R™, theMinkowski's sunof S; andSs is: S + Sy = {vy + va | v1 € S1,vq € Sy }.
Affine Hyperplanes and Half-spaces

For each vectoa € R™ and scalab € R, wherea # 0, and for each relation symbst € {=, >, >}, the
linear constrainta, x) i b defines:

¢ an affine hyperplane if it is an equality constraint, i.exi {=};
¢ atopologically closed affine half-space if it is a non-strict inequality constraint, ive. 4f{>};

e atopologically open affine half-space if it is a strict inequality constraint, i.e<,df {>}.

Note that each hyperplare,) = b can be defined as the intersection of the two closed affine half-spaces
(a,xz) > band(—a,x) > —b. Also note that, whem = 0, the constraint0, x) < b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vectdR8pmace

the empty sep.

Convex Polyhedra

The setP C R is anot necessarily closed convex polyhed(NC polyhedronfor short) if and only if
eitherP can be expressed as the intersection of a finite number of (open or closed) affine half-sfces of
orn = 0andP = @. The set of all NNC polyhedra on the vector sp&eis denoted?,,.

The setP € P, is aclosed convex polyhedrgnlosed polyhedrorfor short) if and only if eithefP can be
expressed as the intersection of a finite number of closed affine half-spaRésoof» = 0 andP = &.
The set of all closed polyhedra on the vector spgiées denotedCP,,.

When ordering NNC polyhedra by the set inclusion relation, the empty setd the vector spad®™ are,
respectively, the smallest and the biggest elements offlhptindCP,,. The vector spacR™ is also called
theuniversepolyhedron.

In theoretical termdP,, is alattice under set inclusion an@P,, is asub-latticeof P,,.

Note:
In the following, we will usually specify operators on the dom&inof NNC polyhedra. Unless an
explicit distinction is made, these operators are provided with the same specification when applied to
the domainCP,, of topologically closed polyhedra. The implementation maintains a clearer separation
between the two domains of polyhedra (§egologies and Topological-compatibiljtywhile com-
puting polyhedra i, may provide more precise results, polyhedr&ih, can be represented and
manipulated more efficiently. As a rule of thumb, if your application will only manipulate polyhedra
that are topologically closed, then it should use the simpler dof&in Using NNC polyhedra is
only recommended if you are going to actually benefit from the increased accuracy.

Bounded Polyhedra

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 4

An NNC polyhedrorP € P, is boundedf there exists a\ € R, such that
PC{xeR"|-A<az; <Aforj=0,....n—1}.

A bounded polyhedron is also callegbalytope

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

Constraints representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequalitycmatraint

By definition, each polyhedroR € P, is the set of solutions to eonstraint systerri.e., a finite number
of constraints. By using matrix notation, we have

’Pdéf{ajeRn|A1m:b1,A2$Zb2aA3m>b3}v

where, for alli € {1,2,3}, A; € R™ x R™ andb; € R™, andm;,ms, m3 € N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.
Combinations and Hulls

Let S = {x1,...,xzx} C R™ be a finite set of vectors. For all scalaXs,...,\; € R, the vector
v = Z?Zl Aj; is said to be dinear combination of the vectors ifi. Such a combination is said to be

e apositive(or conic) combination, ifvj € {1,...,k} : A\; e R;
. . . ok i
e anaffinecombination, |ij].:1 Aj =1,

e aconvexcombination, if it is both positive and affine.

We denote byinear.hull(S) (resp.,conic.hull(S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors.in

Let P,C C R", whereP U C = S. We denote byinc.hull(P, C) the set of all convex combinations of
the vectors inS such that\; > 0 for somex; € P (informally, we say that there exists a vectorfothat
plays an active role in the convex combination). Note thathull(P, C') = nnc.hull(P, P U C) so that,
if C C P,

convex.hull(P) = nnc.hull(P, @) = nnc.hull(P, P) = nnc.hull(P, C).

It can be observed théinear.hull(S) is an affine space;onic.hull(S) is a topologically closed convex
cone,convex.hull(S) is a topologically closed polytope, angc.hull(P, C) is an NNC polytope.

Points, Closure Points, Rays and Lines
LetP € P, be an NNC polyhedron. Then

e avectorp € P is called gpoint of P;
e avectorc € R" is called aclosure pointof P if it is a point of the topological closure ¢?;

e avectorr € R", wherer # 0, is called aay (or direction of infinity) of P if P # @ andp+Ar € P,
for all pointsp € P and allA € R_;

e avectorl € R" is called dine of P if both I and—I are rays ofp.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 5

A point of an NNC polyhedror? € P, is avertexif and only if it cannot be expressed as a convex
combination of any other pair of distinct points# A ray » of a polyhedrorP is anextreme rayf and
only if it cannot be expressed as a positive combination of any othewpandr, of rays of P, where

r £ Ary, v £ Arg andry # Ay for all A € R, (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

Generators Representation

Each NNC polyhedro® € P,, can be represented by finite sets of lirdgsays R, points P and closure
pointsC of P. The 4-tupleG = (L, R, P, C) is said to be generator systerfor P, in the sense that

P = linear.hull(L) + conic.hull(R) + nnc.hull(P, C),
where the symbolH' denotes the Minkowski’s sum.

WhenP € CP, is a closed polyhedron, then it can be represented by finite sets ofllineys R and
points P of P. In this case, the 3-tuplgé = (L, R, P) is said to be generator systerfor P since we have

P = linear.hull(L) + conic.hull(R) 4 convex.hull(P).
Thus, in this case, every closure point/fs a point ofP.

For anyP € IP,, and generator systeéh= (L, R, P, C) for P, we haveP = & ifand only if P = &. Also
P must contain all the vertices &f althoughP can be hon-empty and have no vertices. In this cask,ias
necessarily non-empty, it must contain pointsofhat arenot vertices. For instance, the half-spacersf
corresponding to the single constraint- 0 can be represented by the generator sysiem(L, R, P, C)
such thatL = {(1,0)T}, R = {(0,1)"}, P = {(0,0)T}, andC = @. Itis also worth noting that the
only ray in R is notan extreme ray oP.

Minimized Representations

A constraints syster@ for an NNC polyhedrorP € P, is said to baninimizedif no proper subset af is
a constraint system fop.

Similarly, a generator systeg = (L, R, P, C)) for an NNC polyhedrorP € P, is said to beminimized
if there does not exist a generator systém= (L', R', P',C") # G for P such thatl’ C L, R’ C R,
P’ C PandC’ C C.

Double Description

Any NNC polyhedrornP can be described by using a constraint sysfera generator systed, or both

by means of thelouble description pair (DD pair}C, G). Thedouble description methad a collection

of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

Topologies and Topological-compatibility

As indicated above, when an NNC polyhedrBris necessarily closed, we can ignore the closure points
contained in its generator syst&in= (L, R, P, C) (as every closure point is also a point) and repregent

by the triple(L, R, P). Similarly, P can be represented by a constraint system that has no strict inequali-
ties. Thus a necessarily closed polyhedron can have a smaller representation than one that is not necessarily
closed. Moreover, operators restricted to work on closed polyhedra only can be implemented more effi-
ciently. For this reason the library provides two alternative “topological kinds” for a polyhedifd@,and

C. We shall abuse terminology by referring to the topological kind of a polyhedron @pitgy

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 6

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the followingtopological-compatibilityrules:

e polyhedra are topologically-compatible if and only if they have the same topology;

¢ all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

e strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if itis NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

Space Dimensions and Dimension-compatibility

The space dimensionf an NNC polyhedrorP € P, (resp., a C polyhedro® € CP,,) is the dimension
n € N of the corresponding vector spaB&. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following (spaceajimension-compatibilityules:

e polyhedra are dimension-compatible if and only if they have the same space dimension;

e the constraint{a,) < b wherexxi € {=,>,>} anda,z € R™, is dimension-compatible with a
polyhedron having space dimensioriif and only if m < n;

e the generatox € R™ is dimension-compatible with a polyhedron having space dimensiband
only if m < n;

e a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

Affine Independence and Affine Dimension

A finite set of points{x, ...,z } C R" is affinely independenif, for all \,,..., \x € R, the system of

equations
k

k
=1 =1
implies that, foreach=1,... &k, A\; = 0.

The maximum number of affinely independent point®ihis n + 1.

A non-emptyNNC polyhedronP € P, hasaffine dimensiork € N, denoted bydim(P) = &, if the
maximum number of affinely independent point§Ains k& + 1.

We remark that the above definition only applies to polyhedra that are not empty, 8othiin(P) < n.
By convention, the affine dimension of an empty polyhedron is 0 (even though the “natural” generalization
of the definition above would imply that the affine dimension of an empty polyhedrem)is

Note:
The affine dimensiot < n of an NNC polyhedron® € P,, must not be confused with the space
dimensiom of P, which is the dimension of the enclosing vector spAte In particular, we can have
dim(P) # dim(Q) even thoughP andQ are dimension-compatible; and vice verBaandQ may be
dimension-incompatible polyhedra even thouljin(P) = dim(Q).

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 7

Rational Polyhedra

An NNC polyhedron is calledational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.
Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedr®,, P> € P,,, theintersectionof P; andP,, defined as the set intersection
P1 NPy, is the biggest NNC polyhedron included in b@h andP,; similarly, theconvex polyhedral hull
(or poly-hull) of P; andP,, denoted byP; W P,, is the smallest NNC polyhedron that includes bfth
andPs. The intersection and poly-hull of any pair of closed polyhedr@l#y, is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are therheestgnd the
binaryjoin operators on the latticé®, andCP,,.

Convex Polyhedral Difference

For any pair of NNC polyhedr®,, P> € P, theconvex polyhedral differender poly-differencg of P;
andP; is defined as the smallest convex polyhedron containing the set-theoretic differehcardP-.

In general, even though,, P, € CP,, are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formallycdheatenatiorof the polyhedra
P € P, andQ € P, (taken in this order) is the polyhedréd € P,,,,, such that

def
R = { (an vy Tn—1,Y0,- - - 7ym—1)T S RnJﬂn (an s 7"1;71,—1)T € Pa (3107) aym—l)T S Q }

Another way of seeing it is as follows: first embed polyhedfdmto a vector space of dimensiory+ m
and then add a suitably renamed-apart version of the constraints defining

Adding New Dimensions to the Vector Space

The library provides two operators for adding a numbef space dimensions to an NNC polyhedron
P € P,, therefore transforming it into a new NNC polyhedréh € P, ;. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operatoadd_space_dimensions_and_embed embedshe polyhedrorP into the new vector

space of dimensioh+ n and returns the polyhedra defined by all and only the constraints definiRg

(the variables corresponding to the added dimensions are unconstrained). For instance, when starting from
a polyhedror? C R? and adding a third space dimension, the result will be the polyhedron

Q= { (LC()7£L'1,"E2)T c R3 ’ (.’E(),xl)T ep }

In contrast, the operat@dd_space_dimensions_and_project projectsthe polyhedrorP into
the new vector space of dimensidA- n and returns the polyhedra® whose constraint system, besides

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 8

the constraints definin@, will include additional constraints on the added dimensions. Namely, the cor-
responding variables are all constrained to be equal to 0. For instance, when starting from a polyhedron
P C R? and adding a third space dimension, the result will be the polyhedron

Q= { (:L'O,xl,O)T eR3 | (:Eo,xl)T € P}.

Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from an NNC polyhgdeP,,,
therefore transforming it into a new NNC polyhedr@ne P,,, wherem < n.

Given a set of variables, the operatemove_space_dimensions removes all the space dimensions
specified by the variables in the set. For instance, leffing P, be the singleton seft(3,1,0,2)T} C R*,
then after invoking this operator with the set of variables, 2> } the resulting polyhedron is

0=1{(3,2)"} CR%.

Given a space dimension less than or equal to that of the polyhedron, the operatoove_higher_-
space_dimensions removes the space dimensions having indices greater than or equal for
instance, letting® € P4 defined as before, by invoking this operator with= 2 the resulting polyhedron
will be

Q={(31T} R

Mapping the Dimensions of the Vector Space

The operatomap_space_dimensions provided by the library maps the dimensions of the vector
spaceR™ according to a partial injective functign {0,...,n — 1} — N such thato({o, R 1}) =
{0,...,m — 1} with m < n. Dimensions corresponding to indices that are not mappegdasg removed.

If m = 0, i.e., ifthe functiorp is undefined everywhere, then the operator projects the argument polyhedron
P € P, onto the zero-dimension spal@&; otherwise the result i© € P, given by

def T
Q= { (1101 V1)

’ (’U(), . ,’Unfl)T epP }
Expanding One Dimension of the Vector Space to Multiple Dimensions

The operatoexpand_space_dimension provided by the library adds: new space dimensions to a
polyhedronP € P,,, with n > 0, so that dimensions, n + 1, ..., n + m — 1 of the resultQ are exact
copies of the-th space dimension ¢. More formally,

Jv,weP.u =v;
def n+m ;
Q=<¢uck AVj=n,n+1,....n+m—1:u; =w
AVE=0,....n—1:k#1i = uy =v, = wyg
This operation has been proposed@DMDRS04]
Folding Multiple Dimensions of the Vector Space into One Dimension

The operatofold_space_dimensions provided by the library, given a polyhedrdn € P,,, with
n > 0, folds a set of space dimensiods= {jo,...,Jm-1}, Withm < n andj < n for eachj € J, into
space dimensioh< n, wherei ¢ J. The result is given by

m

QdéfH'JQd
d=0
where
e veP . uy =
0, { yerrm |FVEP =y |
AVE=0,....n—1:k#1i = up =g

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 9

and, ford =0, ...,m —1,

Qd déf { u E Rn—ﬂ’l,

JveP . uy = Vj,
/\Vk:O,...,nfl:kiiﬁuklzvk ’

and, finally, fork =0, ..., n — 1,
K k—#{jedk>j},

(# S denotes the cardinality of the finite &t
This operation has been proposed@DMDRS04]
Affine Images and Preimages

For each function mapping: R” — R™, we denote by (S) C R™ theimageunder¢ of the setS C R";
formally,

#(S) ' {p(v) eR™ v e S}

Similarly, we denote by ~1(S’) C R" the preimageunderg of S’ C R™, that is the largest s&t C R”
such thatp(S) C S’; formally,

618 L {veR" [g(v) s).

The function mapping : R — R™ is anaffine transformatiorif there exist a matrixd € R™ x R™ and
a vectorb € R™ such that, for alle € R™, we havep(x) = Az + b. If n = m, then the functior is said
to bespace dimension preserving

Both P,, andCP,, are closed under the application of any space dimension preserving affine image and
preimage operators.

The library provides two operators, one computes an affine image and the other an affine preimage of a
polyhedronP € P, for a given variablec;, and linear expressiosxpr = Z;;l a;x; + b. This variable

and expression determine the affine transformatidhat is to be used by the operator. Thatdss the
transformation defined by the matrix and vector

1 0 0 0 0
0 1 0 0 0
A=lay -+ ar—1 ak Ag+1 +° Ap-1 |, b=1]b
0 0 1 0 0
o --- 0 0 1 0

where thes; (resp.,b) occurs in the(k + 1)st row in A (resp., position irb). Thus¢ transforms any point
(zg,...,2,_1)T in the polyhedrorP to

n—1 T
(3307 ceey (Zi:O a;T; + b), N ,J}nfl) .

The affine image operator computes the affine image ahder¢. For instance, suppose the polyhedron
P to be transformed is the squarel? generated by the set of poinf$0,0)™, (0,3)T, (3,0)T, (3,3)™}.
Then, for example if the considered variablecjsand the linear expressian + 2z + 4 (so thatk = 0,

ap = l,a; = 2,b = 4), the affine image operator will translate to the parallelogranP; generated
by the set of pointg(4,0)", (10,3)™, (7,0)T, (13,3)"} with height equal to the side of the square and
obligue sides parallel to the ling — 2z;. If the considered variable is as before (ile= 0) but the linear

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 10

expression iz (so thatag = 0,a; = 1,b = 0), then the resulting polyhedrd®; is the positive diagonal
of the square.

The affine preimage operator computes the affine preimagewfdery. For instance, suppose now that
we apply the affine preimage operator as given in the first example using varightel linear expression
xo + 2x1 + 4 to the parallelograr®; ; then we get the original squaf® back. If, on the other hand, we
apply the affine preimage operator as given in the second example using vargjiaoid linear expression
x1 to P, then the resulting polyhedron is a line that corresponds ta thaxes.

Observe that provided the coefficient of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

Generalized Affine Images

The library provides another operator which is a generalization of the affine image operator. Given a

polyhedronP € PP,,, an affine expressiolhs = Z?:’Ol ajz; + 0, arelation symbak € {<, <, =,>,>},
n—1

and an affine expressiaths =) ", a;z; + b, the image ofP with respect to the transfer function
lhs < rhs is defined as

(’U(), . ,’l}nfl)T S P,
(wo, ..., wn—1)T €R™ (1 €{0,...,n—1}Ad) =0 = w; =),
Z;”:_Ol alw; + b < Z?:_ol a;v; + b
Note that, wherlhs = z;, and € {=}, then the above operator is equivalent to the application of the

standard affine image @ with respect to the variable, and the affine expressiats (hence the name
given to this operator).

Time-Elapse Operator

The time-elapseoperator has been defined [iIHPR97] Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedraP, Q € P, the time-elapse betweéhandQ, denoted” Q, is the smallest NNC polyhedron
containing the set

{p+XMeR" |peP,qc QrER, }.
Note that, ifP, Q € CP,, are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

Relation-with Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

SupposeP is an NNC polyhedron and an arbitrary constraint system representihgSuppose also that
c= ((a, x) < b) is a constraint with< € {=, >, >} and Q the set of points that satisty The possible
relations betweef® andc are as follows.

e Pisdisjointfromcif P N Q = @; thatis, adding: to C gives us the empty polyhedron.

e P strictly intersects if PN Q # @ andP N Q C P; thatis, adding: to C gives us a non-empty
polyhedron strictly smaller thaR.

e Pisincludedin cif P C Q; thatis, adding: to C leavesP unchanged.

e P saturatesc if P C H, where is the hyperplane induced by constraini.e., the set of points
satisfying the equality constraik,) = b; that is, adding the constraift,) = b to C leavesP
unchanged.

The polyhedror? subsumeshe generatoy if adding g to any generator system representfdgloes not
changep.

Intervals, boxes and bounding boxes

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 11

An intervalin R is a pair ofbounds calledlower andupper. Each bound can be either (&psed and
bounded (2) open and boundedr (3) open and unboundedf the bound isboundedthen it has a value
in R. An n-dimensionaboxB in R™ is a sequence of intervals inR.

The polyhedrorP represents a bo® in R™ if P is described by a constraint systemift that con-
sists of one constraint for each bounded bound (lower and upper) in an interfal iretting e; =
0,...,1,...,0)T be the vector ifR™ with 1 in thei'th position and zeroes in every other position; if
the lower bound of th&th interval in B is bounded, the corresponding constraint is define@as:) i b,
whereb is the value of the bound amndis > if itis a closed bound ang if it is an open bound. Similarly, if
the upper bound of théth interval in 5 is bounded, the corresponding constraint is defing@as:) < b,
whereb is the value of the bound and is < if it is a closed bound ang if it is an open bound.

If every bound in the intervals defining a béis either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

Thebounding boof an NNC polyhedrorP is the smallest-dimensional box containing.

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

Widening Operators

The library provides two widening operators for the domain of polyhedra. The first one, that we call
H79-widening mainly follows the specification provided in the PhD thesis of N. Halbwdidas79], also
described ifHPR97] The main difference between the H79-widening and the widening described in the
cited paper is that the H79-widenifiyV Q of two polyhedraP, Q € CPP, requires as a precondition that

P C Q (other differences at the implementation level are transparent to the user of the library).

The second widening operator, that we &HRZ03-wideningis an instance of the specification provided
in [BHRZ03a] This operator also requires as a precondition thal Q and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to NNC polyhedra. The user is warned that, in such a case, the
results may not closely match the geometric intuition which is at the base of the specification of the two
widenings. The reason is that, in the current implementation, the widenings are not directly applied to the
NNC polyhedra, but rather to their internal representations. Implementation work is in progress and future
versions of the library may provide an even better integration of the two widenings with the domain of
NNC polyhedra.

Note:
As is the case for the other operators on polyhedra, the implementation overwrites one of the two
polyhedra arguments with the result of the widening application. To avoid trivial misunderstandings, it
is worth stressing that if polyhedfaandQ (whereP C Q) are identified by program variablpsand
g, respectively, then the cajlH79_widening_assign(p) will assign the polyhedro® V Q to
variableq. Namely, it is the bigger polyhedro@ which is overwritten by the result of the widening.
The smaller polyhedron is not modified, so as to lead to an easier coding of the usual convergence
test P © P V Q can be coded gs.contains(q)). Note that, in the above context, a call such
asp.H79_widening_assign(q) is likely to result in undefined behavior, since the precondition
Q C P will be missed (unless it happens tfat= Q). The same observation holds for all flavors
of widenings and extrapolation operators that are implemented in the library and for all the foreign
language interfaces.

Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parametek and only apply widenings starting from tleth iteration.

The library also supports an improved widening delay strategy, that wewsd#ining with tokens

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 The Powerset Construction 12

[BHRZ03a] A token is a sort of wildcard allowing for the replacement of the widening application by
the exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed tpdtemtial precision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed numbek of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

Extrapolation Operators

Besides the two widening operators, the library also implements sexdrapolationoperators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a corresponlifinited extrapolation operator, which

can be used to implement tivédening “up to” technique as described[iHPR97] Each limited extrapola-

tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97]this set is fixed once and for all before starting the computation of the upward iteration sequence.

The boundedextrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above, by ensuring that their results cannot be worse than the shalleding boxenclosing the
two argument polyhedra.

1.5 The Powerset Construction

The PPL provides the finite powerset construction; this takes a pre-existing domain and upgrades it to one
that can represent disjunctive information (by usirfindae number of disjuncts). The construction follows

the approach described [Bag98] also summarised ifBHZ04] where there is an account of generic
widenings for the powerset domain (some of which are supported in the instantiation of this construction
by the domain of convex polyhedra and described in Sedtl@mPolyhedra Powerset Domgin

The Powerset Domain

The domain is built from a pre-existing base-level dom&invhich must include an entailment relation
‘', a meet operation®’, a top elementl’ and bottom element’.

As the intended semantics of an element of the powerset of the base-level domain is that of disjunction,
elements of the powerset are alwagducedto semantically-equivalent non-redundant elements.

A setS € p(D) is callednon-redundantvith respect tot’ if and only if 0 ¢ S andVd,,ds € S : d; +

dy = dy = dy. The set of finite non-redundant subsetgofwith respect tot-’) is denoted byp}, (D).
The reduction functio),: p¢(D) — @}, (D) mapping a finite set into its non-redundant counterpart,
also calledOmega-reductionis defined, for eacls € p¢(D), by

Q0 S) Y S\ {deS|d=00rId €S.dlFd}.

The restriction to the finite subsets reflects the fact that here disjunctions are implemented by explicit
collections of elements of the base-level abstract domain. As a consequence of this restriction, for any
S € pe(D) such thatS # {0}, O, (S) is the (finite) set of the maximal elements&®f

Thefinite powerset domaiover a domainD is the set of all finite reduced sets bfand denoted by);..
The domain includes an approximation orderirg’‘defined so thatS; -, S, if and only if

Vdi € §1 :Jdy € Sy . dy F ds.

Therefore the top element{4} and the bottom element is the emptyset.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on the Powerset Construction 13

Note:
As far as Omega-reduction is concerned, the library adotagyeapproach: an element of the pow-
erset domain is represented by a potentially redundant sequence of disjuncts. Redundancies can be
eliminated by explicitly invoking the operatomega_reduce() , e.g., before performing the output
of a powerset element. Note that all the documented operators automatically perform reductions on
their arguments, when needed or appropriate.

1.6 Operations on the Powerset Construction

In this section we briefly describe the generic operations on Powerset Domains that are provided by the
library for any given base-level domain.

Meet and Upper Bound

Given the set$; andS: € D,, themeetandupper boundperators provided by the library returns the set
QL ({di ®@da | di € S1,do € S, }) and reduced set unidi, (S; U S») respectively.

Adding a Disjunct

Given the powerset elemefite D, and the base-level elemeaht D, theadd disjunctoperator provided
by the library returns the powerset elemén(S U {d}).

Collapsing a Powerset Element

If the given powerset element is not empty, then¢bBapseoperator returns the singleton powerset con-
sisting of an upper-bound of all the disjuncts.

1.7 The Polyhedra Powerset Domain

The Polyhedra powerset doma(f,,), provided by the PPL is the finite powerset domain (defined in
SectionThe Powerset Constructipover the domain of NNC polyhedi®, .

In addition to the operations described for the generic powerset domain in Segtvations on the Pow-

erset Constructigrnwe provide some operations that are specific to this instantiation. Of these, most corre-
spond to the application of the equivalent operation on each of the NNC polyhedra that are in the given set.
Here we just describe those operations that are particular to the polyhedra powerset domain.

Geometric Comparisons

Given the setsS;,S: € (P,)r, then we say thaS5; geometrically coversS, if every point (in some
element) in a polyhedron if, is also a point in a polyhedron . If S; geometrically covers, andS,
geometrically covers,, then we say that they ageometrically equal

Pairwise Merge

Given the powersef € (P,), then thepairwise merg®perator takes pairs of distinct elementsiwhose
poly-hull is the same as their set-theoretical union and replaces them by their union. This replacement is
done recursively so that, for each p&ir Q of distinct polyhedra in the result set, we have) Q £ P U Q.

Extrapolation Operators

The library implements a generalization of the extrapolation operator for powerset domains proposed in
[BGP99] The operatoBGP99_extrapolation_assign is made parametric by allowing for the
specification of a base-level extrapolation operator different from the H79 widening (e.g., the BHRZ03
widening can be used). Note that, in the general case, this operator cannot guarantee the convergence of
the iteration sequence in a finite number of steps (for a counter-examp|[82e4)).

Certificate-Based Widenings

The PPL library provides support for the specification of proper widening operators on the powerset domain

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.8 Using the Library 14

of convex polyhedra. In particular, this version of the library implements an instanceasfttiifecate-based
widening frameworlproposed ifBHZ03b].

A finite convergence certificat®r an extrapolation operator is a formal way of ensuring that such an
operator is indeed a widening on the considered domain. Given a widening operator on the base-level
domain, together with the corresponding convergence certificate, the BHZ03 framework shows how it is
possible to lift this widening so as to work on the finite powerset domain, while still ensuring convergence
in a finite number of iterations.

Being highly parametric, the BHZ03 widening framework can be instantiated in many ways. The cur-
rent implementation provides the templatic operd@®6tZ03_widening_assign <Certificate,

Widening > which only exploits a fraction of this generality, by allowing the user to specify the base-
level widening function and the corresponding certificate. The widening strategy is fixed and uses two
extrapolation heuristics: first, the least upper bound is tried; secon®8GIR99 extrapolation operats

tried, possibly applyingairwise mergingIf both heuristics fail to converge according to the convergence
certificate, then an attempt is made to apply the base-level widening to the poly-hulls of the two arguments,
possibly improving the result obtained by means of ploé/-differenceoperator. For more details and a
justification of the overall approach, sgHZ03b] and[BHZ04].

The library provides two convergence certificates: wBil¢RZ03_Certificatés compatible with both the
BHRZ03 and the H79 widenings{79_Certificatds only compatible with the latter. Note that using dif-
ferent certificates will change the results obtained, even when using the same base-level widening operator.
It is also worth stressing that it is up to the user to see that the widening operator is actually compatible
with a given convergence certificate. If such a requirement is not met, then an extrapolation operator will
be obtained.

1.8 Using the Library

A Note on the Implementation of the Operators

When adopting the double description method for the representation of convex polyhedra, the implemen-
tation of most of the operators may require an explicit conversion from one of the two representations into
the other one, leading to algorithms having a worst-case exponential complexity. However, thanks to the
adoption of lazy and incremental computation techniques, the library turns out to be rather efficient in many
practical cases.

In earlier versions of the library, a number of operators were introduced in two flavtatsy eersion and
aneagerversion, the latter having the operator name ending wéhd_minimize . In principle, only

the lazy versions should be used. The eager versions were added to help a knowledgeable user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

One of the cases when an eager computation still makes sense is when the wellf&ihdiven principle

comes into play. For instance, if you have to compute the intersection of several polyhedra and you strongly

suspect that the result will become empty after a few of these intersections, then you may obtain a better

performance by calling the eager version of the intersection operator, since the minimization process also

enforces an emptiness check. Note anyway that the same effect can be obtained by interleaving the calls of
the lazy operator with explicit emptiness checks.

On Object-Orientation and Polymorphism: A Disclaimer

The PPL library is mainly a collection of so-called “concrete data types”: while providing the user with a
clean and friendly interface, these types are not meant to —i.e., they should not — be used polymorphically
(since, e.g., most of the destructors are not declairtgial). In practice, this restriction means that the

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Bibliography 15

library types should not be used psblic base classe® be derived from. A user willing to extend the
library types, adding new functionalities, often can do so by usorgainmentinstead of inheritance; even
when there is the need to overridpmtected method, non-public inheritance should suffice.

On Const-Correctness: A Warning about the Use of References and Iterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

/I Find a reference to the first point of the non-empty polyhedron ‘ph'’.
const Generator_System& gs = ph.generators();

Generator_System::const_iterator i = gs.begin();
for (Generator_System::const_iterator gs_end = gs.end(); i != gs_end; ++i)
if (i->is_point())
break;

const Generator& p = *i

/I Get the constraints of ‘ph’.

const Constraint_System& cs = ph.constraints();

/I Both the const iterator ‘i' and the reference ‘p’

/I are no longer valid at this point.

cout << p.divisor() << endl; // Undefined behavior!

++i; /I Undefined behavior!

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the
iteratori and the reference. Anyway, if really needed, it is always possible to take a copy of, instead of

a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

Generator_System gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.

1.9 Bibliography

[Bag98] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-based
languagesScience of Computer Programmirgp(1-2):119-155, 1998.

[BGP99] T.Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental résONs Transactions
on Programming Languages and Systeig4):747-789, 1999.

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In R. Cousot, editdgtatic Analysis: Proceedings of the 10th International Sympasium
volume 2694 of_ecture Notes in Computer Sciengages 337-354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Bibliography 16

[BHRZ03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno 312, Dipartimento di Matematica, Universita di Parma, Italy, 2003. Available
athttp://www.cs.unipr.it/Publications/

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Universita di Parma,
Italy, 2002. Available ahttp://www.cs.unipr.it/Publications/

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, edit®r®ceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systempages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Politécnica de Madrid, Facultad de Informatica.

[BHZ03a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, eBitocgedings of
the 3rd Workshop on Automated Verification of Critical Systqrages 161-176, Southampton, UK,
2003. Published as TR Number DSSE-TR-2003-2, University of Southampton.

[BHZO03b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In B.
Steffen and G. Levi, editor®roceedings of the Fifth International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI 2004dlume 2937 ofLecture Notes in Computer
Sciencepages 135-148, Venice, Italy, 2003. Springer-Verlag, Berlin.

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains.
Quaderno 349, Dipartimento di Matematica, Universita di Parma, Italy, 2004. Available at
http://www.cs.unipr.it/Publications/

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Filé, editors§tatic Analysis: Proceedings of the 6th International Sympasium
volume 1694 ofLecture Notes in Computer Sciengemges 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BRZHO02a] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, edgtatc Analysis: Pro-
ceedings of the 9th International Symposjwmlume 2477 ol ecture Notes in Computer Science
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZHO2b] R.Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Universita di Parma, Italy,
2002. See alsfBRZH02c]. Available athttp://www.cs.unipr.it/Publications/

[BRZHO02c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286". Available athttp://www.cs.unipr.it/Publications/ , 2002. Se¢BRZHO02b].

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editBreceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programminme
631 ofLecture Notes in Computer Scienpages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. InConference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languagespages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equationd).S.S.R. Computational Mathematics and Mathematical Phy&{d$151-
158, 1964.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/ppl/

1.9 Bibliography 17

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities.U.S.S.R. Computational Mathematics and Mathematical Physics
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem.U.S.S.R. Computational Mathematics and Mathematical Phy&({65282-293, 1968.

[Dan63] G. B. Dantzig.Linear Programming and ExtensionBrinceton University Press, Princeton, NJ,
1963.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and Y.
Manoussakis, editor§;ombinatorics and Computer Science, 8th Franco-Japanese and 4th Franco-
Chinese Conference, Brest, France, July 3-5, 1995, Selected Papkmne 1120 otecture Notes
in Computer Scienggages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral = computation FAQ. Swiss Federal Insti-
tute of Technology, Lausanne and Zurich, Switzerland, available at
http://www.ifor.math.ethz.ch/ ~fukuda/fukuda.html , 1998.

[GDD™ 04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In K. Jensen and A. Podelski, editdmxls and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004ne 2988 ot ecture Notes in
Computer Scienggages 512-529. Springer-Verlag, Berlin, 2004.

[GJO0] E. Gawrilow and M. Joswig.polymake : a framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editorRolytopes - Combinatorics and Computatiqrages 43-74.
Birkh&auser, 2000.

[GJ01] E. Gawrilow and M. Joswigpolymake : an approach to modular software design in computa-
tional geometry. IfProceedings of the 17th Annual Symposium on Computational GeQpatygs
222-231, Medford, MA, USA, 2001. ACM.

[Hal79] N. Halbwachs.Détermination Automatique de Relations Linéaires Vérifiées par les Variables
d’'un Programme Théese de 3eéme cycle d’informatique, Université scientifique et médicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, Editoputer
Aided Verification: Proceedings of the 5th International Conferenofume 697 ofLecture Notes
in Computer Scien¢gages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editbisdhrid Systems |Ivolume 999 of
Lecture Notes in Computer Scienpages 252-264. Springer-Verlag, Berlin, 1995.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. ProyOLyhedra INtegrated Environmenderimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interneB30, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, edit&tatic Analysis: Proceedings of the 1st Inter-
national Symposiumvolume 864 ofLecture Notes in Computer Sciengeages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysisFormal Methods in System Desijdii(2):157-185, 1997.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.ifor.math.ethz.ch/~fukuda/fukuda.html
http://www.cs.unipr.it/ppl/

1.9 Bibliography 18

[HPWTO1] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Compiagles 2887-2892. |IEEE
Computer Society Press, 2001.

[Jea02] B. Jeannet. Convex Polyhedra Library release 1.1.3c edition,
March 2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequaliieerican Math-
ematical Monthly63:217-232, 1956.

[Le 92] 92 H. Le Verge. A note on Chernikova's algorithiRublication interne635, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/ ~loechner/polylib/ , March 1999. Declares itself to be
a continuation ofWil93].

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their verfictesnational Journal
of Parallel Programming25(6):525-549, 1997.

[Mas92] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences.
In Proceedings of the 6th ACM International Conference on Supercompptiggs 226-235, Wash-
ington, DC, USA, 1992. ACM Press.

[Mas93] F. Masdupuy.Array Indices Relational Semantic Analysis Using Rational Cosets and Trape-
zoids Thése d'informatique, Ecole Polytechnique, Palaiseau, France, December 1993.

[MRTT53] T.S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editor§ontributions to the Theory of Games - Volumenimber
28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

[NROO] S. P. K. Nookala and T. Risset. A library for Z-polyhedral operatidhghlication internel330,
IRISA, Campus de Beaulieu, Rennes, France, 2000.

[NW88] G.L.Nemhauserand L. A. Wolseinteger and Combinatorial OptimizatioWiley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Sch99] A. Schrijver. Theory of Linear and Integer Programmin@Viley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, 1999.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraintsAnnals of Mathematics and Atrtificial Intelligend®&(3-4):315-343, 1993.

[SW70] J. Stoer and C. WitzgallConvexity and Optimization in Finite DimensionsSpringer-Verlag,
Berlin, 1970.

[Wey35] H. Weyl. Elementare theorie der konvexen polyed€ommentarii Mathematici Helvetici
7:290-306, 1935. English translation[ivey50].

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, ed@ontributions to
the Theory of Games - Volumegiumber 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated[f"dey35]by H. W. Kuhn.

[Wil93] D. K. Wilde. Alibrary for doing polyhedral operations. Master's thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRRJ/blication interne785, Rennes,
France, 1993.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html
http://icps.u-strasbg.fr/~loechner/polylib/
http://www.cs.unipr.it/ppl/

2 PPL Module Index 19

2 PPL Module Index

2.1 PPL Modules

Here is a list of all modules:

The Library 21
Library Defines 22
C Language Interface 22
Prolog Language Interface 51

3 PPL Directory Hierarchy

3.1 PPL Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

interfaces 70
C 69
Src 70

4 PPL Namespace Index

4.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:
Parma_Polyhedra_Library (The entire library is confined to this namespace) 70

Parma_Polyhedra_Library::I0_Operators (All input/output operators are confined to this
namespace) 74

std (The standard C++ namespace) 75

5 PPL Hierarchical Index

5.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Parma_Polyhedra_Library::BHRZ03_Certificate 75
Parma_Polyhedra_Library::BHRZ03 Certificate::Compare 76
Parma_Polyhedra_Library::Checked_Number< T, Policy > 79

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6 PPL Class Index 20
Parma_Polyhedra_Library::Constraint 84
Parma_Polyhedra_Library::Determinate< PH > 89
Parma_Polyhedra_Library::Generator 93
Parma_Polyhedra_Library::H79_Certificate 98
Parma_Polyhedra_Library::H79_Certificate::Compare 100
Parma_Polyhedra_Library::Linear_Expression 100
Parma_Polyhedra_Library::Native_Integer< T > 104
Parma_Polyhedra_Library::Poly_Con_Relation 111
Parma_Polyhedra_Library::Poly_Gen_Relation 112
Parma_Polyhedra_Library::Polyhedron 121

Parma_Polyhedra_Library::C_Polyhedron 77
Parma_Polyhedra_Library::NNC_Polyhedron 109
Parma_Polyhedra_Library::Powerset< CS > 147

Parma_Polyhedra_Library::Powerset< Parma_Polyhedra_Library::Determinate< PH > > 147

Parma_Polyhedra_Library::Polyhedra_Powersek PH > 113
Parma_Polyhedra_Library::Variable 151
Parma_Polyhedra_Library::Variable::Compare 153

6 PPL Class Index

6.1 PPL Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma_Polyhedra_Library::BHRZ03_Certificate (The convergence certificate for the

BHRZ03 widening operator) 75
Parma_Polyhedra_Library::BHRZ03_Certificate::Compare (A total ordering on BHRZ03

certificates) 76
Parma_Polyhedra_Library::C_Polyhedron (A closed convex polyhedron) 77
Parma_Polyhedra_Library::Checked_Number< T, Policy > (A wrapper for native numeric

types implementing a given policy) 79
Parma_Polyhedra_Library::Constraint (A linear equality or inequality) 84

Parma_Polyhedra_Library::Determinate< PH > (Wraps a PPL class into a determinate con-
straint system interface) 89

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 PPL Page Index 21

Parma_Polyhedra_Library::Generator (A line, ray, point or closure point) 93

Parma_Polyhedra_Library::H79 _Certificate (A convergence certificate for the H79 widening

operator) 98
Parma_Polyhedra_Library::H79 Certificate::Compare (A total ordering on H79 certificates

) 100
Parma_Polyhedra_Library::Linear_Expression (A linear expression) 100

Parma_Polyhedra_Library::Native_Integer< T > (A wrapper for unchecked native integer
types) 104

Parma_Polyhedra_Library::NNC_Polyhedron (A not necessarily closed convex polyhedronl)09

Parma_Polyhedra_Library::Poly _Con_Relation (The relation between a polyhedron and a
constraint) 111

Parma_Polyhedra_Library::Poly_Gen_Relation (The relation between a polyhedron and a

generator) 112
Parma_Polyhedra_Library::Polyhedra_Powersek PH > (The powerset construction instan-

tiated on PPL polyhedra) 113
Parma_Polyhedra_Library::Polyhedron (The base class for convex polyhedra) 121

Parma_Polyhedra_Library::Powerset< CS > (The powerset construction on constraint sys-
tems) 147

Parma_Polyhedra_Library::Variable (A dimension of the vector space) 151

Parma_Polyhedra_Library::Variable::Compare (Binary predicate defining the total ordering
on variables) 153

7 PPL Page Index

7.1 PPL Related Pages

Here is a list of all related documentation pages:
GNU General Public License 153

GNU Free Documentation License 158

8 PPL Module Documentation

8.1 The Library

The core implementation of the Parma Polyhedra Library is written in C++. See Namespace, Hierarchical
and Compound indexes for additional information about each single data type.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Library Defines 22

8.2 Library Defines

Defines

e #definePPL_VERSION_MAJORD
The major number of the PPL version.

#definePPL_VERSION_MINOR?
The minor number of the PPL version.

#definePPL_VERSION_REVISIOND
The revision number of the PPL version.

#definePPL_VERSION_BETAO

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

#definePPL_VERSION'0.7"
A string containing the PPL version.

8.2.1 Define Documentation

8.2.1.1 #define PPL_VERSION "0.7"
A string containing the PPL version.

Let Mandmdenote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSIONI4 "." m if both PPL_VERSION_REVISIONr() and
PPL_VERSION_BETA lf)are zeroM "* m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zerayl "." m "" r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zeroM "." m "" r "pre" b if neither PPL_VERSION_REVISION

nor PPL_VERSION_BETA are zero.

8.3 C Language Interface

Some details about the C Interface

Version Checking

e #definePPL_VERSION_MAJORD
The major number of the PPL version.

e #definePPL_VERSION_MINOR7
The minor number of the PPL version.

e #definePPL_VERSION_REVISIOND
The revision number of the PPL version.

o #definePPL_VERSION_BETAO

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 23

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

e #definePPL_VERSION'0.7"
A string containing the PPL version.

e int ppl_version_majofvoid)
Returns the major number of the PPL version.

e int ppl_version_minofvoid)
Returns the minor number of the PPL version.

e int ppl_version_revisioifvoid)
Returns the revision number of the PPL version.

e int ppl_version_betévoid)
Returns the beta number of the PPL version.

e int ppl_version(const chak:xp)
Writes toma pointer to a character string containing the PPL version.

¢ int ppl_bannefconst chakxp)
Writes toma pointer to a character string containing the PPL banner.

Simple 1/0O Functions

o typedef const cha# ppl_io_variable_output_function_tygppl_dimension_typ&ar)
The type of output functions used for printing variables.

e int ppl_io_print_variabléppl_dimension_typear)
Pretty-printsx to stdout

e int ppl_io_fprint_variablgFILE xstreamppl_dimension_typegar)
Pretty-printsvar to the given outpustream .

e int ppl_io_print_Coefficien{ppl_const_Coefficient x)
Printsx to stdout

e int ppl_io_fprint_Coefficien{FILE xstream ppl_const_Coefficient x)
Prints x to the given outpustream .

e intppl_io_print_Linear_Expressiqppl_const_Linear_Expressionx)t
Prints x to stdout

e int ppl_io_fprint_Linear_ ExpressioffrILE xstreamppl_const_Linear_ Expressionx)t
Printsx to the given outpustream .

e int ppl_io_print_Constrainfppl_const_Constraint X
Prints x to stdout

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 24

e int ppl_io_fprint_Constrain(FILE xstreamppl_const_Constraint X
Printsx to the given outpustream .

e int ppl_io_print_Constraint_Syste(ppl_const_Constraint_Systenx)t
Prints x to stdout

e int ppl_io_fprint_Constraint_Syste(fILE xstreamppl_const_Constraint_Systenmx)t
Prints x to the given outpustream .

e int ppl_io_print_Generatdippl_const_Generatorx)
Printsx to stdout

e int ppl_io_fprint_GeneratofFILE xstreamppl_const_Generatorx)
Printsx to the given outpustream .

e intppl_io_print_Generator_Systefppl_const_Generator_Systenx)t
Printsx to stdout

e int ppl_io_fprint_Generator_SystefRILE xstreamppl_const_Generator_Systenx)t
Printsx to the given outpustream .

e int ppl_io_print_Polyhedrofppl_const_Polyhedronx)
Printsx to stdout

e int ppl_io_fprint_PolyhedrofFILE «streamppl_const_Polyhedron xj
Prints x to the given outpustream .

e int ppl_io_set_variable_output_functigppl_io_variable output_function_typp)
Sets the output function to be used for printing variables.to

e int ppl_io_get variable output functigppl_io_variable output_function_typepp)
Writes a pointer to the current variable output functiorpio.

Initialization, Error Handling and Auxiliary Functions

e int ppl_max_space_dimensigppl_dimension_typem)
Writes tomthe maximum space dimension this library can handle.

int ppl_not_a_dimensiofppl_dimension_typem)
Writes toma value that does not designate a valid dimension.

int ppl_initialize (void)
Initializes the Parma Polyhedra Library. This function must be called before any other function.

int ppl_finalize(void)
Finalizes the Parma Polyhedra Library. This function must be called after any other function.

int ppl_set_error_handlgvoid(xh)(enumppl_enum_error_codeode, const chasdescription))
Installs the user-defined error handler pointed atthy

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 25

Functions Related to Coefficients

e int ppl_new_Coefficienfppl_Coefficient_tpc)
Creates a new coefficient with value 0 and writes a handle for the newly created coefficient at pddress

e int ppl_new_Coefficient_from_mpz(ppl_Coefficient_tpc, mpz_t z)

Creates a new coefficient with the value given by the GMP integaend writes a handle for the newly
created coefficient at addreps .

e int ppl_new_Coefficient_from_Coefficiefpppl_Coefficient_tpc, ppl_const_Coefficient d)
Builds a coefficient that is a copy of writes a handle for the newly created coefficient at addpess

e int ppl_assign_Coefficient_from_mpzppl_Coefficient_tst, mpz_t z)
Assign tadst the value given by the GMP integer

e int ppl_assign_Coefficient_from_Coefficidippl_Coefficient_tdst,ppl_const_Coefficient grc)
Assigns a copy of the coefficiestt to dst .

e int ppl_delete_Coefficienppl_const_Coefficient @)
Invalidates the handle: this makes sure the corresponding resources will eventually be released.

e int ppl_Coefficient_to_mpz_(ppl_const_Coefficient ¢, mpz_t z)
Sets the value of the GMP integeto the value ot.

e int ppl_Coefficient_ OK(ppl_const_Coefficient a@)

Returns a positive integer df is well formed, i.e., if it satisfies all its implementation invariants; returns O
and perhaps make some noise if broken. Useful for debugging purposes.

Functions Related to Linear Expressions

e int ppl_new_Linear_Expressidppl_Linear_Expression sple)

Creates a new linear expression corresponding to the constant O in a zero-dimensional space; writes a
handle for the new linear expression at addrpks .

e int ppl_new_Linear_Expression_with_dimensi@pl_Linear_ Expression sple, ppl_dimension_-
typed)
Creates a new linear expression corresponding to the constant @idiemensional space; writes a handle
for the new linear expression at addrqse .

e int ppl_new Linear Expression_from_Linear Express{ppl_Linear_ Expression_kple, ppl_-
const_Linear_Expressionlef)

Builds a linear expression that is a copylef; writes a handle for the newly created linear expression at
addresyle .

e int ppl_new_Linear Expression_from_Constraigpl_Linear_Expression_t«ple, ppl_const_-
Constraint_t)

Builds a linear expression corresponding to constraintwrites a handle for the newly created linear
expression at addregse .

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 26

e int ppl_new_Linear Expression_from_Generat(ppl_Linear_Expression_t«ple, ppl_const_-
Generator_g)

Builds a linear expression corresponding to generagorwrites a handle for the newly created linear
expression at addregde .

e int ppl_delete_Linear_Expressi¢ppl_const_Linear_Expressione)
Invalidates the handlie: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Linear_Expression_from_Linear_Expresgjupl_Linear_Expression_dst, ppl_-
const_Linear_Expressionstc)
Assigns a copy of the linear expressigms todst .

e int ppl_Linear_Expression_add_to_coefficigppl_Linear_Expression_le, ppl_dimension_type
var, ppl_const_Coefficient rt)

Addsn to the coefficient of variablear in the linear expressiofe . The space dimension is set to be the
maximum betweevar + 1 and the old space dimension.

e int ppl _Linear Expression_add to inhomogenedpp!_Linear Expression_tle, ppl_const -
Coefficient_tn)

Addsn to the inhomogeneous term of the linear expresion

e int ppl_add_Linear Expression_to_Linear_Expresgjonl_Linear_Expression_dst, ppl_const_-
Linear_Expression dgrc)

Adds the linear expressi@ic todst .

e int ppl_subtract_Linear_Expression_from_Linear Expres§imh Linear Expression dst, ppl_-
const_Linear_Expressionskc)

Subtracts the linear expressienc fromdst .

e int ppl_multiply_Linear_Expression_by Coefficierfppl_Linear_Expression_ie, ppl_const -
Coefficient_tn)

Multiply the linear expressiodst byn.

e int ppl_Linear_Expression_space_dimens{ppl_const_Linear_Expressionlet, ppl_dimension_-
typexm)
Writes tomthe space dimension &f .

e int ppl_Linear_Expression_coefficiefgpl_const_Linear_ Expressionet ppl_dimension_typgar,
ppl_Coefficient_n)
Copies inton the coefficient of variablear in the linear expressiote .

e int ppl_Linear_Expression_inhomogeneous_ter(ppl_const_Linear_Expression_te, ppl_-
Coefficient_tn)

Copies inton the inhomogeneous term of linear expresden

e int ppl_Linear_Expression_OKpl_const_Linear_Expressione)

Returns a positive integerlé is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisteif is broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 27

Functions Related to Constraints

e int ppl_new_Constrain{ppl_Constraint_t«pc, ppl_const_Linear Expressionl¢, enum ppl_-
enum_Constraint_Typel)

Creates the new constrairie'rel 0’ and writes a handle for it at addreg. The space dimension of
the new constraint is equal to the space dimenside of

e int ppl_new_Constraint_zero_dim_falgpl_Constraint_&pc)
Creates the unsatisfiable (zero-dimension space) constiainti and writes a handle for it at addregs .

e int ppl_new_Constraint_zero_dim_positiviypl_Constraint_&pc)

Creates the true (zero-dimension space) consti@ifit 1, also known agositivity constrainta handle for
the newly created constraint is written at addrgss

e int ppl_new_Constraint_from_Constraijpipl_Constraint_&pc, ppl_const_Constraint d)
Builds a constraint that is a copy of, writes a handle for the newly created constraint at addigss

e int ppl_delete_Constrairfppl_const_Constraint d)
Invalidates the handle: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Constraint_from_Constrgippl_Constraint_tst,ppl_const_Constraint src)
Assigns a copy of the constraiic to dst .

e int ppl_Constraint_space_dimensi@pl_const_Constraint ¢, ppl_dimension_typem)
Writes tomthe space dimension of

e int ppl_Constraint_typéppl_const_Constraint d)
Returns the type of constraiat

e int ppl_Constraint_coefficierfppl_const_Constraintct ppl_dimension_typear, ppl_Coefficient t
n)

Copies inton the coefficient of variablear in constraintc.

¢ int ppl_Constraint_inhomogeneous_tefppl_const_Constraint ¢, ppl_Coefficient_n)
Copies inton the inhomogeneous term of constraint

e int ppl_Constraint_ OKppl_const_Constraint d)

Returns a positive integer df is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise if broken. Useful for debugging purposes.

Functions Related to Constraint Systems

e int ppl_new_Constraint_Systefppl_Constraint_Systemxpcs)
Builds an empty system of constraints and writes a handle to it at adgesss

e int ppl_new_Constraint_System_zero_dim_en(ppl_Constraint_Systemxpcs)
Builds a zero-dimensional, unsatisfiable constraint system and writes a handle to it at guitkess

e int ppl_new_Constraint_System_from_Constraijppl _Constraint_System_&pcs, ppl_const_-
Constraint_t)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 28

Builds the singleton constraint system containing only a copy of constraimtites a handle for the newly
created system at addregss .

e int ppl_new_Constraint_System_from_Constraint_Sys{epl_Constraint_System spcs, ppl_-
const_Constraint_Systemcg)

Builds a constraint system that is a copyasf; writes a handle for the newly created system at address
pcs .

e int ppl_delete_Constraint_Systdppl_const_Constraint_Systents)
Invalidates the handles: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Constraint_System_from_Constraint_Sygigoh Constraint_System dst, ppl_-
const_Constraint_Systensitc)

Assigns a copy of the constraint systemm to dst .

e int ppl_Constraint_System_space_dimengjgol_const_Constraint_Systentd, ppl_dimension_-
type xm)

Writes tomthe dimension of the vector space enclosiag

¢ int ppl_Constraint_System_cleg@pl_Constraint_Systemcs)
Removes all the constraints from the constraint systerand sets its space dimension to 0.

e int ppl_Constraint_System_insert_Constrgjopl_Constraint_System ct, ppl_const_Constraint_t
c)

Inserts a copy of the constraintinto cs ; the space dimension is increased, if necessary.

e int ppl_Constraint_System_Ofppl_const_Constraint_Systent)t

Returns a positive integer ik is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisesfis broken. Useful for debugging purposes.

e int ppl_new_Constraint_System_const_iterdppl _Constraint_System_const_iteratogptit)
Builds a new ‘const iterator’ and writes a handle to it at addres#

e int ppl_new_Constraint_System_const_iterator_from_Constraint_System_const_itefgpbr-
Constraint_System_const_iterator_#pcit, ppl_const_Constraint_System_const_iteratorcit)

Builds a const iterator that is a copy ot ; writes an handle for the newly created const iterator at address
pcit

e int ppl_delete_Constraint_System_const_itera{ppl_const_Constraint_System_const_iterator_-
t cit)
Invalidates the handleit: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Constraint_System_const_iterator_from_Constraint_System_const_i{prdtor
Constraint_System_const_iteratodst,ppl_const_Constraint_System_const_iteraterc}

Assigns a copy of the const iteratnc to dst .

e int ppl_Constraint_System_begifppl_const_Constraint_Systemcs, ppl_Constraint_System_-
const_iterator_tit)

Assigns tait a const iterator "pointing"” to the beginning of the constraint systsm

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 29

e int ppl_Constraint_System_en@ppl_const_Constraint_System ds, ppl_Constraint_System_-
const_iterator_tit)

e int

Assigns ta@it a const iterator "pointing” past the end of the constraint systsm

ppl_Constraint_System_const_iterator_dereferen@epl_const_Constraint_System_const_-

iterator_tcit, ppl_const_Constraint #pc)

Dereferenceit writing a const handle to the resulting constraint at addrpss

e int ppl_Constraint_System_const_iterator_increnfppt_Constraint_System_const_iteratarit}

e int

Incrementcit so that it "points” to the next constraint.

ppl_Constraint_System_const_iterator_equal_tegppl_const_Constraint_System_const_-

iterator_tx, ppl_const_Constraint_System_const_iteratg) t

Returns a positive integer if the iterators corresponding tandy are equal; return O if they are different.

Functions Related to Generators

e int ppl_new_Generatdppl_Generator_tpg,ppl_const_Linear_Expressioriet enumppl_enum_-
Generator_Typég ppl_const_Coefficient d)

Creates a new generator of directite and typet . If the generator to be created is a point or a closure
point, the divisord is applied tole . For other types of generatois is simply disregarded. A handle for
the new generator is written at addregg. The space dimension of the new generator is equal to the space
dimension ofe .

e int ppl_new_Generator_zero_dim_pofppl_Generator_tpg)

Creates the point that is the origin of the zero-dimensional sffAcaNrites a handle for the new generator
at addres9g.

e int ppl_new_Generator_zero_dim_closure_p¢ppi_Generator_tpg)

Creates, as a closure point, the point that is the origin of the zero-dimensional Bjad&'rites a handle
for the new generator at addrepsg .

e int ppl_new_Generator_from_Generafppl_Generator_tpg, ppl_const_Generatorg)

Builds a generator that is a copy gf writes a handle for the newly created generator at addgss

e int ppl_delete_Generat@ppl_const_Generatorg)

Invalidates the handlg: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Generator_from_Generdtmpl_Generator_dst,ppl_const_Generatorstc)

Assigns a copy of the generatenc to dst .

e int ppl_Generator_space_dimensippl_const_Generatorgt ppl_dimension_typem)

Writes tomthe space dimension gf

e int ppl_Generator_typgopl_const_Generatorg)

Returns the type of generatgr

e int ppl_Generator_coefficiefppl_const_Generatorgt ppl_dimension_type&ar, ppl_Coefficient_t

n)

Copies inton the coefficient of variablear in generatorg.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 30

e int ppl_Generator_divisqippl_const_Generatorgt ppl_Coefficient_t)
If g is a point or a closure point assigns its divisorfio

e int ppl_Generator_OKppl_const_Generatorg)

Returns a positive integer ¢f is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisg i broken. Useful for debugging purposes.

Functions Related to Generator Systems

e int ppl_new_Generator_Systgippl_Generator_Systemxpgs)
Builds an empty system of generators and writes a handle to it at adogsss

e int ppl_new_Generator_System_from_Generafppl_Generator_System_tpgs, ppl_const_-
Generator_g)

Builds the singleton generator system containing only a copy of genagaterites a handle for the newly
created system at addrepgs .

e int ppl_new_Generator_System_from_Generator_Sysfpph_Generator_System stpgs, ppl_-
const_Generator_Systengysg)

Builds a generator system that is a copygef, writes a handle for the newly created system at addpgss

e int ppl_delete_Generator_Systéppl_const_Generator_Systengs)
Invalidates the handlgs: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Generator_System_from_Generator_Sy¢fgrh Generator_System dst, ppl_-
const_Generator_Systensrt)

Assigns a copy of the generator systm to dst .

e int ppl_Generator_System_space_dimengjmpl_const_Generator_Systengd, ppl_dimension_-
typexm)

Writes tomthe dimension of the vector space enclogisg

e int ppl_Generator_System_clggpl_Generator_Systemgs)
Removes all the generators from the generator sygerand sets its space dimension to 0.

e intppl_Generator_System_insert_Genergppt_Generator Systemgs,ppl_const_Generatorg)

Inserts a copy of the generatgrinto gs ; the space dimension is increased, if necessary.

e int ppl_Generator_System_Q(gpl_const_Generator_Systent)t

Returns a positive integer gfs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noisgsf is broken. Useful for debugging purposes.

e int ppl_new_Generator_System_const_iter§ppt_Generator_System_const_iteratapgit)
Builds a new ‘const iterator’ and writes a handle to it at addregit .

e int ppl_new_Generator_System_const_iterator_from_Generator_System_const_iteiibr-
Generator_System_const_iterator pgit, ppl_const_Generator System_const_iteratomit)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 31

Builds a const iterator that is a copy git ; writes an handle for the newly created const iterator at address
pait .

e int ppl_delete_Generator_System_const_iterafppl_const_Generator_System_const_iterator_-
t git)
Invalidates the handlgit: this makes sure the corresponding resources will eventually be released.

e int ppl_assign_Generator_System_const_iterator_from_Generator_System_const_i{pptor
Generator_System_const_iteratadst, ppl_const_Generator_System_const_iteratenc)t

Assigns a copy of the const iteratnc to dst .

e int ppl_Generator_System_begifppl_const _Generator_Systemgs, ppl_Generator_System_-
const_iterator_git)

Assigns ta@jit a const iterator "pointing" to the beginning of the generator sysgism

e int ppl_Generator_System_efpl_const_Generator_Systengs,ppl_Generator_System_const_-
iterator_tgit)
Assigns ta@it a const iterator "pointing" past the end of the generator sysgsm

e int ppl_Generator_System_const_iterator_dereferen¢ppl_const_Generator_System_const_-
iterator_tgit, ppl_const_Generatorxpg)

Dereferenceayit writing a const handle to the resulting generator at addnegs

e int ppl_Generator_System_const_iterator_increnf@pit Generator_System_const_iteratait}t
Incrementgit so that it "points” to the next generator.

e int ppl_Generator_System_const_iterator_equal_tegppl_const_Generator_System_const_-
iterator_tx, ppl_const_Generator_System_const_iteratpy t

Return a positive integer if the iterators correspondingtandy are equal; return 0 if they are different.

Functions Related to Polyhedra

e int ppl_new_C_Polyhedron_from_dimensi@ppl_Polyhedron_spph,ppl_dimension_type)
Builds an universe closed polyhedron of dimengland writes an handle to it at addrepph.

e int ppl_new_NNC_Polyhedron_from_dimensi@@pl_Polyhedron_spph,ppl_dimension_type)
Builds an universe NNC polyhedron of dimensiband writes an handle to it at addrepph.

e int ppl_new_C_Polyhedron_empty_from_dimens{ppl_Polyhedron_kpph, ppl_dimension_type
d)

Builds an empty closed polyhedron of space dimengiand writes an handle to it at addrepph.

e int ppl_new_NNC_Polyhedron_empty from_dimensfppl_Polyhedron_kpph, ppl_dimension_-
typed)
Builds an empty NNC polyhedron of space dimensgiamd writes an handle to it at addrepph .

e int ppl_new_C_Polyhedron_from_C_Polyhedfppl_Polyhedron_spph,ppl_const_Polyhedron_t
ph)
Builds a closed polyhedron that is a copypdf; writes a handle for the newly created polyhedron at address
pph.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 32

e int ppl_new_C_Polyhedron_from_NNC_Polyhedrofppl_Polyhedron_t «pph, ppl_const_-
Polyhedron_ph)

Builds a closed polyhedron that is a copy of of the NNC polyhegionwrites a handle for the newly
created polyhedron at addrepph .

e int ppl_new_NNC_Polyhedron_from_C_Polyhedrofppl_Polyhedron_t xpph, ppl_const -
Polyhedron_ph)

Builds an NNC polyhedron that is a copy of of the closed polyhedhonwrites a handle for the newly
created polyhedron at addrepgph .

e int ppl_new_NNC_Polyhedron_from_NNC_Polyhedrdppl_Polyhedron_t«pph, ppl_const_-
Polyhedron_ph)

Builds an NNC polyhedron that is a copypif; writes a handle for the newly created polyhedron at address
pph.

e int ppl_new_C_ Polyhedron_from_Constraint_Systefppl_Polyhedron_t xpph, ppl_const_-
Constraint_System ds)

Builds a new closed polyhedron from the system of constrainend writes a handle for the newly created
polyhedron at addregsph.

e int ppl_new_C_Polyhedron_recycle_Constraint_Systeph Polyhedron_kpph, ppl_Constraint_-
System_ts)

Builds a new closed polyhedron recycling the system of constresntsnd writes a handle for the newly
created polyhedron at addrepgph .

e int ppl_new_NNC_Polyhedron_from_Constraint_Systéppl_Polyhedron_t«pph, ppl_const_-
Constraint_System ds)

Builds a new NNC polyhedron from the system of constratand writes a handle for the newly created
polyhedron at addresgph.

e int ppl_new_NNC_Polyhedron_recycle_Constraint_Systdjppl_Polyhedron_t xpph, ppl_-
Constraint_System ds)

Builds a new NNC polyhedron recycling the system of constramtand writes a handle for the newly
created polyhedron at addrepph .

e int ppl_new_C_Polyhedron_from_Generator_Systefppl_Polyhedron_t xpph, ppl_const_-
Generator_Systemgs)

Builds a new closed polyhedron from the system of genergsend writes a handle for the newly created
polyhedron at addregsph.

e int ppl_new_C_Polyhedron_recycle_Generator_Sygteph Polyhedron_tpph, ppl_Generator_-
System_gs)

Builds a new closed polyhedron recycling the system of genergsoend writes a handle for the newly
created polyhedron at addrepph .

e int ppl_new NNC_Polyhedron_from_Generator_Systéopl_Polyhedron_txpph, ppl_const -
Generator_Systemgs)

Builds a new NNC polyhedron from the system of generagerand writes a handle for the newly created
polyhedron at addregsph.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 33

e int ppl_new_NNC_Polyhedron_recycle Generator_Systdppl_Polyhedron_t «pph, ppl_-
Generator_Systemgs)

Builds a new NNC polyhedron recycling the system of generg®rand writes a handle for the newly
created polyhedron at addrepph .

e int ppl_new C_Polyhedron_from_bounding_bofppl_Polyhedron_t xpph, ppl_dimension_-
type(xspace_dimension)(void), iri§_empty)(void), intéget lower_boundjpl_dimension_type
k, int closed ppl_Coefficient_n, ppl_Coefficient_d), int(+«get_upper_bound)pl_dimension_type
k, int closedppl_Coefficient_n, ppl_Coefficient_t))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addrepph .

e int ppl_new NNC_Polyhedron_from_bounding_b@ppl_Polyhedron_t«pph, ppl_dimension_-
type(xspace_dimension)(void), iri§_empty)(void), int¢éget lower_boundjpl_dimension_type
k, int closed ppl_Coefficient_n, ppl_Coefficient_d), int(+«get_upper_bound)pl_dimension_type
k, int closedppl_Coefficient_n, ppl_Coefficient_t))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addrepph .

e int ppl_assign_C_Polyhedron_from_C_Polyhedjmn_Polyhedron_dst,ppl_const_Polyhedron_t
src)

Assigns a copy of the closed polyhedsoa to the closed polyhedradst .

e int ppl_assign_NNC_Polyhedron_from_NNC_Polyhedr{wpl_Polyhedron_tdst, ppl_const_-
Polyhedron_src)

Assigns a copy of the NNC polyhedine to the NNC polyhedrodst .

e int ppl_delete_Polyhedrofppl_const_Polyhedron ph)
Invalidates the handlph: this makes sure the corresponding resources will eventually be released.

e int ppl_Polyhedron_space_dimensigpl_const_Polyhedron ph, ppl_dimension_typem)
Writes tomthe dimension of the vector space enclogihg

e int ppl_Polyhedron_affine_dimensidppl_const_Polyhedron ph)

Writes tomthe affine dimension gfh (not to be confused with the dimension of its enclosing vector space)
or 0, if ph is empty.

e int ppl_Polyhedron_constrain{ppl_const_Polyhedron ph, ppl_const_Constraint_Systemxcs)

Writes a const handle to the constraint system defining the polyhetiram addresgpcs .

e int ppl_Polyhedron_minimized_constrainfppl_const_Polyhedron_ph, ppl_const_Constraint_-
System_tpcs)
Writes a const handle to the minimized constraint system defining the polyhgdedraddresgcs .

e int ppl_Polyhedron_generatafjispl_const_Polyhedron ph, ppl_const_Generator_Systenxpgs)
Writes a const handle to the generator system defining the polyhptrahaddresggs .

e int ppl_Polyhedron_minimized_generatofspl_const_Polyhedron_ph, ppl_const_Generator_-
System_#pgs)
Writes a const handle to the minimized generator system defining the polylpddatraddrespgs .

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 34

e int ppl_Polyhedron_relation_with_Constraijpipl_const_Polyhedron gh, ppl_const_Constraint_t
c)

Checks the relation between the polyhedobinwith the constraint.

e int ppl_Polyhedron_relation_with_Generaigpl_const_Polyhedron_gh, ppl_const_Generator_-
tg)
Checks the relation between the polyhedpbnwith the generatog.

e int ppl_Polyhedron_shrink_bounding_bdgpl_const_Polyhedron gh, unsigned int complexity,
void(xset_empty)(void), void{aise_lower_bound)pl_dimension_typé, int closed,ppl_const_-
Coefficient_tn, ppl_const_Coefficient_d), void(xlower_upper_bounddpl_dimension_typé, int
closedppl_const_Coefficient i, ppl_const_Coefficient d))

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by means
of the parameters.

e int ppl_Polyhedron_is_emp(ppl_const_Polyhedron ph)
Returns a positive integer fh is empty; returns 0 iph is not empty.

e int ppl_Polyhedron_is_univergppl _const_Polyhedron ph)
Returns a positive integer fifh is a universe polyhedron; returns 0 if it is not.

e int ppl_Polyhedron_is_boundédpl_const_Polyhedron ph)
Returns a positive integer fifh is bounded; returns 0 iph is unbounded.

e int ppl_Polyhedron_bounds_from_abovéppl_const_Polyhedron_tph, ppl_const Linear -
Expression_te)

Returns a positive integerli¢ is bounded from above joh; returns 0 otherwise.

e int ppl_Polyhedron_bounds_from_below(ppl_const_Polyhedron_tph, ppl_const Linear_-
Expression_le)

Returns a positive integerli¢ is bounded from below iph; returns O otherwise.

e int ppl_Polyhedron_maximizd€ppl_const_Polyhedron_ph, ppl_const_Linear Expression |¢,
ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d, int xpmaximum, ppl_const _Generator_-
t xppoint)

Returns a positive integer gh is not empty ande is bounded from above iph, in which case the
supremum value and a point whéee reaches it are computed.

e int ppl_Polyhedron_minimize(ppl_const_Polyhedron_ph, ppl_const_Linear_Expression ¢,
ppl_Coefficient_inf_n, ppl_Coefficient_inf_d, int xpminimum,ppl_const_Generatorxppoint)

Returns a positive integeriiih is not empty anée is bounded from above jph, in which case the infimum
value and a point wherle reaches it are computed.

e int ppl_Polyhedron_is_topologically _closéapl_const_Polyhedron ph)
Returns a positive integer fifh is topologically closed; returns 0 gh is not topologically closed.

e int ppl_Polyhedron_contains_Polyhedr@pl_const_Polyhedronxt ppl_const_Polyhedrony)
Returns a positive integerxf contains or is equal tg; returns 0 if it does not.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 35

e int ppl_Polyhedron_strictly _contains_Polyhedrofppl_const_Polyhedron_tx, ppl_const_-
Polyhedron_t)

Returns a positive integer¥f strictly containsy; returns 0O if it does not.

e int ppl_Polyhedron_is_disjoint_from_Polyhedrorfppl_const_Polyhedron_tx, ppl_const_-
Polyhedron_t)

Returns a positive integer¥f andy are disjoint; returns O if they are not.

e int ppl_Polyhedron_equals_Polyhedr@pl_const Polyhedronxt ppl_const_Polyhedronyj
Returns a positive integerxf andy are the same polyhedron; return 0 if they are different.

e int ppl_Polyhedron_OKppl_const_Polyhedron ph)

Returns a positive integer|ih is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noiselif is broken. Useful for debugging purposes.

e int ppl_Polyhedron_add_constraijppl_Polyhedron_ph, ppl_const_Constraint d)
Adds a copy of the constraintto the system of constraints .

e int ppl_Polyhedron_add_constraint_and_minin{zel_Polyhedron_ph,ppl_const_Constraintc)

Adds a copy of the constraintto the system of constraintsjpli. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful rgpiaris guaranteed to be minimized.

¢ int ppl_Polyhedron_add_generatppl_Polyhedron_ph, ppl_const_Generatorg)
Adds a copy of the generatgrto the system of generatorst.

¢ int ppl_Polyhedron_add_generator_and_mininfma_Polyhedron_ph, ppl_const_Generatorg)

Adds a copy of the generatgrto the system of generatorspfi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful repharis guaranteed to be minimized.

e int ppl_Polyhedron_add_constrairfgpl_Polyhedron_ph, ppl_const_Constraint_Systents)
Adds a copy of the system of constraitgsto the system of constraints joffi.

e int ppl_Polyhedron_add_constraints_and_minin{jzel_Polyhedron_ph, ppl_const_Constraint_-
System_ts)

Adds a copy of the system of constraitgsto the system of constraintsjpifi. Returns a positive integer if
the resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful rptuia,guaranteed to
be minimized.

e int ppl_Polyhedron_add_generat@ppl_Polyhedron_ph,ppl_const Generator_Systengs)
Adds a copy of the system of generaigssto the system of generatorspat.

e int ppl_Polyhedron_add_generators_and_minin{iz@_Polyhedron_ph, ppl_const_Generator_-
System_gs)

Adds a copy of the system of generatgssto the system of generatorsii. Returns a positive integer if
the resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful rptuia,guaranteed to
be minimized.

e intppl_Polyhedron_add_recycled_constra{ptd_Polyhedron_ph,ppl_Constraint_Systemcs)
Adds the system of constraims to the system of constraints oifi.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 36

e int ppl_Polyhedron_add_recycled_constraints_and_minimiggpl_Polyhedron_t ph, ppl_-
Constraint_System ds)

Adds the system of constraints to the system of constraints ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful rethris, guaranteed to be
minimized.

e int ppl_Polyhedron_add_recycled_generafpg_Polyhedron_ph, ppl_Generator_Systemgs)
Adds the system of generat@s to the system of generatorsuif .

e int ppl_Polyhedron_add_recycled_generators_and_minimigpl_Polyhedron_t ph, ppl_-
Generator_Systemgs)

Adds the system of generatgs to the system of generatorsgi. Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful rgpiaris guaranteed to be minimized.

¢ int ppl_Polyhedron_intersection_assigpl_Polyhedron_x, ppl_const_Polyhedrony)
Intersectsx with polyhedrory and assigns the resutt

e int ppl_Polyhedron_intersection_assign_and_minimiz@pl_Polyhedron_t x, ppl_const_-
Polyhedron_¥)

Intersects< with polyhedrory and assigns the resutt Returns a positive integer if the resulting polyhedron
is non-empty; returns 0 if it is empty. Upon successful retyris, also guaranteed to be minimized.

e int ppl_Polyhedron_poly_hull_assidppl_Polyhedron_x, ppl_const_Polyhedrony)
Assigns tox the poly-hull ofx andy.

e int ppl_Polyhedron_poly hull_assign_and_minimigpl_Polyhedron_x, ppl_const_Polyhedron_t
y)

Assigns tax the poly-hull ofx andy. Returns a positive integer if the resulting polyhedron is non-empty;
returns O if it is empty. Upon successful retuxnis also guaranteed to be minimized.

e int ppl_Polyhedron_poly difference_assigmpl_Polyhedron_x, ppl_const_Polyhedrony)
Assigns tx thepoly-differenceof x andy.

e int ppl_Polyhedron_affine_imagépl_Polyhedron_tph, ppl_dimension_typevar, ppl_const_-
Linear_Expression _le, ppl_const_Coefficient_d)

Transforms the polyhedrgoh, assigning an affine expression to the specified variable.

e int ppl_Polyhedron_affine_preimagppl_Polyhedron_ph, ppl_dimension_typesar, ppl_const_-
Linear_Expression le, ppl_const_Coefficient d)

Transforms the polyhedrgwh, substituting an affine expression to the specified variable.

e int ppl_Polyhedron_generalized_affine_imaémpl_Polyhedron_tph, ppl_dimension_typevar,
enum ppl_enum_Constraint_Typerelsym, ppl_const Linear_Expression_te, ppl_const_-
Coefficient_td)

Assigns tgph the image oph with respect to thgeneralized affine transfer functioar’ pq ;2
wherex is the relation symbol encoded bglsym .

e int ppl_Polyhedron_generalized_affine_image_|hs (dgm@_Polyhedron_ph, ppl_const_Linear_-
Expression_ths, enunppl_enum_Constraint_Tygelsym,ppl_const_Linear Expressiorrhs)

Assigns tph the image oph with respect to thgeneralized affine transfer functidhs’ < rhs, where
is the relation symbol encoded bsisym .

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 37

e int ppl_Polyhedron_time_elapse_assfgpl_Polyhedron_x, ppl_const_Polyhedrony)
Assigns to thetime-elapsédetween the polyhedraandy .

e int ppl_Polyhedron_ BHRZ03_ widening_assign_with_tokgppl_Polyhedron_tx, ppl_const_-
Polyhedron_t, unsignedktp)

If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-wideningf x
andy. If tp is not the null pointer, thevidening with tokendelay technique is applied wititp available
tokens.

e int ppl_Polyhedron_BHRZ03_widening_assigpl_Polyhedron_x, ppl_const_Polyhedrony)

If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-wideningf x
andy.

e int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_toképpl_Polyhedron_t x,
ppl_const_Polyhedronyt ppl_const_Constraint_Systentd, unsignecetp)

If the polyhedrory is contained in (or equal to) the polyhedren assigns tox the BHRZ03-wideningf
x andy intersected with the constraints @3 that are satisfied by all the points gf If tp is not the null
pointer, thewidening with tokendelay technique is applied wititp available tokens.

e int ppl_Polyhedron_limited_BHRZ03_extrapolation_assi¢gopl_Polyhedron_tx, ppl_const_-
Polyhedron_¥, ppl_const_Constraint_Systentd)

If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-wideningf x
andy intersected with the constraints @3 that are satisfied by all the points »f

e int ppl_Polyhedron_bounded BHRZ03_extrapolation_assign_with_tokepk Polyhedron_tx,
ppl_const_Polyhedronyt ppl_const_Constraint_Systentd, unsigneetp)

If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-wideningf x
andy intersected with the constraints @3 that are satisfied by all the points »f further intersected with
all the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points »f If
tp is not the null pointer, thevidening with tokenselay technique is applied wititp available tokens.

e int ppl_Polyhedron_bounded BHRZO03_extrapolation_asgjgn_Polyhedron_tx, ppl_const -
Polyhedron_t, ppl_const_Constraint_Systencd)
If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the BHRZ03-wideningf x

andy intersected with the constraints @3 that are satisfied by all the points »f further intersected with
all the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points »f

e int ppl_Polyhedron_H79 widening_assign_with_toker(ppl_Polyhedron t x, ppl_const -
Polyhedron_t, unsignedktp)
If the polyhedrory is contained in (or equal to) the polyhedran assigns to the H79-wideningof x and

y. If tp is not the null pointer, thevidening with tokenslelay technique is applied witktp available
tokens.

e int ppl_Polyhedron_H79_ widening_assipl_Polyhedron_x, ppl_const_Polyhedrony)

If the polyhedrory is contained in (or equal to) the polyhedran assigns to the H79-wideningof x and
y.

e int ppl_Polyhedron_limited_H79 extrapolation_assign_with_tok@d_Polyhedron_tx, ppl_-
const_Polyhedron \t, ppl_const_Constraint_Systentg, unsigneatp)
If the polyhedrory is contained in (or equal to) the polyhedran assigns tox the H79-wideningof x and

y intersected with the constraints @s that are satisfied by all the points ®f If tp is not the null pointer,
thewidening with tokendelay technique is applied wititp available tokens.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 38

e int ppl_Polyhedron_limited_H79_extrapolation_assig(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t, ppl_const_Constraint_Systencs)

If the polyhedrory is contained in (or equal to) the polyhedranassigns to< the H79-wideningof x and
y intersected with the constraints @3 that are satisfied by all the points »f

e int ppl_Polyhedron_bounded_H79_ extrapolation_assign_with_tofasisPolyhedron_«, ppl_-
const_Polyhedron \t, ppl_const_Constraint_Systentd, unsigneatp)

If the polyhedrory is contained in (or equal to) the polyhedran assigns tok the H79-wideningof x and
y intersected with the constraints @3 that are satisfied by all the points gf further intersected with all
the constraints of the formtv < r» and+v < r, withr € Q, that are satisfied by all the points »f If tp
is not the null pointer, thevidening with tokendelay technique is applied wititp available tokens.

e int ppl_Polyhedron_bounded_H79_ extrapolation_assi¢ppl_Polyhedron_t x, ppl_const_-
Polyhedron_t, ppl_const_Constraint_Systencd)

If the polyhedrory is contained in (or equal to) the polyhedran assigns toc the H79-wideningof x and
y intersected with the constraints @3 that are satisfied by all the points gf further intersected with all
the constraints of the formtv < r and+v < r, withr € Q, that are satisfied by all the points »f

e int ppl_Polyhedron_topological_closure_assigpl_Polyhedron_ph)
Assigns th its topological closure.

e int ppl_Polyhedron_add_space_dimensions_and_enfpeld Polyhedron_tph, ppl_dimension_-
typed)
Addsd new dimensions to the space enclosing the polyheglnoand toph itself.

e int ppl_Polyhedron_add_space_dimensions_and_prdpgait Polyhedron_tph, ppl_dimension_-
typed)
Addsd new dimensions to the space enclosing the polyheglnon

e int ppl_Polyhedron_concatenate_asgjgpl_Polyhedron_x, ppl_const_Polyhedrony)

Seeing a polyhedron as a set of tuples (its points), assignsat the tuples that can be obtained by
concatenating, in the order given, a tuplexofvith a tuple ofy.

e int ppl_Polyhedron_remove_space_dimensi@ogl_Polyhedron_fph, ppl_dimension_typels[],
size_tn)

Removes from the vector space enclogihghe space dimensions that are specified in firgtositions of
the arrayds. The presence of duplicatesds is a waste but an innocuous one.

e int ppl_Polyhedron_remove_higher_space_dimensjppk Polyhedron_ph, ppl_dimension_type
d)

Removes the higher dimensions from the vector space enclasisg that, upon successful return, the new
space dimension @.

e int ppl_Polyhedron_map_space_dimensig¢ppl_Polyhedron_tph, ppl_dimension_typamaps|[],
size tn)

Remaps the dimensions of the vector space accordingpartgal function This function is specified by
means of thenaps array, which has entries.

e int ppl_Polyhedron_expand_space_dimengjopl_Polyhedron_ph, ppl_dimension_typel, ppl_-
dimension_typen)

Expandshe d-th dimension of the vector space enclogatigto mnew space dimensions.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 39

¢ int ppl_Polyhedron_fold_space_dimensi¢ppl_Polyhedron_ph, ppl_dimension_typds[], size_t
n, ppl_dimension_typd)

Modifiesph byfoldingthe space dimensions contained in the firgbsitions of the arrags into dimension
d. The presence of duplicatesds is a waste but an innocuous one.

Typedefs

e typedef size_ppl_dimension_type
An unsigned integral type for representing space dimensions.

o typedef ppl_Coefficient_tagppl_Coefficient_t
Opaque pointer.

o typedef ppl_Coefficient_tag consppl_const_Coefficient_t
Opaque pointer to const object.

e typedef ppl_Linear_Expression_tagpl_Linear Expression_t
Opaque pointer.

e typedef ppl_Linear_Expression_tag corgipl_const_Linear Expression_t
Opaque pointer to const object.

o typedef ppl_Constraint_tagppl_Constraint_t
Opagque pointer.

e typedef ppl_Constraint_tag consppl_const_Constraint_t
Opaque pointer to const object.

o typedef ppl_Constraint_System_tagpl_Constraint_System_t
Opaque pointer.

o typedef ppl_Constraint_System_tag conagipl_const_Constraint_System_t
Opaque pointer to const object.

o typedef ppl_Constraint_System_const_iterator xtpgl_Constraint_System_const_iterator_t
Opaque pointer.

o typedef ppl_Constraint_System_const_iterator_tag cenmpl_const_Constraint_System_const_-
iterator_t

Opaque pointer to const object.

o typedef ppl_Generator_tagppl_Generator_t
Opaque pointer.

o typedef ppl_Generator_tag corgppl_const_Generator_t
Opaque pointer to const object.

o typedef ppl_Generator_System_tagpl_Generator_System _t

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 40

Opaque pointer.

typedef ppl_Generator_System_tag congpl_const_Generator_System_t
Opaque pointer to const object.

typedef ppl_Generator_System_const_iteratorxtpgl_Generator_System_const_iterator_t
Opaque pointer.

typedef ppl_Generator_System_const_iterator_tag cengpl_const_Generator System_const_-
iterator_t

Opaque pointer to const object.

typedef ppl_Polyhedron_tagppl_Polyhedron_t
Opaque pointer.

typedef ppl_Polyhedron_tag consppl_const_Polyhedron_t
Opaque pointer to const object.

Enumerations

e enumppl_enum_error_codg

PPL_ERROR_OUT_OF_MEMORY PPL_ERROR_INVALID_ ARGUMENT PPL_ERROR_-
LENGTH_ERRORPPL_ARITHMETIC_OVERFLOW

PPL_STDIO_ERROR PPL_ERROR_INTERNAL_ERROR PPL_ERROR_UNKNOWN_-
STANDARD_EXCEPTION PPL_ERROR_UNEXPECTED_ERROR

Defines the error codes that any function may return.

e enumppl_enum_Constraint_Tyde

PPL_CONSTRAINT_TYPE_LESS THAN PPL_CONSTRAINT_TYPE_LESS_THAN_OR_-
EQUAL, PPL_CONSTRAINT _TYPE_EQUAL PPL_CONSTRAINT TYPE_GREATER -
THAN_OR_EQUAL,

PPL_CONSTRAINT_TYPE_GREATER_THAMN
Describes the relations represented by a constraint.

e enum ppl_enum_Generator_Typg PPL_GENERATOR_TYPE_LINE PPL_GENERATOR_-
TYPE_RAY, PPL_GENERATOR_TYPE_POINT PPL_GENERATOR_TYPE_CLOSURE_-
POINT}

Describes the different kinds of generators.

Variables

e unsigned inPPL_COMPLEXITY_CLASS_POLYNOMIAL
Code of the worst-case polynomial complexity class.

e unsigned inPPL_COMPLEXITY_CLASS SIMPLEX
Code of the worst-case exponential but typically polynomial complexity class.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 41

e unsigned inPPL_COMPLEXITY_CLASS ANY
Code of the universal complexity class.

e unsigned inPPL_POLY_CON_RELATION_IS_DISJOINT
Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

e unsigned inPPL_POLY_CON_RELATION_STRICTLY_INTERSECTS

Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

e unsigned inPPL_POLY_CON_RELATION_IS_INCLUDED
Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

e unsigned inPPL_POLY_CON_RELATION_SATURATES
Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

e unsigned inPPL_POLY_GEN_RELATION_SUBSUMES
Individual bit saying that adding the generator would not change the polyhedron.

8.3.1 Detailed Description

Some details about the C Interface

All the declarations needed for using the PPL's C interface (preprocessor symbols, data types, variables and
functions) are collected in the header filpl_c.h . This file, which is designed to work with pre-ANSI

and ANSI C compilers as well as C99 and C++ compilers, should be included, either directly or via some
other header file, with the directive

#include <ppl_c.h>

If this directive does not work, then your compiler is unable to find thepiile c.h . So check that the
library is installed (if it is not installed, you may want toake install , perhaps with root privileges)

in the right place (if not you may want to reconfigure the library using the appropriate pathname for the
-prefix option); and that your compiler knows where it is installed (if not you should add the path to the
directory whereppl_c.h is located to the compiler’s include file search path; this is usually done with
the-l option).

The name space of the PPL's C interfacdPBL_x for preprocessor symbols, enumeration values and
variables; angpl_ « for data types and function names. The interface systematicallyogsegie data
types(generic pointers that completely hide the internal representations from the client code) and provides
all required access functions. By using just the interface, the client code can exploit all the functionalities
of the library yet avoid directly manipulating the library’s data structures. The advantages are that (1)
applications do not depend on the internals of the library (these may change from release to release), and
(2) the interface invariants can be thoroughly checked (by the access functions).

The PPL’s C interface is initialized by means of thy@_initialize function. This function must be
calledbefore using any other interface of the librarfhe application can release the resources allocated
by the library by calling theapl_finalize function. After this function is calledo other interface of

the library may be usedntil the interface is re-initialized usingpl_initialize

Any application using the PPL should make sure that only the intended version(s) of the library are ever
used. The version used can be checked at compile-time thanks to the macros PPL_VERSION_MAJOR,
PPL_VERSION_MINOR, PPL_VERSION_REVISION and PPL_VERSION_BETA, which give, respec-
tively major, minor, revision and beta numbers of the PPL version. This is an example of their use:

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 42

#if PPL_VERSION_MAJOR == 0 && PPL_VERSION_MINOR < 6
error "PPL version 0.6 or following is required"
#endif

Compile-time checking, however, is not normally enough, particularly in an environment where there is dy-
namic linking. Run-time checking can be performed by means of the fungtiginsersion_major ,
ppl_version_minor , ppl_version_revision , andppl_version_beta . The PPL’s C inter-

face also provides functioqgpl_version , returning character string containing the full version number,
andppl_banner |, returning a string that, in addition, provides (pointers to) other useful information for
the library user.

All programs using the PPL's C interface must link with the following librariébppl_c (PPLs C
interface) libppl (PPL's core))ibgmpxx (GMP’s C++ interface), antbbgmp (GMP’s library core).
On most Unix-like systems, this is done by addihgpl_c , -lppl , -lgmpxx , and-lgmp to the
compiler’s or linker’'s command line. For example:

gcc myprogram.o -lppl_c -lppl -lgmpxx -lgmp

If this does not work, it means that your compiler/linker is not finding the libraries where it expects. Again,
this could be because you forgot to install the library or you installed it in a non-standard location. In the
latter case you will need to use the appropriate options (ustlaliyand, if you use shared libraries, some
sort of run-time path selection mechanisms. Consult your compiler's documentation for details. Notice
that the PPL is built usingibtool and an application can exploit this fact to significantly simplify the
linking phase. See Libtool's documentation for details. Those working under Linux can find a lot of useful
information on how to use program libraries (including static, shared, and dynamically loaded libraries) in
theProgram Library HOWTO .

For examples on how to use the functions provided by the C interface, you are referred to the
interfaces/C/lpenum/ directory in the source distribution. It contains a tdpear Programming
solver written in C. In order to use this solver you will need to instalPK(the GNU Linear Programming

Kit): this is used to read linear programs in MPS format.

8.3.2 Define Documentation

8.3.2.1 #define PPL_VERSION "0.7"
A string containing the PPL version.

Let Mandmdenote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSION K8 "." m if both PPL_VERSION_REVISIONT() and
PPL_VERSION_BETA i)are zeroM "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zerayl "." m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zeroM " m "" r "pre" b if neither PPL_VERSION_REVISION

nor PPL_VERSION_BETA are zero.

8.3.3 Typedef Documentation

8.3.3.1 typedef const chay ppl_io_variable_output_function_type(ppl_dimension_typevar)
The type of output functions used for printing variables.

An output function for variables must write a textual representatiorvéor to a character buffer, null-
terminate it, and return a pointer to the beginning of the buffer. In case the operation fails, 0 should be
returned and perhagsrno should be set in a meaningful way. The library does nothing with the buffer,
besides printing its contents.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/software/libtool/
http://www.dwheeler.com/program-library/
http://www.gnu.org/software/glpk/
http://www.cs.unipr.it/ppl/

8.3 C Language Interface 43

8.3.4 Enumeration Type Documentation

8.3.4.1 enunppl_enum_error_code

Defines the error codes that any function may return.

Enumeration values:
PPL_ERROR_OUT_OF_MEMORY The virtual memory available to the process has been ex-
hausted.

PPL_ERROR_INVALID_ARGUMENT A function has been invoked with an invalid argument.

PPL_ERROR_LENGTH_ERROR The construction of an object that would exceed its maximum
permitted size was attempted.

PPL_ARITHMETIC_OVERFLOW An arithmetic overflow occurred and the computation was con-
sequently interrupted. This camly happen in library’s incarnations using bounded integers as
coefficients.

PPL_STDIO_ERROR An error occurred during a C input/output operation. A more precise indica-
tion of what went wrong is availble vierrno .

PPL_ERROR_INTERNAL_ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL_ERROR_UNKNOWN_STANDARD_EXCEPTIONA standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL_ERROR_UNEXPECTED_ERRORA totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

8.3.4.2 enunppl_enum_Constraint_Type

Describes the relations represented by a constraint.

Enumeration values:
PPL_CONSTRAINT_TYPE_LESS_THANThe constraint is of the forra < 0.

PPL_CONSTRAINT_TYPE_LESS THAN_OR_EQUALThe constraint is of the forma < 0.
PPL_CONSTRAINT_TYPE_EQUAL The constraint is of the forma = 0.
PPL_CONSTRAINT_TYPE_GREATER_THAN_OR_EQUALThe constraint is of the form > 0.

PPL_CONSTRAINT_TYPE_GREATER_THANThe constraint is of the forra > 0.

8.3.4.3 enunppl_enum_Generator_Type

Describes the different kinds of generators.

Enumeration values:
PPL_GENERATOR_TYPE_LINE The generator is a line.

PPL_GENERATOR_TYPE_RAY The generator is a ray.
PPL_GENERATOR_TYPE_POINT The generator is a point.
PPL_GENERATOR_TYPE_CLOSURE_POINTThe generator is a closure point.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 44

8.3.5 Function Documentation

8.3.5.1 int ppl_banner (const charx p)
Writes toma pointer to a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

8.3.5.2 int ppl_initialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

Returns:
PPL_ERROR_INVALID_ARGUMENfTthe library was already initialized.

8.3.5.3 int ppl_finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

Returns:
PPL_ERROR_INVALID_ARGUMENTthe library was already finalized.

8.3.5.4 int ppl_set _error_handler (void¢)(enum ppl_enum_error_code code, const char
xdescription) h)

Installs the user-defined error handler pointed alh by

The error handler takes an error code and a textual description that gives further information about the
actual error. The C string containing the textual description is read-only and its existence it not guaranteed
after the handler has returned.

8.3.5.5 int ppl_new_C_Polyhedron_from_Constraint_System ppl_Polyhedron_t « pph, ppl_-
const_Constraint_System_ts)

Builds a new closed polyhedron from the system of constrastand writes a handle for the newly created
polyhedron at addreggph.

The new polyhedron will inherit the space dimensiortsf

8.3.5.6 int ppl_new_C_Polyhedron_recycle_Constraint_Systenpgl_Polyhedron_t « pph, ppl_-
Constraint_System_tc9)

Builds a new closed polyhedron recycling the system of constramtand writes a handle for the newly
created polyhedron at addrggsh .

Sincecs will be thesystem of constraints of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the constraint system referenceddy upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 45

8.3.5.7 int ppl_new_NNC_Polyhedron_from_Constraint_Systemppl_Polyhedron_t « pph, ppl_-
const_Constraint_System_ts)

Builds a new NNC polyhedron from the system of constraist@nd writes a handle for the newly created
polyhedron at addreggph.

The new polyhedron will inherit the space dimensiortef

8.3.5.8 intppl_new_NNC_Polyhedron_recycle_Constraint_Systemgl_Polyhedron_tx pph, ppl_-
Constraint_System_tcs)

Builds a new NNC polyhedron recycling the system of constraiat@and writes a handle for the newly
created polyhedron at addrggsh.

Sincecs will be thesystem of constraints of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

8.3.5.9 intppl_new_C_Polyhedron_from_Generator_Systenppl_Polyhedron_t« pph, ppl_const_-
Generator_System_1gs)

Builds a new closed polyhedron from the system of generg®iand writes a handle for the newly created
polyhedron at addresxph.

The new polyhedron will inherit the space dimensionysf

8.3.5.10 int ppl_new_C_Polyhedron_recycle_Generator_Systerppl_Polyhedron_t « pph, ppl_-
Generator_System_1gs)

Builds a new closed polyhedron recycling the system of genergsoand writes a handle for the newly
created polyhedron at addrggsh.

Sincegs will be thesystem of generators of the new polyhedron, the space dimension is also inherited.
Warning:

This function modifies the generator system referenceddy upon return, no assumption can be
made on its value.

8.3.5.11 int ppl_new_NNC_Polyhedron_from_Generator_Systenpgl_Polyhedron_t x pph, ppl_-
const_Generator_System_gjs)

Builds a new NNC polyhedron from the system of generagsrand writes a handle for the newly created
polyhedron at addreggph.

The new polyhedron will inherit the space dimensiomgsf

8.3.5.12 int ppl_new_NNC_Polyhedron_recycle Generator_Systenppl Polyhedron_t * pph,
ppl_Generator_System_1gs)

Builds a new NNC polyhedron recycling the system of generagerand writes a handle for the newly
created polyhedron at addrggsh.

Sincegs will be thesystem of generators of the new polyhedron, the space dimension is also inherited.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 46

Warning:
This function modifies the generator system referenceddy upon return, no assumption can be
made on its value.

8.3.5.13 int ppl_new_C_Polyhedron_from_bounding_box ppl_Polyhedron_t =« pph, ppl_-
dimension_typdx)(void) space_dimension int(x)(void) is_empty int(x)(ppl_dimension_type kK,
int closed, ppl_Coefficient_t n, ppl_Coefficient_t d) get_lower_boundint(x)(ppl_dimension_typek,
int closed,ppl_Coefficient_tn, ppl_Coefficient_td) get_upper_bouny

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addrexgsh .

If an interval of the bounding box is provided with any finite but open bound, then the polyhedron is not
built and the valuePPL_ERROR_INVALID_ARGUMENS returned. The bounding box is accessed by
using the following functions, passed as arguments:

ppl_dimension_type space_dimension()
returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.
int is_empty()

returns O if and only if the bounding box describes a non-empty set. The furistiempty() will
always be called before the other functions. Howeveis iempty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth space dimension. Ifis not bounded from below, simply return
0. Otherwise, setlosed , n andd as follows: closed is set to O if the lower boundary df is open
and is set to a value different from zero otherwisgndd are assigned the integetsandd such that the
canonical fractiom/d corresponds to the greatest lower bound.ofhe fractionn/d is in canonical form

if and only if n andd have no common factors amlis positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth space dimension. Ffis not bounded from above, simply return
0. Otherwise, setlosed , n andd as follows: closed is set to O if the upper boundary éfis open
and is set to a value different from 0 otherwiseandd are assigned the integetsandd such that the
canonical fractiom/d corresponds to the least upper bound of

8.3.5.14 int ppl_new_NNC_Polyhedron_from_bounding_box ppl_Polyhedron_t « pph, ppl_-
dimension_typdx)(void) space_dimensionint(x)(void) is_empty int(x)(ppl_dimension_typek, int
closed,ppl_Coefficient_tn, ppl_Coefficient_t d) get_lower_boundint(x)(ppl_dimension_typek, int
closed,ppl_Coefficient_tn, ppl_Coefficient_td) get_upper_bouny

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addrexgsh .

The bounding box is accessed by using the following functions, passed as arguments:

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 47

ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.
int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The furistiempty() will
always be called before the other functions. Howeveis iempty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type Kk, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to ttketh space dimension. Kis not bounded from below, simply return
0. Otherwise, setlosed , n andd as follows: closed is set to O if the lower boundary df is open
and is set to a value different from zero otherwisegndd are assigned the integetsandd such that the
canonical fractiom/d corresponds to the greatest lower bound.ofhe fractionn/d is in canonical form

if and only if n andd have no common factors amtis positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to theth space dimension. Ifis not bounded from above, simply return
0. Otherwise, setlosed , n andd as follows: closed is set to O if the upper boundary éfis open
and is set to a value different from 0 otherwiseandd are assigned the integetisandd such that the
canonical fractiom/d corresponds to the least upper bound of

8.3.5.15 int ppl_Polyhedron_relation_with_Constraint ppl_const_Polyhedron_tph, ppl_const_-
Constraint_t ¢)

Checks the relation between the polyhedpbnwith the constraint.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (cho-
sen among PPL_POLY_CON_RELATION_IS_DISJOINT PPL_POLY_CON_RELATION_STRICTLY_-
INTERSECTS, PPL_POLY_CON_RELATION_IS_INCLUDED, and PPL_POLY_CON_RELATION_-
SATURATES) that describe the relation betwgdnandc.

8.3.5.16 int ppl_Polyhedron_relation_with_Generator fpl_const_Polyhedron_tph, ppl_const_-
Generator_tQ)

Checks the relation between the polyhedpbnwith the generatog.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (only PPL_POLY_-
GEN_RELATION_SUBSUMES, at present) that describe the relation betpleemdg.

8.3.5.17 int ppl_Polyhedron_shrink_bounding_boxgpl_const_Polyhedron_tph, unsigned intcom-
plexity, void(x)(void) set_emptyvoid(x)(ppl_dimension_typek, int closed, ppl_const_Coefficient_tn,
ppl_const_Coefficient_td) raise_lower_boungdvoid(x)(ppl_dimension_typek, int closed, ppl_const_-
Coefficient_tn, ppl_const_Coefficient_td) lower_upper_bounyl

Use ph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 48

Parameters:
ph The polyhedron that is used to shrink the bounding box;
complexity The code of the complexity class of the algorithm to be used. Must be one of
PPL_COMPLEXITY_CLASS_POLYNOMIAL, PPL_COMPLEXITY_CLASS_SIMPLEX, or
PPL_COMPLEXITY_CLASS_ANY;

set_emptyA pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set;

raise_lower_boundA pointer to a void function with argumen{®pl_dimension_type Kk,
int closed, ppl_const_Coefficient_t n, ppl_const Coefficient_t
d) that intersects the interval corresponding to khkth space dimension withu/d, +00) if
closed is non-zero, with(n/d, +o00) if closed is zero. The fractiom/d is in canonical form,
that is,n andd have no common factors antis positive,0/1 being the unique representation
for zero;

lower_upper_bounda pointer to a void function with argumefippl_dimension_type Kk,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t
d) that intersects the interval corresponding to khth space dimension witli—oo, n/d] if
closed is non-zero, with(—oo,n/d) if closed is zero. The fractiom/d is in canonical
form.

8.3.5.18 int ppl_Polyhedron_maximize gpl_const Polyhedron_t ph, ppl_const Linear -
Expression_tle, ppl_Coefficient_t sup_n ppl_Coefficient_t sup_d int x pmaximum ppl_const_-
Generator_t * ppoini)

Returns a positive integer gh is not empty ande is bounded from above iph, in which case the
supremum value and a point wheee reaches it are computed.

Parameters:
ph The polyhedron constrainirg ;

le The linear expression to be maximized subjeqitio

sup_n Will be assigned the numerator of the supremum value;

sup_d Will be assigned the denominator of the supremum value;

pmaximum Will store 1 in this location if the supremum is also the maximum, will store 0 otherwise;

ppoint When nonzero, a point or closure point whége reaches the extremum value will be stored
here. Ifph is empty orle is not bounded from above, O is returned agp n, sup_d,
xpmaximum andxppoint are left untouched.

8.3.5.19 int ppl_Polyhedron_minimize ppl_const_Polyhedron_t ph, ppl_const Linear_-
Expression_t le, ppl_Coefficient_t inf_n, ppl_Coefficient_t inf _d, int x+ pminimum, ppl_const_-
Generator_t x ppoint)

Returns a positive integer gh is not empty ande is bounded from above iph, in which case the
infimum value and a point whete reaches it are computed.

Parameters:
ph The polyhedron constraining ;

le The linear expression to be minimized subjegpitq
inf_n Will be assigned the numerator of the infimum value;
inf_d Will be assigned the denominator of the infimum value;

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 49

pminimum Will store 1 in this location if the infimum is also the minimum, will store 0 otherwise;

ppoint When nonzero, a point or closure point whége reaches the extremum value will be stored
here. Ifph is empty orle is not bounded from below, O is returned aimfl n , inf d
xpminimum andxppoint are left untouched.

8.3.5.20 int ppl_Polyhedron_equals_Polyhedron pfl const Polyhedron_ t X, ppl_const -
Polyhedron_ty)

Returns a positive integerX andy are the same polyhedron; return O if they are different.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value 0
is returned.

8.3.5.21 int ppl_Polyhedron_add_recycled_constraintsppl_Polyhedron_t ph, ppl_Constraint_-
System_tc9)

Adds the system of constraints to the system of constraints ph.

Warning:
This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

8.3.5.22 intppl_Polyhedron_add_recycled_constraints_and_minimizegl_Polyhedron_tph, ppl_-
Constraint_System_tcs)

Adds the system of constraints to the system of constraints ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns O if it is empty. Upon successful regiins, guaranteed to be
minimized.

Warning:
This function modifies the constraint system referencedsy upon return, no assumption can be
made on its value.

8.3.5.23 int ppl_Polyhedron_add_recycled_generatorspfl_Polyhedron_t ph, ppl_Generator_-
System_tgs)

Adds the system of generatags to the system of generators poifi.

Warning:
This function modifies the generator system referencedy upon return, no assumption can be
made on its value.

8.3.5.24 int ppl_Polyhedron_add_recycled_generators_and_minimizpgl_Polyhedron_tph, ppl_-
Generator_System_1gs)

Adds the system of generatogs to the system of generators ph. Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful retiars, guaranteed to be
minimized.

Warning:
This function modifies the generator system referenceddy upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 50

8.3.5.25 int ppl_Polyhedron_affine_imageppl_Polyhedron_t ph, ppl_dimension_typevar, ppl_-
const_Linear_Expression_1e, ppl_const_Coefficient_td)

Transforms the polyhedrgrh, assigning an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed,;

var The variable to which the affine expression is assigned;
le The numerator of the affine expression;
d The denominator of the affine expression.

8.3.5.26 intppl_Polyhedron_affine_preimageapl_Polyhedron_tph, ppl_dimension_typevar, ppl_-
const_Linear_Expression_1e, ppl_const_Coefficient_td)

Transforms the polyhedrgoh, substituting an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed,;

var The variable to which the affine expression is substituted;
le The numerator of the affine expression;
d The denominator of the affine expression.

8.3.5.27 int ppl_Polyhedron_generalized_affine_imagepgl_Polyhedron_t ph, ppl_dimension_-
type var, enum ppl_enum_Constraint_Typerelsym ppl_const_Linear_Expression_tle, ppl_const_-
Coefficient_td)

expr
denominator’

Assigns toph the image oph with respect to thgeneralized affine transfer functiear’ <
wherex is the relation symbol encoded bgisym .

Parameters:
ph The polyhedron that is transformed,;

var The left hand side variable of the generalized affine transfer function;
relsym The relation symbol;

le The numerator of the right hand side affine expression;

d The denominator of the right hand side affine expression.

8.3.5.28 int ppl_Polyhedron_generalized_affine_image_lhs_rhgpl _Polyhedron_tph, ppl_const_-
Linear_Expression_tlhs, enumppl_enum_Constraint_Typerelsym ppl_const_Linear_Expression_t
rhs)

Assigns tagph the image oph with respect to thgeneralized affine transfer functidis’ > rhs, wheres
is the relation symbol encoded bgisym .

Parameters:
ph The polyhedron that is transformed;

Ihs The left hand side affine expression;
relsym The relation symbol;
rhs The right hand side affine expression.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 51

8.3.5.29 int ppl_Polyhedron_map_space_dimensionp{l_Polyhedron_t ph, ppl_dimension_type
mapg], size_tn)

Remaps the dimensions of the vector space accordingptotal function This function is specified by
means of thenaps array, which has entries.

The partial function is defined on dimensioiif i < nandmaps|i] !'= ppl_not_a_dimension ;
otherwise it is undefined on dimension If the function is defined on dimensian then dimension is
mapped onto dimensianapsi]

The result is undefined ifhaps does not encode a partial function with the properties described in the
specification of the mapping operator

8.4 Prolog Language Interface

The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization
of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The system-independent features of the library are described in S&ytgiam-Independent Features
SectionCompilation and Installatioexplains how the various incarnations of the Prolog interface are
compiled and installed. Sectidystem-Dependent Featuri#igstrates the system-dependent features of
the interface for all the supported systems.

System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in Sdd¢tenain
FeaturesConvex PolyhedreRepresentations of Convex Polyhearsd Operations on Convex Polyhedra

of this manual. Here we just describe those aspects that are specific to the Prolog interface.

Overview First, here is a list of notes with general information and advice on the use of the interface.

e The Prolog interface to the PPL is initialized and finalized by the predipgteitialize/0
andppl_finalize/0 . Thus the only interface predicates callable aftelr finalize/0 are
ppl_finalize/0 itself (this further call has no effect) anbl_initialize/0 , after which
the interface’s services are usable again. Some Prolog systems allow the specification of initializa-
tion and deinitialization functions in their foreign language interfaces. The corresponding incarna-
tions of the PPL-Prolog interface have been written so piphtinitialize/0 and/orppl_-
finalize/0 are called automatically. Secti®ystem-Dependent Featunedl detail in which
cases initialization and finalization is automatically performed or is left to the Prolog programmer’s
responsibility. However, for portable applications, it is best to invpgE initialize/0 and
ppl_finalize/0 explicitly: since they can be called multiple times without problems, this will
result in enhanced portability at a cost that is, by all means, negligible.

e A PPL polyhedron can only be accessed by means of a Prolog term cdiltettie Note, however,
that the data structure of a handle, is implementation-dependent, system-dependent and version-
dependent, and, for this reason, deliberately left unspecified. What we do guarantee is that the
handle requires very little memory.

e A Prolog term can be bound to a valid handle by using:

ppl_new_Polyhedron_from_space_dimension/4,

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 52

ppl_new_Polyhedron_from_Polyhedron/4,
ppl_new_Polyhedron_from_constraints/3,
ppl_new_Polyhedron_from_generators/3.
ppl_new_Polyhedron_from_bounding_box/3.

These predicates will create or copy a PPL polyhedron and construct a valid handle for referenc-
ing it. The first argument (in the case ppl_new_Polyhedron_from_Polyhedron/4 , the

first and third arguments) denotes the topology and can be &itbennc indicating a C or NNC
polyhedron, respectively. The third argument (in the casgpbfnew_Polyhedron_from_-
Polyhedron/4 andppl_new_Polyhedron_from_Dimension/4 , the fourth argument) is

a Prolog term that is unified with a new valid handle for accessing this polyhedron.

e As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicatepl_delete Polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argumepyilidelete_Polyhedron/1 , it becomes in-
valid.

e For a PPL polyhedron with space dimensionthe identifiers used for the PPL variables must lie
between 0 an& — 1 and correspond to the indices of the associated Cartesian axes. When using the
predicates that combine PPL polyhedra or add constraints or generators to a representation of a PPL
polyhedron, the polyhedra referenced and any constraints or generators in the call should follow all
the (space) dimension-compatibility rules stated in SedR®epresentations of Convex Polyhedra

e As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in SectidRepresentations of Convex Polyhedra

e Any application using the PPL should make sure that only the intended version(s) of the library are
ever used. Predicates

ppl_version_major/1,
ppl_version_minor/1,
ppl_version_revision/1,
ppl_version_beta/l,
ppl_version/1,
ppl_banner.

allow run-time checking of information about the version being used.

PPL Predicate List Here is a list of all the PPL predicates provided by the Prolog interface.
ppl_version_major(?C_int)

ppl_version_minor(?C_int)

ppl_version_revision(?C_int)

ppl_version_beta(?C_int)

ppl_version(?Atom)

ppl_banner(?Atom)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface

53

ppl_max_space_dimension(?Dimension_Type)
ppl_initialize

ppl_finalize
ppl_set_timeout_exception_atom(+Atom)
ppl_set_timeout(+C_unsigned)
ppl_reset_timeout

ppl_new_Polyhedron_from_space_dimension(+Topology, +Dimension_Type,
+Universe_or_Empty, -Handle)

ppl_new_Polyhedron_from_Polyhedron(+Topology 1, +Handle_1, +Topology_-
2, -Handle_2)

ppl_new_Polyhedron_from_constraints(+Topology, +Constraint_System,
-Handle)

ppl_new_Polyhedron_from_generators(+Topology, +Generator_System,
-Handle)

ppl_new_Polyhedron_from_bounding_box(+Topology, +Box, -Handle)
ppl_Polyhedron_swap(+Handlel, +Handle2)

ppl_delete Polyhedron(+Handle)
ppl_Polyhedron_space_dimension(+Handle, ?Dimension_Type)
ppl_Polyhedron_affine_dimension(+Handle, ?Dimension_Type)
ppl_Polyhedron_get_constraints(+Handle, -Constraint_System)
ppl_Polyhedron_get _minimized_constraints(+Handle, -Constraint_System)
ppl_Polyhedron_get_generators(+Handle, -Generator_System)
ppl_Polyhedron_get _minimized_generators(+Handle, -Generator_System)

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint,
-Relation)

ppl_Polyhedron_relation_with_generator(+Handle, +Generator,
-Relation)

ppl_Polyhedron_get bounding_box(+Handle, +Complexity, -Box)
ppl_Polyhedron_is_empty(+Handle)
ppl_Polyhedron_is_universe(+Handle)
ppl_Polyhedron_is_bounded(+Handle)
ppl_Polyhedron_bounds_from_above(+Handle, +Lin_Expr)
ppl_Polyhedron_bounds_from_below(+Handle, +Lin_Expr)

ppl_Polyhedron_maximize(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean)

ppl_Polyhedron_maximize_with_point(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean, ?Point)

ppl_Polyhedron_minimize(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 54

ppl_Polyhedron_minimize_with_point(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean, ?Point)

ppl_Polyhedron_is_topologically closed(+Handle)
ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_strictly contains_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2)
ppl_Polyhedron_OK(+Handle)
ppl_Polyhedron_add_constraint(+Handle, +Constraint)
ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint)
ppl_Polyhedron_add_generator(+Handle, +Generator)
ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator)
ppl_Polyhedron_add_constraints(+Handle, +Constraint_System)

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System)

ppl_Polyhedron_add_generators(+Handle, +Generator System)

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_-
System)

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)
ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)
ppl_Polyhedron_poly_hull_assign(+Handle_1, +Handle_2)
ppl_Polyhedron_poly_hull_assign_and_minimize(+Handle_1, +Handle_2)
ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient)

ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient)

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-
Symbol, +Lin_Expr, +Coefficient)

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +Lin_Expr1,
+Relation_Symbol, +Lin_Expr2)

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_BHRZ03_widening_assign_with_token(+Handle_1, +Handle_2,
?C_unsigned)

ppl_Polyhedron_ BHRZ03_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_-
token(+Handle_1, +Handle_2, +Constraint_System, ?C_unsigned)

ppl_Polyhedron_limited BHRZ03_extrapolation_assign(+Handle_ 1,
+Handle_2, +Constraint_System)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 55

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_-
token(+Handle_1, +Handle_2, +Constraint_System, ?C_unsigned)

ppl_Polyhedron_bounded BHRZO03 extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_H79 widening_assign_with_token(+Handle_1, +Handle 2,
?C_unsigned)

ppl_Polyhedron_H79_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited_H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System, ?C_unsigned)

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System)

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System, ?C_unsigned)

ppl_Polyhedron_bounded_H79_extrapolation_assign(+Handle_1, +Handle_ 2,
+Constraint_System)

ppl_Polyhedron_topological_closure_assign(+Handle)

ppl_Polyhedron_add_space_dimensions_and_embed(+Handle, +Dimension_-
Type)

ppl_Polyhedron_add_space_dimensions_and_project(+Handle, +Dimension_-
Type)

ppl_Polyhedron_concatenate_assign(+Handlel, +Handle2)
ppl_Polyhedron_remove_space_dimensions(+Handle, +List_of PPL_Vars)
ppl_Polyhedron_remove_higher_space_dimensions(+Handle, +Dimension_-
Type))

ppl_Polyhedron_expand_space_dimension(+Handle, +PPL_Var, +Dimension_-
Type))

ppl_Polyhedron_fold space_dimensions(+Handle, +List of PPL Vars,
+PPL_Var))

ppl_Polyhedron_map_space_dimensions(+Handle, +P_Func))

PPL Predicate Specifications The PPL predicates provided by the Prolog interface are specified below.
The specification uses the following grammar rules:

Number --> unsigned integer ranging from O to an upper bound
depending on the actual Prolog system.

C_int --> Number | - Number C integer
C_unsigned --> Number C unsigned integer
Coefficient --> Number used in linear expressions;

the upper bound will depend on how
the PPL has been configured

Dimension_Type
--> Number used for the number of affine and
space dimensions and the names of
the dimensions;
the upper bound will depend on

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface

56

Boolean --> true | false
Handle --> Prolog term
Topology -> c | nnc
Varld --> Dimension_Type
PPL_Var --> "$VAR’(Varld)
Lin_Expr --> PPL_Var
| Coefficient
Lin_Expr
- Lin_Expr

Lin_Expr + Lin_Expr
Lin_Expr - Lin_Expr

Coefficient * Lin_Expr
Lin_Expr * Coefficient

Relation_Symbol
- =

the maximum number of dimensions
allowed by the PPL
(see ppl_max_space_dimensions/1)

used to identify a Polyhedron

Polyhedral kind;
c is closed and nnc is NNC

variable identifier
PPL variable
PPL variable

unary plus
unary minus
addition
subtraction
multiplication
multiplication

equals

less than or equal
greater than or equal
strictly less than
strictly greater than

Constraint --> Lin_Expr Relation_Symbol Lin_Expr

Constraint_System

> I]

constraint

list of constraints

| [Constraint | Constraint_System]

Generator_Denominator --> Coefficient

| Coefficient
| - Coefficient

Generator --> point(Lin_Expr)

must be non-zero

point

| point(Lin_Expr, Generator_Denominator)

| closure_point(Lin_Expr)

point

closure point

| closure_point(Lin_Expr, Generator_Denominator)

| ray(Lin_Expr)
| line(Lin_Expr)

Generator_System
-->

closure point
ray
line

list of generators

| [Generator | Generator_System]

Atom --> Prolog atom

Universe_or_Empty
--> universe
| empty

Poly_Relation
--> is_disjoint
| strictly_intersects
| is_included
| saturates
| subsumes

polyhedron

polyhedron relation:
with a constraint

with a constraint

with a constraint
with a constraint
with a generator

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 57

Poly_Relation_List list of polyhedron relations
— I]
| [Poly_Relation | Poly_Relation_List]

Complexity --> polynomial | simplex | any

Rational_Numerator
--> Coefficient | - Coefficient

Rational_Denominator
--> Coefficient must be non-zero

Rational --> Rational_Numerator rational number
| Rational_Numerator/Rational_Denominator

Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction
Interval --> i(Bound, Bound) rational interval
Box ->] list of intervals

| [Interval | Box]
Vars_Pair --> PPLVar - PPLVar map relation
P_Func -=>] list of map relations

| [Vars_Pair | P_Func].

Below is a short description of each of the interface predicates. For full definitions of terminology used
here, see Sectiofhe Main FeaturesConvex PolyhedreRepresentations of Convex PolyhedradOper-
ations on Convex Polyheddd this manual.

ppl_version_major(?C_int) UnifiesC_int with the major number of the PPL version.
ppl_version_minor(?C_int) UnifiesC_int with the minor number of the PPL version.
ppl_version_revision(?C_int) UnifiesC_int with the revision number of the PPL version.
ppl_version_beta(?C_int) UnifiesC_int with the beta number of the PPL version.
ppl_version(?Atom) Unifies Atom with the PPL version.

ppl_banner(?Atom) Unifies Atom with information about the PPL version, the licensing, the lack

of any warranty whatsoever, the C++ compiler used to build the library, where to report bugs and where to
look for further information.

ppl_max_space_dimension(?Dimension_Type) UnifiesDimension_Type with the max-
imum space dimension this library can handle.

ppl_initialize Initializes the PPL interface. Multiple calls fipl_initialize does no harm.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 58

ppl_finalize Finalizes the PPL interface. Once this is executed, the next call to an interface pred-
icate must either be tppl_initialize or to ppl_finalize . Multiple calls toppl_finalize
does no harm.

ppl_set_timeout_exception_atom(+Atom) Sets the atom to be thrown by timeout exceptions
to Atom. The default value iEme_out

ppl_timeout_exception_atom(?Atom) The atom to be thrown by timeout exceptions is unified
with Atom.
ppl_set_timeout(+C_unsigned) Computations taking exponential time will be interrupted

some time afte€C_unsigned ms after that call. If the computation is interrupted that way, the current
timeout exception atom will be throwi©&_unsigned must be strictly greater than zero.

ppl_reset_timeout Resets the timeout time so that the computation is not interrupted.

ppl_new_Polyhedron_from_space_dimension(+Topology, +Dimension_Type,
+Universe_or_Empty, -Handle) Creates a C or NNC polyhedrdp, depending on the value
of Topology , with Dimension_Type dimensions; it is empty or the universe polyhedron depending
on whetherAtom is empty or universe , respectivelyHandle is unified with the handle foP. Thus

the query

?- ppl_new_Polyhedron_from_space_dimension(nnc, 3, empty, X).

creates an empty NNC polyhedron embeddeRiwith X bound to a valid handle for accessing it.

Also the query

?- ppl_new_Polyhedron_from_space_dimension(c, 3, universe, X).

creates the C polyhedron defining the 3-dimensional vector paeegth X bound to a valid handle for
accessing it.

ppl_new_Polyhedron_from_Polyhedron(+Topology 1, +Handle_1, +Topology -

2, -Handle_2) If Handle_1 refers to a C or NNC polyhedrof; (depending on the value of
Topology_1), then this creates a co, of P, with topology C or NNC, depending on the value of
Topology 2 . Handle_2 is unified with the handle fgP,. Thus the query

?- ppl_new_Polyhedron_from_space_dimension(nnc, 3, empty, X),
ppl_new_Polyhedron_from_Polyhedron(c, X, nnc, Y).

creates an empty C polyhedron embedde®irreferenced byX and then makes a copy, converting the
topology to an NNC polyhedron. with bound to a valid handle for accessing it.

When usingppl_new_Polyhedron_from_Polyhedron/2 , when the source polyhedron is NNC
and the copy is C, care must be taken that the source polyhedron referendaddigl is topologically
closed.

ppl_new_Polyhedron_from_constraints(+Topology, +Constraint_System,
-Handle) Creates a polyhedrdR represented b€onstraint_System with topology C or NNC,
depending on the value dPbpology . Handle is unified with the handle foP.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 59

ppl_new_Polyhedron_from_generators(+Topology, +Generator_System,
-Handle) Creates a polyhedroP represented byGenerator_System with topology C or
NNC, depending on the value @bpology . Handle is unified with the handle faP.

ppl_new_Polyhedron_from_bounding_box(+Topology, +Box, -Handle) Creates a
polyhedronP represented bdox with topology C or NNC, depending on the valueTapology , and
Handle is unified with the handle foP. A bound of the formo(Rational) can be included in an
interval inBox only if Topology isnnc.

ppl_Polyhedron_swap(+Handlel, +Handle2) Swaps the polyhedron referenced by
Handlel with the one referenced byandle2 . The polyhedré” andQ must have the same topology.

ppl_delete_Polyhedron(+Handle) Deletes the polyhedron referencedtbgndle . After exe-
cution,Handle is no longer a valid handle for a PPL polyhedron.

ppl_Polyhedron_space_dimension(+Handle, ?Dimension_Type) Unifies the dimen-
sion of the vector space in which the polyhedron referencadandle is embedded witbimension_-

Type.

ppl_Polyhedron_affine_dimension(+Handle, ?Dimension_Type) Unifies the actual
dimension of the polyhedron referencedtdgndle with Dimension_Type

ppl_Polyhedron_get_constraints(+Handle, ?Constraint_System) Unifies
Constraint_System with a list of the constraints in the constraints system representing the
polyhedron referenced yandle .

ppl_Polyhedron_get _minimized_constraints(+Handle, ?Constraint_System)
Unifies Constraint_System with a minimized list of the constraints in the constraints system
representing the polyhedron referencecHandle .

ppl_Polyhedron_get _generators(+Handle, ?Generator_System) Unifies
Generator_System with a list of the generators in the generators system representing the poly-
hedron referenced kyandle .

ppl_Polyhedron_get minimized_generators(+Handle, ?Generator_System)
Unifies Generator_System with a minimized list of the generators in the generators system
representing the polyhedron referencecHandle .

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint, ?Poly_-

Relation_List) Unifies Poly_Relation_List with the list of relations the polyhedron
referenced byHandle has with Constraint . The possible relations are listed in the grammar
rules above; their meaning is given in the paragrapécifying the relation_with operatioms Section
Operations on Convex Polyhedra

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 60

ppl_Polyhedron_relation_with_generator(+Handle, +Generator, ?Poly_-

Relation_List) Unifies Poly_Relation_List with the list of relations the polyhedron
referenced byHandle has withGenerator . The possible relations are listed in the grammar rules
above; their meaning is given in the paragragbecifying the relation_with operatioria Section
Operations on Convex Polyhedra

ppl_Polyhedron_get_bounding_box(+Handle, +Complexity, ?Box) Succeeds if
and only if the bounding box of the polyhedron referencedHayndle unifies with the box defined by
Box. E.g.,

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].
Note that the rational numbersBox are in canonical form. E.g., the following will fail:

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box),

Box = [i(o(minf), c(2/4)), i(o(0), o(pinf))].

The complexity clas€omplexity determining the algorithm to be used has the following meaning:

e polynomial allows code of the worst-case polynomial complexity class;
e simplex allows code of the worst-case exponential but typically polynomial complexity class;

e any allows code of the universal complexity class.

ppl_Polyhedron_is_empty(+Handle) b Succeeds if and only if the polyhedron referenced by
Handle is empty.

ppl_Polyhedron_is_universe(+Handle) Succeeds if and only if the polyhedron referenced
by Handle is the universe.

ppl_Polyhedron_is_bounded(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is bounded.

ppl_Polyhedron_bounds_from_above(+Handle, +Lin_Expr) Succeeds if and only if
Lin_Expr is bounded from above in the polyhedron referencetiagpdle .

ppl_Polyhedron_bounds_from_below(+Handle, +Lin_Expr) Succeeds if and only if
Lin_Expr is bounded from below in the polyhedron referenceddaydle .

ppl_Polyhedron_maximize(+Handle, +Lin_Expr, ?Coefficientl,
?Coefficient2, ?Boolean) Succeeds if and only if the polyhedréhreferenced byHandle is
not empty and.in_Expr is bounded from above iR.

Coefficientl is unified with the numerator of the supremum value &@ufficient2 with the
denominator of the supremum value. If the supremum is also the maxiBowotean is unified with the
atomtrue and, otherwise, unified with the atdiase

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 61

ppl_Polyhedron_maximize_with_point(+Handle, +Lin_Expr, ?Coefficientl,
?Coefficient2, ?Boolean, ?Paint) Succeeds if and only if the polyhedréhreferenced by
Handle is not empty and.in_Expr is bounded from above iF.

Coefficientl is unified with the numerator of the supremum valGeefficient2 with the de-
nominator of the supremum value, aRdint with a point or closure point whergin_Expr reaches
this value. If the supremum is also the maximuBmolean is unified with the atontrue and, other-
wise, unified with the atorfelse

ppl_Polyhedron_minimize(+Handle, +Lin_Expr, ?Coefficientl,
?Coefficient2, ?Boolean) Succeeds if and only if the polyhedréhreferenced byHandle is
not empty and.in_Expr is bounded from below id®.

Coefficientl is unified with the numerator of the infimum value a@defficient2 with the de-
nominator of the infimum value. If the infimum is also the minimBoeplean is unified with the atom
true and, otherwise, unified with the atoi@se

ppl_Polyhedron_minimize_with_point(+Handle, +Lin_Expr, ?Coefficientl,
?Coefficient2, ?Boolean, ?Paint) Succeeds if and only if the polyhedrdhreferenced by
Handle is not empty and.in_Expr is bounded from below .

Coefficientl is unified with the numerator of the infimum valu@oefficient2 with the denomi-
nator of the infimum value, arfdoint with a point or closure point whellen_Expr reaches this value.
If the infimum is also the minimunBoolean is unified with the atontrue and, otherwise, unified with
the atomfalse

ppl_Polyhedron_is_topologically closed(+Handle) Succeeds if and only if the poly-
hedron referenced kiyandle is topologically closed.

ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2) Succeeds if and
only if the polyhedron referenced byandle_1 is included in or equal to the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_strictly _contains_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referencedHandle_1 isincluded in but not equal to the polyhedron
referenced byHandle 2 .

ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referencedHgndle 1 is disjoint from the polyhedron referenced
by Handle_2 .

ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2) Succeeds if and only if
the polyhedron referenced blandle_1 is equal to the polyhedron referencedtgndle 2 .

ppl_Polyhedron_OK(+Handle) Succeeds only if the polyhedron referencedHandle is well
formed, i.e., if it satisfies all its implementation invariants. Useful for debugging purposes.

ppl_Polyhedron_add_constraint(+Handle, +Constraint)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 62

ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint) Up-
dates the polyhedron referenced lHgndle to one obtained by addinGonstraint to its constraint
system. Thus, the query

?- ppl_new_Polyhedron_from_space_dimension(c, 3, universe, X),
A = "$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handkto consist of the set of points in the vector sp@esatisfying
the constrainix + y — 2z >=5.

Note thatppl_Polyhedron_add_constraint_and_minimize/2 will fail if, after adding the
constraint, the polyhedron is empty.

ppl_Polyhedron_add_generator(+Handle, +Generator)

ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator) Updates
the polyhedron referenced Byandle to one obtained by addinGenerator to its generator system.
Thus, after the query

?- ppl_new_Polyhedron_from_space_dimension(c, 3, universe, X),
A = '$VAR’(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handXto be the single point—12.5, —0.625,0)T in the vector space
R3.

ppl_Polyhedron_add_constraints(+Handle, +Constraint_System) Updates the
polyhedron referenced biyandle to one obtained by adding to its constraint system the constraints in
Constraint_System .E.Q,

| ?- ppl_new_Polyhedron_from_space_dimension(c, 2, universe, X),
A = '$VAR'(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referenced Handle can be empty and a query will succeed even when
Constraint_System is unsatisfiable.

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System) Updates the polyhedron referenced Bgndle to one obtained by adding to its constraint
system the constraints fDonstraint_System . E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 2, universe, X),
A = '$VAR'(0), B = '$VAR'(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1)),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]

This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 63

?- A = '$VAR'(0), B = '$VAR'(1),
ppl_new_Polyhedron_from_space_dimension(c, 2, universe, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A = 0, B =< 0)),
ppl_Polyhedron_get_constraints(X, CS).

ppl_Polyhedron_add_generators(+Handle, +Generator_System) Updates the poly-

hedron referenced b¥landle to one obtained by adding to its generator system the generators in
Generator_System

If the system of generators representing a polyhedron is non-empty, then it must include a point (see the
paragraph on generator representation in Sedigpresentations of Convex Polyhedr&hus care must

be taken to ensure that, before calling this predicate, either the polyhedron refererdtaady is non-

empty or that whenevéBenerator_System is non-empty the first element defines a point. E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 3, empty, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_System)
Updates the polyhedron referenced Hgndle to one obtained by adding to its generator system the
generators ifGenerator_System

Unlike the predicatepl_add_generators , the order of the generators @enerator_System is
not important. E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 3, empty, X),
A="$VAR'(0), B = '$VAR'(1), C = '$VAR’'(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]
ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)
Assigns to the polyhedron referenced Hgndle_1 its intersection with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_poly_hull_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_poly hull_assign_and_minimize(+Handle_1, +Handle_2) As-
signs to the polyhedron referenced biandle 1 its poly-hull with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle_2) Assigns to the
polyhedron referenced biyandle_1 its poly-difference with the polyhedron referencedHigndle_2 .

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 64

ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient) Transforms the polyhedron referenced iBgndle assigning the affine expression
Lin_Expr /Coefficient to PPL_Var.

ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient) This is the inverse transformation to that fipl_affine_image

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-

Symbol +Lin_Expr, +Coefficient) Transforms the polyhedron referenced Wandle
assigning the generalized affine image with respect to the transfer furlfBonVar Relation_-
Symbol Lin_Expr /Coefficient

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +Lin_Exprl,

+Relation_Symbol +Lin_Expr2) Transforms the polyhedron referencedHbigndle assigning
the generalized affine image with respect to the transfer fundtionExprl Relation_Symbol
Lin_Expr2

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedronP referenced byHandle_1 the time-elapséP ,~ Q) with the polyhedronQ referenced by
Handle_2 .

ppl_Polyhedron_BHRZ03_widening_assign_with_token(+Handle_1, +Handle_2,

?C_unsigned) The polyhedra referenced tyandle_1 andHandle_2 are unaltered. The token
C_unsigned is 0 if a BHRZ03 widening would have changed the polyhedron referencéthhgle 1
and is 1 otherwise.

ppl_Polyhedron_ BHRZ03 widening_assign(+Handle_1, +Handle_2) Assigns to the
polyhedron referenced byandle_1 its BHRZ03-widening with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_limited_ BHRZ03_extrapolation_assign_with_token(

+Handle_1, +Handle_2, +Constraint_System, ?C_unsigned) The polyhedra ref-
erenced byHandle 1 andHandle 2 are unaltered. The toke@_unsigned is O if a BHRZ03-
widening with the polyhedron referenced Iyandle_2 , improved by enforcing those constraints
in Constraint_System would have changed the polyhedron referencedHaydle 1 and is 1
otherwise.

ppl_Polyhedron_limited_ BHRZ03_extrapolation_assign(+Handle_1,

+Handle_2, +Constraint_System) Assigns to the polyhedrof® referenced byHandle 1
the result of its BHRZ03-widening with the polyhedron referencetlapdle 2 , improved by enforcing
those constraints i@onstraint_System

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_token(

+Handle_1, +Handle_2, +Constraint_System, ?C_unsigned) The polyhedra P
and P, referenced byHandle_1 andHandle_2 , respectively are unaltered. The tok&nunsigned
is 0 if a BHRZ03-widening withP, , improved by enforcing all the constraints of the fotm: < r and
+2x < r that are satisfied by all the points Bf together with the constraints {Bonstraint_System
would have changed the polyhedron referencetigdle_1 and is 1 otherwise.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 65

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign(+Handle_1,

+Handle_2, +Constraint_System) Assigns to the polyhedrof? referenced byHandle_1
the result of its BHRZ03-widening with the polyhedron referencetibpdle_2 improved by enforcing
all the constraints of the forntz < r and+a < r that are satisfied by all the points Bftogether with
the constraints ifConstraint_System

ppl_Polyhedron_H79_widening_assign_with_token(+Handle_1, +Handle_2,

?C_unsigned) The polyhedra referenced byandle_1 andHandle_2 are unaltered. The token
C_unsigned is 0 if an H79 widening would have changed the polyhedron referencddiagle 1
and is 1 otherwise.

ppl_Polyhedron_H79_ widening_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedron referenced kiyandle_1 its H79-widening with the polyhedron referencedtbgndle_2 .

ppl_Polyhedron_limited_H79_extrapolation_assign_with_token(+Handle_-

1, +Handle_2, +Constraint_System, ?C_unsigned) The polyhedra referenced by
Handle_1 andHandle_2 are unaltered. The toke@ unsigned is O if a H79-widening with the
polyhedron referenced biandle_2 , improved by enforcing those constraints @Gonstraint_-
System would have changed the polyhedron referencetiagdle_1 and is 1 otherwise.

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,

+Constraint_System) Assigns to the polyhedrorP referenced byHandle_1 its H79-
widening with the polyhedron referenced biandle_2 , improved by enforcing those constraints in
Constraint_System

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_token(+Handle_1,

+Handle_2, +Constraint_System, ?C_unsigned) The polyhedraP; and P, referenced
by Handle_1 andHandle_2 , respectively are unaltered. The tok€nunsigned is 0 if a H79-
widening withP, , improved by enforcing all the constraints of the foftme < r and+x < r that are
satisfied by all the points oP; together with the constraints iGonstraint_System would have
changed the polyhedron referencedHgndle_1 and is 1 otherwise.

ppl_Polyhedron_bounded_H79_extrapolation_assign(+Handle_1, +Handle 2,
+Constraint_System) Assigns to the polyhedro® referenced byHandle_1 the result of its
H79-widening with the polyhedron referenced Hgndle_2 improved by enforcing all the constraints
of the form+x < r and+x < r that are satisfied by all the points Bftogether with the constraints in
Constraint_System

ppl_Polyhedron_topological_closure_assign(+Handle) Assigns to the polyhedron
referenced bylandle its topological closure.

ppl_Polyhedron_add_space_dimensions_and_embed(+Handle, +Dimension_-
Type) Embeds the polyhedron referencedibgndle in a space that is enlarged Bymension_-
Type dimensions, E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 0, empty, X),
ppl_Polyhedron_add_space_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 66

CSs
GS

[,
[point(0),line(1*A),line(1*B)]

ppl_Polyhedron_concatenate_assign(+Handlel, +Handle2) Updates the polyhedron
P; referenced byHandlel by first embedding; in a new space enlarged by the space dimensions of the

polyhedronP; referenced byHandle2 , and then adds to its system of constraints a renamed-apart version
of the constraints oPs.

E.g.,

?- ppl_new_Polyhedron_from_space_dimension(nnc, 2, universe, X),
A = '$VAR’(0), B = '$VAR'(1), C = '$VAR'(2),
D = '$VAR'(3), E = '$VAR'(4),
ppl_new_Polyhedron_from_constraints(nnc, [A > 1, B >= 0, C >= 0], V),
ppl_Polyhedron_concatenate_assign(X, Y),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= 0]

ppl_Polyhedron_add_space_dimensions_and_project(+Handle, +Dimension_-

Type) Projects the polyhedron referencedHbgndle onto a space that is enlarged Dymension_-
Type dimensions, E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 0, empty, X),
ppl_Polyhedron_add_space_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [1*A = 0, 1*B = 0],
GS = [point(0)]

ppl_Polyhedron_remove_space_dimensions(+Handle, +List_of PPL_Vars) Re-
moves the space dimensions given by the identifiers of the PPL variables liististf PPL_Vars
from the polyhedron referenced Wiandle . The identifiers for the remaining PPL variables are

renumbered so that they are consecutive and the maximum index is less than the number of dimensions.
E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 3, empty, X),
A='$VAR'(0), B = '$VAR'(1), C = '$VAR'(2),
ppl_Polyhedron_remove_space_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K =2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl_Polyhedron_remove_higher_space_dimensions(+Handle, +Dimension_-

Type)) Projects the polyhedron referenced to blandle onto the first Dimension_Type
dimension. E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 5, empty, X),
ppl_Polyhedron_remove_higher_space_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 67

ppl_Polyhedron_expand_space_dimension(+Handle, +PPL_Var, +Dimension_-
Type)) Dimension_Type copies of the space dimension referencedPBy._Var are added to the
polyhedron referenced to byandle .

ppl_Polyhedron_fold_space_dimensions(+Handle, +List_of PPL_Vars,

+PPL_Var)) The space dimensions referenced by the PPL variables inLikst of PPL_-

Vars are folded into the dimension referenced BPL_Var and removed. The result is undefined
if List of PPL_Vars does not have the properties described in the paragepgltifying the
fold_space_dimensions operaioiSectionOperations on Convex Polyhedra

ppl_Polyhedron_map_space_dimensions(+Handle, +P_Func)) Maps the space di-
mensions of the polyhedron referencedHgndle using the partial function defined B _Func. The
result is undefined iP_Func does not encode a partial function with the properties described in the para-
graphspecifying the map_space_dimensions opeliat&ectionOperations on Convex Polyhedra

Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

In the sequelprefix is the prefix under which you have installed the library (typicdligr or
{usr/local).

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library addDBROLOG_TRACK_ALLOCATION the
options passed to the C++ compiler. Your configure command would then look like

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

System-Dependent Features

CIAO Prolog The Ciao Prolog interface to the PPL is available both as a statically linked module and as
a dynamically linked one. Only Ciao Prolog versions 1.10 #5 and later are supported.

The Ciao Prolog interface to the PPL is available both as “PPL enhanced” Ciao Prolog interpreter and as
a library that can be linked to Ciao Prolog programs. Only Ciao Prolog versions 1.10 #5 and later are
supported.

So that it can be used with the Ciao Prolog PPL interface, the Ciao Prolog installation must be configured
with the-disable-regs option.

The ppl_ciao Executable If an appropriate version of Ciao Prolog is installed on the machine on
which you compiled the library, the commantbake install will install the executablgpl_ciao

in the directoryprefix/bin . Theppl_ciao executable is simply the Ciao Prolog interpreter with
the Parma Polyhedra library linked in. The only thing you should do to use the library is toptall
initialize/0 before any other PPL predicate and to ggll_finalize/O when you are done with
the library.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 68

Linking the Library To Ciao Prolog Programs In order to allow linking Ciao Prolog programs to the
PPL, the following files are installed in the directguyefix/lib/ppl . ppl_ciao.pl contains the
required foreign declarationkbppl_ciao. x contain the executable code for the Ciao Prolog interface
in various formats (static library, shared library, libtool library). If your Ciao Prolog program is consti-
tuted by, saysourcel.pl andsource2.pl and you want to create the executabigprog, your
compilation command may look like

ciaoc -0 myprog prefix/lib/ppl/ppl_ciao.pl ciao_pl_check.pl \
-L ’-Lprefix/lib/ppl -lppl_ciao -Lprefix/lib -lppl -lgmpxx -lgmp -Istdc++’

GNU Prolog The GNU Prolog interface to the PPL is available both as “PPL enhanced” GNU Prolog
interpreter and as a library that can be linked to GNU Prolog programs. Only GNU Prolog versions 1.2.18
and later are supported.

So that it can be used with the GNU Prolog PPL interface (and, for that matter, with any foreign code) , the
GNU Prolog installation must be configured with thiksable-regs option.

The ppl_gprolog Executable If an appropriate version of GNU Prolog is installed on the machine
on which you compiled the library, the commanthke install will install the executablepl_-

gprolog in the directoryprefix/bin . Theppl_gprolog executable is simply the GNU Prolog
interpreter with the Parma Polyhedra library linked in. The only thing you should do to use the library is
to call ppl_initialize/0 before any other PPL predicate and to ggl_finalize/0 when you

are done with the library.

Linking the Library To GNU Prolog Programs In order to allow linking GNU Prolog programs to the
PPL, the following files are installed in the directqsefix/lib/ppl : ppl_gprolog.pl contains

the required foreign declaratiorigyppl_gprolog. x contain the executable code for the GNU Prolog
interface in various formats (static library, shared library, libtool library). If your GNU Prolog program
is constituted by, sagourcel.pl andsource2.pl and you want to create the executatigprog ,

your compilation command may look like

gplc -0 myprog prefix/lib/ppl/ppl_gprolog.pl sourcel.pl source2.pl \
-L ’-Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmpxx -lgmp -Istdc++’

SICStus Prolog The SICStus Prolog interface to the PPL is available both as a statically linked module
or as a dynamically linked one. Only SICStus Prolog versions 3.9.0 and later are supported.

The Statically Linked ppl_sicstus Executable If an appropriate version of SICStus Prolog is in-
stalled on the machine on which you compiled the library, the commaaidce install will install the
executablgpl_sicstus in the directoryprefix/bin . Theppl_sicstus executable is simply the
SICStus Prolog system with the Parma Polyhedra library statically linked. The only thing you should do to
use the library is to loagrefix/lib/ppl/ppl_sicstus.pl .

Loading the SICStus Interface Dynamically In order to dynamically load the library from SICStus Pro-
log you should simply loagrefix/lib/ppl/ppl_sicstus.pl . Notice that, for dynamic linking
to work, you should have configured the library with te@able-shared option.

SWI-Prolog The SWI-Prolog interface to the PPL is available both as a statically linked module or as a
dynamically linked one. Only SWI-Prolog versions 5.0 and later are supported.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9 PPL Directory Documentation 69

The ppl_pl Executable If an appropriate version of SWI-Prolog is installed on the machine on which
you compiled the library, the commanubke install will install the executabl@pl_pl in the direc-
tory prefix/bin . Theppl_pl executable is simply the SWI-Prolog shell with the Parma Polyhedra
library statically linked: from withinppl_pl all the services of the library are available without further
action.

Loading the SWI-Prolog Interface Dynamically In order to dynamically load the library from SWiI-
Prolog you should simply loagdrefix/lib/ppl/ppl_swiprolog.pl . This will invoke ppl_-
initialize/0 automatically but, at least for SWI-Prolog versions up to 5.0.7, it is the programmer’s
responsibility to calppl_finalize/0 . Alternatively, you can load the library directly with

.- load_foreign_library('prefix/lib/ppl/libppl_swiprolog’).

This will call ppl_initialize/0 automatically. Analogously,
- unload_foreign_library('prefix/lib/ppl/libppl_swiprolog’).

will, as part of the unload process, invogpl_finalize/0

Notice that, for dynamic linking to work, you should have configured the library with the
-enable-shared option.

XSB The XSB Prolog interface to the PPL is available as a dynamically linked module. Only XSB
versions 2.6 and later are supported.

In order to dynamically load the library from XSB you should load pip xsb module and import the
predicates you need. For things to work, you may have to copy thepfitfi/lib/ppl/ppl_-

xsb.xwam and prefix/lib/ppl/ppl_xsb.so in your current directory or in one of the XSB li-
brary directories.

YAP The YAP Prolog interface to the PPL is available as a dynamically linked module. Only YAP
versions 4.4 and later are supported.

In order to dynamically load the library from YAP you should simply Iqaéfix/lib/ppl/ppl_-

yap.pl . This will invoke ppl_initialize/0 automatically; it is the programmer’s responsibility to
call ppl_finalize/0O when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with Hemable-shared option.

9 PPL Directory Documentation

9.1 /home/roberto/ppl-0.7/ppl-0.7/interfaces/C/ Directory Reference

interfaces

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.2 /home/roberto/ppl-0.7/ppl-0.7/interfaces/ Directory Reference 70

Files

o file ppl_c.h

9.2 /home/roberto/ppl-0.7/ppl-0.7/interfaces/ Directory Reference

C interfaces

Directories

e directoryC

9.3 /home/roberto/ppl-0.7/ppl-0.7/src/ Directory Reference

Src

Files

o file ppl.hh

10 PPL Namespace Documentation

10.1 Parma_Polyhedra_Library Namespace Reference

The entire library is confined to this namespace.

Classes

e classChecked Number
A wrapper for native numeric types implementing a given policy.

¢ classNative_Integer
A wrapper for unchecked native integer types.

e classVariable
A dimension of the vector space.

e classlLinear Expression
A linear expression.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference

71

e classConstraint
A linear equality or inequality.

e classGenerator
Aline, ray, point or closure point.

e classPoly Con_Relation
The relation between a polyhedron and a constraint.

e classPoly_Gen_Relation
The relation between a polyhedron and a generator.

e classBHRZ03_Certificate

The convergence certificate for the BHRZ03 widening operator.

e classH79_Certificate

A convergence certificate for the H79 widening operator.

e classPolyhedron
The base class for convex polyhedra.

e classC_Polyhedron
A closed convex polyhedron.

e classNNC_Polyhedron
A not necessarily closed convex polyhedron.

e classDeterminate

Wraps a PPL class into a determinate constraint system interface.

e classPowerset

The powerset construction on constraint systems.

e classPolyhedra_Powerset
The powerset construction instantiated on PPL polyhedra.

Namespaces

e namespacEO_Operators

All input/output operators are confined to this namespace.

Functions Operating on Unbounded Integer Coefficients

¢ void negatg GMP_Integei&x)
Assigns t its negation.

e void gcd_assigiGMP_Intege&x, constGMP_Intege&y)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 72

Assigns tox the greatest common divisor wfandy.

e void gcd_assigriGMP_Intege&x, constGMP_Integei&y, constGMP_Intege&z)
Assigns to the greatest common divisor pfandz.

e void lcm_assigfGMP_Intege&x, constGMP_Integei&y)
Assigns tx the least common multiple afandy.

e void lcm_assignGMP_Intege&x, constGMP_Intege&y, constGMP_Integei&z)
Assigns tx the least common multiple gfandz.

e void add _mul_assigfGMP_Integei&x, constGMP_ Intege&y, constGMP _ Intege&z)

Assigns tx the valuex + y % z.

e void sub_mul_assigGMP_Integei&x, constGMP_Integeiky, constGMP_Integei&z)
Assigns tox the valuex - y * z.

e void exact_div_assigiGMP_Intege&x, constGMP_Intege&y)
Assigns to the quotient of the integer division »fbyy.

e void exact_div_assigiGMP_Intege&x, constGMP_Intege&y, constGMP_Integei&z)
Assigns toc the quotient of the integer division pfby z.

e void sgrt_assigiiGMP_Intege&x)
Assigns t its integer square root.

e void sgrt_assigiiGMP_Intege&x, constGMP_Integei&y)
Assigns to the integer square root of.

e intcmp(constGMP_Integei&x, constGMP_Integei&y)

Returns a negative, zero or positive value depending on whgtietower than, equal to or greater than
y, respectively.

e const mpz_class &aw_valug(constGMP_Integei&x)
Returns a const reference o

e mpz_class &aw_valug(GMP_Integei&x)
Returns a reference to.

e size_ttotal_ memory_in_byte&onstGMP_Integei&x)
Returns the total size in bytes of the memory occupied by

e size_texternal_memory_in_byt€sonstGMP_Integei&x)
Returns the size in bytes of the memory managed by

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 73

Typedefs

e typedef mpz_clas&MP_Integer
Unbounded integers are implemented using the GMP library.

o typedef COEFFICIENT_TYPEoefficient

An alias for easily naming the type of PPL coefficients.

o typedef std::set Variable Variable::Compare- Variables_Set
An std::set containing variables in increasing order of dimension index.

Functions

e unsignedversion_majoX)
Returns the major number of the PPL version.

unsignedversion_minox)
Returns the minor number of the PPL version.

unsignedversion_revision()
Returns the revision number of the PPL version.

unsignedversion_betd)
Returns the beta number of the PPL version.

const char version()

Returns a character string containing the PPL version.

const chak bannen()
Returns a character string containing the PPL banner.

10.1.1 Detailed Description

The entire library is confined to this namespace.

10.1.2 Typedef Documentation

10.1.2.1 typedef mpz_clasBarma_Polyhedra_Library::GMP_Integer
Unbounded integers are implemented using the GMP library.

GMP_Integer is an alias for thepz_class type defined in the C++ interface of the GMP library. For
more information, sebttp://www.swox.com/gmp/

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.swox.com/gmp/
http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::I0_Operators Namespace Reference 74

10.1.2.2 typedef COEFFICIENT_TYPEParma_Polyhedra_Library::Coefficient
An alias for easily naming the type of PPL coefficients.

Objects of type Coefficient are used to implement the integral valued coefficients occurring in linear expres-
sions, constraints, generators, intervals, bounding boxes and so on. Depending on the chosen configuration
options (see flREADME.configure), a Coefficient may actually be:

e The GMP_Integer type, which in turn is an alias for thpz_class type implemented by the C++
interface of the GMP library (this is the default configuration);

e An instance of theChecked_Numbeclass template, implementing overflow detection on top of a
native integral type (available template instances include checked integers having 8, 16, 32 or 64
bits);

¢ An instance of theNative_Integerclass template, simply wrapping a native integral types with no
overflow detection (available template instances include native integers having 8, 16, 32 or 64 bits).

10.1.3 Function Documentation

10.1.3.1 const cha# banner ()
Returns a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

10.2 Parma_Polyhedra_Library::I0_Operators Namespace Reference

All input/output operators are confined to this namespace.

10.2.1 Detailed Description

All input/output operators are confined to this namespace.

This is done so that the library’s input/output operators do not interfere with those the user might want
to define. In fact, it is highly unlikely that any pre-defined I/O operator will suit the needs of a client
application. On the other hand, those applications for which the PPL I/O operator are enough can easily
obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::10_Operators;

would suffice for most uses. In more complex situations, such as

const Constraint_System& cs = ..;
copy(cs.begin(), cs.end(),
ostream_iterator<Constraint>(cout, "\n"));

theParma_Polyhedra_Libranamespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
/I Import all the output operators into the main PPL namespace.
using |O_Operators::operator<<;

}

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 std Namespace Reference 75

10.3 std Namespace Reference

The standard C++ namespace.

Functions

¢ void swap(Parma_Polyhedra_Library::GMP_Intedx, Parma_Polyhedra_Library::GMP_Integer
&y)
Specializestd::swap

10.3.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library templatss/ap()and iter_swap() (25.2.2, [lib.alg.swap]).

11 PPL Class Documentation

11.1 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference

The convergence certificate for the BHRZ03 widening operator.

Public Member Functions

e BHRZ03_Certificatd)
Default constructor.

e BHRZ03_CertificatéconstPolyhedror&ph)
Constructor: computes the certificate fain.

e BHRZ03 CertificatdconstBHRZ03_Certificatey)

Copy constructor.

e ~BHRZ03_Certificatd)
Destructor.

e int compargconstBHRZ03_Certificate&y) const
The comparison function for certificates.

e int compargconstPolyhedron&ph) const
Comparescthis with the certificate for polyhedroph.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.2 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference 76

Classes

e structCompare
A total ordering on BHRZO03 certificates.

11.1.1 Detailed Description

The convergence certificate for the BHRZ03 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:
Each convergence certificate has to be used together with a compatible widening operator. In particular,
BHRZ03_Certificatecan certify the convergence of both the BHRZ03 and the H79 widenings.

11.1.2 Member Function Documentation

11.1.2.1 int Parma_Polyhedra_Library::BHRZ03_Certificate::compare (const BHRZ03_-
Certificate & y) const

The comparison function for certificates.

Returns:
—1, 0 or 1 depending on whethethis is smaller than, equal to, or greater thamrespectively.

Comparestthis with y, using a total ordering which is a refinement of the limited growth ordering
relation for the BHRZ03 widening.

11.2 Parma_Polyhedra_Library::BHRZ03_ Certificate::Compare Struct Refer-
ence

A total ordering on BHRZO03 certificates.

Public Member Functions

e booloperator(constBHRZ03_Certificate&x, constBHRZ03_Certificate&ky) const

Returngrue if and only ifx comes beforg.

11.2.1 Detailed Description

A total ordering on BHRZO03 certificates.

This binary predicate defines a total ordering on BHRZ03 certificates which is used when storing informa-
tion about sets of polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference 77

11.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference

A closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron

Public Member Functions

e C_Polyhedror{dimension_type num_dimensionsflegenerate_Kin&ind=UNIVERSE)
Builds either the universe or the empty C polyhedron.

C_Polyhedror{const Constraint_System &cs)
Builds a C polyhedron from a system of constraints.

C_Polyhedror{Constraint_System &cs)
Builds a C polyhedron recycling a system of constraints.

C_Polyhedror{const Generator_System &gs)
Builds a C polyhedron from a system of generators.

C_Polyhedror{Generator_System &gs)
Builds a C polyhedron recycling a system of generators.

C_Polyhedror{constNNC_Polyhedror&y)
Builds a C polyhedron representing the topological closure of the NNC polyhgdron

templatectypename Box C_Polyhedror{const Box &box, From_Bounding_Box dummy)
Builds a C polyhedron out of a generic, interval-based bounding box.

C_Polyhedror{constC_Polyhedror&y)
Ordinary copy-constructor.

C_Polyhedror& operator=constC_Polyhedror&y)
The assignment operatokthis andy can be dimension-incompatible.).

C_Polyhedror& operator=constNNC_Polyhedror&y)
Assigns tocthis the topological closure of the NNC polyhedmgn

~C_Polyhedror)
Destructor.

11.3.1 Detailed Description

A closed convex polyhedron.

An object of the clas€_Polyhedrorrepresents #opologically closedconvex polyhedron in the vector
spaceR”.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains atrict inequalityconstraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containiciggure point

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference 78

Note:
Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the cl&¢NC_Polyhedronthe precise topological closure test
will be performed.

11.3.2 Constructor & Destructor Documentation
11.3.2.1 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (dimension_type num_-
dimensions= 0, Degenerate_Kindkind = UNIVERSH [explicit]

Builds either the universe or the empty C polyhedron.

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the C polyhedron;

kind Specifies whether a universe or an empty C polyhedron should be built.

Exceptions:
std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

11.3.2.2 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Constraint_System &
cs) [explicit]

Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of constraints contains strict inequalities.

11.3.2.3 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Constraint_ System & c9
[explicit]

Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not decleoedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of constraints contains strict inequalities.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Numbek T, Policy > Class Template Reference 79

11.3.2.4 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Generator_System &
g9 [explicit]

Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

11.3.2.5 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Generator_System &9
[explicit]

Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declewadt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it
contains closure points.

11.3.2.6 templatectypename Box> Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron
(const Box & box, From_Bounding_Boxdummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templatéypename Box Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:
box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:
std::length_error Thrown if the space dimension @ox exceeds the maximum allowed space di-
mension.

std::invalid_argument Thrown if box has intervals that are not topologically closed (i.e., having
some finite but open bounds).

11.4 Parma_Polyhedra_Library::Checked_Numbek T, Policy > Class Template
Reference

A wrapper for native numeric types implementing a given policy.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Numbek T, Policy > Class Template Reference

80

Public Member Functions

¢ void swap(Checked_Numbety)
Swapskthis withy.

Constructors

e Checked_Numbs()
Default constructor.

e Checked_Numbgiconst signed char y)
Direct initialization from a signed char value.

e Checked_Numbeiconst short y)
Direct initialization from a signed short value.

e Checked_Numbgiconst int y)
Direct initialization from a signed int value.

e Checked_Numbegconst long y)
Direct initialization from a signed long value.

e Checked_Numbgiconst long long y)
Direct initialization from a signed long long value.

e Checked_Numbsgiconst unsigned char y)
Direct initialization from an unsigned char value.

e Checked_Numbsgiconst unsigned short y)
Direct initialization from an unsigned short value.

e Checked_Numbgiconst unsigned int y)
Direct initialization from an unsigned int value.

e Checked Numbgconst unsigned long y)
Direct initialization from an unsigned long value.

e Checked_Numbsgiconst unsigned long long y)
Direct initialization from an unsigned long long value.

e Checked_Numbgiconst float32_ty)
Direct initialization from a 32 bits floating-point value.

e Checked_Numbgiconst float64_ty)
Direct initialization from a 64 bits floating-point value.

e Checked_Numbseiconst mpqg_class &y)
Direct initialization from a GMP unbounded rational value.

e Checked_Numbsgiconst mpz_class &y)
Direct initialization from a GMP unbounded integer value.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Numbek T, Policy > Class Template Reference

81

e Checked_Numbegfconst chaky)
Direct initialization from a C string value.

Accessors and Conversions

e operator T() const
Conversion operator: returns a copy of the undelying native integer value.

e T & raw_valug()
Returns a reference to the underlying native integer value.

e const T &raw_valug() const
Returns a const reference to the underlying native integer value.

Assignment Operators

e Checked_Numbe$: operator=constChecked Numbety)
Assignment operator.

Checked_Numbe& operator+=constChecked Numbety)
Add and assign operator.

Checked_Numbe% operator-=constChecked_Numbesy)
Subtract and assign operator.

Checked_Numbe% operatorx= (constChecked_Numbety)
Multiply and assign operator.

Checked_Numbet operator/5constChecked Numbety)
Divide and assign operator.

Checked_Numbe& operator%=constChecked_Numbeky)
Compute modulus and assign operator.

Increment and Decrement Operators

e Checked_Numbet. operator++)
Pre-increment operator.

e Checked_Numbevperator++int)
Post-increment operator.

e Checked_Numbes: operator~)
Pre-decrement operator.

e Checked Numbevperatorint)
Post-decrement operator.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Numbek T, Policy > Class Template Reference

82

Related Functions
(Note that these are not member functions.)

Accessor Functions

e const T &raw_value(constChecked_Numbet T, Policy > &x)
Returns a const reference to the underlying native integer value.

e T & raw_valug(Checked_Numbet T, Policy > &x)
Returns a reference to the underlying native integer value.

Memory Size Inspection Functions

e size_ttotal_memory_in_byte&onstChecked_Number T, Policy > &x)
Returns the total size in bytes of the memory occupied by

e size_texternal_memory_in_byt€sonstChecked_Numbet T, Policy > &x)
Returns the size in bytes of the memory managed by

Arithmetic Operators

e Checked_Number T, Policy > operator+{constChecked_Numbet T, Policy > &x)
Unary plus operator.

e Checked_Numbet T, Policy > operator{constChecked Numbet T, Policy > &x)
Unary minus operator.

e Checked_Number T, Policy > operator+(constChecked_Numbet T, Policy > &X, const

Checked_Numbet T, Policy > &y)
Addition operator.

e Checked_Number T, Policy > operator-(const Checked_Number T, Policy > &x, const

Checked_Numbet T, Policy > &y)
Subtraction operator.

e Checked_Number T, Policy > operatorx (constChecked Number T, Policy > &x, const

Checked_Numbet T, Policy > &y)
Multiplication operator.

e Checked_Number T, Policy > operator/(const Checked_Number T, Policy > &x, const

Checked_Numbet T, Policy > &y)
Integer division operator.

e Checked_Numbert T, Policy > operator%(constChecked_Number T, Policy > &x, const

Checked_Numbet T, Policy > &y)
Modulus operator.

¢ void negatg(Checked_Numbet T, Policy > &x)
Assigns t its negation.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked Numbek T, Policy > Class Template Reference 83

e void add_mul_assigChecked_Numbet T, Policy > &x, constChecked_Numbet T, Policy
> &y, constChecked_Numbet T, Policy > &2z)

Assigns tx the valuex + y x z.

e void sub_mul_assigfChecked_Number T, Policy > &x, constChecked_Numbet T, Policy
> &y, constChecked_Numbet T, Policy > &2z)

Assigns to the valuex - y * z.

e void gcd_assigiiChecked_Numbet T, Policy > &x, constChecked_Numbet T, Policy > &y)

Assigns to the greatest common divisor fandy.

¢ void gcd_assigrfChecked_Numbet T, Policy > &x, constChecked_Numbet T, Policy > &y,
constChecked_Numbet T, Policy > &z)

Assigns tox the greatest common divisor pfandz.

e void lcm_assigri(Checked_Numbet T, Policy > &x, constChecked_Numbet T, Policy > &y)

Assigns to the least common multiple gfandy.

¢ void Icm_assigr(Checked_Numbet T, Policy > &x, constChecked_Numbet T, Policy > &y,
constChecked_Numbet T, Policy > &2z)

Assigns tx the least common multiple gfandz.

e void exact_div_assigChecked_Numbet T, Policy > &x, constChecked_Numbet T, Policy
> &y)
Assigns ta the integer division ok andy.

e void exact_div_assig{Checked_Numbet T, Policy > &x, constChecked_Numbet T, Policy
> &y, constChecked Numbet T, Policy > &z)

Assigns to the integer division of andz.

¢ void sqrt_assigrfChecked_Numbet T, Policy > &x)
Assigns t its integer square root.

e void sqgrt_assigriChecked_Numbet T, Policy > &x, constChecked_Numbet T, Policy > &y)

Assigns ta the integer square root of.

Relational Operators and Comparison Functions

e bool operator==constChecked_Numbet T, Policy > &x, constChecked Numbet T, Policy
> &Y)
Equality operator.

e bool operator!=(constChecked_Numbet T, Policy > &x, constChecked_Number T, Policy
> &y)
Disequality operator.

e booloperator-= (constChecked_Numbet T, Policy > &x, constChecked_Numbet T, Policy
> &Y)

Greater than or equal to operator.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 84

bool operator- (constChecked_Number T, Policy > &x, constChecked_Numbet T, Policy
> &y)
Greater than operator.

bool operatox= (constChecked_Numbet T, Policy > &%, constChecked_Numbet T, Policy
> &Y)
Less than or equal to operator.

bool operatox (constChecked_Numbet T, Policy > &x, constChecked_Numbet T, Policy
> &y)
Less than operator.

int sgn(constChecked_Numbet T, Policy > &x)
Returns—1, 0 or 1 depending on whether the valuexofs negative, zero or positive, respectively.

int cmp (constChecked_Numbet T, Policy > &x, constChecked_Numbet T, Policy > &y)

Returns a negative, zero or positive value depending on whetisdower than, equal to or greater than
y, respectively.

Input-Output Operators

e std::ostream &operatok < (std::ostream &os, con§thecked_Numbet T, Policy > &X)
Output operator.

e std::istream &operator-> (std::istream &isChecked_Numbet T, Policy > &x)
Input operator.

11.4.1 Detailed Description

template<typename T, typename Policy class Parma_Polyhedra_Library::Checked_Numbek T,
Policy >

A wrapper for native numeric types implementing a given policy.

The wrapper and related functions implement an interface which is common to all kinds of coefficient
types, therefore allowing for a uniform coding style. This class also implements the policy encoded by the
second template parameter. The default policy is to perform the detection of overflow errors.

11.5 Parma_Polyhedra_Library::Constraint Class Reference

A linear equality or inequality.

Public Types

e enumType{ EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY }
The constraint type.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference

Public Member Functions

e ConstrainfconstConstraint&c)
Ordinary copy-constructor.

e ~Constraint)
Destructor.

e Constraint& operator5constConstraini&c)
Assignment operator.

e dimension_typepace_dimensiof) const
Returns the dimension of the vector space enclosihig

e Typetype() const
Returns the constraint type ethis

e boolis_equality() const
Returngrue if and only ifxthis is an equality constraint.

e boolis_inequality() const
Returngrue if and only ifxthis is an inequality constraint (either strict or non-strict).

e boolis_nonstrict_inequality) const
Returngtrue if and only if«this is a non-strict inequality constraint.

e boolis_strict_inequality) const
Returngrue if and only ifxthis is a strict inequality constraint.

e Coefficient_traits::const_referenceefficient(Variablev) const
Returns the coefficient @fin xthis

e Coefficient_traits::const_referencgnomogeneous_terif) const
Returns the inhomogeneous ternxtfis

e memory_size_typttal_memory_in_byte§ const
Returns a lower bound to the total size in bytes of the memory occupigtiiby .

e memory_size_typexternal_memory_in_byt€¥const
Returns the size in bytes of the memory managedtiy .

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e dimension_typenax_space_dimensidip
Returns the maximum space dimensidbaastraintcan handle.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 86

e constConstraini& zero_dim_fals€)
The unsatisfiable (zero-dimension space) constfaiat1.

e constConstraint& zero_dim_positivity))
The true (zero-dimension space) constraint 1, also known apositivity constraint

Related Functions
(Note that these are not member functions.)

e std::ostream &operatox < (std::ostream &s, congtonstraini&c)
Output operator.

e Constraintoperator==constLinear_Expressio&el, constLinear_Expressio&.e2)
Returns the constrairgl = e2.

e Constraintoperator==constLinear_Expressio&e, Coefficient_traits::const_reference n)
Returns the constrairg = n.

e Constraintoperator==Coefficient_traits::const_reference n, conistear Expressioge)
Returns the constraint = e.

e Constraintoperatox = (constLinear_Expressio&el, constLinear_Expressio&e?)
Returns the constrail <= e2.

e Constraintoperatox = (constLinear_Expressio&e, Coefficient_traits::const_reference n)
Returns the constrairg <= n.

e Constrainperatox = (Coefficient_traits::const_reference n, conistear_Expressioge)
Returns the constraint <= e.

e Constraintoperator-= (constLinear_Expressio&el, constLinear Expressiog.e?2)
Returns the constrairgl >= e2.

e Constraintperator-= (constLinear_Expressio&e, Coefficient_traits::const_reference n)
Returns the constrairg >= n.

e Constraintoperator-= (Coefficient_traits::const_reference n, constear Expressiode)
Returns the constraint >= e.

e Constrainbperatok (constLinear_Expressio&el, constLinear_Expressio&e2)
Returns the constrail < e2.

e Constrainbperatox (constLinear_Expressioie, Coefficient_traits::const_reference n)
Returns the constrairg < n.

e Constrainbperatok (Coefficient_traits::const_reference n, colnsiear_Expressio&e)
Returns the constraint < e.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 87

Constraintoperator- (constLinear_Expressio&el, constLinear Expressio&e?)
Returns the constrairgl > e2.

Constraintoperator- (constLinear_Expressiog&e, Coefficient_traits::const_reference n)
Returns the constrairg > n.

Constraintoperator- (Coefficient_traits::const_reference n, conistear Expressiog.e)
Returns the constraint > e.

void swap(Parma_Polyhedra_Library::Constrag, Parma_Polyhedra_Library::Constragy)
Specializestd::swap

11.5.1 Detailed Description

A linear equality or inequality.

An object of the clas€onstraints either:

n—1

e anequality:) ;" a;x; +b=0;
e anon-strict inequality>"""" a,z; + b > 0; or
e astrictinequality>"""" a;x; + b > 0;

wheren is the dimension of the space; is the integer coefficient of variable; andb is the integer
inhomogeneous term.

How to build a constraint
Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equalitg£), non-strict inequalities= and <=) and strict inequalities< and
>). The space dimension of a constraint is defined as the maximum space dimension of the arguments
of its constructor.

In the following examples it is assumed that variableg andz are defined as follows:
Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constraiat + 5y — z = 0, having space dimensidh

Constraint eq_c(3*x + 5*y - z == 0);

The following code builds the (non-strict) inequality constraint> 2y — 13, having space dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);
The corresponding strict inequality constraint > 2y — 13 is obtained as follows:
Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension sficean be specified as follows:

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 88

Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_c1(Linear_Expression::zero() == 1);
Constraint false_c2(Linear_Expression::zero() >= 1);
Constraint false_c3(Linear_Expression::zero() > 0);

In contrast, the following code defines an unsatisfiable constraint having space dimgnsion

Constraint false_c(0*z == 1);

How to inspect a constraint
Several methods are provided to examine a constraint and extract all the encoded information: its
space dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this case— 5y + 3z <= 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraibt + 3z > 4).

Constraint c1(x - 5%y + 3*z <= 4),
cout << "Constraint cl: " << cl << endl
if (cl.is_equality())
cout << "Constraint ¢l is not an inequality." << endl;

else {
Linear_Expression e;
for (int i = cl.space_dimension() - 1; i >= 0; i-)

e += cl.coefficient(Variable(i)) * Variable(i);
e += cl.inhomogeneous_term();
Constraint c2 = cl.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << ¢2 << endl;

}
The actual output is the following:

Constraint cl1: -A + 5*B - 3*C >= -4
Complement ¢c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

11.5.2 Member Enumeration Documentation

11.5.2.1 enunParma_Polyhedra_Library::Constraint::Type
The constraint type.

Enumeration values:
EQUALITY The constraint is an equality.

NONSTRICT_INEQUALITY The constraint is a non-strict inequality.
STRICT_INEQUALITY The constraint is a strict inequality.

11.5.3 Member Function Documentation

11.5.3.1 Coefficient_traits::const_reference = Parma_Polyhedra_Library::Constraint::coefficient
(Variable v) const

Returns the coefficient of in *this

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 89

Exceptions:
std::invalid_argumentthrown if the index ofv is greater than or equal to the space dimension of
xthis

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference

Wraps a PPL class into a determinate constraint system interface.

Public Member Functions
Constructors and Destructor

e Determinatgdimension_type num_dimensions=0, bool universe=true)

Builds either the top or the bottom of the determinate constraint system defined on the vector space
havingnum_dimensions dimensions.

Determinatgconst PH &p)

Injection operator: builds the determinate constraint system element corresponding to the base-level
elemenp.

Determinatgconst Constraint_System &cs)

Injection operator: builds the determinate constraint system element corresponding to the base-level
element represented log .

DeterminatgconstDeterminate&y)
Copy constructor.

~Determinatg)
Destructor.

Member Functions that Do Not Modify the Domain Element

e dimension_typespace_dimensiof) const
Returns the dimension of the vector space enclosihig

const Constraint_System &nstraintg) const
Returns the system of constraints.

e const Constraint_System &inimized_constraint§) const
Returns the system of constraints, with no redundant constraint.

const PH &element() const
Returns a const reference to the embedded element.

PH & element()
Returns a reference to the embedded element.

boolis_top() const

Returngrue if and only ifxthis is the top of the determinate constraint system (i.e., the whole vector
space).

boolis_bottom() const

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 90

Returngtrue if and only ifxthis is the bottom of the determinate constraint system.

bool definitely _entail{constDeterminatey) const
Returngtrue if and only ifxthis entailsy.

boolis_definitely_equivalent_tfconstDeterminatey) const
Returngrue if and only ifxthis andy are equivalent.

memory_size_typetal_memory_in_byte§ const
Returns a lower bound to the total size in bytes of the memory occupigtiiby .

memory_size_typexternal_memory_in_bytg} const
Returns a lower bound to the size in bytes of the memory managetiby .

bool OK () const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Domain Element

e void upper_bound_assigoonstDeterminatey)
Assigns tocthis the upper bound ofthis andy.

e void meet_assiglconstDeterminate&y)
Assigns tosthis the meet okthis andy.

¢ void add_constrainfconstConstraini&c)
Assigns tocthis the meet okthis and the element represented by constraint

e void add_constraint€Constraint_System &cs)
Assigns tocthis the meet ofkthis and the element represented by the constraintsin

Member Functions that May Modify the Dimension of the Vector Space

e Determinate& operator=constDeterminateky)
Assignment operator.

e void swap(Determinatey)
Swapskthis withy.

e void add_space_dimensions_and_emfaiohension_type m)
Addsmnew space dimensions and embeds the old domain element in the new vector space.

e void add_space_dimensions_and_projdahension_type m)
Addsmnew space dimensions to the domain element and does not embed it in the new vector space.

¢ void concatenate_assidoonstDeterminatey)
Assigns torthis theconcatenatiorof xthis andy, taken in this order.

e void remove_space_dimensioftonstVariables_Se&to _be_removed)
Removes all the specified space dimensions.

void remove_higher_space_dimensid¢dsnension_type new_dimension)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 91

Removes the higher space dimensions so that the resulting space will have dimeesion
dimension

o templatectypename Partial_Function void map_space_dimensiongonst Partial_Function
&pfunc)
Remaps the dimensions of the vector space according to a partial function.

Friends

e booloperator==constDeterminate: PH > &x, constDeterminate: PH > &y)
Returngtrue if and only ifx andy are the same domain element.

e booloperator!=constDeterminate: PH > &x, constDeterminate: PH > &y)
Returngrue if and only ifx andy are different domain elements.

Related Functions
(Note that these are not member functions.)

e std::ostream Soperatok < (std::ostream &, conddeterminate: PH > &)
Output operator.

e void swap (Parma_Polyhedra Library::Determinate PH > &x, Parma_Polyhedra_-
Library::Determinate: PH > &y)

Specializestd::swap

11.6.1 Detailed Description
template<typename PH> class Parma_Polyhedra_Library::Determinate< PH >

Wraps a PPL class into a determinate constraint system interface.

11.6.2 Constructor & Destructor Documentation
11.6.2.1 templatectypename PH> Parma_Polyhedra_Library::Determinate < PH >:: Determinate
(dimension_typenum_dimensions= 0, bool universe=true) [explicit]

Builds either the top or the bottom of the determinate constraint system defined on the vector space having
num_dimensions dimensions.

The top element, corresponding to the whole vector space, is builiverse is true ; otherwise the
bottom element, corresponding to the emptyset, is built. By default, the top of a zero-dimension vector
space is built.

11.6.3 Member Function Documentation

11.6.3.1 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH >::add -
constraint (constConstraint & ¢)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 92

Assigns toxthis the meet ofthis and the element represented by constraint

Exceptions:
std::invalid_argument Thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

11.6.3.2 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH >::add_-
constraints (Constraint_System &cs)

Assigns toxthis the meet ofthis and the element represented by the constraints in

Parameters:
cs The constraints to intersect with. This parameter is not dectaoest because it can be modified.

Exceptions:
std::iinvalid_argument Thrown if «this and cs are topology-incompatible or dimension-
incompatible.

11.6.3.3 templatectypename PH> void Parma_Polyhedra_Library::Determinate< PH
>::remove_space_dimensions (condfariables_Set& to_be removed

Removes all the specified space dimensions.

Parameters:
to_be_removedrlhe set ofVariableobjects corresponding to the space dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if xthis is dimension-incompatible with one of thMariableobjects
contained irto_be_removed

11.6.3.4 templatectypename PH> void Parma_Polyhedra_ Library::Determinate< PH
>::remove_higher_space_dimensions (dimension_typew_dimensioh

Removes the higher space dimensions so that the resulting space will have dinmewgialiimension

Exceptions:
std::invalid_argument Thrown ifnew_dimensions s greater than the space dimensiortbiis

11.6.3.5 templatectypename PH> template<typename Partial_Function> void Parma_-
Polyhedra_Library::Determinate < PH >:map_space_dimensions (const Partial_Function &
pfunc)

Remaps the dimensions of the vector space according to a partial function.

See Polyhedron::map_space_dimensions.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 93

11.6.4 Friends And Related Function Documentation

11.6.4.1 templatectypename PH> bool operator== (constDeterminate< PH > & X, constDeter-
minate< PH > & y) [friend]

Returngrue if and only if x andy are the same domain element.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

11.6.4.2 templatectypename PH> bool operator!= (constDeterminate< PH > & X, constDetermi-
nate< PH > & y) [friend]

Returngrue if and only if x andy are different domain elements.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

11.7 Parma_Polyhedra_Library::Generator Class Reference

A line, ray, point or closure point.

Public Types

e enumType{ LINE, RAY, POINT, CLOSURE_POINT}
The generator type.

Public Member Functions

e GeneratofconstGenerato&g)
Ordinary copy-constructor.

~Generatok)
Destructor.

e Generato& operator=constGenerato&g)
Assignment operator.

dimension_typespace_dimensiof) const
Returns the dimension of the vector space enclosthig

Typetype() const
Returns the generator type ethis

boolis_line() const
Returngtrue if and only ifxthis is aline.

boolis_ray() const

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 94

Returngtrue if and only ifxthis is a ray.

e boolis_point() const
Returngrue if and only ifxthis is a point.

e boolis_closure_poinf) const
Returngrue if and only ifxthis is a closure point.

e Coefficient_traits::const_referenceefficient(Variablev) const
Returns the coefficient ofin xthis

e Coefficient_traits::const_referend&isor () const
If xthis s either a point or a closure point, returns its divisor.

e memory_size_typtotal_memory_in_byte§ const
Returns a lower bound to the total size in bytes of the memory occupigtiiby .

e memory_size_typexternal_memory_in_byt€¥ const
Returns the size in bytes of the memory managedhiy .

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e Generatotine (constLinear_Expressioke)
Shorthand foiGeneratorGenerator::line(const Linear_Expressioné&.e)

e Generatoray (constLinear_Expressioge)
Shorthand foiGeneratorGenerator::ray(const Linear_Expressioné&.e)

e Generator point (const Linear Expression &e=Linear Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Shorthand for Generator Generator::point(const Linear_Expression& e, Coefficient_traits::const_-
reference d)

e Generatorclosure_point(const Linear_Expression&e=Linear_Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Shorthand for Generator Generator::closure_point(const Linear_Expression& e, Coefficient_-
traits::const_reference d)

e dimension_typenax_space_dimensidi
Returns the maximum space dimensidbemeratorcan handle.

e constGenerato& zero_dim_poin()
Returns the origin of the zero-dimensional sp&fe

e constGenerato& zero_dim_closure_poir}
Returns, as a closure point, the origin of the zero-dimensional spéce

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 95

Related Functions
(Note that these are not member functions.)

e std::ostream &operatok < (std::ostream &s, con&enerato&g)
Output operator.

e void swap(Parma_Polyhedra_Library::Generaot, Parma_Polyhedra_Library::Generagy)
Specializestd::swap

11.7.1 Detailed Description

A line, ray, point or closure point.

An object of the clas&eneratois one of the following:

e alinel = (ag,...,an_1)";

e arayr = (ag,...,an_1)";

e apointp = (%,..., 2T,

e aclosure point = (%, ..., 2=1)T;

wheren is the dimension of the space and, for points and closure paints) is the divisor.

A note on terminology.
As observed in SectioRepresentations of Convex Polyhedfsre are cases when, in order to repre-
sent a polyhedrof® using the generator systetn= (L, R, P, C'), we need to include in the finite set
P even points of? that arenot vertices ofP. This situation is even more frequent when working with
NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other libraries use the
word ‘vertex’.

How to build a generator.
Each type of generator is built by applying the corresponding functioe (, ray , point or
closure_point) to a linear expression, representing a direction in the space; the space dimen-
sion of the generator is defined as the space dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply ig-
nored). When defining points and closure points, an optional Coefficient argument can be used as a
commondivisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variabdeg andz are defined as follows:
Variable x(0);

Variable y(1);
Variable z(2);

Example 1
The following code builds a line with direction— y — z and having space dimensién

Generator | = line(x - y - 2);

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 96

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator | = line(x - y - z + 15);
By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator | = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - 2);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the point = (1,0,2)T € R3:
Generator p = point(1*x + 0*y + 2*z);
The same effect can be obtained by using the following code:
Generator p = point(x + 2*z);
Similarly, the origin0 € R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, nanelR?:

Generator origin2 = point(0*y);

The following two lines of code both define the only point having space dimension zero, namely
0 € R In the second case we exploit the fact that the first argument of the furpmtion is
optional.

Generator originO = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4
The pointp specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the funptiamt (the divisor):

Generator p = point(2*x + 0%y + 4*z, 2);

Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-
nal) coordinates. For instance, the pajnt (—1.5,3.2,2.1)T € R? can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.
Example 5

Closures points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure point (1,0,2)" € R? is defined by

Generator ¢ = closure_point(1*x + 0*y + 2*z);

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 97

For the particular case of the (only) closure point having space dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

How to inspect a generator
Several methods are provided to examine a generator and extract all the encoded information: its space
dimension, its type and the value of its integer coefficients.

Example 6
The following code shows how it is possible to access each single coefficient of a genergtbr. If
is a point having coordinat€®y, . .., a,_1)*, we construct the closure poig® having coordinates
(ag,2a1,...,(i+1)a;,...,nan_1)".

if (gl.is_point()) {
cout << "Point gl: " << gl << endl;
Linear_Expression e;
for (int i = gl.space_dimension() - 1; i >= 0; i--)
e += (i + 1) * gl.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, gl.divisor());
cout << "Closure point g2: " << g2 << endl;

}

else
cout << "Generator gl is not a point." << endl;

Therefore, for the point
Generator g1 = point(2*x - y + 3*z, 2);
we would obtain the following output:

Point gl: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the notimoefficientwith the notion
of coordinate these are equivalent only when the divisor of the (closure) point is 1.

11.7.2 Member Enumeration Documentation

11.7.2.1 enurmParma_Polyhedra_Library::Generator::Type
The generator type.

Enumeration values:
LINE The generator is a line.

RAY The generator is a ray.
POINT The generator is a point.
CLOSURE_POINT The generator is a closure point.

11.7.3 Member Function Documentation

11.7.3.1 Generator line (constLinear_Expression& €) [static]

Shorthand foiGeneratoGenerator::line(const Linear_Expression& e)

Exceptions:
std::invalid_argument Thrown if the homogeneous partefrepresents the origin of the vector space.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.8 Parma_Polyhedra_Library::H79_Certificate Class Reference 98

11.7.3.2 Generatorray (constLinear_Expression& €) [static]
Shorthand folGeneratoGenerator::ray(const Linear_Expression& e)

Exceptions:
std::invalid_argument Thrown if the homogeneous partefepresents the origin of the vector space.

11.7.3.3 Generator point (const Linear Expression & e = Linear_Expression::zero() ,
Coefficient_traits::const_referenced = Coefficient_one()) [static]

Shorthand foGeneratofGenerator::point(const Linear_Expression& e, Coefficient_traits::const_reference
d).

Bothe andd are optional arguments, with default valugsear_ Expression::zero@nd Coefficient_one(),
respectively.

Exceptions:
std::invalid_argument Thrown if d is zero.

11.7.3.4 Generator closure_point (const Linear_Expression & e = Linear_-
Expression::zero() , Coefficient_traits::const_reference d = Coefficient_one())
[static]

Shorthand foGeneratoGenerator::closure_point(const Linear_Expression& e, Coefficient_traits::const_-
reference d)

Bothe andd are optional arguments, with default valuesear Expression::zero@nd Coefficient_one(),
respectively.

Exceptions:
std::invalid_argument Thrown if d is zero.

11.7.3.5 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::coefficient
(Variable v) const

Returns the coefficient of in *this

Exceptions:
std::invalid_argument Thrown if the index ofv is greater than or equal to the space dimension of
xthis

11.7.3.6 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::divisor ()
const

If xthis is either a point or a closure point, returns its divisor.

Exceptions:
std::invalid_argument Thrown if «this is neither a point nor a closure point.

11.8 Parma_Polyhedra_Library::H79_ Certificate Class Reference

A convergence certificate for the H79 widening operator.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.8 Parma_Polyhedra_Library::H79_Certificate Class Reference 99

Public Member Functions

e H79 Certificatd)
Default constructor.

e H79 CertificatdconstPolyhedron&ph)
Constructor: computes the certificate foin.

e H79 CertificatdconstH79_Certificateky)
Copy constructor.

e ~H79_Certificat)
Destructor.

¢ int comparegconstH79_Certificate&y) const
The comparison function for certificates.

e int compargconstPolyhedron&ph) const
Comparesctthis with the certificate for polyhedroph.

Classes

e structCompare
A total ordering on H79 certificates.

11.8.1 Detailed Description

A convergence certificate for the H79 widening operator.
Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:
The convergence of the H79 widening can also be certifieBHRZ03_Certificate

11.8.2 Member Function Documentation

11.8.2.1 int Parma_Polyhedra_Library::H79_Certificate::compare (constH79_ Certificate &)
const

The comparison function for certificates.

Returns:
—1, 0 or 1 depending on whetheithis is smaller than, equal to, or greater thamrespectively.

Comparestthis with y, using a total ordering which is a refinement of the limited growth ordering
relation for the H79 widening.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.9 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference 100

11.9 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference

A total ordering on H79 certificates.

Public Member Functions

e booloperator()constH79_Certificate&x, constH79_Certificate&y) const
Returngtrue if and only ifx comes beforg.

11.9.1 Detailed Description

A total ordering on H79 certificates.

This binary predicate defines a total ordering on H79 certificates which is used when storing information
about sets of polyhedra.
11.10 Parma_Polyhedra_Library::Linear_Expression Class Reference

A linear expression.

Public Member Functions

e Linear_Expressiof)

Default constructor: returns a copy afnear_Expression::zero()

e Linear_ExpressiofconstLinear Expressio&e)
Ordinary copy-constructor.

e ~Linear_Expressiof)
Destructor.

e Linear_ExpressiofCoefficient_traits::const_reference n)
Builds the linear expression corresponding to the inhomogeneousiterm

e Linear_ExpressiofconstConstraini&c)
Builds the linear expression corresponding to constraint

e Linear_ExpressiofconstGenerato&g)

Builds the linear expression corresponding to generatdfor points and closure points, the divisor is not
copied).

e dimension_typspace_dimensiof) const
Returns the dimension of the vector space enclosinig

o Coefficient_traits::const_referenceefficient(Variablev) const
Returns the coefficient ofin xthis

Coefficient_traits::const_referentghomogeneous_terif) const

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Linear_Expression Class Reference 101

Returns the inhomogeneous ternxtfis

e memory_size_typ#otal_memory_in_byte§ const
Returns a lower bound to the total size in bytes of the memory occupietiiby .

e memory_size_typexternal_memory_in_byt€¥ const
Returns the size in bytes of the memory managedhiy .

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e dimension_typenax_space_dimensid
Returns the maximum space dimensidrireear_Expressiorgan handle.

e constLinear_Expressio& zero()
Returns the (zero-dimension space) constant 0.

Related Functions
(Note that these are not member functions.)

e Linear_ExpressiofconstVariablev)
Builds the linear expression corresponding to the variahle

e Linear_ExpressionperatorHconstLinear Expressio&el, constLinear_Expressio&e?2)
Returns the linear expressi@l + e2.

e Linear_ExpressionperatorH{Coefficient_traits::const_reference n, conistear Expressio&e)
Returns the linear expression+ e.

e Linear_ExpressionperatorH{constLinear_Expressio&e, Coefficient_traits::const_reference n)
Returns the linear expressien+ n.

e Linear_ExpressionperatorH{constLinear_Expressio&.e)
Returns the linear expressi@n

e Linear_Expressionperator{constLinear_Expressio&e)
Returns the linear expressiore-

e Linear_Expressionperator{constLinear_Expressio&el, constLinear_Expressio&e2)
Returns the linear expressi@i - e2.

e Linear_Expressionperator{Coefficient_traits::const_reference n, coistear Expressiok.e)
Returns the linear expression- e.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Linear_Expression Class Reference 102

Linear_Expressiooperator{constLinear_Expressio&e, Coefficient_traits::const_reference n)
Returns the linear expressi@n- n.

e Linear_Expressionperator (Coefficient_traits::const_reference n, constear_Expressio&e)
Returns the linear expression« e.

e Linear_Expressionperator« (constLinear_Expressio&e, Coefficient_traits::const_reference n)
Returns the linear expressi@n« n.

e Linear_Expressiol operator+=Linear_Expressio&el, constLinear_Expressio&e2)
Returns the linear expressi@i + e2 and assigns it t@1.

e Linear_ExpressioB operator+=Linear_Expressio&e, constVariablev)
Returns the linear expressien+ v and assigns it t@.

e Linear_Expressio& operator+=Linear_Expressioi&e, Coefficient_traits::const_reference n)
Returns the linear expressien+ n and assigns it te@.

e Linear_Expressiol operator-=Linear_Expressio&el, constLinear_Expressiog.e2)
Returns the linear expressi@i - e2 and assigns it te1.

e Linear_Expressiol operator-=Linear_Expressio&e, constVariablev)
Returns the linear expressi@n- v and assigns it t@.

e Linear_Expressiol operator-5Linear_Expressio&e, Coefficient_traits::const_reference n)
Returns the linear expressi@n- n and assigns it t@.

e Linear_Expressio& operator«= (Linear_Expressio&e, Coefficient_traits::const_reference n)
Returns the linear expression+ e and assigns it t@.

e std::ostream Soperatok < (std::ostream &s, condtinear_Expressioie)
Output operator.

e void swap(Parma_Polyhedra_Library::Linear_Expresstog Parma_Polyhedra_Library::Linear_-
Expressior&y)

Specializestd::swap

11.10.1 Detailed Description

A linear expression.

An object of the claskinear_Expressionepresents the linear expression

n—1
Z a;x; +b
i=0

wheren is the dimension of the vector space, eaglis the integer coefficient of thie -th variablex; and
b is the integer for the inhomogeneous term.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Linear_Expression Class Reference 103

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classe&ariableand Coefficient: available operators include unary negation, binary addition and
subtraction, as well as multiplication by a Coefficient. The space dimension of a linear expression is defined
as the maximum space dimension of the arguments used to build it: in particular, the space dimension of a
Variablex is defined ax.id()+1 , whereas all the objects of the class Coefficient have space dimension
zero.

Example
The following code builds the linear expressibn— 2y — z + 14, having space dimensich

Linear_Expression e = 4* - 2*y - z + 14;
Another way to build the same linear expression is:

Linear_Expression el = 4*x;
Linear_Expression e2 = 2*y;
Linear_Expression e3 = z;

Linear_Expression e = Linear_Expression(14);
e += el - e2 - e3;

Note thatel, e2 ande3 have space dimension 1, 2 and 3, respectively; also, in the fourth line of code,
e is created with space dimension zero and then extended to space dimension 3 in the fifth line.

11.10.2 Constructor & Destructor Documentation

11.10.2.1 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (constConstraint
& c) [explicit]

Builds the linear expression corresponding to consti@int
Given the constraint = (37 a;; + b 0), wherex € {=,>, >}, this builds the linear expression

Z?:_Ol a;x; + b. If ¢ is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

11.10.2.2 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (consGenerator &

0) [explicit]

Builds the linear expression corresponding to genemtdor points and closure points, the divisor is not
copied).

Given the generatay = (%, ..., “2=1)T (where, for lines and rays, we hawe-= 1), this builds the linear

d
expressionZ?:—O1 a;x;. The inhomogeneous term of the linear expression will always be @.idfa ray,

point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

11.10.3 Friends And Related Function Documentation

11.10.3.1 Linear_Expression(constVariable v) [related]

Builds the linear expression corresponding to the varigble

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Intege T > Class Template Reference 104

Exceptions:
std::length_error Thrown if the space dimension of exceedd.inear_Expression::max_-
space_dimension()

11.10.3.2 Linear_Expression & operator+= (Linear_Expression & e, const Variable V)
[related]

Returns the linear expressient+ v and assigns it te.

Exceptions:
std::length_error Thrown if the space dimension of exceedd.inear_Expression::max_-
space_dimension()

11.10.3.3 Linear_Expression & operator-= (Linear_Expression & e, const Variable V)
[related]

Returns the linear expressien v and assigns it te.

Exceptions:
std::length_error Thrown if the space dimension of exceedd.inear_Expression::max_-
space_dimension()

11.11 Parma_Polyhedra_Library::Native_Intege T > Class Template Refer-
ence

A wrapper for unchecked native integer types.

Public Member Functions
Constructors

e Native_Intege()
Default constructor.

e Native_Integefconst signed chary)
Direct initialization from a signed char value.

e Native_Integefconst short y)
Direct initialization from a signed short value.

e Native_Integefconstinty)
Direct initialization from an signed int value.

e Native_IntegeKconst long y)
Direct initialization from a signed long value.

e Native_Integefconst long long y)
Direct initialization from a signed long long value.

e Native_Integefconst unsigned char y)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11

Parma_Polyhedra_Library::Native_Integer T > Class Template Reference

105

Direct initialization from an unsigned char value.

Native_Integefconst unsigned short y)
Direct initialization from an unsigned short value.

Native_Integefconst unsigned int y)
Direct initialization from an unsigned int value.

Native_Integefconst unsigned long y)
Direct initialization from an unsigned long value.

Native_Integefconst unsigned long long y)
Direct initialization from an unsigned long long value.

Native_Integefconst float32_tvy)
Direct initialization from a 32 bits floating-point value.

Native_IntegeKconst float64_tvy)
Direct initialization from a 64 bits floating-point value.

Native_Integefconst mpq_class &y)
Direct initialization from a GMP unbounded rational value.

Native_Integefconst mpz_class &y)
Direct initialization from a GMP unbounded integer value.

Native Integefconst chaxy)
Direct initialization from a C string value.

Accessors and Conversions

e operator T() const

Conversion operator: returns a copy of the undelying native integer value.

e T & raw_valug()

Returns a reference to the underlying native integer value.

e const T &raw_valug() const

Returns a const reference to the underlying native integer value.

Assignment Operators

e Native_Intege® operator=constNative_Integei&y)

Assignment operator.

e Native_Integek operator+=constNative_Integei&y)

Add and assign operator.

o Native Intege& operator-{constNative_Intege&y)

Subtract and assign operator.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Intege T > Class Template Reference

106

e Native_Intege® operator«= (constNative _Integei&y)
Multiply and assign operator.

e Native_Integei& operator/=constNative_Intege&y)
Divide and assign operator.

e Native Intege® operator%=constNative Integeiy)
Compute modulus and assign operator.

Increment and Decrement Operators

e Native_Intege® operator++)
Pre-increment operator.

e Native_Integeoperator++int)
Post-increment operator.

e Native_Intege® operator—)
Pre-decrement operator.

e Native Integeoperator<{int)
Post-decrement operator.

Related Functions
(Note that these are not member functions.)

Accessor Functions

e const T &raw_value(constNative _Integet T > &X)
Returns a const reference to the underlying native integer value.

e T & raw_valug(Native_Integet T > &X)
Returns a reference to the underlying native integer value.

Memory Size Inspection Functions

e size_ttotal_memory_in_byte&onstNative_Integex T > &x)
Returns the total size in bytes of the memory occupied by

e size_texternal_memory_in_bytdsonstNative_Integet T > &x)
Returns the size in bytes of the memory managed by

Arithmetic Operators

e Native_Integet T > operator+{constNative_Integex T > &X)
Unary plus operator.

e Native_Integet T > operator{constNative_Integet T > &x)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Intege T > Class Template Reference 107

Unary minus operator.

e Native_Integet T > operatorH{constNative_Integet T > &X, constNative_Integet T > &y)

Addition operator.

e Native_Integex T > operator{constNative_Integex T > &X, constNative_Integex T > &y)

Subtraction operator.

e Native_Integex T > operator (constNative_Integex T > &x, constNative_Integex T > &y)

Multiplication operator.

o Native_Integet T > operator{constNative_Integet. T > &x, constNative_Integex T > &y)

Integer division operator.

e Native_Integex: T > operator%(constNative_Integex. T > &x, constNative_Integes T >
&y)
Modulus operator.

¢ void negategNative_Integet: T > &X)
Assigns to its negation.

e void add_mul_assigfNative_Integet. T > &x, constNative_Integex. T > &y, constNative_-
Integex T > &2)
Assigns to< the valuex + y * z.

e void sub_mul_assig(Native_Integex T > &x, constNative_Integet. T > &y, constNative_-
Integex T > &z)

Assigns tox the valuex - y * z.

¢ void gcd_assigrfNative_Integex T > &x, constNative_Integex T > &y)
Assigns to the greatest common divisor fandy.

e void gcd_assign(Native_Integex:. T > &x, const Native_Integex T > &y, const Native_-
Integex T > &2)

Assigns tx the greatest common divisor pfandz.

e void Icm_assigr(Native_Integex T > &X, constNative_Integet T > &y)
Assigns tx the least common multiple gfandy.

e void Icm_assign(Native_Integex. T > &X, const Native_Integex. T > &y, const Native_-
Integex T > &2)

Assigns toc the least common multiple gfandz.

e void exact_div_assig(Native_Integex T > &x, constNative_Integex T > &y)
Assigns ta the integer division ok andy.

e void exact_div_assig(Native_Integex T > &x, constNative_Integex T > &y, constNative_-
Integex T > &2)
Assigns to the integer division of andz.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Intege T > Class Template Reference 108

e void sqgrt_assigrfNative_Integet T > &X)
Assigns t its integer square root.

e void sqrt_assigrfNative_Integex: T > &X, constNative_Integes T > &y)
Assigns tx the integer square root of.

Relational Operators and Comparison Functions

e booloperator==constNative_Integex. T > &x, constNative_Integex T > &y)
Equality operator.

e booloperator!=(constNative_Integes T > &x, constNative_Integex T > &y)
Disequality operator.

e booloperator-= (constNative_Integex. T > &X, constNative_Integet T > &y)
Greater than or equal to operator.

e booloperator- (constNative_Integex T > &x, constNative_Integex T > &y)
Greater than operator.

e booloperatox = (constNative_Integex T > &x, constNative_Integex T > &y)
Less than or equal to operator.

e booloperatok (constNative_Integet. T > &X, constNative Intege& T > &y)
Less than operator.

e int sgn(constNative Integet T > &x)
Returns—1, 0 or 1 depending on whether the valuexofs negative, zero or positive, respectively.

e intcmp(constNative_Integex T > &x, constNative_Integex T > &y)
Returns a negative, zero or positive value depending on whetisdower than, equal to or greater than
y, respectively.

Input-Output Operators

o std::ostream &peratok < (std::ostream &o0s, constative_Integes: T > &x)
Output operator.

e std:istream &operator-> (std::istream &isNative_Integex T > &x)
Input operator.

11.11.1 Detailed Description
template<typename T> class Parma_Polyhedra_Library::Native_Integexc T >

A wrapper for unchecked native integer types.

The wrapper and related functions implement an interface which is common to all kinds of coefficient
types, therefore allowing for a uniform coding style.

Warning:
Native integer coefficients do not check for overflows and therefore are likely to produce unreliable
results. We are currently using them as a tool to estimate the overhead incurrec¢hgtkedntegral

types.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 109

11.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference

A not necessarily closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron

Public Member Functions

e NNC_Polyhedror{dimension_type num_dimensionsflegenerate Kin&ind=UNIVERSE)
Builds either the universe or the empty NNC polyhedron.

e NNC_Polyhedror{const Constraint_System &cs)

Builds an NNC polyhedron from a system of constraints.

e NNC_Polyhedror{Constraint_System &cs)
Builds an NNC polyhedron recycling a system of constraints.

e NNC_Polyhedror{const Generator_System &gs)
Builds an NNC polyhedron from a system of generators.

e NNC_Polyhedror{Generator_System &gs)
Builds an NNC polyhedron recycling a system of generators.

e NNC_Polyhedror{constC_Polyhedror&y)
Builds an NNC polyhedron from the C polyhedson

o templatectypename Box NNC_Polyhedror{const Box &box, From_Bounding_Box dummy)
Builds an NNC polyhedron out of a generic, interval-based bounding box.

e NNC_Polyhedror{constNNC_Polyhedror&y)
Ordinary copy-constructor.

e NNC_Polyhedror& operator5constNNC_Polyhedror&y)
The assignment operatokthis andy can be dimension-incompatible.).

e NNC_Polyhedror& operator=constC_Polyhedror&y)
Assigns tocthis the C polyhedroty.

e ~NNC_Polyhedror)
Destructor.

11.12.1 Detailed Description

A not necessarily closed convex polyhedron.

An object of the clas8INC_Polyhedronmepresents aot necessarily close(NNC) convex polyhedron in
the vector spacR”.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 110

Note:
Since NNC polyhedra are a generalization of closed polyhedra, any object of th€clRsk/hedron
can be (explicitly) converted into an object of the cl&dsC_Polyhedron The reason for defining
two different classes is that objects of the cl@&sPolyhedrorare characterized by a more efficient
implementation, requiring less time and memory resources.

11.12.2 Constructor & Destructor Documentation

11.12.2.1 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (dimension_type
num_dimensions= 0, Degenerate_Kindkind = UNIVERSB [explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the NNC polyhedron;

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Exceptions:
std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

11.12.2.2 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Constraint_-
System &cg) [explicit]

Builds an NNC polyhedron from a system of constraints.
The polyhedron inherits the space dimension of the constraint system.
Parameters:

cs The system of constraints defining the polyhedron. It is not decleoedt because its data-
structures will be recycled to build the polyhedron.

11.12.2.3 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Constraint_System
& cg) [explicit]

Builds an NNC polyhedron recycling a system of constraints.
The polyhedron inherits the space dimension of the constraint system.
Parameters:

cs The system of constraints defining the polyhedron. It is not decleoedt because its data-
structures will be recycled to build the polyhedron.

11.12.2.4 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Generator_-
System &g9) [explicit]

Builds an NNC polyhedron from a system of generators.
The polyhedron inherits the space dimension of the generator system.
Parameters:

gs The system of generators defining the polyhedron. It is not declewadt because its data-
structures will be recycled to build the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.13 Parma_Polyhedra_Library::Poly _Con_Relation Class Reference 111

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.12.2.5 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Generator_System &
g9 [explicit]

Builds an NNC polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declewedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.12.2.6 templatetypename Box> Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Box &box, From_Bounding_Boxdummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: templatéypename Box Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:
box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:
std::length_error Thrown if the space dimension tox exceeds the maximum allowed space di-
mension.

11.13 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference

The relation between a polyhedron and a constraint.

Public Member Functions

e boolimplies(constPoly_Con_Relatioi&y) const
True if and only if«this impliesy.

e boolOK () const
Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.14 Parma_Polyhedra_Library::Poly _Gen_Relation Class Reference 112

Static Public Member Functions

e Poly Con_Relatiomothing()
The assertion that says nothing.

Poly Con_Relatioms_disjoint()
The polyhedron and the set of points satisfying the constraint are disjoint.

Poly Con_Relatiostrictly intersectg)
The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

Poly Con_Relatiotis_included()
The polyhedron is included in the set of points satisfying the constraint.

Poly _Con_Relatiosaturateg)
The polyhedron is included in the set of points saturating the constraint.

Related Functions
(Note that these are not member functions.)

e booloperator==constPoly_Con_Relatio&x, constPoly Con_Relatioiy)
True if and only iix andy are logically equivalent.

bool operator!=(constPoly Con_Relatioi&x, constPoly Con_Relatio&y)
True if and only ifx andy are not logically equivalent.

Poly_Con_Relatiomperator &&(constPoly_Con_Relatio&x, constPoly_Con_Relatiogy)
Yields the logical conjunction of andy.

Poly_Con_Relatiomperator{constPoly Con_Relatio&x, constPoly_Con_Relatio&y)
Yields the assertion with all the conjunctsxofhat are not iny.

std::ostream 8operatok < (std::ostream &s, congtoly_Con_Relatioi&r)
Output operator.

11.13.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

11.14 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference

The relation between a polyhedron and a generator.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template Reference

113

Public Member Functions

e boolimplies(constPoly _Gen_Relatio&y) const
True if and only if«this impliesy.

e boolOK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e Poly _Gen_Relationothing()
The assertion that says nothing.

e Poly Gen_Relatiosubsumes)
Adding the generator would not change the polyhedron.

Related Functions
(Note that these are not member functions.)

e booloperator==constPoly_Gen_Relatio&x, constPoly Gen_Relatio&y)
True if and only ifx andy are logically equivalent.

bool operator!=(constPoly _Gen_Relatio&x, constPoly Gen_Relatio&y)
True if and only ifx andy are not logically equivalent.

Yields the logical conjunction of andy.

Poly_Gen_Relationperator{constPoly_Gen_Relatio&x, constPoly_Gen_Relatio&y)
Yields the assertion with all the conjunctsxofhat are not iny.

std::ostream 8operatok < (std::ostream &s, con§toly_Gen_Relatio&r)
Output operator.

11.14.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

Poly Gen_Relationperator &&(constPoly Gen_Relatio&x, constPoly Gen_Relatiogy)

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template

Reference

The powerset construction instantiated on PPL polyhedra.

InheritsParma_Polyhedra_Library::Powersd®arma_Polyhedra_Library::Determinat®H > >.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template Reference 114

Public Member Functions
Constructors

e Polyhedra_Powerset(dimension_type num_dimensions=0,Polyhedron::Degenerate_Kind
kind=Polyhedron::UNIVERSE)

Builds a universe (top) or empty (bottofP)lyhedra_Powerset

Polyhedra_PowersétonstPolyhedra_Powersély)
Ordinary copy-constructor.

Polyhedra_Powersétonst PH &ph)
If ph is nonempty, builds a powerset containing gplfy. Builds the empty powerset otherwise.

templatectypename QB Polyhedra_PowersétonstPolyhedra_PowersetQH > &y)
Copy-constructor allowing a source powerset with elements of a different polyhedron kind.

Polyhedra_Powersétonst Constraint_System &cs)

Member Functions that Do Not Modify the Powerset of Polyhedra

e dimension_typepace_dimensiof) const
Returns the dimension of the vector space enclosinig

bool geometrically _covergconstPolyhedra_Powersély) const

Returnstrue if and only ifxthis geometrically covery, i.e., if any point (in some element) wfis
also a point (of some element)ghis

bool geometrically _equalconstPolyhedra_Powersély) const

Returnstrue if and only ifxthis is geometrically equal tg, i.e., if (the elements ofjthis andy
contain the same set of points.

memory_size_typeotal_memory_in_byte§ const
Returns a lower bound to the total size in bytes of the memory occupigtiiby .

memory_size_typexternal_memory_in_byt&¥ const
Returns a lower bound to the size in bytes of the memory managetiby .

bool OK () const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Powerset of Polyhedra

e void add_constrainfconstConstraint&c)
Intersectskthis ~ with constraintc.

e booladd_constraint_and_minimiZeonstConstraini&c)
Intersectskthis ~ with the constraint, minimizing the result.

¢ void add_constraintéconst Constraint_System &cs)
Intersectstthis with the constraints ircs .

e booladd_constraints_and_minimigeonst Constraint_System &cs)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template Reference 115

Intersectskthis with the constraints ircs , minimizing the result.

e void pairwise_reducé)

Assign toxthis the result of (recursively) merging together the pairs of polyhedra whose poly-hull is
the same as their set-theoretical union.

o templatectypename Widening void BGP99 _extrapolation_assignonstPolyhedra_Powerset
&y, Widening wf, unsigned max_disjuncts)
Assigns toxthis the result of applying th® GP99 extrapolation operatdo xthis andy, using the
widening functiorwf and the cardinality thresholchax_disjuncts

o templatectypename Cert, typename Widening void BHZ03_widening_assign(const
Polyhedra_Powerséty, Widening wf)

Assigns torthis the result of computing thBHZ03-wideningetweenrxthis andy, using the widen-
ing functionwf certified by the convergence certificaiert .

o templatectypename Widening void BHZ03_widening_assigfconstPolyhedra_Powerséty,
Widening wf)
An instance of the BHZ03 framework using the widening funetibrertified byBHRZ03_Certificate

Member Functions that May Modify the Dimension of the Vector Space

e Polyhedra_Powersét operator=constPolyhedra_Powerséty)
The assignment operatotthis andy can be dimension-incompatible).

o templatectypename QK- Polyhedra_Powersé operator5constPolyhedra_PowersetQH >
&y)

Assignment operator allowing a source powerset with elements of a different polyhedrorntkisd (
andy can be dimension-incompatible).

¢ void swap(Polyhedra_Powerséty)
Swapskthis withy.

e void add_space_dimensions_and_emf{aichension_type m)

Addsmnew dimensions to the vector space containitigs and embeds each polyhedronsithis
in the new space.

e void add_space_dimensions_and_pro{danension_type m)

Addsmnew dimensions to the vector space containitigis without embedding the polyhedra in
«xthis in the new space.

e void intersection_assigftonstPolyhedra_Powerséty)
Assigns tothis the intersection ofthis andy.

¢ void poly_difference_assigftonstPolyhedra_Powerséty)
Assigns tocthis the difference ofthis andy.

e void concatenate_assigoonstPolyhedra_Powerséty)
Assigns tosthis the concatenation ofthis andy.

e voidtime_elapse_assigoonstPolyhedra_Powersély)
Assigns tocthis the result of computing thime-elapséetweerxthis andy.

void remove_space_dimensioftonstVariables_Se&to_be_removed)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template Reference 116

Removes all the specified space dimensions.
¢ void remove_higher_space_dimensigdenension_type new_dimension)
Removes the higher space dimensions so that the resulting space will have dimeesion

dimension

e templatectypename Partial_Function void map_space_dimensiongonst Partial_Function
&pfunc)
Remaps the dimensions of the vector space according to a partial function.

Static Public Member Functions

e dimension_typenax_space_dimensidih
Returns the maximum space dimension a Polyhedra_Powd?rget can handle.

Related Functions
(Note that these are not member functions.)

e Widening_Functior: PH > widen_fun_ref(void(PH:xwm)(const PH &, unsigned))
Wraps a widening method into a function object.

e Limited_Widening_Functioam PH > widen_fun_ref (void(PH:xlwm)(const PH &, const
Constraint_System &, unsignedl, const Constraint_System &cs)

Wraps a limited widening method into a function object.

e std::paik PH, Polyhedra_PowersetNNC_Polyhedron> > linear_partition(const PH &p, const
PH &q)

Partitionsqg with respect t.

e void swap (Parma_Polyhedra_Library::Polyhedra_Powetséd®?H > &x, Parma_Polyhedra_-
Library::Polyhedra_PowersetPH > &y)

Specializestd::swap

11.15.1 Detailed Description
template<typename PH> class Parma_Polyhedra_Library::Polyhedra_Powerset PH >

The powerset construction instantiated on PPL polyhedra.

11.15.2 Constructor & Destructor Documentation

11.15.2.1 templatectypename PH> Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::Polyhedra_Powersetdimension_typenum_dimensions= 0, Polyhedron::Degenerate_Kindkind
= Polyhedron::UNIVERSE) [explicit]

Builds a universe (top) or empty (bottoriaplyhedra Powerset

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template Reference 117

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the powerset;

kind Specifies whether the universe or the empty powerset has to be built.

11.15.2.2 templatectypename PH> Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::Polyhedra_Powerse{const Constraint_System &cs) [explicit]

Creates @olyhedra_Powersetith a single polyhedron with the same information contentssas

11.15.3 Member Function Documentation

11.15.3.1 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset. PH
>::geometrically_covers (consPolyhedra_Powerset PH > & y) const

Returngrue if and only if «this geometrically covery, i.e., if any point (in some element) gfis also
a point (of some element) sthis

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

Warning:
This may beeally expensive!

11.15.3.2 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset PH
>::geometrically_equals (consPolyhedra_Powerset PH > & y) const

Returnstrue if and only if xthis is geometrically equal tg, i.e., if (the elements ofythis andy
contain the same set of points.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

Warning:
This may beeally expensive!

11.15.3.3 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::add_constraint (constConstraint & c)

Intersectscthis with constraintc.
Exceptions:

std::invalid_argument Thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template Reference 118

11.15.3.4 templatectypename PH> bool Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::add_constraint_and_minimize (constConstraint & c)

Intersectscthis with the constraint, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and c are topology-incompatible or dimension-
incompatible.

11.15.3.5 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::add_constraints (const Constraint_System &cs)

Intersectscthis with the constraints igs .

Parameters:
cs The constraints to intersect with.

Exceptions:
std::iinvalid_argument Thrown if «this and cs are topology-incompatible or dimension-
incompatible.

11.15.3.6 templatetypename PH> bool Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::add_constraints_and_minimize (const Constraint_System &)

Intersectscthis with the constraints igs , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs The constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

11.15.3.7 templatectypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::pairwise_reduce ()

Assign toxthis the result of (recursively) merging together the pairs of polyhedra whose poly-hull is the
same as their set-theoretical union.

On exit, for all the pairs?, Q of different polyhedra inithis , we haveP W Q # P U Q.

11.15.3.8 templatectypename PH> template<typename Widening> void Parma_Polyhedra_-
Library::Polyhedra_Powerset< PH >::BGP99_extrapolation_assign (consPolyhedra_Powerset
PH > & y, Widening wf, unsignedmax_disjunct3

Assigns toxthis the result of applying thGP99 extrapolation operatéo «this andy, using the
widening functiorwf and the cardinality thresholdax_disjuncts

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template Reference 119

Parameters:
y A finite powerset of polyhedra. thustdefinitely entailkthis ;

wf The widening function to be used on polyhedra objects. It is obtained from the corre-
sponding widening method by using the helper function Parma_Polyhedra_Library::widen_-
fun_ref. Legal values are, e.gwiden_fun_ref(&Polyhedron::H79_widening_-
assign) andwiden_fun_ref(&Polyhedron::limited_H79_extrapolation_-
assign, cs)

max_disjuncts The maximum number of disjuncts occurring in the powess$eis beforestarting
the computation. If this number is exceeded, some of the disjunethi; are collapsed (i.e.,
joined together).

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

For a description of the extrapolation operator, [@@P99]and[BHZ03b].

11.15.3.9 templatetypename PH> template<typename Cert, typename Widening- void Parma_-
Polyhedra_Library::Polyhedra_Powerset< PH >::BHZ03_ widening_assign (constPolyhedra_-
Powersek PH > & y, Widening wf)

Assigns toxthis the result of computing thBHZ03-wideningbetweenxthis andy, using the widening
functionwf certified by the convergence certificaert .

Parameters:
y The finite powerset of polyhedra computed in the previous iteration stapudtdefinitely entail
«this ;

wf The widening function to be used on polyhedra objects. It is obtained from the cor-
responding widening method by using the helper function widen_fun_ref. Legal values
are, e.g.widen_fun_ref(&Polyhedron::H79_widening_assign) andwiden_-
fun_ref(&Polyhedron::limited_H79_extrapolation_assign, cs)

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

Warning:
In order to obtain a proper widening operator, the template para@eter should be a finite con-
vergence certificate for the base-level widening functidn otherwise, an extrapolation operator is
obtained. For a description of the methods that should be providéghy, seeBHRZ03_Certificate
or H79_Certificate

11.15.3.10 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>:intersection_assign (consPolyhedra_Powerset PH > &)

Assigns toxthis the intersection ofthis andy.

The result is obtained by intersecting each polyhedrorthiis with each polyhedron ig and collecting
all these intersections.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset PH > Class Template Reference 120

11.15.3.11 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::poly_difference_assign (consPolyhedra_Powerset PH > &)

Assigns toxthis the difference ofithis andy.

The resultis obtained by computing thely-differenceof each polyhedron imthis with each polyhedron
in y and collecting all these differences.

11.15.3.12 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::.concatenate_assign (con$®olyhedra_Powerset PH > & y)

Assigns tokthis the concatenation afthis andy.

The resultis obtained by computing the pairnisecatenatéconcatenation” of each polyhedrorwithis
with each polyhedron iy.

11.15.3.13 templatettypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::time_elapse_assign (cong?olyhedra_Powerset PH > &)

Assigns toxthis the result of computing thiéme-elapséetween<this andy.

The result is obtained by computing the pairwiisee_elapsétime elapse” of each polyhedron sthis
with each polyhedron ig.

11.15.3.14 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::remove_space_dimensions (consariables_Set& to_be removed

Removes all the specified space dimensions.

Parameters:
to_be_removedrlhe set ofVariableobjects corresponding to the space dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if xthis is dimension-incompatible with one of thMariableobjects
contained ino_be_removed

11.15.3.15 templateitypename PH> void Parma_Polyhedra_Library::Polyhedra_Powersek PH
>::remove_higher_space_dimensions (dimension_typew_dimensioh

Removes the higher space dimensions so that the resulting space will have dinmewsialiimension

Exceptions:
std::invalid_argument Thrown if new_dimensions is greater than the space dimensiortbiis

11.15.3.16 templatetypename PH> template<typename Partial_Function> void Parma_-
Polyhedra_Library::Polyhedra_Powerset< PH >::map_space_dimensions (const Partial_Function
& pfunc)

Remaps the dimensions of the vector space according to a partial function.

See also Polyhedron::map_space_dimensions.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 121

11.15.4 Friends And Related Function Documentation
11.15.4.1 templatectypename PH> Widening_Function< PH > widen_fun_ref (void(PH::x)(const
PH &, unsigned x) wm) [related]

Wraps a widening method into a function object.

Parameters:
wm The widening method.

11.15.4.2 templatectypename PH> Limited_Widening_Function< PH > widen_fun_ref
(void(PH:: x)(const PH &, const Constraint_System &, unsigned) lwm, const Constraint_System &
c9 [related]

Wraps a limited widening method into a function object.

Parameters:
lwm The limited widening method.

cs The constraint system limiting the widening.

11.15.4.3 templatectypename PH> std::pair < PH, Polyhedra_Powerset: NNC_Polyhedron > >
linear_partition (const PH & p, const PH & q) [related]

Partitionsq with respect t@.

Let p and q be two polyhedra. The function returns an objectof type std::pair <PH,
Polyhedra_Powerset ~ <NNC_Polyhedron > > such that

o r.first is the intersection gb andq;
e r.second has the property that all its elements are pairwise disjoint and disjointfrom

e the union ofr.first with all the elements af.second givesq (i.e.,r is the representation of a
partition ofq).

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference

The base class for convex polyhedra.

Inherited by Parma_Polyhedra Library::C_Polyhedronand Parma_Polyhedra_Library::NNC_-
Polyhedron
Public Types

e enumDegenerate_Kin§l UNIVERSE EMPTY }

Kinds of degenerate polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 122

Public Member Functions
Member Functions that Do Not Modify the Polyhedron

e dimension_typepace_dimensiof) const
Returns the dimension of the vector space enclosinig

o dimension_typaffine_dimensiorf) const
Returng), if xthis is empty; otherwise, returns ttadfine dimensiownf xthis

e const Constraint_System &onstrainty) const
Returns the system of constraints.

e const Constraint_System &inimized_constraint§ const
Returns the system of constraints, with no redundant constraint.

e const Generator_Systemdeneratorg) const
Returns the system of generators.

e const Generator_System&inimized_generator§ const
Returns the system of generators, with no redundant generator.

e Poly Con_Relatiomelation_with(constConstraint&c) const
Returns the relations holding between the polyheditins and the constraint.

e Poly Gen_Relatiorelation_with(constGenerato&g) const
Returns the relations holding between the polyhecitiis and the generatog.

e boolis_empty() const
Returngtrue if and only if«this is an empty polyhedron.

e boolis_universe) const
Returnstrue if and only ifxthis is a universe polyhedron.

e boolis_topologically closeg) const
Returngtrue if and only ifxthis is a topologically closed subset of the vector space.

e boolis_disjoint_from(constPolyhedron&y) const
Returngtrue if and only if«this andy are disjoint.

e boolis_bounded) const
Returngtrue if and only ifxthis is a bounded polyhedron.

e boolbounds_from_abov&onstLinear Expressio&expr) const
Returngrue if and only ifexpr is bounded from above igthis

e boolbounds_from_belofconstLinear Expressio&expr) const
Returngtrue if and only ifexpr is bounded from below irthis

e bool maximize(constLinear_Expressio&expr, Coefficient&sup_n, Coefficient&sup_d, bool
&maximum) const

Returnstrue if and only ifxthis is not empty anéxpr is bounded from above ithis , in which
case the supremum value is computed.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 123

e bool maximize(constLinear_Expressio&expr, Coefficient&sup_n, Coefficient&sup_d, bool
&maximum, constGeneratosxconst pppoint) const

Returnstrue if and only ifxthis is not empty anéxpr is bounded from above ithis , in which
case the supremum value and a point whetpr reaches it are computed.

e bool minimize (constLinear_Expressio&expr, Coefficient&inf_n, Coefficient&inf_d, bool
&minimum) const

Returnstrue if and only ifxthis is not empty an@xpr is bounded from below irthis , in which
case the infimum value is computed.

e bool minimize (constLinear_Expressio&expr, Coefficient&inf_n, Coefficient&inf_d, bool
&minimum, constGeneratokxconst pppoint) const

Returnstrue if and only ifxthis is not empty an@xpr is bounded from below irthis , in which
case the infimum value and a point wherer reaches it are computed.

¢ bool containg(constPolyhedron&y) const
Returngrue if and only ifxthis containsy.

e boolstrictly_containgconstPolyhedron&y) const
Returngrue if and only ifxthis strictly containsy.

e templatectypename Box void shrink_bounding_box (Box &box, Complexity_Class
complexity=ANY_COMPLEXITY) const
Usesxthis to shrink a generic, interval-based bounding box.

e bool OK (bool check_not_empty=false) const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Polyhedron

e void add_constrainfconstConstraint&c)
Adds a copy of constrairt to the system of constraints athis (without minimizing the result).

e booladd_constraint_and_minimiZeonstConstraint&c)
Adds a copy of constrairt to the system of constraintsghis , minimizing the result.

¢ void add_generatdiconstGenerato&g)
Adds a copy of generatgr to the system of generatorssghis (without minimizing the result).

e booladd_generator_and_minimigeonstGenerato&g)
Adds a copy of generatgr to the system of generatorssahis , minimizing the result.

e void add_constraintéconst Constraint_System &cs)
Adds a copy of the constraints o3 to the system of constraints efhis (without minimizing the
result).

e void add_recycled_constrainf€onstraint_System &cs)
Adds the constraints ios to the system of constraintsehis (without minimizing the result).

e booladd_constraints_and_minimigeonst Constraint_System &cs)
Adds a copy of the constraints@s to the system of constraintsthis , minimizing the result.

e booladd_recycled_constraints_and_minimi{@enstraint_System &cs)
Adds the constraints ios to the system of constraintsghis , minimizing the result.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16

Parma_Polyhedra_Library::Polyhedron Class Reference 124

void add_generator&onst Generator_System &gs)
Adds a copy of the generatorsds to the system of generators«ghis (without minimizing the result).

void add_recycled_generatdiGenerator_System &gs)
Adds the generators igs to the system of generatorssghis (without minimizing the result).

booladd_generators_and_minimi@onst Generator_System &gs)
Adds a copy of the generatorsg@s to the system of generators:ghis , minimizing the result.

booladd_recycled_generators_and_mininm{@enerator_System &gs)
Adds the generators igs to the system of generators:ghis , minimizing the result.

void intersection_assigfconstPolyhedron&y)
Assigns tocthis the intersection ofthis andy. The result is not guaranteed to be minimized.

boolintersection_assign_and_minimi@nstPolyhedrony)
Assigns tocthis the intersection ofthis andy, minimizing the result.

void poly hull_assigr{constPolyhedrony)
Assigns tocthis the poly-hull of«this andy. The result is not guaranteed to be minimized.

boolpoly_hull_assign_and_minimideonstPolyhedrony)
Assigns tocthis the poly-hull of«this andy, minimizing the result.

void poly_difference_assigftonstPolyhedroniy)
Assigns torthis thepoly-differenceof xthis andy. The result is not guaranteed to be minimized.

void affine_image(Variable var, constLinear_ Expressiorn&expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns toxthis the affine imageof xthis under the function mapping variablear to the affine
expression specified lexpr anddenominator

void affine_preimagéVariable var, constLinear_Expressio&expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns torthis theaffine preimagef «xthis under the function mapping variablar to the affine
expression specified lexpr anddenominator

void generalized_affine_imag@/ariable var, const Relation_Symbol relsym, corishear_-
Expressior&expr, Coefficient_traits::const_reference denominator=Coefficient_one())
Assigns torthis the image ofthis ~ with respect to th@eneralized affine transfer functiomr’ <
XY wherex is the relation symbol encoded bglsym .

denominator ’

void generalized_affine_imageonstLinear_Expressio&lhs, const Relation_Symbol relsym,
constLinear_Expressio&rhs)

Assigns tathis the image ofthis with respect to thgeneralized affine transfer functidins’ > rhs,
wherex is the relation symbol encoded bgisym .

void time_elapse_assigronstPolyhedronty)
Assigns tocthis the result of computing thime-elapséetweenxthis andy.

void topological_closure_assidh
Assigns toxthis its topological closure.

void BHRZ03_widening_assigftonstPolyhedrom&y, unsigned«tp=0)
Assigns tocthis the result of computing thBHRZ03-widenindpetweerxthis andy.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 125

e void limited_BHRZ03_extrapolation_assigitonst Polyhedron&y, const Constraint_System
&cs, unsignedtp=0)
Improves the result of thBHRZ03-wideningomputation by also enforcing those constraintssnthat
are satisfied by all the points ethis

¢ void bounded BHRZ03_ extrapolation_assi@onst Polyhedron&y, const Constraint_System
&cs, unsignedtp=0)
Improves the result of thBHRZ03-wideningomputation by also enforcing those constraintssnthat
are satisfied by all the points ethis , plus all the constraints of the forshz < r and+z < r, with
r € Q, that are satisfied by all the points ethis

e void H79_widening_assig(tonstPolyhedron&y, unsignedxtp=0)
Assigns tocthis the result of computing thid79-wideningoetweenkthis andy.

e void limited_H79_extrapolation_assigoonstPolyhedror&y, const Constraint_System &cs, un-
signed«tp=0)
Improves the result of thd79-wideningcomputation by also enforcing those constraintssnthat are
satisfied by all the points efthis

¢ void bounded_H79_extrapolation_assi@onstPolyhedron&y, const Constraint_System &cs,
unsigned«tp=0)
Improves the result of thid79-wideningcomputation by also enforcing those constraintssnthat are
satisfied by all the points afthis , plus all the constraints of the foratz < r and+z < r, with
r € Q, that are satisfied by all the points ethis

Member Functions that May Modify the Dimension of the Vector Space

e void add_space_dimensions_and_emf{aichension_type m)
Addsmnew space dimensions and embeds the old polyhedron in the new vector space.

e void add_space_dimensions_and_projdahension_type m)
Addsmnew space dimensions to the polyhedron and does not embed it in the new vector space.

e void concatenate_assigoonstPolyhedronty)
Assigns tocthis theconcatenatiorof xthis andy, taken in this order.

e void remove_space_dimensioftonstVariables_Se&to_be_removed)
Removes all the specified dimensions from the vector space.

¢ void remove_higher_space_dimensi¢denension_type new_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension

o templatectypename Partial_Function void map_space_dimensiongonst Partial_Function
&pfunc)
Remaps the dimensions of the vector space according#otal function

¢ void expand_space_dimensi{variablevar, dimension_type m)
Createsmcopies of the space dimension correspondingao.

¢ void fold_space_dimensior{sonstVariables_Se&to be_ folded\Variablevar)
Folds the space dimensionstm be _folded intovar .

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 126

Miscellaneous Member Functions

e ~Polyhedron()
Destructor.

¢ void swap(Polyhedron&y)
Swapskthis with polyhedrory. (xthis andy can be dimension-incompatible.).

e memory_size_typetal_memory_in_byte§ const
Returns the total size in bytes of the memory occupiestiy .

e memory_size_typexternal_memory_in_byt&¥ const
Returns the size in bytes of the memory managedtiy .

Static Public Member Functions

e dimension_typenax_space_dimensidh
Returns the maximum space dimension all kind2obfhedroncan handle.

Protected Member Functions

e Polyhedron(Topology topol, dimension_type num_dimensioRsgenerate Kin&ind)
Builds a polyhedron having the specified properties.

e Polyhedron(constPolyhedroniy)

Ordinary copy-constructor.

e PolyhedronTopology topol, const Constraint_System &cs)
Builds a polyhedron from a system of constraints.

e PolyhedronTopology topol, Constraint_System &cs)
Builds a polyhedron recycling a system of constraints.

e PolyhedronTopology topol, const Generator_System &gs)
Builds a polyhedron from a system of generators.

¢ Polyhedron(Topology topol, Generator_System &gs)
Builds a polyhedron recycling a system of generators.

e templatectypename Box PolyhedronTopology topol, const Box &box)
Builds a polyhedron out of a generic, interval-based bounding box.

e Polyhedron& operator=constPolyhedroniy)
The assignment operatorthis andy can be dimension-incompatible.).

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 127

Related Functions
(Note that these are not member functions.)

e std::ostream 8operatok < (std::ostream &s, congtolyhedron&ph)
Output operator.

bool operator==constPolyhedror&x, constPolyhedronky)
Returngrue if and only ifx andy are the same polyhedron.

bool operator!=(constPolyhedrom&x, constPolyhedron&y)
Returngtrue if and only ifx andy are different polyhedra.

void swap(Parma_Polyhedra_Library::Polyhedr&r, Parma_Polyhedra_Library::Polyhedr&mp)

Specializestd::swap

templatectypename PB bool poly_hull_assign_if_exa¢PH &p, const PH &q)
If the poly-hull betweep andq is exact it is assigned tp.

11.16.1 Detailed Description

The base class for convex polyhedra.
An object of the clas®olyhedrorrepresents a convex polyhedron in the vector sfidtce

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
SectionRepresentations of Convex Polyhedaad it is always possible to obtain either representation. That

is, if we know the system of constraints, we can obtain from this the system of generators that define the
same polyhedron and vice versa. These systems can contain redundant members: in this case we say that
they are not in the minimal form. Most operators on polyhedra are provided with two implementations:
one of these, denotedoperator-name >_and_minimize , also enforces the minimization of the
representations, and returns the Boolean védise whenever the resulting polyhedron turns out to be
empty.

Two key attributes of any polyhedron are its topological kind (recording whether i€isRolyhedroror
anNNC_Polyhedrombject) and its space dimension (the dimension N of the enclosing vector space):

¢ all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

e most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see SeRimesentations of Convex
Polyhedry;

¢ the topology of a polyhedron cannot be changed; rather, there are constructors for each of the two
derived classes that will build a new polyhedron with the topology of that class from another poly-
hedron from either class and any topology;

¢ the only ways in which the space dimension of a polyhedron can be changed are:

— explicit calls to operators provided for that purpose;
— standard copy, assignment and swap operators.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 128

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedRSn again either closed or NNC.

In all the examples it is assumed that variableandy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a squak? jrgiven as a system of con-
straints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.nsert(ly >= 0);
cs.insert(y <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

Generator_System gs;
gs.insert(point(0*x + 0%y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
C_Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-stip, igiven as a
system of constraints:

Constraint_System cs;
cs.nsert(x >= 0);
cs.nsert(x - y <= 0);
cs.insert(x -y + 1 >= 0);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

Generator_System gs;
gs.insert(point(0*x + 0%y));
gs.insert(point(0*x + y));

gs.insert(ray(x - y));
C_Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to a half-plane by adding a single constraint
to the universe polyhedron R?:

C_Polyhedron ph(2);
ph.add_constraintly >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spac&? and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, Polyhedron:EMPTY);
ph.add_generator(point(0*x + 0%y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 129

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
point (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functemtd_space_dimensions_and_embed
C_Polyhedron ph(1);

ph.add_constraint(x == 2);
ph.add_space_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension sg&celhen we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singletgf2set R. After the last line
of code, the resulting polyhedron is

{(Z,y)T € R? ‘ ye]R}.

Example 5
The following code shows the use of the functemtd_space_dimensions_and_project
C_Polyhedron ph(1);

ph.add_constraint(x == 2);
ph.add_space_dimensions_and_project(1);

The first two lines of code are the same as in Example 4aflnt space_dimensions_and_-
embed. After the last line of code, the resulting polyhedron is the singleto@ (éED)T} C R2.

Example 6
The following code shows the use of the functaffine_image

C_Polyhedron ph(2, Polyhedron:EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
Linear_Expression coeff = x + 4;
ph.affine_image(x, coeff);

In this example the starting polyhedron is a squar®inthe considered variable isand the affine
expression is: + 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variabls x + y:

Linear_Expression coeff = x + vy;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line— y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expresgion

Linear_Expression coeff = vy;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functeffine_preimage

C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraintly >= 0);
ph.add_constraint(ly <= 3);
Linear_Expression coeff = x + 4;
ph.affine_preimage(x, coeff);

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 130

In this example the starting polyhedrorar and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation faris x + y

Linear_Expression coeff = x + vy;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the line+ y. Instead, if we do not use an invertible transformation for the
same variable, for example, the affine expressign

Linear_Expression coeff = vy;

the resulting polyhedron is a line that corresponds ta,thgis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functi@move_space_dimensions

Generator_System gs;

gs.insert(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);

set<Variable> to_be _removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_space_dimensions(to_be_removed);

The starting polyhedron is the singleton 4¢8,1,0,2)"} C R*, while the resulting polyhedron

is {(3,2)T} € R2. Be careful when removing space dimensiimsrementally since dimensions

are automatically renamed after each application ofrémove_space_dimensions operator,
unexpected results can be obtained. For instance, by using the following code we would obtain a
different result:

set<Variable> to_be removedl;
to_be_removedLl.insert(y);
ph.remove_space_dimensions(to_be_removed1l);
set<Variable> to_be_removed2;
to_be_removed2.insert(z);
ph.remove_space_dimensions(to_be_removed2);

In this case, the result is the polyhedr{)("B,O)T} C R?% when removing the set of dimensions
to_be removed2 we are actually removing variabte of the original polyhedron. For the same
reason, the operateemove_space_dimensions is not idempotent: removing twice the same
non-empty set of dimensions is never the same as removing them just once.

11.16.2 Member Enumeration Documentation

11.16.2.1 enunParma_Polyhedra_Library::Polyhedron::Degenerate_Kind

Kinds of degenerate polyhedra.

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 131

11.16.3 Constructor & Destructor Documentation
11.16.3.1 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topologytopol, dimension_type
num_dimensionsDegenerate_Kindkind) [protected]

Builds a polyhedron having the specified properties.

Parameters:
topol The topology of the polyhedron;

num_dimensionsThe number of dimensions of the vector space enclosing the polyhedron;
kind Specifies whether the universe or the empty polyhedron has to be built.

11.16.3.2 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, const
Constraint_System &cs) [protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the topology ots is incompatible withtopol

11.16.3.3 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, Constraint_-
System &cg [protected]

Builds a polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not decleoedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the topology ots is incompatible withtopol

11.16.3.4 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topologyopol, const Generator_-
System &g9) [protected]

Builds a polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 132

11.16.3.5 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, Generator_-
System &g9) [protected]

Builds a polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;
gs The system of generators defining the polyhedron. It is not declewedt because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if if the topology ofgs is incompatible withtopol , or if the system
of generators is not empty but has no points.

11.16.3.6 templatectypename Box> Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topol-
ogytopol, const Box & box) [protected]

Builds a polyhedron out of a generic, interval-based bounding box.

Parameters:
topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

Exceptions:
std::invalid_argument Thrown if box has intervals that are incompatible witipol

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

bool is_empty() const

returnstrue if and only if the bounding box describes the empty set. iBhempty() method will
always be called before the methods below. Howeves, #mpty() returnstrue , none of the functions
below will be called.

bool get_lower_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I the interval corresponding to theth space dimension. Ffis not bounded from below, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the lower boundary of
Iisclosed and is set false otherwisen andd are assigned the integet@andd such that the canonical
fractionn/d corresponds to the greatest lower bound ofThe fractionn/d is in canonical form if and
only if n andd have no common factors amds positive,0/1 being the unique representation for zero.

bool get_upper_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I the interval corresponding to tlketh space dimension. ffis not bounded from above, simply return
false . Otherwise, setlosed , n andd as follows:closed is set totrue if the the upper boundary of

Tisclosed and is set false otherwisen andd are assigned the integet@ndd such that the canonical

fractionn/d corresponds to the least upper bound of

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 133

11.16.4 Member Function Documentation

11.16.4.1 Poly_Con_RelationParma_Polyhedra_Library::Polyhedron::relation_with (const Con-
straint & c) const

Returns the relations holding between the polyheditbis and the constrairt.

Exceptions:
std::invalid_argument Thrown if xthis and constraint are dimension-incompatible.

11.16.4.2 Poly_Gen_RelationParma_Polyhedra_Library::Polyhedron::relation_with (const Gen-
erator & g) const

Returns the relations holding between the polyheditbis and the generata.

Exceptions:
std::invalid_argument Thrown if xthis and generatag are dimension-incompatible.

11.16.4.3 bool Parma_Polyhedra_Library::Polyhedron::is_disjoint_from (constPolyhedron &)
const

Returngrue if and only if «this andy are disjoint.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

11.16.4.4 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_above (constLinear_-
Expression& expr) const

Returngtrue if and only if expr is bounded from above irthis

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

11.16.4.5 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_below (const Linear_-
Expression& expr) const

Returngrue if and only if expr is bounded from below inthis

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

11.16.4.6 bool Parma_Polyhedra_Library::Polyhedron::maximize (constLinear_Expression &
expr, Coefficient& sup_n Coefficient& sup_d bool & maximum) const

Returnstrue if and only if xthis is not empty andxpr is bounded from above igthis , in which
case the supremum value is computed.

Parameters:
expr The linear expression to be maximized subjectttos ;

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 134

sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from abovdalse is returned andup _n, sup_d and
maximumare left untouched.

11.16.4.7 bool Parma_Polyhedra_Library::Polyhedron::maximize (constLinear Expression &
expr, Coefficient& sup_n Coefficient& sup_d bool & maximum constGenerator xxconstpppoini
const

Returnstrue if and only if xthis is not empty andxpr is bounded from above igthis , in which
case the supremum value and a point wheqgr reaches it are computed.

Parameters:
expr The linear expression to be maximized subjectttos ;

sup_n The numerator of the supremum value;
sup_d The denominator of the supremum value;
maximum true if and only if the supremum is also the maximum value;

pppoint When nonzero and maximization succeeds, a pointer to a point or closure pointaxpere
reaches its supremum value will be written at this address.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from abové&lse isreturned andup_n, sup_d , maximum
andpppoint are left untouched.

11.16.4.8 bool Parma_Polyhedra_Library::Polyhedron::minimize (constLinear_Expression &
expr, Coefficient& inf_n, Coefficient& inf_d, bool & minimum) const

Returnstrue if and only if xthis is not empty andxpr is bounded from below inthis , in which
case the infimum value is computed.

Parameters:
expr The linear expression to be minimized subjecttios ;

inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;
minimum true if and only if the infimum is also the minimum value.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If «this is empty orexpr is not bounded from belowalse is returned andnf n ,inf. d and
minimum are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 135

11.16.4.9 bool Parma_Polyhedra_Library::Polyhedron::minimize (constLinear_Expression &
expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum, const Generator xxconst pppoing
const

Returnstrue if and only if xthis is not empty aneéxpr is bounded from below irthis , in which
case the infimum value and a point whesg@r reaches it are computed.

Parameters:
expr The linear expression to be minimized subjecttiois ;

inf_n The numerator of the infimum value;
inf_d The denominator of the infimum value;
minimum true if and only if the infimum is also the minimum value;

pppoint When nonzero and minimization succeeds, a pointer to a point or closure pointexpere
reaches its infimum value will be written at this address.

Exceptions:
std::invalid_argument Thrown if expr andsxthis are dimension-incompatible.

If xthis is empty orexpr is not bounded from beloviglse isreturned anthf n ,inf_ d , minimum
andpppoint are left untouched.

11.16.4.10 bool Parma_Polyhedra_Library::Polyhedron::contains (congPolyhedron & y) const
Returngrue if and only if xthis containsy.
Exceptions:

std::iinvalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.16.4.11 bool Parma_Polyhedra_Library::Polyhedron::strictly _contains (consPolyhedron & y)
const

Returngrue if and only if xthis strictly containgy.
Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.16.4.12 templatetypename Box> void Parma_Polyhedra_Library::Polyhedron::shrink_-
bounding_box (Box & box, Complexity Classcomplexity= ANY_COMPLEXITYconst

Usesxthis to shrink a generic, interval-based bounding box.

Parameters:
box The bounding box to be shrunk;

complexity The complexity class of the algorithm to be used.

The template class Box must provide the following methods, whose return value, if any, is simply ignored.

set_empty()

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 136

causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to #1h space dimension witin/d, +o00) if closed is true
with (n/d, +o0) if closed isfalse

lower_upper_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to #wh space dimension witf-oco, n/d] if closed is true
with (—oo,n/d) if closed isfalse

The functionraise_lower_bound(k, closed, n, d) will be called at most once for each pos-
sible value fork and for all such calls the fraction/d will be in canonical form, that isp andd have

no common factors andlis positive,0/1 being the unique representation for zero. The same guarantee is
offered for the functiolower_upper_bound(k, closed, n, d)

11.16.4.13 bool Parma_Polyhedra_Library::Polyhedron::OK (bool check_not_empty= false)
const

Checks if all the invariants are satisfied.
Returns:

true if and only if xthis satisfies all the invariants and eithgveck_not_empty isfalse or
xthis is not empty.

Parameters:
check_not_emptytrue if and only if, in addition to checking the invariantghis must be checked
to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are writtetdaerr in case invariants are violated. This is
useful for the purpose of debugging the library.

11.16.4.14 void Parma_Polyhedra_Library::Polyhedron::add_constraint (cons€Constraint & c)
Adds a copy of constraint to the system of constraints ethis (without minimizing the result).
Exceptions:

std::invalid_argument Thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

11.16.4.15 bool Parma_Polyhedra_Library::Polyhedron::add_constraint_and_minimize (const
Constraint & c)

Adds a copy of constrairtt to the system of constraints efhis , minimizing the result.

Returns:
false if and only if the result is empty.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 137

Exceptions:
std::invalid_argument Thrown if xthis and constraint are topology-incompatible or dimension-
incompatible.

11.16.4.16 void Parma_Polyhedra_Library::Polyhedron::add_generator (consGenerator & Q)

Adds a copy of generatgy to the system of generators-ghis (without minimizing the result).

Exceptions:
std::invalid_argument Thrown if «this and generatog are topology-incompatible or dimension-
incompatible, or ifsthis is an empty polyhedron arglis not a point.

11.16.4.17 bool Parma_Polyhedra_Library::Polyhedron::add_generator_and_minimize (const
Generator & @)

Adds a copy of generatay to the system of generators gthis , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and generatog are topology-incompatible or dimension-
incompatible, or ifsthis is an empty polyhedron arglis not a point.

11.16.4.18 void Parma_Polyhedra_Library::Polyhedron::add_constraints (const Constraint_-
System &cs)

Adds a copy of the constraints@s to the system of constraints ethis (without minimizing the result).

Parameters:
cs Contains the constraints that will be added to the system of constraistisief .

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

11.16.4.19 void Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints (Constraint_-
System &c9)

Adds the constraints ios to the system of constraints efhis (without minimizing the result).

Parameters:
cs The constraint system that will be recycled, adding its constraints to the system of constraints of
«this

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.

Warning:
The only assumption that can be madeasnupon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 138

11.16.4.20 bool Parma_Polyhedra_Library::Polyhedron::add_constraints_and_minimize (const
Constraint_System &cs)

Adds a copy of the constraints @ to the system of constraints ethis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs Contains the constraints that will be added to the system of constraistisisf .

Exceptions:
std::invalid_argument Thrown if xthis and cs are topology-incompatible or dimension-
incompatible.
11.16.4.21 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints_and_-

minimize (Constraint_System &cs)
Adds the constraints ios to the system of constraints ethis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs The constraint system that will be recycled, adding its constraints to the system of constraints of

xthis

Exceptions:
std::iinvalid_argument Thrown if «this and cs are topology-incompatible or dimension-

incompatible.

Warning:
The only assumption that can be madeocsnupon successful or exceptional return is that it can be
safely destroyed.

11.16.4.22 void Parma_Polyhedra_Library::Polyhedron::add_generators (const Generator_-
System &Q9

Adds a copy of the generatorsds to the system of generatorsgthis (without minimizing the result).

Parameters:
gs Contains the generators that will be added to the system of generatdhgsof .

Exceptions:
std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or ifxthis is empty and the system of generatgss is not empty, but has no
points.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 139

11.16.4.23 void Parma_Polyhedra_Library::Polyhedron::add_recycled_generators (Generator_-
System &Qg9)

Adds the generators igs to the system of generatorsghis (without minimizing the result).

Parameters:
gs The generator system that will be recycled, adding its generators to the system of generators of
xthis

Exceptions:
std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or ifxthis is empty and the system of generatgss is not empty, but has no
points.

Warning:
The only assumption that can be madegsnupon successful or exceptional return is that it can be
safely destroyed.

11.16.4.24 bool Parma_Polyhedra_Library::Polyhedron::add_generators_and_minimize (const
Generator_System &gs)

Adds a copy of the generatorsds to the system of generators-ghis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs Contains the generators that will be added to the system of generatdhssof .

Exceptions:
std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or ifsthis is empty and the the system of generatgsss not empty, but has no
points.

11.16.4.25 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_generators_and_minimize
(Generator_System &g9)

Adds the generators igs to the system of generatorsghis , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs The generator system that will be recycled, adding its generators to the system of generators of
xthis

Exceptions:
std::invalid_argument Thrown if xthis and gs are topology-incompatible or dimension-
incompatible, or ifsthis is empty and the the system of generatgsss not empty, but has no
points.

Warning:
The only assumption that can be madegsnupon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 140

11.16.4.26 void Parma_Polyhedra_Library::Polyhedron::intersection_assign (conftolyhedron &
y)
Assigns toxthis the intersection ofthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::iinvalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.
11.16.4.27 bool Parma_Polyhedra_Library::Polyhedron::intersection_assign_and_minimize

(constPolyhedron &)

Assigns tokthis the intersection ofthis andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.16.4.28 void Parma_Polyhedra_Library::Polyhedron::poly _hull_assign (cong®olyhedron &)

Assigns tokthis the poly-hull ofxthis andy. The result is not guaranteed to be minimized.

Exceptions:
std::iinvalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.16.4.29 bool Parma_Polyhedra_Library::Polyhedron::poly_hull_assign_and_minimize (const
Polyhedron & y)

Assigns toxthis the poly-hull of«this andy, minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.16.4.30 void Parma_Polyhedra_Library::Polyhedron::poly_difference_assign (consPolyhe-
dron & y)

Assigns toxthis the poly-differenceof «this andy. The result is not guaranteed to be minimized.
Exceptions:

std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 141

11.16.4.31 void Parma_Polyhedra_Library::Polyhedron::affine_image \ariable var, const
Linear_Expression & expr, Coefficient_traits::const_referencedenominator = Coefficient_-
one())

Assigns toxthis the affine imageof «this under the function mapping variablar to the affine
expression specified lBxpr anddenominator

Parameters:
var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr andxthis are dimension-
incompatible or ifvar is not a space dimension ethis

11.16.4.32 void Parma_Polyhedra_Library::Polyhedron::affine_preimage \ariable var, const
Linear_Expression & expr, Coefficient traits::const_referencedenominator = Coefficient_-
one())

Assigns toxthis the affine preimageof «this under the function mapping variabl@r to the affine
expression specified xpr anddenominator

Parameters:
var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;
denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr andxthis are dimension-
incompatible or ifvar is not a space dimension ethis

11.16.4.33 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_imagevériable var,
const Relation_Symbolrelsym constLinear_Expression& expr, Coefficient_traits::const_reference
denominator= Coefficient_one())

Assigns toxthis the image of«this with respect to theyeneralized affine transfer functioar’ <
Toroa——, wheren< is the relation symbol encoded bgisym .
Parameters:

var The left hand side variable of the generalized affine transfer function;

relsym The relation symbol;
expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or ifexpr andxthis are dimension-
incompatible or ifvar is not a space dimension ethis or if xthis is a C_Polyhedron
andrelsym is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 142

11.16.4.34 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (const
Linear_Expression& lhs, const Relation_Symborelsym constLinear Expression& rhs)

Assigns tosthis the image ofithis with respect to thgeneralized affine transfer functidins’ > rhs,
wherex is the relation symbol encoded bgisym .

Parameters:
Ihs The left hand side affine expression;

relsym The relation symbol;
rhs The right hand side affine expression.

Exceptions:
std::invalid_argument Thrown if xthis is dimension-incompatible witlns orrhs or if «xthis is
aC_Polyhedrorandrelsym is a strict relation symbol.

11.16.4.35 void Parma_Polyhedra_Library::Polyhedron::time_elapse_assign (conBblyhedron &
y)
Assigns toxthis the result of computing thiéme-elapsédetweenxthis andy.

Exceptions:
std::iinvalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.16.4.36 void Parma_Polyhedra_Library::Polyhedron::BHRZ03_ widening_assign (congPoly-
hedron & y, unsignedx tp = 0)

Assigns toxthis the result of computing thBHRZ03-wideningbetweenxthis andy.

Parameters:
y A polyhedron thatustbe contained irthis ;
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::iinvalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.

11.16.4.37 void Parma_Polyhedra_Library::Polyhedron::limited_BHRZ03_extrapolation_assign
(constPolyhedron & y, const Constraint_System &cs unsignedx tp = 0)

Improves the result of thBHRZ03-wideningcomputation by also enforcing those constraintssnthat
are satisfied by all the points ethis

Parameters:
y A polyhedron thatnustbe contained irthis ;
cs The system of constraints used to improve the widened polyhedron;
tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 143

11.16.4.38 void Parma_Polyhedra_Library::Polyhedron::bounded_BHRZ03_extrapolation_-
assign (consPolyhedron & y, const Constraint_System &cs, unsignedsx tp = 0)

Improves the result of thBHRZ03-wideningcomputation by also enforcing those constraintssnthat
are satisfied by all the points ethis , plus all the constraints of the fortaz < r and+x < r, with
r € Q, that are satisfied by all the points:ahis

Parameters:
y A polyhedron thatnustbe contained ixthis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if «this , y and cs are topology-incompatible or dimension-
incompatible.

11.16.4.39 void Parma_Polyhedra_Library::Polyhedron::H79_ widening_assign (contolyhedron
& vy, unsignedx tp = 0)

Assigns toxthis the result of computing thid79-wideningbetweenx<this andy.

Parameters:
y A polyhedron thatnustbe contained irthis ;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if xthis and y are topology-incompatible or dimension-
incompatible.
11.16.4.40 void Parma_Polyhedra_Library::Polyhedron::limited_H79_extrapolation_assign

(constPolyhedron & y, const Constraint_System &cs unsignedx tp = 0)

Improves the result of thel79-wideningcomputation by also enforcing those constraintssnthat are
satisfied by all the points afthis

Parameters:
y A polyhedron thatnustbe contained inthis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 144

11.16.4.41 void Parma_Polyhedra_Library::Polyhedron::bounded_H79_extrapolation_assign
(constPolyhedron & y, const Constraint_System &cs unsignedx tp = 0)

Improves the result of thel79-wideningcomputation by also enforcing those constraintssnthat are
satisfied by all the points afthis , plus all the constraints of the forfaz < r and+x < r, withr € Q,
that are satisfied by all the points ghis

Parameters:
y A polyhedron thatnustbe contained inthis ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokenglelay technique).

Exceptions:
std::invalid_argument Thrown if xthis , y and cs are topology-incompatible or dimension-
incompatible.

11.16.4.42 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_embed
(dimension_typem)

Addsmnew space dimensions and embeds the old polyhedron in the new vector space.

Parameters:
m The number of dimensions to add.

Exceptions:
std::length_error Thrown if addingmnew space dimensions would cause the vector space to exceed
dimensionrmax_space_dimension()

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are not
constrained. For instance, when starting from the polyhe@r@anR? and adding a third space dimension,

the result will be the polyhedron

{(:c,y,z)T eR3 ‘ (z,y)T € 73}.

11.16.4.43 void Parma_Polyhedra_Library::Polyhedron:;:add_space_dimensions_and_project
(dimension_typem)

Addsmnew space dimensions to the polyhedron and does not embed it in the new vector space.

Parameters:
m The number of space dimensions to add.

Exceptions:
std::length_error Thrown if addingmnew space dimensions would cause the vector space to exceed
dimensionmax_space_dimension()

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are all

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 145

constrained to be equal to 0. For instance, when starting from the polyh®dfoiR? and adding a third
space dimension, the result will be the polyhedron

{(z,9,0)" e R? ‘ (z,y)" € P}.

11.16.4.44 void Parma_Polyhedra_Library::Polyhedron::.concatenate_assign (conBblyhedron &
y)

Assigns tokthis the concatenatiowf xthis andy, taken in this order.

Exceptions:
std::invalid_argument Thrown if xthis andy are topology-incompatible.

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension()

11.16.4.45 void Parma_Polyhedra_Library::Polyhedron::remove_space_dimensions (const
Variables_Set& to_be removed

Removes all the specified dimensions from the vector space.

Parameters:
to_be_removedlhe set ofVariableobjects corresponding to the space dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if xthis is dimension-incompatible with one of thMariableobjects
contained irto_be _removed

11.16.4.46 void Parma_Polyhedra_Library::Polyhedron::remove_higher_space_dimensions
(dimension_typenew_dimensioh

Removes the higher dimensions of the vector space so that the resulting space will have dimamsion
dimension

Exceptions:
std::invalid_argument Thrown if new_dimensions s greater than the space dimensiortbiis

11.16.4.47 templatetypename Partial_Function> void Parma_Polyhedra_-
Library::Polyhedron::map_space_dimensions (const Partial_Function &pfunc)

Remaps the dimensions of the vector space accordingaotil function

Parameters:
pfunc The partial function specifying the destiny of each space dimension.

The template class Partial_Function must provide the following methods.

bool has_empty_codomain() const

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 146

returnstrue if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). Théias_empty codomain() method will always be called before the methods below.
However, ifhas_empty codomain() returnstrue , none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. mékein_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function ahde the value of . If f is defined ink, then f (k) is assigned to
j andtrue is returned. Iff is undefined ink, thenfalse is returned. This method is called at mast
times, wheren is the dimension of the vector space enclosing the polyhedron.

The result is undefined {fifunc does not encode a partial function with the properties described in the
specification of the mapping operator

11.16.4.48 void Parma_Polyhedra_Library::Polyhedron::expand_space_dimensiovgriable var,
dimension_typem)

Createsncopies of the space dimension correspondinggto.

Parameters:
var The variable corresponding to the space dimension to be replicated;

m The number of replica to be created.

Exceptions:
std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if addingmnew space dimensions would cause the vector space to exceed
dimensionrmax_space_dimension()

If xthis has space dimension with n > 0, andvar has space dimensidh < n, then thek-th space
dimension isexpandedo mnew space dimensiongn + 1,...,n+m — 1.

11.16.4.49 void Parma_Polyhedra_Library::Polyhedron::fold_space_dimensions (const
Variables_Set& to_be_foldedVariable var)

Folds the space dimensionstm be _folded intovar .

Parameters:
to_be_foldedThe set ofVariableobjects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:
std::invalid_argument Thrown if xthis is dimension-incompatible witkar or with one of the
Variableobjects contained ito_be folded . Also thrown ifvar is contained irto_be_-
folded

If «this has space dimension with n > 0, var has space dimensidn< n,to_be folded is a set
of variables whose maximum space dimension is also less than or equalnidvar is not a member of
to_be folded , then the space dimensions corresponding to variables e _folded — arefolded
into thek-th space dimension.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Powerset CS > Class Template Reference 147

11.16.4.50 void Parma_Polyhedra_Library::Polyhedron::swap Polyhedron &)

Swapsx«this with polyhedrony. (xthis andy can be dimension-incompatible.).

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible.

11.16.5 Friends And Related Function Documentation

11.16.5.1 std::ostream & operatok < (std::ostream & s, constPolyhedron& ph) [related]
Output operator.

Writes a textual representation ph ons: false s written if ph is an empty polyhedronyue is
written if ph is a universe polyhedron; a minimized system of constraints defpting written otherwise,

all constraints in one row separated by ", ".
11.16.5.2 bool operator== (consPolyhedron & x, constPolyhedron& y) [related]
Returngrue if and only if x andy are the same polyhedron.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
false is returned.

11.16.5.3 bool operator!= (consPolyhedron & X, constPolyhedron& y) [related]
Returngrue if and only if x andy are different polyhedra.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
true is returned.

11.17 Parma_Polyhedra_Library::Powerset CS > Class Template Reference

The powerset construction on constraint systems.

Public Member Functions

e const_iteratobegin() const
A const_iterator pointing to the first element in the sequence.

e const_iteratoend() const
The past-the-end const_iterator.

e void omega_reduc@ const
Erase from the sequence of disjuncts all the non-maximal elements.

Constructors and Destructor

e Powersef)
o Powerse{constPowersety)

Copy constructor.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Powerset CS > Class Template Reference 148

e Powerse{const CS &d)
If d is not bottom, builds a powerset containing odlyBuilds the empty powerset otherwise.

o ~Powerset)
Destructor.

Member Functions that Do Not Modify the Powerset Element

e bool definitely_entail{constPowersety) const

Returnstrue if «this definitely entails/. Returnsfalse if «this may not entaily (i.e., if xthis
does not entaiy or if entailment could not be decided).

boolis_top() const

Returndrue if and only ifxthis is the top element of the powerset constraint system (i.e., it represents
the universe).

boolis_bottom() const

Returnstrue if and only if xthis is the bottom element of the powerset constraint system (i.e., it
represents the empty set).

memory_size_typeotal_memory_in_byte§ const
Returns a lower bound to the total size in bytes of the memory occupigdiiby .

memory_size_typexternal_memory_in_bytg¥ const
Returns a lower bound to the size in bytes of the memory managetiby .

bool OK (bool disallow_bottom=false) const
Checks if all the invariants are satisfied.

Member Functions that May Modify the Powerset Element

e Powerse& operator5constPowersety)
The assignment operator.

¢ void swap(Powerse&y)
Swapskthis withy.

e void add_disjunc{const CS &d)
Adds toxthis the disjuncd.

e void least_upper_bound_assifponstPowersety)
Assigns tocthis the least upper bound ethis andy.

e void upper_bound_assigoeonstPowersety)
Assigns tocthis an upper bound ofthis andy.

e void meet_assigliconstPowersety)
Assigns torthis the meet okthis andy.

e void collapsg()

If xthis is not empty (i.e., it is not the bottom element), it is reduced to a singleton obtained by comput-
ing an upper-bound of all the disjuncts.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Powerset CS > Class Template Reference 149

Protected Types

e typedef std::lisk CS> Sequence
A powerset is implemented as a sequence of elements.

Protected Member Functions

e boolis_omega_reducgg const
Returngtrue if and only ifxthis does not contain non-maximal elements.

¢ void collapse(unsigned max_disjuncts)

Upon return, xthis will contain max_disjuncts elements at most, by replacing all the exceeding
disjuncts, if any, with their upper-bound.

e templatectypename Binary_Operator_Assigrvoid pairwise_apply_assigfconst Powerset&y,
Binary_Operator_Assign op_assign)

Assigns tocthis the result of applyingp_assign pairwise to the elements ithis andy.

Static Protected Member Functions

e void add_non_bottom_disjun¢Bequenc&s, const CS &d, iterator &first, iterator last)
Adds toxthis the disjuncd, assumingl is not the bottom element and ensuring partial omega-reduction.

e void add_non_bottom_disjun¢Bequenc&s, const CS &d)
Adds toxthis the disjunctd, assumingl is not the bottom element.

Protected Attributes

e Sequencsequence
The sequence container holding powerset's elements.

e boolreduced
If true , xthis is omega-reduced.

Related Functions
(Note that these are not member functions.)

e booloperator==constPowerset CS> &x, constPowerset CS> &y)
Returngrue if and only ifx andy are equivalent.

e booloperator!=constPowerset. CS > &x, constPowerset CS > &y)
Returngrue if and only ifx andy are not equivalent.

e std::ostream Soperatok < (std::ostream &s, congtowerset CS > &x)

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Powerset CS > Class Template Reference 150

Output operator.

e void swap(Parma_Polyhedra_Library::PowersdES> &x, Parma_Polyhedra_Library::Powerset
CS> &y)

Specializestd::swap

11.17.1 Detailed Description
template<typename CS> class Parma_Polyhedra_Library::Powerset CS >

The powerset construction on constraint systems.

This class offers a generic implementatiorpofverset constraint systeras defined ifBag98] See also
the description in Sectiohhe Powerset Construction

11.17.2 Member Typedef Documentation

11.17.2.1 templatectypename CS> typedef std::list<CS> Parma_Polyhedra_Library::Powerset<
CS >::Sequence [protected]

A powerset is implemented as a sequence of elements.

The particular sequence employed must support efficient deletion in any position and efficient back inser-
tion.

11.17.3 Constructor & Destructor Documentation

11.17.3.1 templatectypename CS> Parma_Polyhedra_Library::Powerset< CS >:: Powerset()

Default constructor: builds the bottom of the powerset constraint system (i.e., the empty powerset).

11.17.4 Member Function Documentation

11.17.4.1 templatectypename CS> void Parma_Polyhedra_Library::Powerset< CS >::upper_-
bound_assign (consPowersek CS > &)

Assigns toxthis an upper bound ofthis andy.

The result will be the least upper bound«alfiis andy.

11.17.4.2 templatectypename CS> void Parma_Polyhedra_Library::Powerset< CS >:add_-
non_bottom_disjunct (Sequence& s, const CS & d, iterator & first, iterator last) [static,
protected]

Adds toxthis the disjuncd, assumingl is not the bottom element and ensuring partial omega-reduction.

If d is not the bottom element and is not redundant with respect to the elements in positions between
first andlast ,adds tosthis the disjuncd, erasing all the elements in the above mentioned positions
that are made omega-redundant by the additiash of

11.17.4.3 templatectypename CS> template<typename Binary_Operator_Assign> void Parma_-
Polyhedra_Library::Powerset< CS >::pairwise_apply_assign (consPowersek CS> & y, Binary_-
Operator_Assignop_assigh [protected]

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.18 Parma_Polyhedra_Library::Variable Class Reference 151

Assigns toxthis the result of applyingp_assign pairwise to the elements ifsthis andy.

The elements of the powerset result are obtained by appbpngssign to each pair of elements whose
components are drawn frosthis andy, respectively.

11.18 Parma_Polyhedra_Library::Variable Class Reference

A dimension of the vector space.

Public Types

e typedef voidoutput_function_typéstd::ostream &s, consfariable&v)
Type of output functions.

Public Member Functions

e Variable(dimension_type i)
Builds the variable corresponding to the Cartesian axis of index

dimension_typéd () const
Returns the index of the Cartesian axis associated to the variable.

dimension_typspace_dimensiof) const
Returns the dimension of the vector space enclosinig

e memory_size_typ#tal_memory_in_byte§ const
Returns the total size in bytes of the memory occupiesttiy .

e memory_size_typexternal_memory_in_byt€¥ const
Returns the size in bytes of the memory managedtiy .

bool OK () const
Checks if all the invariants are satisfied.

Static Public Member Functions

e dimension_typenax_space_dimensidh
Returns the maximum space dimensioragablecan handle.

e void set_output_functiofoutput_function_typep)
Sets the output function to be used for printWagiable objects.

e output_function_type get _output_functiorf)
Returns the pointer to the current output function.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.18 Parma_Polyhedra_Library::Variable Class Reference 152

Related Functions

(Note that these are not member functions.)

e std::ostream &operatox < (std::ostream &s, consfariable&v)
Output operator.

e boolless(Variablev, Variablew)
Defines a total ordering on variables.

Classes

e structCompare
Binary predicate defining the total ordering on variables.

11.18.1 Detailed Description

A dimension of the vector space.

An object of the clasd/ariable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as base blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0). The space dimension of a variable is the dimension of the vector space made by all the
Cartesian axes having an index less than or equal to that of the considered variable; thus, if a variable has
indexi, its space dimension is+ 1.

Note that the “meaning” of an object of the cla¢ariableis completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressiat ande2 are equivalent, since the two variablesndz

denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
Linear_Expression el
Linear_Expression e2

X +Yy,
y + 2z

11.18.2 Constructor & Destructor Documentation

11.18.2.1 Parma_Polyhedra_Library::Variable::Variable (dimension_typei) [explicit]
Builds the variable corresponding to the Cartesian axis of index
Exceptions:

std::length_error Thrown if thei+1 exceedd/ariable::max_space_dimension()

11.18.3 Member Function Documentation

11.18.3.1 dimension_type Parma_Polyhedra_Library::Variable::space_dimension () const
Returns the dimension of the vector space enclosihip

The returned value isl() +1.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.19 Parma_Polyhedra_Library::Variable::Compare Struct Reference 153

11.19 Parma_Polyhedra_Library::Variable::Compare Struct Reference

Binary predicate defining the total ordering on variables.

Public Member Functions

e booloperator()Variablex, Variabley) const
Returngrue if and only ifx comes beforg.

11.19.1 Detailed Description

Binary predicate defining the total ordering on variables.

12 PPL Page Documentation

12.1 GNU General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.1 GNU General Public License 154

its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification”.) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

e a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

e b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

¢ C)Ifthe modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.1 GNU General Public License 155

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

e a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

e b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

e c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7.1f, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.1 GNU General Public License 156

patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.1 GNU General Public License 157

BILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY:; for details
type ‘show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commandshow w’ and'show ¢’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something othshthanw’ and
‘show ¢’ ;they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 158

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this

License.

12.2 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring

permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 159

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation

to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications”, "Endorsements"”,
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may

have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 160

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

Itis requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

e A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

e B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

e C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
e D. Preserve all the copyright notices of the Document.
e E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

¢ F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

e G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

e H. Include an unaltered copy of this License.

e |. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

e J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 161

K. For any section Entitled "Acknowledgements" or "Dedications"”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements"” or to conflict in title with any
Invariant Section.

e O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties—for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a uniqgue number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications”. You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 162

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements”, "Dedications”, or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. Bgg//www.gnu.org/copyleft/

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents To use this License in a document you have written,
include a copy of the License in the document and put the following copyright and license notices just after
the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/
http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 163

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index

/home/roberto/ppl-0.7/ppl-0.7/interfaces/ Direc-
tory Referencey0

/home/roberto/ppl-0.7/ppl-0.7/interfaces/C/ Di-
rectory Reference§9

/home/roberto/ppl-0.7/ppl-0.7/src/
Reference?0

Directory

add_constraint
Parma_Polyhedra_Library::Determinate,
91
Parma_Polyhedra_Library::Polyhedra_-
Powerset117
Parma_Polyhedra_Library::Polyhedron,
136
add_constraint_and_minimize
Parma_Polyhedra_Library::Polyhedra_-
Powerset117
Parma_Polyhedra_Library::Polyhedron,
136
add_constraints
Parma_Polyhedra_Library::Determinate,
92
Parma_Polyhedra_Library::Polyhedra_-
Powerset118
Parma_Polyhedra_Library::Polyhedron,
137
add_constraints_and_minimize
Parma_Polyhedra_Library::Polyhedra_-
Powerset118
Parma_Polyhedra_Library::Polyhedron,
137
add_generator
Parma_Polyhedra_Library::Polyhedron,
137
add_generator_and_minimize
Parma_Polyhedra_Library::Polyhedron,
137
add_generators
Parma_Polyhedra_Library::Polyhedron,
138
add_generators_and_minimize
Parma_Polyhedra_Library::Polyhedron,
139
add_non_bottom_disjunct
Parma_Polyhedra_Library::Powerses0
add_recycled_constraints
Parma_Polyhedra_Library::Polyhedron,
137
add_recycled_constraints_and_minimize
Parma_Polyhedra_Library::Polyhedron,
138

add_recycled_generators
Parma_Polyhedra_Library::Polyhedron,
138
add_recycled_generators_and_minimize
Parma_Polyhedra_Library::Polyhedron,
139
add_space_dimensions_and_embed
Parma_Polyhedra_Library::Polyhedron,
144
add_space_dimensions_and_project
Parma_Polyhedra_Library::Polyhedron,
144
affine_image
Parma_Polyhedra_Library::Polyhedron,
140
affine_preimage
Parma_Polyhedra_Library::Polyhedron,
141

banner
Parma_Polyhedra_Library4
BGP99_extrapolation_assign
Parma_Polyhedra_Library::Polyhedra_-
Powerset118
BHRZ03_widening_assign
Parma_Polyhedra_Library::Polyhedron,
142
BHZ03_widening_assign
Parma_Polyhedra_Library::Polyhedra_-
Powerset119
bounded_BHRZO03_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron,
142
bounded_H79_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron,
143
bounds_from_above
Parma_Polyhedra_Library::Polyhedron,
133
bounds_from_below
Parma_Polyhedra_Library::Polyhedron,
133

C Language Interfac2

C_Polyhedron
Parma_Polyhedra_Library::C_Polyhedron,

78,79

CLOSURE_POINT
Parma_Polyhedra_Library::Generat@r,

closure_point
Parma_Polyhedra_Library::Generat®3,

INDEX

165

Coefficient
Parma_Polyhedra_Library3
coefficient
Parma_Polyhedra_Library:
Parma_Polyhedra_Library:
compare
Parma_Polyhedra_Library:
Certificate,76
Parma_Polyhedra_Library:
Certificate 99
concatenate_assign
Parma_Polyhedra_Library:
Powerset120
Parma_Polyhedra_Library:
145
contains
Parma_Polyhedra_Library:
135

Degenerate_Kind
Parma_Polyhedra_Library:
130
Determinate
Parma_Polyhedra_Library:
91
divisor
Parma_Polyhedra_Library:

EMPTY
Parma_Polyhedra_Library:
130
EQUALITY
Parma_Polyhedra_Library:
expand_space_dimension
Parma_Polyhedra_Library:
146

fold_space_dimensions
Parma_Polyhedra_Library:
146

generalized_affine_image
Parma_Polyhedra_Library:
141
geometrically_covers
Parma_Polyhedra_Library:
Powerset117
geometrically_equals
Parma_Polyhedra_Library:
Powerset117
GMP_Integer
Parma_Polyhedra_Library3

H79_widening_assign

:Constrai@8
:Generates,

‘BHRZ03_-

‘H79_-

:Polyhedra_-

:Polyhedron,

:Polyhedron,

:Polyhedron,

:Determinate,

:Generates,

:Polyhedron,

:Constrai@8

:Polyhedron,

:Polyhedron,

:Polyhedron,

:Polyhedra_-

:Polyhedra_-

Parma_Polyhedra_Library::Polyhedron,
143

intersection_assign
Parma_Polyhedra_Library::Polyhedra_-
Powerset119
Parma_Polyhedra_Library::Polyhedron,
139
intersection_assign_and_minimize
Parma_Polyhedra_Library::Polyhedron,
140
is_disjoint_from
Parma_Polyhedra_Library::Polyhedron,
133

Library Defines22
limited BHRZ03_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron,
142
limited_H79_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron,
143
LINE
Parma_Polyhedra_Library::Generator,
line
Parma_Polyhedra_Library::Generator,
Linear_Expression
Parma_Polyhedra_Library::Linear_-
Expression103
linear_partition
Parma_Polyhedra_Library::Polyhedra_-
Powerset121

map_space_dimensions
Parma_Polyhedra_Library::Determinate,
92
Parma_Polyhedra_Library::Polyhedra_-
Powerset120
Parma_Polyhedra_Library::Polyhedron,
145
maximize
Parma_Polyhedra_Library::Polyhedron,
133 134
minimize
Parma_Polyhedra_Library::Polyhedron,
134

NNC_Polyhedron
Parma_Polyhedra_Library::NNC_-
Polyhedron110 111
NONSTRICT_INEQUALITY
Parma_Polyhedra_Library::Constraig8

OK

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX 166
Parma_Polyhedra_Library::Polyhedron, remove_higher_space_dimensiod2,
136 remove_space_dimensioRs,
operator!= Parma_Polyhedra_Library::Generator
Parma_Polyhedra_Library::Determinate, CLOSURE_POINT97
93 LINE, 97
Parma_Polyhedra_Library::Polyhedron, POINT, 97
147 RAY, 97
operator+= Parma_Polyhedra_Library::Generat®g,
Parma_Polyhedra_Library::Linear_- closure_point98
Expression104 coefficient,98
operator-= divisor, 98
Parma_Polyhedra_Library::Linear_- line, 97
Expression104 point, 98
operatok < ray, 97
Parma_Polyhedra_Library::Polyhedron, Type,97
147 Parma_Polyhedra_Library::H79_Certifica®8,
operator== compare99
Parma_Polyhedra_Library::Determinate, Parma_Polyhedra_Library::H79_-
93 Certificate::Compare,00
Parma_Polyhedra_Library::Polyhedron, Parma_Polyhedra_Library::IO_Operatord,
147 Parma_Polyhedra_Library::Linear_Expression,

pairwise_apply_assign
Parma_Polyhedra_Library::PowersEsQ
pairwise_reduce
Parma_Polyhedra_Library::Polyhedra_-
Powerset118
Parma_Polyhedra_Library0D
banner,74
Coefficient,73
GMP_Integer,/3
Parma_Polyhedra_Library::BHRZ03 -
Certificate,75
compare,/6
Parma_Polyhedra_Library::BHRZ03 -
Certificate::Compare/,6
Parma_Polyhedra_Library::C_Polyhedr@id,
C_Polyhedrony8, 79
Parma_Polyhedra_Library::Checked_Number,
79
Parma_Polyhedra_Library::Constraint
EQUALITY, 88
NONSTRICT_INEQUALITY, 88
STRICT_INEQUALITY, 88
Parma_Polyhedra_Library::Constraidt,
coefficient,88
Type, 88
Parma_Polyhedra_Library::Determinad8,
add_constrain91
add_constraint92
Determinate91
map_space_dimensiors
operator!=93
operator==93

100
Linear_Expressiorn 03
operator+=104
operator-=104
Parma_Polyhedra_Library::Native_Integed4
Parma_Polyhedra_Library::NNC_Polyhedron,
109
NNC_Polyhedron110, 111
Parma_Polyhedra_Library::Poly_Con_Relation,
111
Parma_Polyhedra_Library::Poly_Gen_Relation,
112
Parma_Polyhedra_Library::Polyhedra_-
Powerset113
add_constraintl 17
add_constraint_and_minimiz&]l7
add_constraintg, 18
add_constraints_and_minimizel8
BGP99_extrapolation_assighl 8
BHZ03_widening_assigri,19
concatenate_assigh?20
geometrically_covers,17
geometrically_equald,17
intersection_assigri,19
linear_partition,121
map_space_dimensiori0
pairwise_reducel 18
poly_difference_assigri,19
Polyhedra_Powerset16 117
remove_higher_space_dimensioha)
remove_space_dimensiord0
time_elapse_assigh20
widen_fun_ref121

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX 167
Parma_Polyhedra_Library::Polyhedron remove_space_dimensiorigl5
EMPTY, 130 shrink_bounding_box, 35
UNIVERSE, 130 strictly_contains135
Parma_Polyhedra_Library::Polyhedrd21 swap,146
add_constraint] 36 time_elapse_assigh42
add_constraint_and_minimiz&36 Parma_Polyhedra_Library::Powersbt/
add_constraintg,37 add_non_bottom_disjunct50
add_constraints_and_minimiZE37 pairwise_apply_assigns0
add_generatod,37 Powerset150
add_generator_and_minimiZ&37 Sequencel50
add_generatord,38 upper_bound_assigh50
add_generators_and_minimiZe9 Parma_Polyhedra_Library::Variable51
add_recycled_constraints37 space_dimensiori,52
add_recycled_constraints_and_minimize, Variable,152
138 Parma_Polyhedra_Library::Variable::Compare,
add_recycled_generatofs38 153
add_recycled_generators_and_minimize, POINT

139
add_space_dimensions_and_emlié&d,
add_space_dimensions_and_proj&dy
affine_image140
affine_preimagel41
BHRZ03_widening_assigri42
bounded_BHRZ03_extrapolation_assign,

142
bounded_H79_ extrapolation_assi@r3
bounds_from_abové,33
bounds_from_belowl 33
concatenate_assigi¥5
contains 135
Degenerate_Kindl.30
expand_space_dimensidil6
fold_space_dimension46
generalized_affine_imag&41
H79_widening_assigri43
intersection_assigr,39
intersection_assign_and_minimiZ&l0
is_disjoint_from,133
limited BHRZ03_extrapolation_assign,

142
limited_H79_extrapolation_assigi¥3
map_space_dimensioris}s
maximize,133 134
minimize,134
OK, 136
operator!=,147
operatok <, 147
operator==147
poly_difference_assigri40
poly hull_assign140
poly_hull_assign_and_minimiz&40
Polyhedron131, 132
relation_with,133
remove_higher_space_dimensioi45

Parma_Polyhedra_Library::Generator,
point
Parma_Polyhedra_Library::Generates,
poly difference_assign
Parma_Polyhedra_Library::Polyhedra_-
Powerset119
Parma_Polyhedra_Library::Polyhedron,
140
poly hull_assign
Parma_Polyhedra_Library::Polyhedron,
140
poly hull_assign_and_minimize
Parma_Polyhedra_Library::Polyhedron,
140
Polyhedra_Powerset
Parma_Polyhedra_Library::Polyhedra_-
Powersetl116, 117
Polyhedron
Parma_Polyhedra_Library::Polyhedron,
131,132
Powerset
Parma_Polyhedra_Library::PowersEsQ
PPL_ARITHMETIC_OVERFLOW
PPL_C interface43
ppl_banner
PPL_C_interface44
PPL_C_interface
PPL_ARITHMETIC_OVERFLOW43
PPL_CONSTRAINT_TYPE_EQUAL43
PPL_CONSTRAINT_TYPE_GREATER_-
THAN, 43
PPL_CONSTRAINT_TYPE_GREATER_-
THAN_OR_EQUAL,43
PPL_CONSTRAINT_TYPE_LESS_-
THAN, 43
PPL_CONSTRAINT_TYPE_LESS -
THAN_OR_EQUAL,43

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX 168

PPL_ERROR_INTERNAL_ERRORI3 ppl_Polyhedron_generalized_affine_image,
PPL_ERROR_INVALID_ARGUMENT, 50

43 ppl_Polyhedron_generalized_affine_-
PPL_ERROR_LENGTH_ERROR3 image_lhs_rhs50
PPL_ERROR_OUT_OF MEMORM3 ppl_Polyhedron_map_space_dimensions,
PPL_ERROR_UNEXPECTED_ERROR, 50

43 ppl_Polyhedron_maximiz&8
PPL_ERROR_UNKNOWN_- ppl_Polyhedron_minimizel8

STANDARD_EXCEPTIONA43 ppl_Polyhedron_relation_with_Constraint,
PPL_GENERATOR_TYPE_CLOSURE_- 47

POINT, 43 ppl_Polyhedron_relation_with_Generator,
PPL_GENERATOR_TYPE_LINE43 47
PPL_GENERATOR_TYPE_POIN®3 ppl_Polyhedron_shrink_bounding_ba,
PPL_GENERATOR_TYPE_RAY43 ppl_set_error_handled44
PPL_STDIO_ERROR43 PPL_VERSION42

PPL_C_interface PPL_CONSTRAINT_TYPE_EQUAL

ppl_banner44 PPL_C_interface43
ppl_enum_Constraint_Typé3 PPL_CONSTRAINT_TYPE_GREATER_-
ppl_enum_error_codd3 THAN
ppl_enum_Generator_Typé3 PPL_C_interface43
ppl_finalize,44 PPL_CONSTRAINT_TYPE_GREATER_-
ppl_initialize,44 THAN_OR_EQUAL
ppl_io_variable_output_function_typé2 PPL_C interface43
ppl_new_C_Polyhedron_from_bounding_- PPL_CONSTRAINT_TYPE_LESS THAN

box, 46 PPL_C interface43
ppl_new_C_Polyhedron_from_- PPL_CONSTRAINT_TYPE_LESS THAN_-

Constraint_Systen#4 OR_EQUAL
ppl_new_C_Polyhedron_from_Generator_- PPL_C_interface43

System45b PPL_defines
ppl_new_C_Polyhedron_recycle_- PPL_VERSIONR22

Constraint_Systen#4 ppl_enum_Constraint_Type
ppl_new_C_Polyhedron_recycle_- PPL_C_interface43

Generator_Systerd5 ppl_enum_error_code
ppl_new_ NNC_Polyhedron_from_- PPL_C interface43

bounding_box46 ppl_enum_Generator_Type
ppl_new NNC_Polyhedron_from_- PPL_C interface43

Constraint_Systendl4 PPL_ERROR_INTERNAL_ERROR
ppl_new_NNC_Polyhedron_from_- PPL_C_interface43

Generator_Systerdp PPL_ERROR_INVALID _ARGUMENT
ppl_new_NNC_Polyhedron_recycle_ - PPL_C interface43

Constraint_Systendl5 PPL_ERROR_LENGTH_ERROR
ppl_new NNC_Polyhedron_recycle - PPL_C interface43

Generator_Systerdb PPL_ERROR_OUT_OF_MEMORY
ppl_Polyhedron_add_recycled_constraints, PPL_C interface43

49 PPL_ERROR_UNEXPECTED_ERROR
ppl_Polyhedron_add_recycled_- PPL_C interface43

constraints_and_minimizé9 PPL_ERROR_UNKNOWN_STANDARD_-
ppl_Polyhedron_add_recycled_generators, EXCEPTION

49 PPL_C_interface43
ppl_Polyhedron_add_recycled_- ppl_finalize

generators_and_minimiz49 PPL_C interfacef4
ppl_Polyhedron_affine_imagé49 PPL_GENERATOR_TYPE_CLOSURE._-
ppl_Polyhedron_affine_preimads) POINT
ppl_Polyhedron_equals_Polyhedrds, PPL_C_interface43

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX

169

PPL_GENERATOR_TYPE_LINE
PPL_C interface43
PPL_GENERATOR_TYPE_POINT
PPL_C_interface43
PPL_GENERATOR_TYPE_RAY
PPL_C_interface43
ppl_initialize
PPL_C interfacef4
ppl_io_variable output_function_type
PPL_C_interface4?2
ppl_new_C_Polyhedron_from_bounding_box
PPL_C interface46
ppl_new_C_Polyhedron_from_Constraint_-
System
PPL_C_interface44
ppl_new_C_Polyhedron_from_Generator_-
System
PPL_C interface45
ppl_new_C_Polyhedron_recycle_Constraint_-
System
PPL_C_interface44
ppl_new_C_Polyhedron_recycle_Generator_-
System
PPL_C interface45
ppl_new NNC_Polyhedron_from_bounding_-
box
PPL_C_interface46
ppl_new_ NNC_Polyhedron_from_Constraint_-
System
PPL_C interfacef4
ppl_new NNC_Polyhedron_from_Generator_-
System
PPL_C_interface45
ppl_new_ NNC_Polyhedron_recycle_-
Constraint_System
PPL_C_interface45
ppl_new NNC_Polyhedron_recycle -
Generator_System
PPL_C interface45
ppl_Polyhedron_add_recycled_constraints
PPL_C_interface49
ppl_Polyhedron_add_recycled_constraints_-
and_minimize
PPL_C_interface49
ppl_Polyhedron_add_recycled_generators
PPL_C _interface49
ppl_Polyhedron_add_recycled_generators_-
and_minimize
PPL_C_interface49
ppl_Polyhedron_affine_image
PPL_C interface49
ppl_Polyhedron_affine_preimage
PPL_C_interface50
ppl_Polyhedron_equals_Polyhedron

PPL_C_interface49
ppl_Polyhedron_generalized_affine_image

PPL_C interface50
ppl_Polyhedron_generalized_affine_image_-

lhs_rhs

PPL_C_interface’0
ppl_Polyhedron_map_space_dimensions

PPL_C interface50
ppl_Polyhedron_maximize

PPL_C_interface48
ppl_Polyhedron_minimize

PPL_C interface48
ppl_Polyhedron_relation_with_Constraint

PPL_C interface47
ppl_Polyhedron_relation_with_Generator

PPL_C_interface47
ppl_Polyhedron_shrink_bounding_box

PPL_C interface47
ppl_set_error_handler

PPL_C_interface44
PPL_STDIO_ERROR

PPL_C_interface43
PPL_VERSION

PPL_C interface42

PPL_defines22
Prolog Language Interfacgl

RAY
Parma_Polyhedra_Library::Generator,
ray
Parma_Polyhedra_Library::Generator,
relation_with
Parma_Polyhedra_Library::Polyhedron,
133
remove_higher_space_dimensions
Parma_Polyhedra_Library::Determinate,
92
Parma_Polyhedra_Library::Polyhedra_-
Powerset120
Parma_Polyhedra_Library::Polyhedron,
145
remove_space_dimensions
Parma_Polyhedra_Library::Determinate,
92
Parma_Polyhedra_Library::Polyhedra_-
Powerset120
Parma_Polyhedra_Library::Polyhedron,
145

Sequence
Parma_Polyhedra_Library::PowersEsQ
shrink_bounding_box
Parma_Polyhedra_Library::Polyhedron,
135

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

INDEX

170

space_dimension

Parma_Polyhedra_Library:

std, 75
STRICT_INEQUALITY

Parma_Polyhedra_Library:

strictly _contains

Parma_Polyhedra_Library:

135
swap

Parma_Polyhedra_Library:

146

The Library,21
time_elapse_assign

Parma_Polyhedra_Library:

Powerset120

Parma_Polyhedra_Library:

142
Type

Parma_Polyhedra_Library:
Parma_Polyhedra_Library:

UNIVERSE

Parma_Polyhedra_Library:

130
upper_bound_assign

Parma_Polyhedra_Library:

Variable

Parma_Polyhedra_Library:

widen_fun_ref

Parma_Polyhedra_Library:

Powerset121

:Variablg52

:Constrai@g

:Polyhedron,

:Polyhedron,

:Polyhedra_-

:Polyhedron,

:Constrai@8
:Generator,

:Polyhedron,

:PowersEs0

:VariablE5?2

:Polyhedra_-

The Parma Polyhedra Library User’s Manual (version 0.7).8ge//www.cs.unipr.it/ppl/

for more information.

http://www.cs.unipr.it/ppl/

	General Information on the PPL
	PPL Module Index
	PPL Directory Hierarchy
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Class Index
	PPL Page Index
	PPL Module Documentation
	PPL Directory Documentation
	PPL Namespace Documentation
	PPL Class Documentation
	PPL Page Documentation

