
The Parma Polyhedra Library
User’s Manual∗

(version 0.7)

Roberto Bagnara†

Patricia M. Hill‡

Enea Zaffanella§

based on previous work also by

Elisa Ricci

and

Sara Bonini
Andrea Pescetti
Angela Stazzone

Tatiana Zolo

December 24, 2004

∗This work has been partly supported by: University of Parma’s FIL scientific research project (ex 60%) “Pure and Applied Math-
ematics”; MURST project “Automatic Program Certification by Abstract Interpretation”; MURST project “Abstract Interpretation,
Type Systems and Control-Flow Analysis”; MURST project “Automatic Aggregate- and Number-Reasoning for Computing: from
Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps”; MURST project “Constraint Based Verification of
Reactive Systems”; MURST project “Abstract Interpretation: Design and Applications”.

†bagnara@cs.unipr.it, Department of Mathematics, University of Parma, Italy.
‡hill@comp.leeds.ac.uk, School of Computing, University of Leeds, U.K.
§zaffanella@cs.unipr.it, Department of Mathematics, University of Parma, Italy.

CONTENTS 1

Copyright c© 2001–2004 Roberto Bagnara (bagnara@cs.unipr.it).

This document describes the Parma Polyhedra Library (PPL).

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by theFree Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by theFree Software Foundation; either version 2 of the License, or (at your
option) any later version. A copy of the license is included in the section entitled “GNU GENERAL
PUBLIC LICENSE”.

The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

For the most up-to-date information see the Parma Polyhedra Library WWW site:

http://www.cs.unipr.it/ppl/

Contents

1 General Information on the PPL 2

2 PPL Module Index 19

3 PPL Directory Hierarchy 19

4 PPL Namespace Index 19

5 PPL Hierarchical Index 19

6 PPL Class Index 20

7 PPL Page Index 21

8 PPL Module Documentation 21

9 PPL Directory Documentation 69

10 PPL Namespace Documentation 70

11 PPL Class Documentation 75

12 PPL Page Documentation 153

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.fsf.org
http://www.fsf.org
http://www.cs.unipr.it/ppl/
http://www.cs.unipr.it/ppl/

1 General Information on the PPL 2

1 General Information on the PPL

1.1 The Main Features

The Parma Polyhedra Library (PPL) is a modern C++ library for the manipulation of numerical information
that can be represented by points in somen-dimensional vector space. For instance, one of the key domains
the PPL supports is that of rational convex polyhedra (SectionConvex Polyhedra). Such domains are
employed in several systems for the analysis and verification of hardware and software components, with
applications spanning imperative, functional and logic programming languages, synchronous languages
and synchronization protocols, real-time and hybrid systems. Even though the PPL library is not meant
to target a particular problem, the design of its interface has been largely influenced by the needs of the
above class of applications. That is the reason why the library implements a few operators that are more or
less specific to static analysis applications, while lacking some other operators that might be useful when
working, e.g., in the field of computational geometry.

The main features of the library are the following:

• it is user friendly: you writex + 2 ∗y + 5 ∗z <= 7 when you mean it;

• it is fully dynamic: available virtual memory is the only limitation to the dimension of anything;

• it provides full support for the manipulation of convex polyhedra that are not topologically closed;

• it is written in standard C++: meant to be portable;

• it is exception-safe: never leaks resources or leaves invalid object fragments around;

• it is rather efficient: and we hope to make it even more so;

• it is thoroughly documented: perhaps not literate programming but close enough;

• it has interfaces to other programming languages: including C and a number of Prolog systems;

• it is free software: distributed under the terms of the GNU General Public License.

In addition to the basic domains, we also provide generic support for constructing new domains from
pre-existing domains. The following domains and domain constructors are provided by the PPL:

• the domain of topologically closed, rational convex polyhedra;

• the domain of rational convex polyhedra that are not necessarily closed;

• the powerset construction;

• the powerset construction, instantiated for rational convex polyhedra.

In the following sections we describe these domains and domain constructors together with their represen-
tations and operations that are available to the PPL user.

In the final section of this chapter (SectionUsing the Library), we provide some additional advice on the
use of the library.

1.2 Convex Polyhedra

In this section we introduce convex polyhedra, as considered by the library, in more detail. For more
information about the definitions and results stated here see[BRZH02b], [Fuk98], [NW88], and[Wil93] .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.2 Convex Polyhedra 3

Vectors, Matrices and Scalar Products

We denote byRn then-dimensional vector space on the field of real numbersR, endowed with the standard
topology. The set of all non-negative reals is denoted byR+. For eachi ∈ {0, . . . , n − 1}, vi denotes the
i-th component of the (column) vectorv = (v0, . . . , vn−1)T ∈ Rn. We denote by0 the vector ofRn,
calledthe origin, having all components equal to zero. A vectorv ∈ Rn can be also interpreted as a matrix
in Rn×1 and manipulated accordingly using the usual definitions for addition, multiplication (both by a
scalar and by another matrix), and transposition, denoted byvT.

Thescalar productof v,w ∈ Rn, denoted〈v,w〉, is the real number

vTw =
n−1∑
i=0

viwi.

For anyS1, S2 ⊆ Rn, theMinkowski’s sumof S1 andS2 is: S1 + S2 = {v1 + v2 | v1 ∈ S1,v2 ∈ S2 }.

Affine Hyperplanes and Half-spaces

For each vectora ∈ Rn and scalarb ∈ R, wherea 6= 0, and for each relation symbol./ ∈ {=,≥, >}, the
linear constraint〈a,x〉 ./ b defines:

• an affine hyperplane if it is an equality constraint, i.e., if./ ∈ {=};

• a topologically closed affine half-space if it is a non-strict inequality constraint, i.e., if./ ∈ {≥};

• a topologically open affine half-space if it is a strict inequality constraint, i.e., if./ ∈ {>}.

Note that each hyperplane〈a,x〉 = b can be defined as the intersection of the two closed affine half-spaces
〈a,x〉 ≥ b and〈−a,x〉 ≥ −b. Also note that, whena = 0, the constraint〈0,x〉 ./ b is either a tautology
(i.e., always true) or inconsistent (i.e., always false), so that it defines either the whole vector spaceRn or
the empty set∅.

Convex Polyhedra

The setP ⊆ Rn is anot necessarily closed convex polyhedron(NNC polyhedron, for short) if and only if
eitherP can be expressed as the intersection of a finite number of (open or closed) affine half-spaces ofRn

or n = 0 andP = ∅. The set of all NNC polyhedra on the vector spaceRn is denotedPn.

The setP ∈ Pn is aclosed convex polyhedron(closed polyhedron, for short) if and only if eitherP can be
expressed as the intersection of a finite number of closed affine half-spaces ofRn or n = 0 andP = ∅.
The set of all closed polyhedra on the vector spaceRn is denotedCPn.

When ordering NNC polyhedra by the set inclusion relation, the empty set∅ and the vector spaceRn are,
respectively, the smallest and the biggest elements of bothPn andCPn. The vector spaceRn is also called
theuniversepolyhedron.

In theoretical terms,Pn is a latticeunder set inclusion andCPn is asub-latticeof Pn.

Note:
In the following, we will usually specify operators on the domainPn of NNC polyhedra. Unless an
explicit distinction is made, these operators are provided with the same specification when applied to
the domainCPn of topologically closed polyhedra. The implementation maintains a clearer separation
between the two domains of polyhedra (seeTopologies and Topological-compatibility): while com-
puting polyhedra inPn may provide more precise results, polyhedra inCPn can be represented and
manipulated more efficiently. As a rule of thumb, if your application will only manipulate polyhedra
that are topologically closed, then it should use the simpler domainCPn. Using NNC polyhedra is
only recommended if you are going to actually benefit from the increased accuracy.

Bounded Polyhedra

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 4

An NNC polyhedronP ∈ Pn is boundedif there exists aλ ∈ R+ such that

P ⊆
{

x ∈ Rn
∣∣ −λ ≤ xj ≤ λ for j = 0, . . . , n− 1

}
.

A bounded polyhedron is also called apolytope.

1.3 Representations of Convex Polyhedra

NNC polyhedra can be specified by using two possible representations, the constraints (or implicit) repre-
sentation and the generators (or parametric) representation.

Constraints representation

In the sequel, we will simply write “equality” and “inequality” to mean “linear equality” and “linear in-
equality”, respectively; also, we will refer to either an equality or an inequality as aconstraint.

By definition, each polyhedronP ∈ Pn is the set of solutions to aconstraint system, i.e., a finite number
of constraints. By using matrix notation, we have

P def= {x ∈ Rn | A1x = b1, A2x ≥ b2, A3x > b3 },

where, for alli ∈ {1, 2, 3}, Ai ∈ Rmi × Rn andbi ∈ Rmi , andm1,m2,m3 ∈ N are the number of
equalities, the number of non-strict inequalities, and the number of strict inequalities, respectively.

Combinations and Hulls

Let S = {x1, . . . ,xk} ⊆ Rn be a finite set of vectors. For all scalarsλ1, . . . , λk ∈ R, the vector
v =

∑k
j=1 λjxj is said to be alinear combination of the vectors inS. Such a combination is said to be

• apositive(or conic) combination, if∀j ∈ {1, . . . , k} : λj ∈ R+;

• anaffinecombination, if
∑k

j=1 λj = 1;

• aconvexcombination, if it is both positive and affine.

We denote bylinear.hull(S) (resp.,conic.hull(S), affine.hull(S), convex.hull(S)) the set of all the linear
(resp., positive, affine, convex) combinations of the vectors inS.

Let P,C ⊆ Rn, whereP ∪ C = S. We denote bynnc.hull(P,C) the set of all convex combinations of
the vectors inS such thatλj > 0 for somexj ∈ P (informally, we say that there exists a vector ofP that
plays an active role in the convex combination). Note thatnnc.hull(P,C) = nnc.hull(P, P ∪ C) so that,
if C ⊆ P ,

convex.hull(P) = nnc.hull(P, ∅) = nnc.hull(P, P) = nnc.hull(P,C).

It can be observed thatlinear.hull(S) is an affine space,conic.hull(S) is a topologically closed convex
cone,convex.hull(S) is a topologically closed polytope, andnnc.hull(P,C) is an NNC polytope.

Points, Closure Points, Rays and Lines

LetP ∈ Pn be an NNC polyhedron. Then

• a vectorp ∈ P is called apoint of P;

• a vectorc ∈ Rn is called aclosure pointof P if it is a point of the topological closure ofP;

• a vectorr ∈ Rn, wherer 6= 0, is called aray (or direction of infinity) ofP if P 6= ∅ andp+λr ∈ P,
for all pointsp ∈ P and allλ ∈ R+;

• a vectorl ∈ Rn is called aline of P if both l and−l are rays ofP.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 5

A point of an NNC polyhedronP ∈ Pn is a vertex if and only if it cannot be expressed as a convex
combination of any other pair of distinct points inP. A ray r of a polyhedronP is anextreme rayif and
only if it cannot be expressed as a positive combination of any other pairr1 andr2 of rays ofP, where
r 6= λr1, r 6= λr2 andr1 6= λr2 for all λ ∈ R+ (i.e., rays differing by a positive scalar factor are
considered to be the same ray).

Generators Representation

Each NNC polyhedronP ∈ Pn can be represented by finite sets of linesL, raysR, pointsP and closure
pointsC of P. The 4-tupleG = (L,R, P, C) is said to be agenerator systemfor P, in the sense that

P = linear.hull(L) + conic.hull(R) + nnc.hull(P,C),

where the symbol ’+’ denotes the Minkowski’s sum.

WhenP ∈ CPn is a closed polyhedron, then it can be represented by finite sets of linesL, raysR and
pointsP of P. In this case, the 3-tupleG = (L,R, P) is said to be agenerator systemfor P since we have

P = linear.hull(L) + conic.hull(R) + convex.hull(P).

Thus, in this case, every closure point ofP is a point ofP.

For anyP ∈ Pn and generator systemG = (L,R, P, C) for P, we haveP = ∅ if and only if P = ∅. Also
P must contain all the vertices ofP althoughP can be non-empty and have no vertices. In this case, asP is
necessarily non-empty, it must contain points ofP that arenot vertices. For instance, the half-space ofR2

corresponding to the single constrainty ≥ 0 can be represented by the generator systemG = (L, R, P, C)
such thatL =

{
(1, 0)T

}
, R =

{
(0, 1)T

}
, P =

{
(0, 0)T

}
, andC = ∅. It is also worth noting that the

only ray inR is not an extreme ray ofP.

Minimized Representations

A constraints systemC for an NNC polyhedronP ∈ Pn is said to beminimizedif no proper subset ofC is
a constraint system forP.

Similarly, a generator systemG = (L,R, P, C) for an NNC polyhedronP ∈ Pn is said to beminimized
if there does not exist a generator systemG′ = (L′, R′, P ′, C ′) 6= G for P such thatL′ ⊆ L, R′ ⊆ R,
P ′ ⊆ P andC ′ ⊆ C.

Double Description

Any NNC polyhedronP can be described by using a constraint systemC, a generator systemG, or both
by means of thedouble description pair (DD pair)(C,G). Thedouble description methodis a collection
of well-known as well as novel theoretical results showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing both representations by
removing redundant constraints/generators.

Such changes of representation form a key step in the implementation of many operators on NNC polyhe-
dra: this is because some operators, such as intersections and poly-hulls, are provided with a natural and
efficient implementation when using one of the representations in a DD pair, while being rather cumber-
some when using the other.

Topologies and Topological-compatibility

As indicated above, when an NNC polyhedronP is necessarily closed, we can ignore the closure points
contained in its generator systemG = (L, R, P, C) (as every closure point is also a point) and representP
by the triple(L,R, P). Similarly,P can be represented by a constraint system that has no strict inequali-
ties. Thus a necessarily closed polyhedron can have a smaller representation than one that is not necessarily
closed. Moreover, operators restricted to work on closed polyhedra only can be implemented more effi-
ciently. For this reason the library provides two alternative “topological kinds” for a polyhedron,NNCand
C. We shall abuse terminology by referring to the topological kind of a polyhedron as itstopology.

In the library, the topology of each polyhedron object is fixed once for all at the time of its creation and
must be respected when performing operations on the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.3 Representations of Convex Polyhedra 6

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the followingtopological-compatibilityrules:

• polyhedra are topologically-compatible if and only if they have the same topology;

• all constraints except for strict inequality constraints and all generators except for closure points are
topologically-compatible with both C and NNC polyhedra;

• strict inequality constraints and closure points are topologically-compatible with a polyhedron if and
only if it is NNC.

Wherever possible, the library provides methods that, starting from a polyhedron of a given topology, build
the corresponding polyhedron having the other topology.

Space Dimensions and Dimension-compatibility

Thespace dimensionof an NNC polyhedronP ∈ Pn (resp., a C polyhedronP ∈ CPn) is the dimension
n ∈ N of the corresponding vector spaceRn. The space dimension of constraints, generators and other
objects of the library is defined similarly.

Unless it is otherwise stated, all the polyhedra, constraints and/or generators in any library operation must
obey the following (space)dimension-compatibilityrules:

• polyhedra are dimension-compatible if and only if they have the same space dimension;

• the constraint〈a,x〉 ./ b where./ ∈ {=,≥, >} anda,x ∈ Rm, is dimension-compatible with a
polyhedron having space dimensionn if and only if m ≤ n;

• the generatorx ∈ Rm is dimension-compatible with a polyhedron having space dimensionn if and
only if m ≤ n;

• a system of constraints (resp., generators) is dimension-compatible with a polyhedron if and only if
all the constraints (resp., generators) in the system are dimension-compatible with the polyhedron.

While the space dimension of a constraint, a generator or a system thereof is automatically adjusted when
needed, the space dimension of a polyhedron can only be changed by explicit calls to operators provided
for that purpose.

Affine Independence and Affine Dimension

A finite set of points{x1, . . . ,xk} ⊆ Rn is affinely independentif, for all λ1, . . . , λk ∈ R, the system of
equations

k∑
i=1

λixi = 0,
k∑

i=1

λi = 0

implies that, for eachi = 1, . . . , k, λi = 0.

The maximum number of affinely independent points inRn is n + 1.

A non-emptyNNC polyhedronP ∈ Pn hasaffine dimensionk ∈ N, denoted bydim(P) = k, if the
maximum number of affinely independent points inP is k + 1.

We remark that the above definition only applies to polyhedra that are not empty, so that0 ≤ dim(P) ≤ n.
By convention, the affine dimension of an empty polyhedron is 0 (even though the “natural” generalization
of the definition above would imply that the affine dimension of an empty polyhedron is−1).

Note:
The affine dimensionk ≤ n of an NNC polyhedronP ∈ Pn must not be confused with the space
dimensionn of P, which is the dimension of the enclosing vector spaceRn. In particular, we can have
dim(P) 6= dim(Q) even thoughP andQ are dimension-compatible; and vice versa,P andQmay be
dimension-incompatible polyhedra even thoughdim(P) = dim(Q).

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 7

Rational Polyhedra

An NNC polyhedron is calledrational if it can be represented by a constraint system where all the con-
straints have rational coefficients. It has been shown that an NNC polyhedron is rational if and only if it
can be represented by a generator system where all the generators have rational coefficients.

The library only supports rational polyhedra. The restriction to rational numbers applies not only to poly-
hedra, but also to the other numeric arguments that may be required by the operators considered, such as
the coefficients defining (rational) affine transformations and (rational) bounding boxes.

1.4 Operations on Convex Polyhedra

In this section we briefly describe operations on NNC polyhedra that are provided by the library.

Intersection and Convex Polyhedral Hull

For any pair of NNC polyhedraP1,P2 ∈ Pn, theintersectionof P1 andP2, defined as the set intersection
P1 ∩P2, is the biggest NNC polyhedron included in bothP1 andP2; similarly, theconvex polyhedral hull
(or poly-hull) of P1 andP2, denoted byP1] P2, is the smallest NNC polyhedron that includes bothP1

andP2. The intersection and poly-hull of any pair of closed polyhedra inCPn is also closed.

In theoretical terms, the intersection and poly-hull operators defined above are the binarymeetand the
binary join operators on the latticesPn andCPn.

Convex Polyhedral Difference

For any pair of NNC polyhedraP1,P2 ∈ Pn, theconvex polyhedral difference(or poly-difference) of P1

andP2 is defined as the smallest convex polyhedron containing the set-theoretic difference ofP1 andP2.

In general, even thoughP1,P2 ∈ CPn are topologically closed polyhedra, their poly-difference may be a
convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference
of two C polyhedra, the library will enforce the topological closure of the result.

Concatenating Polyhedra

Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples
obtained by concatenating an ordered pair of polyhedra. Formally, theconcatenationof the polyhedra
P ∈ Pn andQ ∈ Pm (taken in this order) is the polyhedronR ∈ Pn+m such that

R def=
{

(x0, . . . , xn−1, y0, . . . , ym−1)T ∈ Rn+m
∣∣∣ (x0, . . . , xn−1)T ∈ P, (y0, . . . , ym−1)T ∈ Q

}
.

Another way of seeing it is as follows: first embed polyhedronP into a vector space of dimensionn + m
and then add a suitably renamed-apart version of the constraints definingQ.

Adding New Dimensions to the Vector Space

The library provides two operators for adding a numberi of space dimensions to an NNC polyhedron
P ∈ Pn, therefore transforming it into a new NNC polyhedronQ ∈ Pn+i. In both cases, the added
dimensions of the vector space are those having the highest indices.

The operatoradd_space_dimensions_and_embed embedsthe polyhedronP into the new vector
space of dimensioni + n and returns the polyhedronQ defined by all and only the constraints definingP
(the variables corresponding to the added dimensions are unconstrained). For instance, when starting from
a polyhedronP ⊆ R2 and adding a third space dimension, the result will be the polyhedron

Q =
{

(x0, x1, x2)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

In contrast, the operatoradd_space_dimensions_and_project projectsthe polyhedronP into
the new vector space of dimensioni + n and returns the polyhedronQ whose constraint system, besides

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 8

the constraints definingP, will include additional constraints on the added dimensions. Namely, the cor-
responding variables are all constrained to be equal to 0. For instance, when starting from a polyhedron
P ⊆ R2 and adding a third space dimension, the result will be the polyhedron

Q =
{

(x0, x1, 0)T ∈ R3
∣∣ (x0, x1)T ∈ P

}
.

Removing Dimensions from the Vector Space

The library provides two operators for removing space dimensions from an NNC polyhedronP ∈ Pn,
therefore transforming it into a new NNC polyhedronQ ∈ Pm wherem ≤ n.

Given a set of variables, the operatorremove_space_dimensions removes all the space dimensions
specified by the variables in the set. For instance, lettingP ∈ P4 be the singleton set

{
(3, 1, 0, 2)T

}
⊆ R4,

then after invoking this operator with the set of variables{x1, x2} the resulting polyhedron is

Q =
{
(3, 2)T

}
⊆ R2.

Given a space dimensionm less than or equal to that of the polyhedron, the operatorremove_higher_-
space_dimensions removes the space dimensions having indices greater than or equal tom. For
instance, lettingP ∈ P4 defined as before, by invoking this operator withm = 2 the resulting polyhedron
will be

Q =
{
(3, 1)T

}
⊆ R2.

Mapping the Dimensions of the Vector Space

The operatormap_space_dimensions provided by the library maps the dimensions of the vector
spaceRn according to a partial injective functionρ : {0, . . . , n− 1} � N such thatρ

(
{0, . . . , n− 1}

)
=

{0, . . . ,m− 1} with m ≤ n. Dimensions corresponding to indices that are not mapped byρ are removed.

If m = 0, i.e., if the functionρ is undefined everywhere, then the operator projects the argument polyhedron
P ∈ Pn onto the zero-dimension spaceR0; otherwise the result isQ ∈ Pm given by

Q def=
{(

vρ−1(0), . . . , vρ−1(m−1)

)T
∣∣∣ (v0, . . . , vn−1)T ∈ P

}
.

Expanding One Dimension of the Vector Space to Multiple Dimensions

The operatorexpand_space_dimension provided by the library addsm new space dimensions to a
polyhedronP ∈ Pn, with n > 0, so that dimensionsn, n + 1, . . ., n + m − 1 of the resultQ are exact
copies of thei-th space dimension ofP. More formally,

Q def=

 u ∈ Rn+m

∣∣∣∣∣∣∣
∃v,w ∈ P . ui = vi

∧ ∀j = n, n + 1, . . . , n + m− 1 : uj = wi

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk = vk = wk

.

This operation has been proposed in[GDMDRS04].

Folding Multiple Dimensions of the Vector Space into One Dimension

The operatorfold_space_dimensions provided by the library, given a polyhedronP ∈ Pn, with
n > 0, folds a set of space dimensionsJ = {j0, . . . , jm−1}, with m < n andj < n for eachj ∈ J , into
space dimensioni < n, wherei /∈ J . The result is given by

Q def=
m⊎

d=0

Qd

where

Qm
def=

{
u ∈ Rn−m

∣∣∣∣∣ ∃v ∈ P . ui′ = vi

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk′ = vk

}

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 9

and, ford = 0, . . ., m− 1,

Qd
def=

{
u ∈ Rn−m

∣∣∣∣∣ ∃v ∈ P . ui′ = vjd

∧ ∀k = 0, . . . , n− 1 : k 6= i =⇒ uk′ = vk

}
,

and, finally, fork = 0, . . ., n− 1,

k′
def= k −#{ j ∈ J | k > j },

(# S denotes the cardinality of the finite setS).

This operation has been proposed in[GDMDRS04].

Affine Images and Preimages

For each function mappingφ : Rn → Rm, we denote byφ(S) ⊆ Rm theimageunderφ of the setS ⊆ Rn;
formally,

φ(S) def=
{

φ(v) ∈ Rm
∣∣ v ∈ S

}
.

Similarly, we denote byφ−1(S′) ⊆ Rn thepreimageunderφ of S′ ⊆ Rm, that is the largest setS ⊆ Rn

such thatφ(S) ⊆ S′; formally,

φ−1(S′) def=
{

v ∈ Rn
∣∣ φ(v) ∈ S′

}
.

The function mappingφ : Rn → Rm is anaffine transformationif there exist a matrixA ∈ Rm × Rn and
a vectorb ∈ Rm such that, for allx ∈ Rn, we haveφ(x) = Ax + b. If n = m, then the functionφ is said
to bespace dimension preserving.

Both Pn andCPn are closed under the application of any space dimension preserving affine image and
preimage operators.

The library provides two operators, one computes an affine image and the other an affine preimage of a
polyhedronP ∈ Pn for a given variablexk and linear expressionexpr =

∑n−1
i=0 aixi + b. This variable

and expression determine the affine transformationφ that is to be used by the operator. That is,φ is the
transformation defined by the matrix and vector

A =



1 0 0 · · · · · · 0
...

...
...

0 1 0 · · · · · · 0
a0 · · · ak−1 ak ak+1 · · · an−1

0 · · · · · · 0 1 0
...

...
...

0 · · · · · · 0 0 1


, b =



0
...
0
b
0
...
0


where theai (resp.,b) occurs in the(k + 1)st row inA (resp., position inb). Thusφ transforms any point
(x0, . . . , xn−1)T in the polyhedronP to(

x0, . . . ,
(∑n−1

i=0 aixi + b
)
, . . . , xn−1

)T

.

The affine image operator computes the affine image ofP underφ. For instance, suppose the polyhedron
P to be transformed is the square inR2 generated by the set of points

{
(0, 0)T, (0, 3)T, (3, 0)T, (3, 3)T

}
.

Then, for example if the considered variable isx0 and the linear expressionx0 + 2x1 + 4 (so thatk = 0,
a0 = 1, a1 = 2, b = 4), the affine image operator will translateP to the parallelogramP1 generated
by the set of points

{
(4, 0)T, (10, 3)T, (7, 0)T, (13, 3)T

}
with height equal to the side of the square and

oblique sides parallel to the linex0− 2x1. If the considered variable is as before (i.e.,k = 0) but the linear

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 10

expression isx1 (so thata0 = 0, a1 = 1, b = 0), then the resulting polyhedronP2 is the positive diagonal
of the square.

The affine preimage operator computes the affine preimage ofP underφ. For instance, suppose now that
we apply the affine preimage operator as given in the first example using variablex0 and linear expression
x0 + 2x1 + 4 to the parallelogramP1; then we get the original squareP back. If, on the other hand, we
apply the affine preimage operator as given in the second example using variablex0 and linear expression
x1 toP2, then the resulting polyhedron is a line that corresponds to thex1 axes.

Observe that provided the coefficientak of the considered variable in the linear expression is non-zero, the
affine transformation is invertible.

Generalized Affine Images

The library provides another operator which is a generalization of the affine image operator. Given a
polyhedronP ∈ Pn, an affine expressionlhs =

∑n−1
i=0 a′ixi + b′, a relation symbol./ ∈ {<,≤,=,≥, >},

and an affine expressionrhs =
∑n−1

i=0 aixi + b, the image ofP with respect to the transfer function
lhs ./ rhs is defined as (w0, . . . , wn−1)T ∈ Rn

∣∣∣∣∣∣∣
(v0, . . . , vn−1)T ∈ P,(
i ∈ {0, . . . , n− 1} ∧ a′i = 0 =⇒ wi = vi

)
,∑n−1

i=0 a′iwi + b′ ./
∑n−1

i=0 aivi + b

.

Note that, whenlhs = xk and./ ∈ {=}, then the above operator is equivalent to the application of the
standard affine image ofP with respect to the variablexk and the affine expressionrhs (hence the name
given to this operator).

Time-Elapse Operator

The time-elapseoperator has been defined in[HPR97]. Actually, the time-elapse operator provided by
the library is a slight generalization of that one, since it also works on NNC polyhedra. For any two NNC
polyhedraP,Q ∈ Pn, the time-elapse betweenP andQ, denotedP ↗ Q, is the smallest NNC polyhedron
containing the set {

p + λq ∈ Rn
∣∣ p ∈ P, q ∈ Q, λ ∈ R+

}
.

Note that, ifP,Q ∈ CPn are closed polyhedra, the above set is also a closed polyhedron. In contrast, when
Q is not topologically closed, the above set might not be an NNC polyhedron.

Relation-with Operators

The library provides operators for checking the relation holding between an NNC polyhedron and either a
constraint or a generator.

SupposeP is an NNC polyhedron andC an arbitrary constraint system representingP. Suppose also that
c =

(
〈a,x〉 ./ b

)
is a constraint with./ ∈ {=,≥, >} andQ the set of points that satisfyc. The possible

relations betweenP andc are as follows.

• P is disjoint from c if P ∩Q = ∅; that is, addingc to C gives us the empty polyhedron.

• P strictly intersectsc if P ∩ Q 6= ∅ andP ∩ Q ⊂ P; that is, addingc to C gives us a non-empty
polyhedron strictly smaller thanP.

• P is includedin c if P ⊆ Q; that is, addingc to C leavesP unchanged.

• P saturatesc if P ⊆ H, whereH is the hyperplane induced by constraintc, i.e., the set of points
satisfying the equality constraint〈a,x〉 = b; that is, adding the constraint〈a,x〉 = b to C leavesP
unchanged.

The polyhedronP subsumesthe generatorg if addingg to any generator system representingP does not
changeP.

Intervals, boxes and bounding boxes

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.4 Operations on Convex Polyhedra 11

An interval in R is a pair ofbounds, called lower andupper. Each bound can be either (1)closed and
bounded, (2) open and bounded, or (3)open and unbounded. If the bound isbounded, then it has a value
in R. An n-dimensionalboxB in Rn is a sequence ofn intervals inR.

The polyhedronP represents a boxB in Rn if P is described by a constraint system inRn that con-
sists of one constraint for each bounded bound (lower and upper) in an interval inB: Letting ei =
(0, . . . , 1, . . . , 0)T be the vector inRn with 1 in the i’th position and zeroes in every other position; if
the lower bound of thei’th interval inB is bounded, the corresponding constraint is defined as〈ei,x〉 ./ b,
whereb is the value of the bound and./ is≥ if it is a closed bound and> if it is an open bound. Similarly, if
the upper bound of thei’th interval inB is bounded, the corresponding constraint is defined as〈ei,x〉 ./ b,
whereb is the value of the bound and./ is≤ if it is a closed bound and< if it is an open bound.

If every bound in the intervals defining a boxB is either closed and bounded or open and unbounded, then
B represents a closed polyhedron.

Thebounding boxof an NNC polyhedronP is the smallestn-dimensional box containingP.

The library provides operations for computing the bounding box of an NNC polyhedron and conversely,
for obtaining the NNC polyhedron representing a given bounding box.

Widening Operators

The library provides two widening operators for the domain of polyhedra. The first one, that we call
H79-widening, mainly follows the specification provided in the PhD thesis of N. Halbwachs[Hal79], also
described in[HPR97]. The main difference between the H79-widening and the widening described in the
cited paper is that the H79-wideningP ∇ Q of two polyhedraP,Q ∈ CPn requires as a precondition that
P ⊆ Q (other differences at the implementation level are transparent to the user of the library).

The second widening operator, that we callBHRZ03-widening, is an instance of the specification provided
in [BHRZ03a]. This operator also requires as a precondition thatP ⊆ Q and it is guaranteed to provide a
result which is at least as precise as the H79-widening.

Both widening operators can be applied to NNC polyhedra. The user is warned that, in such a case, the
results may not closely match the geometric intuition which is at the base of the specification of the two
widenings. The reason is that, in the current implementation, the widenings are not directly applied to the
NNC polyhedra, but rather to their internal representations. Implementation work is in progress and future
versions of the library may provide an even better integration of the two widenings with the domain of
NNC polyhedra.

Note:
As is the case for the other operators on polyhedra, the implementation overwrites one of the two
polyhedra arguments with the result of the widening application. To avoid trivial misunderstandings, it
is worth stressing that if polyhedraP andQ (whereP ⊆ Q) are identified by program variablesp and
q, respectively, then the callq.H79_widening_assign(p) will assign the polyhedronP ∇ Q to
variableq. Namely, it is the bigger polyhedronQ which is overwritten by the result of the widening.
The smaller polyhedron is not modified, so as to lead to an easier coding of the usual convergence
test (P ⊇ P ∇ Q can be coded asp.contains(q)). Note that, in the above context, a call such
asp.H79_widening_assign(q) is likely to result in undefined behavior, since the precondition
Q ⊆ P will be missed (unless it happens thatP = Q). The same observation holds for all flavors
of widenings and extrapolation operators that are implemented in the library and for all the foreign
language interfaces.

Widening with Tokens

When approximating a fixpoint computation using widening operators, a common tactic to improve the
precision of the final result is to delay the application of widening operators. The usual approach is to fix a
parameterk and only apply widenings starting from thek-th iteration.

The library also supports an improved widening delay strategy, that we callwidening with tokens

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.5 The Powerset Construction 12

[BHRZ03a]. A token is a sort of wildcard allowing for the replacement of the widening application by
the exact upper bound computation: the token is used (and thus consumed) only when the widening would
have resulted in an actual precision loss (as opposed to thepotentialprecision loss of the classical delay
strategy). Thus, all widening operators can be supplied with an optional argument, recording the number of
available tokens, which is decremented when tokens are used. The approximated fixpoint computation will
start with a fixed numberk of tokens, which will be used if and when needed. When there are no tokens
left, the widening is always applied.

Extrapolation Operators

Besides the two widening operators, the library also implements severalextrapolationoperators, which
differ from widenings in that their use along an upper iteration sequence does not ensure convergence in a
finite number of steps.

In particular, for each of the two widenings there is a correspondinglimited extrapolation operator, which
can be used to implement thewidening “up to” technique as described in[HPR97]. Each limited extrapola-
tion operator takes a constraint system as an additional parameter and uses it to improve the approximation
yielded by the corresponding widening operator. Note that a convergence guarantee can only be obtained
by suitably restricting the set of constraints that can occur in this additional parameter. For instance, in
[HPR97]this set is fixed once and for all before starting the computation of the upward iteration sequence.

The boundedextrapolation operators further enhance each one of the limited extrapolation operators de-
scribed above, by ensuring that their results cannot be worse than the smallestbounding boxenclosing the
two argument polyhedra.

1.5 The Powerset Construction

The PPL provides the finite powerset construction; this takes a pre-existing domain and upgrades it to one
that can represent disjunctive information (by using afinitenumber of disjuncts). The construction follows
the approach described in[Bag98], also summarised in[BHZ04] where there is an account of generic
widenings for the powerset domain (some of which are supported in the instantiation of this construction
by the domain of convex polyhedra and described in SectionThe Polyhedra Powerset Domain).

The Powerset Domain

The domain is built from a pre-existing base-level domainD which must include an entailment relation
‘`’, a meet operation ‘⊗’, a top element ‘1’ and bottom element ‘0’.

As the intended semantics of an element of the powerset of the base-level domain is that of disjunction,
elements of the powerset are alwaysreducedto semantically-equivalent non-redundant elements.

A setS ∈ ℘(D) is callednon-redundantwith respect to ‘̀ ’ if and only if 0 /∈ S and∀d1, d2 ∈ S : d1 `
d2 =⇒ d1 = d2. The set of finite non-redundant subsets ofD (with respect to ‘̀ ’) is denoted by℘`

fn(D).
The reduction functionΩ`

D : ℘f(D) → ℘`
fn(D) mapping a finite set into its non-redundant counterpart,

also calledOmega-reduction, is defined, for eachS ∈ ℘f(D), by

Ω`
D(S) def= S \ { d ∈ S | d = 0 or ∃d′ ∈ S . d
 d′ }.

The restriction to the finite subsets reflects the fact that here disjunctions are implemented by explicit
collections of elements of the base-level abstract domain. As a consequence of this restriction, for any
S ∈ ℘f(D) such thatS 6= {0}, Ω`

D(S) is the (finite) set of the maximal elements ofS.

Thefinite powerset domainover a domainD is the set of all finite reduced sets ofD and denoted byDP.
The domain includes an approximation ordering ‘`P’ defined so thatS1 `P S2 if and only if

∀d1 ∈ S1 : ∃d2 ∈ S2 . d1 ` d2.

Therefore the top element is{1} and the bottom element is the emptyset.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.6 Operations on the Powerset Construction 13

Note:
As far as Omega-reduction is concerned, the library adopts alazyapproach: an element of the pow-
erset domain is represented by a potentially redundant sequence of disjuncts. Redundancies can be
eliminated by explicitly invoking the operatoromega_reduce() , e.g., before performing the output
of a powerset element. Note that all the documented operators automatically perform reductions on
their arguments, when needed or appropriate.

1.6 Operations on the Powerset Construction

In this section we briefly describe the generic operations on Powerset Domains that are provided by the
library for any given base-level domainD.

Meet and Upper Bound

Given the setsS1 andS2 ∈ DP, themeetandupper boundoperators provided by the library returns the set
Ω`

D

(
{ d1 ⊗ d2 | d1 ∈ S1, d2 ∈ S2 }

)
and reduced set unionΩ`

D(S1 ∪ S2) respectively.

Adding a Disjunct

Given the powerset elementS ∈ DP and the base-level elementd ∈ D, theadd disjunctoperator provided
by the library returns the powerset elementΩ`

D

(
S ∪ {d}

)
.

Collapsing a Powerset Element

If the given powerset element is not empty, then thecollapseoperator returns the singleton powerset con-
sisting of an upper-bound of all the disjuncts.

1.7 The Polyhedra Powerset Domain

The Polyhedra powerset domain(Pn)P provided by the PPL is the finite powerset domain (defined in
SectionThe Powerset Construction) over the domain of NNC polyhedraPn.

In addition to the operations described for the generic powerset domain in SectionOperations on the Pow-
erset Construction, we provide some operations that are specific to this instantiation. Of these, most corre-
spond to the application of the equivalent operation on each of the NNC polyhedra that are in the given set.
Here we just describe those operations that are particular to the polyhedra powerset domain.

Geometric Comparisons

Given the setsS1,S2 ∈ (Pn)P, then we say thatS1 geometrically coversS2 if every point (in some
element) in a polyhedron inS2 is also a point in a polyhedron inS1. If S1 geometrically coversS2 andS2

geometrically coversS1, then we say that they aregeometrically equal.

Pairwise Merge

Given the powersetS ∈ (Pn)P, then thepairwise mergeoperator takes pairs of distinct elements inS whose
poly-hull is the same as their set-theoretical union and replaces them by their union. This replacement is
done recursively so that, for each pairP,Q of distinct polyhedra in the result set, we haveP]Q 6= P ∪Q.

Extrapolation Operators

The library implements a generalization of the extrapolation operator for powerset domains proposed in
[BGP99]. The operatorBGP99_extrapolation_assign is made parametric by allowing for the
specification of a base-level extrapolation operator different from the H79 widening (e.g., the BHRZ03
widening can be used). Note that, in the general case, this operator cannot guarantee the convergence of
the iteration sequence in a finite number of steps (for a counter-example, see[BHZ04]).

Certificate-Based Widenings

The PPL library provides support for the specification of proper widening operators on the powerset domain

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.8 Using the Library 14

of convex polyhedra. In particular, this version of the library implements an instance of thecertificate-based
widening frameworkproposed in[BHZ03b].

A finite convergence certificatefor an extrapolation operator is a formal way of ensuring that such an
operator is indeed a widening on the considered domain. Given a widening operator on the base-level
domain, together with the corresponding convergence certificate, the BHZ03 framework shows how it is
possible to lift this widening so as to work on the finite powerset domain, while still ensuring convergence
in a finite number of iterations.

Being highly parametric, the BHZ03 widening framework can be instantiated in many ways. The cur-
rent implementation provides the templatic operatorBHZ03_widening_assign <Certificate,
Widening > which only exploits a fraction of this generality, by allowing the user to specify the base-
level widening function and the corresponding certificate. The widening strategy is fixed and uses two
extrapolation heuristics: first, the least upper bound is tried; second, theBGP99 extrapolation operatoris
tried, possibly applyingpairwise merging. If both heuristics fail to converge according to the convergence
certificate, then an attempt is made to apply the base-level widening to the poly-hulls of the two arguments,
possibly improving the result obtained by means of thepoly-differenceoperator. For more details and a
justification of the overall approach, see[BHZ03b] and[BHZ04].

The library provides two convergence certificates: whileBHRZ03_Certificateis compatible with both the
BHRZ03 and the H79 widenings,H79_Certificateis only compatible with the latter. Note that using dif-
ferent certificates will change the results obtained, even when using the same base-level widening operator.
It is also worth stressing that it is up to the user to see that the widening operator is actually compatible
with a given convergence certificate. If such a requirement is not met, then an extrapolation operator will
be obtained.

1.8 Using the Library

A Note on the Implementation of the Operators

When adopting the double description method for the representation of convex polyhedra, the implemen-
tation of most of the operators may require an explicit conversion from one of the two representations into
the other one, leading to algorithms having a worst-case exponential complexity. However, thanks to the
adoption of lazy and incremental computation techniques, the library turns out to be rather efficient in many
practical cases.

In earlier versions of the library, a number of operators were introduced in two flavors: alazyversion and
aneagerversion, the latter having the operator name ending with_and_minimize . In principle, only
the lazy versions should be used. The eager versions were added to help a knowledgeable user obtain
better performance in particular cases. Basically, by invoking the eager version of an operator, the user is
trading laziness to better exploit the incrementality of the inner library computations. Starting from version
0.5, the lazy and incremental computation techniques have been refined to achieve a better integration:
as a consequence, the lazy versions of the operators are now almost always more efficient than the eager
versions.

One of the cases when an eager computation still makes sense is when the well-knownfail-first principle
comes into play. For instance, if you have to compute the intersection of several polyhedra and you strongly
suspect that the result will become empty after a few of these intersections, then you may obtain a better
performance by calling the eager version of the intersection operator, since the minimization process also
enforces an emptiness check. Note anyway that the same effect can be obtained by interleaving the calls of
the lazy operator with explicit emptiness checks.

On Object-Orientation and Polymorphism: A Disclaimer

The PPL library is mainly a collection of so-called “concrete data types”: while providing the user with a
clean and friendly interface, these types are not meant to — i.e., they should not — be used polymorphically
(since, e.g., most of the destructors are not declaredvirtual). In practice, this restriction means that the

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Bibliography 15

library types should not be used aspublic base classesto be derived from. A user willing to extend the
library types, adding new functionalities, often can do so by usingcontainmentinstead of inheritance; even
when there is the need to override aprotected method, non-public inheritance should suffice.

On Const-Correctness: A Warning about the Use of References and Iterators

Most operators of the library depend on one or more parameters that are declared “const”, meaning that
they will not be changed by the application of the considered operator. Due to the adoption of lazy com-
putation techniques, in many cases such a const-correctness guarantee only holds at the semantic level,
whereas it does not necessarily hold at the implementation level. For a typical example, consider the ex-
traction from a polyhedron of its constraint system representation. While this operation is not going to
change the polyhedron, it might actually invoke the internal conversion algorithm and modify the genera-
tors representation of the polyhedron object, e.g., by reordering the generators and removing those that are
detected as redundant. Thus, any previously computed reference to the generators of the polyhedron (be
it a direct reference object or an indirect one, such as an iterator) will no longer be valid. For this reason,
code fragments such as the following should be avoided, as they may result in undefined behavior:

// Find a reference to the first point of the non-empty polyhedron ‘ph’.
const Generator_System& gs = ph.generators();
Generator_System::const_iterator i = gs.begin();
for (Generator_System::const_iterator gs_end = gs.end(); i != gs_end; ++i)

if (i->is_point())
break;

const Generator& p = *i;
// Get the constraints of ‘ph’.
const Constraint_System& cs = ph.constraints();
// Both the const iterator ‘i’ and the reference ‘p’
// are no longer valid at this point.
cout << p.divisor() << endl; // Undefined behavior!
++i; // Undefined behavior!

As a rule of thumb, if a polyhedron plays any role in a computation (even as a const parameter), then
any previously computed reference to parts of the polyhedron may have been invalidated. Note that, in
the example above, the computation of the constraint system could have been placed after the uses of the
iteratori and the referencep. Anyway, if really needed, it is always possible to take a copy of, instead of
a reference to, the parts of interest of the polyhedron; in the case above, one may have taken a copy of the
generator system by replacing the second line of code with the following:

Generator_System gs = ph.generators();

The same observations, modulo syntactic sugar, apply to the operators defined in the C interface of the
library.

1.9 Bibliography

[Bag98] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-based
languages.Science of Computer Programming, 30(1-2):119-155, 1998.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: Symbolic representations, approximations, and experimental results.ACM Transactions
on Programming Languages and Systems, 21(4):747-789, 1999.

[BHRZ03a] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. In R. Cousot, editor,Static Analysis: Proceedings of the 10th International Symposium,
volume 2694 ofLecture Notes in Computer Science, pages 337-354, San Diego, California, USA,
2003. Springer-Verlag, Berlin.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

1.9 Bibliography 16

[BHRZ03b] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for convex
polyhedra. Quaderno 312, Dipartimento di Matematica, Università di Parma, Italy, 2003. Available
athttp://www.cs.unipr.it/Publications/ .

[BHZ02a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. Quaderno 305, Dipartimento di Matematica, Università di Parma,
Italy, 2002. Available athttp://www.cs.unipr.it/Publications/ .

[BHZ02b] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding of not necessarily closed con-
vex polyhedra. In M. Carro, C. Vacheret, and K.-K. Lau, editors,Proceedings of the 1st CoLogNet
Workshop on Component-based Software Development and Implementation Technology for Compu-
tational Logic Systems, pages 147-153, Madrid, Spain, 2002. Published as TR Number CLIP4/02.0,
Universidad Politécnica de Madrid, Facultad de Informática.

[BHZ03a] R. Bagnara, P. M. Hill, and E. Zaffanella. A new encoding and implementation of not neces-
sarily closed convex polyhedra. In M. Leuschel, S. Gruner, and S. Lo Presti, editors,Proceedings of
the 3rd Workshop on Automated Verification of Critical Systems, pages 161-176, Southampton, UK,
2003. Published as TR Number DSSE-TR-2003-2, University of Southampton.

[BHZ03b] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In B.
Steffen and G. Levi, editors,Proceedings of the Fifth International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI 2004), volume 2937 ofLecture Notes in Computer
Science, pages 135-148, Venice, Italy, 2003. Springer-Verlag, Berlin.

[BHZ04] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains.
Quaderno 349, Dipartimento di Matematica, Università di Parma, Italy, 2004. Available at
http://www.cs.unipr.it/Publications/ .

[BJT99] F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous languages. In
A. Cortesi and G. Filé, editors,Static Analysis: Proceedings of the 6th International Symposium,
volume 1694 ofLecture Notes in Computer Science, pages 51-68, Venice, Italy, 1999. Springer-
Verlag, Berlin.

[BRZH02a] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla, editors,Static Analysis: Pro-
ceedings of the 9th International Symposium, volume 2477 ofLecture Notes in Computer Science,
pages 213-229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[BRZH02b] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex polyhedra and
the Parma Polyhedra Library. Quaderno 286, Dipartimento di Matematica, Università di Parma, Italy,
2002. See also[BRZH02c]. Available athttp://www.cs.unipr.it/Publications/ .

[BRZH02c] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Errata for technical report “Quaderno
286”. Available athttp://www.cs.unipr.it/Publications/ , 2002. See[BRZH02b].

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors,Proceedings of the 4th Inter-
national Symposium on Programming Language Implementation and Logic Programming, volume
631 ofLecture Notes in Computer Science, pages 269-295, Leuven, Belgium, 1992. Springer-Verlag,
Berlin.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. InConference Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 84-96, Tucson, Arizona, 1978. ACM Press.

[Che64] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of sys-
tem of linear equations.U.S.S.R. Computational Mathematics and Mathematical Physics, 4(4):151-
158, 1964.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/ppl/

1.9 Bibliography 17

[Che65] N. V. Chernikova. Algorithm for finding a general formula for the non-negative solutions of
system of linear inequalities.U.S.S.R. Computational Mathematics and Mathematical Physics,
5(2):228-233, 1965.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear programming
problem.U.S.S.R. Computational Mathematics and Mathematical Physics, 8(6):282-293, 1968.

[Dan63] G. B. Dantzig.Linear Programming and Extensions. Princeton University Press, Princeton, NJ,
1963.

[FP96] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and Y.
Manoussakis, editors,Combinatorics and Computer Science, 8th Franco-Japanese and 4th Franco-
Chinese Conference, Brest, France, July 3-5, 1995, Selected Papers, volume 1120 ofLecture Notes
in Computer Science, pages 91-111. Springer-Verlag, Berlin, 1996.

[Fuk98] K. Fukuda. Polyhedral computation FAQ. Swiss Federal Insti-
tute of Technology, Lausanne and Zurich, Switzerland, available at
http://www.ifor.math.ethz.ch/ ∼fukuda/fukuda.html , 1998.

[GDD+ 04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with summarized
dimensions. In K. Jensen and A. Podelski, editors,Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004, volume 2988 ofLecture Notes in
Computer Science, pages 512-529. Springer-Verlag, Berlin, 2004.

[GJ00] E. Gawrilow and M. Joswig.polymake : a framework for analyzing convex polytopes. In
G. Kalai and G. M. Ziegler, editors,Polytopes - Combinatorics and Computation, pages 43-74.
Birkhäuser, 2000.

[GJ01] E. Gawrilow and M. Joswig.polymake : an approach to modular software design in computa-
tional geometry. InProceedings of the 17th Annual Symposium on Computational Geometry, pages
222-231, Medford, MA, USA, 2001. ACM.

[Hal79] N. Halbwachs.Détermination Automatique de Relations Linéaires Vérifiées par les Variables
d’un Programme. Thèse de 3ème cycle d’informatique, Université scientifique et médicale de Greno-
ble, Grenoble, France, March 1979.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor,Computer
Aided Verification: Proceedings of the 5th International Conference, volume 697 ofLecture Notes
in Computer Science, pages 333-346, Elounda, Greece, 1993. Springer-Verlag, Berlin.

[HH95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for hybrid automata.
In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors,Hybrid Systems II, volume 999 of
Lecture Notes in Computer Science, pages 252-264. Springer-Verlag, Berlin, 1995.

[HKP95] N. Halbwachs, A. Kerbrat, and Y.-E. Proy.POLyhedra INtegrated Environment. Verimag,
France, version 1.0 of POLINE edition, September 1995. Documentation taken from source code.

[HLW94] V. Van Dongen H. Le Verge and D. K. Wilde. Loop nest synthesis using the polyhedral library.
Publication interne830, IRISA, Campus de Beaulieu, Rennes, France, 1994.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems by means
of convex approximations. In B. Le Charlier, editor,Static Analysis: Proceedings of the 1st Inter-
national Symposium, volume 864 ofLecture Notes in Computer Science, pages 223-237, Namur,
Belgium, 1994. Springer-Verlag, Berlin.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis.Formal Methods in System Design, 11(2):157-185, 1997.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.ifor.math.ethz.ch/~fukuda/fukuda.html
http://www.cs.unipr.it/ppl/

1.9 Bibliography 18

[HPWT01] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Decision and Control, pages 2887-2892. IEEE
Computer Society Press, 2001.

[Jea02] B. Jeannet. Convex Polyhedra Library, release 1.1.3c edition,
March 2002. Documentation of the “New Polka” library available at
http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html .

[Kuh56] H. W. Kuhn. Solvability and consistency for linear equations and inequalities.American Math-
ematical Monthly, 63:217-232, 1956.

[Le 92] 92 H. Le Verge. A note on Chernikova’s algorithm.Publication interne635, IRISA, Campus de
Beaulieu, Rennes, France, 1992.

[Loe99] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Available at
http://icps.u-strasbg.fr/ ∼loechner/polylib/ , March 1999. Declares itself to be
a continuation of[Wil93] .

[LW97] V. Loechner and D. K. Wilde. Parameterized polyhedra and their vertices.International Journal
of Parallel Programming, 25(6):525-549, 1997.

[Mas92] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences.
In Proceedings of the 6th ACM International Conference on Supercomputing, pages 226-235, Wash-
ington, DC, USA, 1992. ACM Press.

[Mas93] F. Masdupuy.Array Indices Relational Semantic Analysis Using Rational Cosets and Trape-
zoids. Thèse d’informatique, École Polytechnique, Palaiseau, France, December 1993.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double description method.
In H. W. Kuhn and A. W. Tucker, editors,Contributions to the Theory of Games - Volume II, number
28 in Annals of Mathematics Studies, pages 51-73. Princeton University Press, Princeton, New
Jersey, 1953.

[NR00] S. P. K. Nookala and T. Risset. A library for Z-polyhedral operations.Publication interne1330,
IRISA, Campus de Beaulieu, Rennes, France, 2000.

[NW88] G. L. Nemhauser and L. A. Wolsey.Integer and Combinatorial Optimization. Wiley Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1988.

[Sch99] A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, 1999.

[Sri93] D. Srivastava. Subsumption and indexing in constraint query languages with linear arithmetic
constraints.Annals of Mathematics and Artificial Intelligence, 8(3-4):315-343, 1993.

[SW70] J. Stoer and C. Witzgall.Convexity and Optimization in Finite Dimensions I. Springer-Verlag,
Berlin, 1970.

[Wey35] H. Weyl. Elementare theorie der konvexen polyeder.Commentarii Mathematici Helvetici,
7:290-306, 1935. English translation in[Wey50].

[Wey50] H. Weyl. The elementary theory of convex polyhedra. In H. W. Kuhn, editor,Contributions to
the Theory of Games - Volume I, number 24 in Annals of Mathematics Studies, pages 3-18. Princeton
University Press, Princeton, New Jersey, 1950. Translated from[Wey35]by H. W. Kuhn.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, December 1993. Also published as IRISAPublication interne785, Rennes,
France, 1993.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.irisa.fr/prive/Bertrand.Jeannet/newpolka.html
http://icps.u-strasbg.fr/~loechner/polylib/
http://www.cs.unipr.it/ppl/

2 PPL Module Index 19

2 PPL Module Index

2.1 PPL Modules

Here is a list of all modules:

The Library 21

Library Defines 22

C Language Interface 22

Prolog Language Interface 51

3 PPL Directory Hierarchy

3.1 PPL Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

interfaces 70

C 69

src 70

4 PPL Namespace Index

4.1 PPL Namespace List

Here is a list of all documented namespaces with brief descriptions:

Parma_Polyhedra_Library (The entire library is confined to this namespace) 70

Parma_Polyhedra_Library::IO_Operators (All input/output operators are confined to this
namespace) 74

std (The standard C++ namespace) 75

5 PPL Hierarchical Index

5.1 PPL Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Parma_Polyhedra_Library::BHRZ03_Certificate 75

Parma_Polyhedra_Library::BHRZ03_Certificate::Compare 76

Parma_Polyhedra_Library::Checked_Number< T, Policy > 79

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

6 PPL Class Index 20

Parma_Polyhedra_Library::Constraint 84

Parma_Polyhedra_Library::Determinate< PH > 89

Parma_Polyhedra_Library::Generator 93

Parma_Polyhedra_Library::H79_Certificate 98

Parma_Polyhedra_Library::H79_Certificate::Compare 100

Parma_Polyhedra_Library::Linear_Expression 100

Parma_Polyhedra_Library::Native_Integer< T > 104

Parma_Polyhedra_Library::Poly_Con_Relation 111

Parma_Polyhedra_Library::Poly_Gen_Relation 112

Parma_Polyhedra_Library::Polyhedron 121

Parma_Polyhedra_Library::C_Polyhedron 77

Parma_Polyhedra_Library::NNC_Polyhedron 109

Parma_Polyhedra_Library::Powerset< CS> 147

Parma_Polyhedra_Library::Powerset< Parma_Polyhedra_Library::Determinate< PH > > 147

Parma_Polyhedra_Library::Polyhedra_Powerset< PH > 113

Parma_Polyhedra_Library::Variable 151

Parma_Polyhedra_Library::Variable::Compare 153

6 PPL Class Index

6.1 PPL Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Parma_Polyhedra_Library::BHRZ03_Certificate (The convergence certificate for the
BHRZ03 widening operator) 75

Parma_Polyhedra_Library::BHRZ03_Certificate::Compare (A total ordering on BHRZ03
certificates) 76

Parma_Polyhedra_Library::C_Polyhedron (A closed convex polyhedron) 77

Parma_Polyhedra_Library::Checked_Number< T, Policy > (A wrapper for native numeric
types implementing a given policy) 79

Parma_Polyhedra_Library::Constraint (A linear equality or inequality) 84

Parma_Polyhedra_Library::Determinate< PH > (Wraps a PPL class into a determinate con-
straint system interface) 89

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

7 PPL Page Index 21

Parma_Polyhedra_Library::Generator (A line, ray, point or closure point) 93

Parma_Polyhedra_Library::H79_Certificate (A convergence certificate for the H79 widening
operator) 98

Parma_Polyhedra_Library::H79_Certificate::Compare (A total ordering on H79 certificates
) 100

Parma_Polyhedra_Library::Linear_Expression (A linear expression) 100

Parma_Polyhedra_Library::Native_Integer< T > (A wrapper for unchecked native integer
types) 104

Parma_Polyhedra_Library::NNC_Polyhedron (A not necessarily closed convex polyhedron)109

Parma_Polyhedra_Library::Poly_Con_Relation (The relation between a polyhedron and a
constraint) 111

Parma_Polyhedra_Library::Poly_Gen_Relation (The relation between a polyhedron and a
generator) 112

Parma_Polyhedra_Library::Polyhedra_Powerset< PH > (The powerset construction instan-
tiated on PPL polyhedra) 113

Parma_Polyhedra_Library::Polyhedron (The base class for convex polyhedra) 121

Parma_Polyhedra_Library::Powerset< CS > (The powerset construction on constraint sys-
tems) 147

Parma_Polyhedra_Library::Variable (A dimension of the vector space) 151

Parma_Polyhedra_Library::Variable::Compare (Binary predicate defining the total ordering
on variables) 153

7 PPL Page Index

7.1 PPL Related Pages

Here is a list of all related documentation pages:

GNU General Public License 153

GNU Free Documentation License 158

8 PPL Module Documentation

8.1 The Library

The core implementation of the Parma Polyhedra Library is written in C++. See Namespace, Hierarchical
and Compound indexes for additional information about each single data type.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.2 Library Defines 22

8.2 Library Defines

Defines

• #definePPL_VERSION_MAJOR0

The major number of the PPL version.

• #definePPL_VERSION_MINOR7

The minor number of the PPL version.

• #definePPL_VERSION_REVISION0

The revision number of the PPL version.

• #definePPL_VERSION_BETA0

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

• #definePPL_VERSION"0.7"

A string containing the PPL version.

8.2.1 Define Documentation

8.2.1.1 #define PPL_VERSION "0.7"

A string containing the PPL version.

Let Mandmdenote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSION isM "." m if both PPL_VERSION_REVISION (r) and
PPL_VERSION_BETA (b)are zero,M "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zero,M "." m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zero,M "." m "." r "pre" b if neither PPL_VERSION_REVISION
nor PPL_VERSION_BETA are zero.

8.3 C Language Interface

Some details about the C Interface.

Version Checking

• #definePPL_VERSION_MAJOR0

The major number of the PPL version.

• #definePPL_VERSION_MINOR7

The minor number of the PPL version.

• #definePPL_VERSION_REVISION0

The revision number of the PPL version.

• #definePPL_VERSION_BETA0

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 23

The beta number of the PPL version. This is zero for official releases and nonzero for development snap-
shots.

• #definePPL_VERSION"0.7"

A string containing the PPL version.

• int ppl_version_major(void)

Returns the major number of the PPL version.

• int ppl_version_minor(void)

Returns the minor number of the PPL version.

• int ppl_version_revision(void)

Returns the revision number of the PPL version.

• int ppl_version_beta(void)

Returns the beta number of the PPL version.

• int ppl_version(const char∗∗p)

Writes toma pointer to a character string containing the PPL version.

• int ppl_banner(const char∗∗p)

Writes toma pointer to a character string containing the PPL banner.

Simple I/O Functions

• typedef const char∗ ppl_io_variable_output_function_type(ppl_dimension_typevar)

The type of output functions used for printing variables.

• int ppl_io_print_variable(ppl_dimension_typevar)

Pretty-printsx to stdout .

• int ppl_io_fprint_variable(FILE ∗stream,ppl_dimension_typevar)

Pretty-printsvar to the given outputstream .

• int ppl_io_print_Coefficient(ppl_const_Coefficient_tx)

Prints x to stdout .

• int ppl_io_fprint_Coefficient(FILE ∗stream,ppl_const_Coefficient_tx)

Prints x to the given outputstream .

• int ppl_io_print_Linear_Expression(ppl_const_Linear_Expression_tx)

Prints x to stdout .

• int ppl_io_fprint_Linear_Expression(FILE ∗stream,ppl_const_Linear_Expression_tx)

Prints x to the given outputstream .

• int ppl_io_print_Constraint(ppl_const_Constraint_tx)

Prints x to stdout .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 24

• int ppl_io_fprint_Constraint(FILE ∗stream,ppl_const_Constraint_tx)

Prints x to the given outputstream .

• int ppl_io_print_Constraint_System(ppl_const_Constraint_System_tx)

Prints x to stdout .

• int ppl_io_fprint_Constraint_System(FILE ∗stream,ppl_const_Constraint_System_tx)

Prints x to the given outputstream .

• int ppl_io_print_Generator(ppl_const_Generator_tx)

Prints x to stdout .

• int ppl_io_fprint_Generator(FILE ∗stream,ppl_const_Generator_tx)

Prints x to the given outputstream .

• int ppl_io_print_Generator_System(ppl_const_Generator_System_tx)

Prints x to stdout .

• int ppl_io_fprint_Generator_System(FILE ∗stream,ppl_const_Generator_System_tx)

Prints x to the given outputstream .

• int ppl_io_print_Polyhedron(ppl_const_Polyhedron_tx)

Prints x to stdout .

• int ppl_io_fprint_Polyhedron(FILE ∗stream,ppl_const_Polyhedron_tx)

Prints x to the given outputstream .

• int ppl_io_set_variable_output_function(ppl_io_variable_output_function_type∗p)

Sets the output function to be used for printing variables top.

• int ppl_io_get_variable_output_function(ppl_io_variable_output_function_type∗∗pp)

Writes a pointer to the current variable output function topp .

Initialization, Error Handling and Auxiliary Functions

• int ppl_max_space_dimension(ppl_dimension_type∗m)

Writes tomthe maximum space dimension this library can handle.

• int ppl_not_a_dimension(ppl_dimension_type∗m)

Writes toma value that does not designate a valid dimension.

• int ppl_initialize(void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

• int ppl_finalize(void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

• int ppl_set_error_handler(void(∗h)(enumppl_enum_error_codecode, const char∗description))

Installs the user-defined error handler pointed at byh.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 25

Functions Related to Coefficients

• int ppl_new_Coefficient(ppl_Coefficient_t∗pc)

Creates a new coefficient with value 0 and writes a handle for the newly created coefficient at addresspc .

• int ppl_new_Coefficient_from_mpz_t(ppl_Coefficient_t∗pc, mpz_t z)

Creates a new coefficient with the value given by the GMP integerz and writes a handle for the newly
created coefficient at addresspc .

• int ppl_new_Coefficient_from_Coefficient(ppl_Coefficient_t∗pc,ppl_const_Coefficient_tc)

Builds a coefficient that is a copy ofc ; writes a handle for the newly created coefficient at addresspc .

• int ppl_assign_Coefficient_from_mpz_t(ppl_Coefficient_tdst, mpz_t z)

Assign todst the value given by the GMP integerz .

• int ppl_assign_Coefficient_from_Coefficient(ppl_Coefficient_tdst,ppl_const_Coefficient_tsrc)

Assigns a copy of the coefficientsrc to dst .

• int ppl_delete_Coefficient(ppl_const_Coefficient_tc)

Invalidates the handlec: this makes sure the corresponding resources will eventually be released.

• int ppl_Coefficient_to_mpz_t(ppl_const_Coefficient_tc, mpz_t z)

Sets the value of the GMP integerz to the value ofc .

• int ppl_Coefficient_OK(ppl_const_Coefficient_tc)

Returns a positive integer ifc is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifc is broken. Useful for debugging purposes.

Functions Related to Linear Expressions

• int ppl_new_Linear_Expression(ppl_Linear_Expression_t∗ple)

Creates a new linear expression corresponding to the constant 0 in a zero-dimensional space; writes a
handle for the new linear expression at addressple .

• int ppl_new_Linear_Expression_with_dimension(ppl_Linear_Expression_t∗ple, ppl_dimension_-
typed)

Creates a new linear expression corresponding to the constant 0 in ad-dimensional space; writes a handle
for the new linear expression at addressple .

• int ppl_new_Linear_Expression_from_Linear_Expression(ppl_Linear_Expression_t∗ple, ppl_-
const_Linear_Expression_tle)

Builds a linear expression that is a copy ofle ; writes a handle for the newly created linear expression at
addressple .

• int ppl_new_Linear_Expression_from_Constraint(ppl_Linear_Expression_t∗ple, ppl_const_-
Constraint_tc)

Builds a linear expression corresponding to constraintc ; writes a handle for the newly created linear
expression at addressple .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 26

• int ppl_new_Linear_Expression_from_Generator(ppl_Linear_Expression_t∗ple, ppl_const_-
Generator_tg)

Builds a linear expression corresponding to generatorg; writes a handle for the newly created linear
expression at addressple .

• int ppl_delete_Linear_Expression(ppl_const_Linear_Expression_tle)

Invalidates the handlele: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Linear_Expression_from_Linear_Expression(ppl_Linear_Expression_tdst, ppl_-
const_Linear_Expression_tsrc)

Assigns a copy of the linear expressionsrc to dst .

• int ppl_Linear_Expression_add_to_coefficient(ppl_Linear_Expression_tle, ppl_dimension_type
var,ppl_const_Coefficient_tn)

Addsn to the coefficient of variablevar in the linear expressionle . The space dimension is set to be the
maximum betweenvar + 1 and the old space dimension.

• int ppl_Linear_Expression_add_to_inhomogeneous(ppl_Linear_Expression_tle, ppl_const_-
Coefficient_tn)

Addsn to the inhomogeneous term of the linear expressionle .

• int ppl_add_Linear_Expression_to_Linear_Expression(ppl_Linear_Expression_tdst, ppl_const_-
Linear_Expression_tsrc)

Adds the linear expressionsrc to dst .

• int ppl_subtract_Linear_Expression_from_Linear_Expression(ppl_Linear_Expression_tdst, ppl_-
const_Linear_Expression_tsrc)

Subtracts the linear expressionsrc from dst .

• int ppl_multiply_Linear_Expression_by_Coefficient(ppl_Linear_Expression_tle, ppl_const_-
Coefficient_tn)

Multiply the linear expressiondst byn.

• int ppl_Linear_Expression_space_dimension(ppl_const_Linear_Expression_tle, ppl_dimension_-
type∗m)

Writes tomthe space dimension ofle .

• int ppl_Linear_Expression_coefficient(ppl_const_Linear_Expression_tle, ppl_dimension_typevar,
ppl_Coefficient_tn)

Copies inton the coefficient of variablevar in the linear expressionle .

• int ppl_Linear_Expression_inhomogeneous_term(ppl_const_Linear_Expression_tle, ppl_-
Coefficient_tn)

Copies inton the inhomogeneous term of linear expressionle .

• int ppl_Linear_Expression_OK(ppl_const_Linear_Expression_tle)

Returns a positive integer ifle is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifle is broken. Useful for debugging purposes.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 27

Functions Related to Constraints

• int ppl_new_Constraint(ppl_Constraint_t∗pc, ppl_const_Linear_Expression_tle, enum ppl_-
enum_Constraint_Typerel)

Creates the new constraint ‘le rel 0’ and writes a handle for it at addresspc . The space dimension of
the new constraint is equal to the space dimension ofle .

• int ppl_new_Constraint_zero_dim_false(ppl_Constraint_t∗pc)

Creates the unsatisfiable (zero-dimension space) constraint0 = 1 and writes a handle for it at addresspc .

• int ppl_new_Constraint_zero_dim_positivity(ppl_Constraint_t∗pc)

Creates the true (zero-dimension space) constraint0 ≤ 1, also known aspositivity constraint. a handle for
the newly created constraint is written at addresspc .

• int ppl_new_Constraint_from_Constraint(ppl_Constraint_t∗pc,ppl_const_Constraint_tc)

Builds a constraint that is a copy ofc ; writes a handle for the newly created constraint at addresspc .

• int ppl_delete_Constraint(ppl_const_Constraint_tc)

Invalidates the handlec: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Constraint_from_Constraint(ppl_Constraint_tdst,ppl_const_Constraint_tsrc)

Assigns a copy of the constraintsrc to dst .

• int ppl_Constraint_space_dimension(ppl_const_Constraint_tc, ppl_dimension_type∗m)

Writes tomthe space dimension ofc .

• int ppl_Constraint_type(ppl_const_Constraint_tc)

Returns the type of constraintc .

• int ppl_Constraint_coefficient(ppl_const_Constraint_tc, ppl_dimension_typevar,ppl_Coefficient_t
n)

Copies inton the coefficient of variablevar in constraintc .

• int ppl_Constraint_inhomogeneous_term(ppl_const_Constraint_tc, ppl_Coefficient_tn)

Copies inton the inhomogeneous term of constraintc .

• int ppl_Constraint_OK(ppl_const_Constraint_tc)

Returns a positive integer ifc is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifc is broken. Useful for debugging purposes.

Functions Related to Constraint Systems

• int ppl_new_Constraint_System(ppl_Constraint_System_t∗pcs)

Builds an empty system of constraints and writes a handle to it at addresspcs .

• int ppl_new_Constraint_System_zero_dim_empty(ppl_Constraint_System_t∗pcs)

Builds a zero-dimensional, unsatisfiable constraint system and writes a handle to it at addresspcs .

• int ppl_new_Constraint_System_from_Constraint(ppl_Constraint_System_t∗pcs, ppl_const_-
Constraint_tc)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 28

Builds the singleton constraint system containing only a copy of constraintc ; writes a handle for the newly
created system at addresspcs .

• int ppl_new_Constraint_System_from_Constraint_System(ppl_Constraint_System_t∗pcs, ppl_-
const_Constraint_System_tcs)

Builds a constraint system that is a copy ofcs ; writes a handle for the newly created system at address
pcs .

• int ppl_delete_Constraint_System(ppl_const_Constraint_System_tcs)

Invalidates the handlecs: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Constraint_System_from_Constraint_System(ppl_Constraint_System_tdst, ppl_-
const_Constraint_System_tsrc)

Assigns a copy of the constraint systemsrc to dst .

• int ppl_Constraint_System_space_dimension(ppl_const_Constraint_System_tcs,ppl_dimension_-
type∗m)

Writes tomthe dimension of the vector space enclosingcs .

• int ppl_Constraint_System_clear(ppl_Constraint_System_tcs)

Removes all the constraints from the constraint systemcs and sets its space dimension to 0.

• int ppl_Constraint_System_insert_Constraint(ppl_Constraint_System_tcs,ppl_const_Constraint_t
c)

Inserts a copy of the constraintc into cs ; the space dimension is increased, if necessary.

• int ppl_Constraint_System_OK(ppl_const_Constraint_System_tc)

Returns a positive integer ifcs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifcs is broken. Useful for debugging purposes.

• int ppl_new_Constraint_System_const_iterator(ppl_Constraint_System_const_iterator_t∗pcit)

Builds a new ‘const iterator’ and writes a handle to it at addresspcit .

• int ppl_new_Constraint_System_const_iterator_from_Constraint_System_const_iterator(ppl_-
Constraint_System_const_iterator_t∗pcit, ppl_const_Constraint_System_const_iterator_tcit)

Builds a const iterator that is a copy ofcit ; writes an handle for the newly created const iterator at address
pcit .

• int ppl_delete_Constraint_System_const_iterator(ppl_const_Constraint_System_const_iterator_-
t cit)

Invalidates the handlecit: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Constraint_System_const_iterator_from_Constraint_System_const_iterator(ppl_-
Constraint_System_const_iterator_tdst,ppl_const_Constraint_System_const_iterator_tsrc)

Assigns a copy of the const iteratorsrc to dst .

• int ppl_Constraint_System_begin(ppl_const_Constraint_System_tcs, ppl_Constraint_System_-
const_iterator_tcit)

Assigns tocit a const iterator "pointing" to the beginning of the constraint systemcs .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 29

• int ppl_Constraint_System_end(ppl_const_Constraint_System_tcs, ppl_Constraint_System_-
const_iterator_tcit)

Assigns tocit a const iterator "pointing" past the end of the constraint systemcs .

• int ppl_Constraint_System_const_iterator_dereference(ppl_const_Constraint_System_const_-
iterator_tcit, ppl_const_Constraint_t∗pc)

Dereferencecit writing a const handle to the resulting constraint at addresspc .

• int ppl_Constraint_System_const_iterator_increment(ppl_Constraint_System_const_iterator_tcit)

Incrementcit so that it "points" to the next constraint.

• int ppl_Constraint_System_const_iterator_equal_test(ppl_const_Constraint_System_const_-
iterator_tx, ppl_const_Constraint_System_const_iterator_ty)

Returns a positive integer if the iterators corresponding tox andy are equal; return 0 if they are different.

Functions Related to Generators

• int ppl_new_Generator(ppl_Generator_t∗pg,ppl_const_Linear_Expression_tle, enumppl_enum_-
Generator_Typet, ppl_const_Coefficient_td)

Creates a new generator of directionle and typet . If the generator to be created is a point or a closure
point, the divisord is applied tole . For other types of generatorsd is simply disregarded. A handle for
the new generator is written at addresspg . The space dimension of the new generator is equal to the space
dimension ofle .

• int ppl_new_Generator_zero_dim_point(ppl_Generator_t∗pg)

Creates the point that is the origin of the zero-dimensional spaceR0. Writes a handle for the new generator
at addresspg .

• int ppl_new_Generator_zero_dim_closure_point(ppl_Generator_t∗pg)

Creates, as a closure point, the point that is the origin of the zero-dimensional spaceR0. Writes a handle
for the new generator at addresspg .

• int ppl_new_Generator_from_Generator(ppl_Generator_t∗pg,ppl_const_Generator_tg)

Builds a generator that is a copy ofg; writes a handle for the newly created generator at addresspg .

• int ppl_delete_Generator(ppl_const_Generator_tg)

Invalidates the handleg: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Generator_from_Generator(ppl_Generator_tdst,ppl_const_Generator_tsrc)

Assigns a copy of the generatorsrc to dst .

• int ppl_Generator_space_dimension(ppl_const_Generator_tg, ppl_dimension_type∗m)

Writes tomthe space dimension ofg.

• int ppl_Generator_type(ppl_const_Generator_tg)

Returns the type of generatorg.

• int ppl_Generator_coefficient(ppl_const_Generator_tg, ppl_dimension_typevar,ppl_Coefficient_t
n)

Copies inton the coefficient of variablevar in generatorg.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 30

• int ppl_Generator_divisor(ppl_const_Generator_tg, ppl_Coefficient_tn)

If g is a point or a closure point assigns its divisor ton.

• int ppl_Generator_OK(ppl_const_Generator_tg)

Returns a positive integer ifg is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifg is broken. Useful for debugging purposes.

Functions Related to Generator Systems

• int ppl_new_Generator_System(ppl_Generator_System_t∗pgs)

Builds an empty system of generators and writes a handle to it at addresspgs .

• int ppl_new_Generator_System_from_Generator(ppl_Generator_System_t∗pgs, ppl_const_-
Generator_tg)

Builds the singleton generator system containing only a copy of generatorg; writes a handle for the newly
created system at addresspgs .

• int ppl_new_Generator_System_from_Generator_System(ppl_Generator_System_t∗pgs, ppl_-
const_Generator_System_tgs)

Builds a generator system that is a copy ofgs ; writes a handle for the newly created system at addresspgs .

• int ppl_delete_Generator_System(ppl_const_Generator_System_tgs)

Invalidates the handlegs: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Generator_System_from_Generator_System(ppl_Generator_System_tdst, ppl_-
const_Generator_System_tsrc)

Assigns a copy of the generator systemsrc to dst .

• int ppl_Generator_System_space_dimension(ppl_const_Generator_System_tgs, ppl_dimension_-
type∗m)

Writes tomthe dimension of the vector space enclosinggs .

• int ppl_Generator_System_clear(ppl_Generator_System_tgs)

Removes all the generators from the generator systemgs and sets its space dimension to 0.

• int ppl_Generator_System_insert_Generator(ppl_Generator_System_tgs,ppl_const_Generator_tg)

Inserts a copy of the generatorg into gs ; the space dimension is increased, if necessary.

• int ppl_Generator_System_OK(ppl_const_Generator_System_tc)

Returns a positive integer ifgs is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifgs is broken. Useful for debugging purposes.

• int ppl_new_Generator_System_const_iterator(ppl_Generator_System_const_iterator_t∗pgit)

Builds a new ‘const iterator’ and writes a handle to it at addresspgit .

• int ppl_new_Generator_System_const_iterator_from_Generator_System_const_iterator(ppl_-
Generator_System_const_iterator_t∗pgit, ppl_const_Generator_System_const_iterator_tgit)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 31

Builds a const iterator that is a copy ofgit ; writes an handle for the newly created const iterator at address
pgit .

• int ppl_delete_Generator_System_const_iterator(ppl_const_Generator_System_const_iterator_-
t git)

Invalidates the handlegit: this makes sure the corresponding resources will eventually be released.

• int ppl_assign_Generator_System_const_iterator_from_Generator_System_const_iterator(ppl_-
Generator_System_const_iterator_tdst,ppl_const_Generator_System_const_iterator_tsrc)

Assigns a copy of the const iteratorsrc to dst .

• int ppl_Generator_System_begin(ppl_const_Generator_System_tgs, ppl_Generator_System_-
const_iterator_tgit)

Assigns togit a const iterator "pointing" to the beginning of the generator systemgs .

• int ppl_Generator_System_end(ppl_const_Generator_System_tgs,ppl_Generator_System_const_-
iterator_tgit)

Assigns togit a const iterator "pointing" past the end of the generator systemgs .

• int ppl_Generator_System_const_iterator_dereference(ppl_const_Generator_System_const_-
iterator_tgit, ppl_const_Generator_t∗pg)

Dereferencegit writing a const handle to the resulting generator at addresspg .

• int ppl_Generator_System_const_iterator_increment(ppl_Generator_System_const_iterator_tgit)

Incrementgit so that it "points" to the next generator.

• int ppl_Generator_System_const_iterator_equal_test(ppl_const_Generator_System_const_-
iterator_tx, ppl_const_Generator_System_const_iterator_ty)

Return a positive integer if the iterators corresponding tox andy are equal; return 0 if they are different.

Functions Related to Polyhedra

• int ppl_new_C_Polyhedron_from_dimension(ppl_Polyhedron_t∗pph,ppl_dimension_typed)

Builds an universe closed polyhedron of dimensiond and writes an handle to it at addresspph .

• int ppl_new_NNC_Polyhedron_from_dimension(ppl_Polyhedron_t∗pph,ppl_dimension_typed)

Builds an universe NNC polyhedron of dimensiond and writes an handle to it at addresspph .

• int ppl_new_C_Polyhedron_empty_from_dimension(ppl_Polyhedron_t∗pph,ppl_dimension_type
d)

Builds an empty closed polyhedron of space dimensiond and writes an handle to it at addresspph .

• int ppl_new_NNC_Polyhedron_empty_from_dimension(ppl_Polyhedron_t∗pph,ppl_dimension_-
typed)

Builds an empty NNC polyhedron of space dimensiond and writes an handle to it at addresspph .

• int ppl_new_C_Polyhedron_from_C_Polyhedron(ppl_Polyhedron_t∗pph,ppl_const_Polyhedron_t
ph)

Builds a closed polyhedron that is a copy ofph ; writes a handle for the newly created polyhedron at address
pph .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 32

• int ppl_new_C_Polyhedron_from_NNC_Polyhedron(ppl_Polyhedron_t ∗pph, ppl_const_-
Polyhedron_tph)

Builds a closed polyhedron that is a copy of of the NNC polyhedronph ; writes a handle for the newly
created polyhedron at addresspph .

• int ppl_new_NNC_Polyhedron_from_C_Polyhedron(ppl_Polyhedron_t ∗pph, ppl_const_-
Polyhedron_tph)

Builds an NNC polyhedron that is a copy of of the closed polyhedronph ; writes a handle for the newly
created polyhedron at addresspph .

• int ppl_new_NNC_Polyhedron_from_NNC_Polyhedron(ppl_Polyhedron_t∗pph, ppl_const_-
Polyhedron_tph)

Builds an NNC polyhedron that is a copy ofph ; writes a handle for the newly created polyhedron at address
pph .

• int ppl_new_C_Polyhedron_from_Constraint_System(ppl_Polyhedron_t ∗pph, ppl_const_-
Constraint_System_tcs)

Builds a new closed polyhedron from the system of constraintscs and writes a handle for the newly created
polyhedron at addresspph .

• int ppl_new_C_Polyhedron_recycle_Constraint_System(ppl_Polyhedron_t∗pph,ppl_Constraint_-
System_tcs)

Builds a new closed polyhedron recycling the system of constraintscs and writes a handle for the newly
created polyhedron at addresspph .

• int ppl_new_NNC_Polyhedron_from_Constraint_System(ppl_Polyhedron_t∗pph, ppl_const_-
Constraint_System_tcs)

Builds a new NNC polyhedron from the system of constraintscs and writes a handle for the newly created
polyhedron at addresspph .

• int ppl_new_NNC_Polyhedron_recycle_Constraint_System(ppl_Polyhedron_t ∗pph, ppl_-
Constraint_System_tcs)

Builds a new NNC polyhedron recycling the system of constraintscs and writes a handle for the newly
created polyhedron at addresspph .

• int ppl_new_C_Polyhedron_from_Generator_System(ppl_Polyhedron_t ∗pph, ppl_const_-
Generator_System_tgs)

Builds a new closed polyhedron from the system of generatorsgs and writes a handle for the newly created
polyhedron at addresspph .

• int ppl_new_C_Polyhedron_recycle_Generator_System(ppl_Polyhedron_t∗pph, ppl_Generator_-
System_tgs)

Builds a new closed polyhedron recycling the system of generatorsgs and writes a handle for the newly
created polyhedron at addresspph .

• int ppl_new_NNC_Polyhedron_from_Generator_System(ppl_Polyhedron_t∗pph, ppl_const_-
Generator_System_tgs)

Builds a new NNC polyhedron from the system of generatorsgs and writes a handle for the newly created
polyhedron at addresspph .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 33

• int ppl_new_NNC_Polyhedron_recycle_Generator_System(ppl_Polyhedron_t ∗pph, ppl_-
Generator_System_tgs)

Builds a new NNC polyhedron recycling the system of generatorsgs and writes a handle for the newly
created polyhedron at addresspph .

• int ppl_new_C_Polyhedron_from_bounding_box(ppl_Polyhedron_t ∗pph, ppl_dimension_-
type(∗space_dimension)(void), int(∗is_empty)(void), int(∗get_lower_bound)(ppl_dimension_type
k, int closed,ppl_Coefficient_tn, ppl_Coefficient_td), int(∗get_upper_bound)(ppl_dimension_type
k, int closed,ppl_Coefficient_tn, ppl_Coefficient_td))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addresspph .

• int ppl_new_NNC_Polyhedron_from_bounding_box(ppl_Polyhedron_t∗pph, ppl_dimension_-
type(∗space_dimension)(void), int(∗is_empty)(void), int(∗get_lower_bound)(ppl_dimension_type
k, int closed,ppl_Coefficient_tn, ppl_Coefficient_td), int(∗get_upper_bound)(ppl_dimension_type
k, int closed,ppl_Coefficient_tn, ppl_Coefficient_td))

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the newly
created polyhedron at addresspph .

• int ppl_assign_C_Polyhedron_from_C_Polyhedron(ppl_Polyhedron_tdst,ppl_const_Polyhedron_t
src)

Assigns a copy of the closed polyhedronsrc to the closed polyhedrondst .

• int ppl_assign_NNC_Polyhedron_from_NNC_Polyhedron(ppl_Polyhedron_tdst, ppl_const_-
Polyhedron_tsrc)

Assigns a copy of the NNC polyhedronsrc to the NNC polyhedrondst .

• int ppl_delete_Polyhedron(ppl_const_Polyhedron_tph)

Invalidates the handleph: this makes sure the corresponding resources will eventually be released.

• int ppl_Polyhedron_space_dimension(ppl_const_Polyhedron_tph,ppl_dimension_type∗m)

Writes tomthe dimension of the vector space enclosingph .

• int ppl_Polyhedron_affine_dimension(ppl_const_Polyhedron_tph)

Writes tomthe affine dimension ofph (not to be confused with the dimension of its enclosing vector space)
or 0, if ph is empty.

• int ppl_Polyhedron_constraints(ppl_const_Polyhedron_tph, ppl_const_Constraint_System_t∗pcs)

Writes a const handle to the constraint system defining the polyhedronph at addresspcs .

• int ppl_Polyhedron_minimized_constraints(ppl_const_Polyhedron_tph, ppl_const_Constraint_-
System_t∗pcs)

Writes a const handle to the minimized constraint system defining the polyhedronph at addresspcs .

• int ppl_Polyhedron_generators(ppl_const_Polyhedron_tph,ppl_const_Generator_System_t∗pgs)

Writes a const handle to the generator system defining the polyhedronph at addresspgs .

• int ppl_Polyhedron_minimized_generators(ppl_const_Polyhedron_tph, ppl_const_Generator_-
System_t∗pgs)

Writes a const handle to the minimized generator system defining the polyhedronph at addresspgs .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 34

• int ppl_Polyhedron_relation_with_Constraint(ppl_const_Polyhedron_tph, ppl_const_Constraint_t
c)

Checks the relation between the polyhedronph with the constraintc .

• int ppl_Polyhedron_relation_with_Generator(ppl_const_Polyhedron_tph, ppl_const_Generator_-
t g)

Checks the relation between the polyhedronph with the generatorg.

• int ppl_Polyhedron_shrink_bounding_box(ppl_const_Polyhedron_tph, unsigned int complexity,
void(∗set_empty)(void), void(∗raise_lower_bound)(ppl_dimension_typek, int closed,ppl_const_-
Coefficient_tn, ppl_const_Coefficient_td), void(∗lower_upper_bound)(ppl_dimension_typek, int
closed,ppl_const_Coefficient_tn, ppl_const_Coefficient_td))

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by means
of the parameters.

• int ppl_Polyhedron_is_empty(ppl_const_Polyhedron_tph)

Returns a positive integer ifph is empty; returns 0 ifph is not empty.

• int ppl_Polyhedron_is_universe(ppl_const_Polyhedron_tph)

Returns a positive integer ifph is a universe polyhedron; returns 0 if it is not.

• int ppl_Polyhedron_is_bounded(ppl_const_Polyhedron_tph)

Returns a positive integer ifph is bounded; returns 0 ifph is unbounded.

• int ppl_Polyhedron_bounds_from_above(ppl_const_Polyhedron_t ph, ppl_const_Linear_-
Expression_tle)

Returns a positive integer ifle is bounded from above inph ; returns 0 otherwise.

• int ppl_Polyhedron_bounds_from_below(ppl_const_Polyhedron_tph, ppl_const_Linear_-
Expression_tle)

Returns a positive integer ifle is bounded from below inph ; returns 0 otherwise.

• int ppl_Polyhedron_maximize(ppl_const_Polyhedron_tph, ppl_const_Linear_Expression_tle,
ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d, int ∗pmaximum, ppl_const_Generator_-
t ∗ppoint)

Returns a positive integer ifph is not empty andle is bounded from above inph , in which case the
supremum value and a point wherele reaches it are computed.

• int ppl_Polyhedron_minimize(ppl_const_Polyhedron_tph, ppl_const_Linear_Expression_tle,
ppl_Coefficient_tinf_n, ppl_Coefficient_tinf_d, int∗pminimum,ppl_const_Generator_t∗ppoint)

Returns a positive integer ifph is not empty andle is bounded from above inph , in which case the infimum
value and a point wherele reaches it are computed.

• int ppl_Polyhedron_is_topologically_closed(ppl_const_Polyhedron_tph)

Returns a positive integer ifph is topologically closed; returns 0 ifph is not topologically closed.

• int ppl_Polyhedron_contains_Polyhedron(ppl_const_Polyhedron_tx, ppl_const_Polyhedron_ty)

Returns a positive integer ifx contains or is equal toy ; returns 0 if it does not.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 35

• int ppl_Polyhedron_strictly_contains_Polyhedron(ppl_const_Polyhedron_t x, ppl_const_-
Polyhedron_ty)

Returns a positive integer ifx strictly containsy ; returns 0 if it does not.

• int ppl_Polyhedron_is_disjoint_from_Polyhedron(ppl_const_Polyhedron_t x, ppl_const_-
Polyhedron_ty)

Returns a positive integer ifx andy are disjoint; returns 0 if they are not.

• int ppl_Polyhedron_equals_Polyhedron(ppl_const_Polyhedron_tx, ppl_const_Polyhedron_ty)

Returns a positive integer ifx andy are the same polyhedron; return 0 if they are different.

• int ppl_Polyhedron_OK(ppl_const_Polyhedron_tph)

Returns a positive integer ifph is well formed, i.e., if it satisfies all its implementation invariants; returns 0
and perhaps make some noise ifph is broken. Useful for debugging purposes.

• int ppl_Polyhedron_add_constraint(ppl_Polyhedron_tph,ppl_const_Constraint_tc)

Adds a copy of the constraintc to the system of constraints ofph .

• int ppl_Polyhedron_add_constraint_and_minimize(ppl_Polyhedron_tph,ppl_const_Constraint_tc)

Adds a copy of the constraintc to the system of constraints ofph . Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be minimized.

• int ppl_Polyhedron_add_generator(ppl_Polyhedron_tph,ppl_const_Generator_tg)

Adds a copy of the generatorg to the system of generators ofph .

• int ppl_Polyhedron_add_generator_and_minimize(ppl_Polyhedron_tph,ppl_const_Generator_tg)

Adds a copy of the generatorg to the system of generators ofph . Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be minimized.

• int ppl_Polyhedron_add_constraints(ppl_Polyhedron_tph,ppl_const_Constraint_System_tcs)

Adds a copy of the system of constraintscs to the system of constraints ofph .

• int ppl_Polyhedron_add_constraints_and_minimize(ppl_Polyhedron_tph, ppl_const_Constraint_-
System_tcs)

Adds a copy of the system of constraintscs to the system of constraints ofph . Returns a positive integer if
the resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to
be minimized.

• int ppl_Polyhedron_add_generators(ppl_Polyhedron_tph,ppl_const_Generator_System_tgs)

Adds a copy of the system of generatorsgs to the system of generators ofph .

• int ppl_Polyhedron_add_generators_and_minimize(ppl_Polyhedron_tph, ppl_const_Generator_-
System_tgs)

Adds a copy of the system of generatorsgs to the system of generators ofph . Returns a positive integer if
the resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to
be minimized.

• int ppl_Polyhedron_add_recycled_constraints(ppl_Polyhedron_tph,ppl_Constraint_System_tcs)

Adds the system of constraintscs to the system of constraints ofph .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 36

• int ppl_Polyhedron_add_recycled_constraints_and_minimize(ppl_Polyhedron_t ph, ppl_-
Constraint_System_tcs)

Adds the system of constraintscs to the system of constraints ofph . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be
minimized.

• int ppl_Polyhedron_add_recycled_generators(ppl_Polyhedron_tph,ppl_Generator_System_tgs)

Adds the system of generatorsgs to the system of generators ofph .

• int ppl_Polyhedron_add_recycled_generators_and_minimize(ppl_Polyhedron_t ph, ppl_-
Generator_System_tgs)

Adds the system of generatorsgs to the system of generators ofph . Returns a positive integer if the resulting
polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be minimized.

• int ppl_Polyhedron_intersection_assign(ppl_Polyhedron_tx, ppl_const_Polyhedron_ty)

Intersectsx with polyhedrony and assigns the resultx .

• int ppl_Polyhedron_intersection_assign_and_minimize(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty)

Intersectsx with polyhedrony and assigns the resultx . Returns a positive integer if the resulting polyhedron
is non-empty; returns 0 if it is empty. Upon successful return,x is also guaranteed to be minimized.

• int ppl_Polyhedron_poly_hull_assign(ppl_Polyhedron_tx, ppl_const_Polyhedron_ty)

Assigns tox the poly-hull ofx andy .

• int ppl_Polyhedron_poly_hull_assign_and_minimize(ppl_Polyhedron_tx, ppl_const_Polyhedron_t
y)

Assigns tox the poly-hull ofx andy . Returns a positive integer if the resulting polyhedron is non-empty;
returns 0 if it is empty. Upon successful return,x is also guaranteed to be minimized.

• int ppl_Polyhedron_poly_difference_assign(ppl_Polyhedron_tx, ppl_const_Polyhedron_ty)

Assigns tox thepoly-differenceof x andy .

• int ppl_Polyhedron_affine_image(ppl_Polyhedron_tph, ppl_dimension_typevar, ppl_const_-
Linear_Expression_tle, ppl_const_Coefficient_td)

Transforms the polyhedronph , assigning an affine expression to the specified variable.

• int ppl_Polyhedron_affine_preimage(ppl_Polyhedron_tph, ppl_dimension_typevar, ppl_const_-
Linear_Expression_tle, ppl_const_Coefficient_td)

Transforms the polyhedronph , substituting an affine expression to the specified variable.

• int ppl_Polyhedron_generalized_affine_image(ppl_Polyhedron_tph, ppl_dimension_typevar,
enum ppl_enum_Constraint_Typerelsym, ppl_const_Linear_Expression_tle, ppl_const_-
Coefficient_td)

Assigns toph the image ofph with respect to thegeneralized affine transfer functionvar′ ./ expr
denominator

,
where./ is the relation symbol encoded byrelsym .

• int ppl_Polyhedron_generalized_affine_image_lhs_rhs(ppl_Polyhedron_tph, ppl_const_Linear_-
Expression_tlhs, enumppl_enum_Constraint_Typerelsym,ppl_const_Linear_Expression_trhs)

Assigns toph the image ofph with respect to thegeneralized affine transfer functionlhs′ ./ rhs, where./
is the relation symbol encoded byrelsym .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 37

• int ppl_Polyhedron_time_elapse_assign(ppl_Polyhedron_tx, ppl_const_Polyhedron_ty)

Assigns tox thetime-elapsebetween the polyhedrax andy .

• int ppl_Polyhedron_BHRZ03_widening_assign_with_tokens(ppl_Polyhedron_tx, ppl_const_-
Polyhedron_ty, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-wideningof x
andy . If tp is not the null pointer, thewidening with tokensdelay technique is applied with∗tp available
tokens.

• int ppl_Polyhedron_BHRZ03_widening_assign(ppl_Polyhedron_tx, ppl_const_Polyhedron_ty)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-wideningof x
andy .

• int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_tokens(ppl_Polyhedron_t x,
ppl_const_Polyhedron_ty, ppl_const_Constraint_System_tcs, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-wideningof
x andy intersected with the constraints incs that are satisfied by all the points ofx . If tp is not the null
pointer, thewidening with tokensdelay technique is applied with∗tp available tokens.

• int ppl_Polyhedron_limited_BHRZ03_extrapolation_assign(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty, ppl_const_Constraint_System_tcs)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-wideningof x
andy intersected with the constraints incs that are satisfied by all the points ofx .

• int ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_tokens(ppl_Polyhedron_tx,
ppl_const_Polyhedron_ty, ppl_const_Constraint_System_tcs, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-wideningof x
andy intersected with the constraints incs that are satisfied by all the points ofx , further intersected with
all the constraints of the form±v ≤ r and±v < r, with r ∈ Q, that are satisfied by all the points ofx . If
tp is not the null pointer, thewidening with tokensdelay technique is applied with∗tp available tokens.

• int ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign(ppl_Polyhedron_tx, ppl_const_-
Polyhedron_ty, ppl_const_Constraint_System_tcs)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theBHRZ03-wideningof x
andy intersected with the constraints incs that are satisfied by all the points ofx , further intersected with
all the constraints of the form±v ≤ r and±v < r, with r ∈ Q, that are satisfied by all the points ofx .

• int ppl_Polyhedron_H79_widening_assign_with_tokens(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y . If tp is not the null pointer, thewidening with tokensdelay technique is applied with∗tp available
tokens.

• int ppl_Polyhedron_H79_widening_assign(ppl_Polyhedron_tx, ppl_const_Polyhedron_ty)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y .

• int ppl_Polyhedron_limited_H79_extrapolation_assign_with_tokens(ppl_Polyhedron_tx, ppl_-
const_Polyhedron_ty, ppl_const_Constraint_System_tcs, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y intersected with the constraints incs that are satisfied by all the points ofx . If tp is not the null pointer,
thewidening with tokensdelay technique is applied with∗tp available tokens.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 38

• int ppl_Polyhedron_limited_H79_extrapolation_assign(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty, ppl_const_Constraint_System_tcs)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y intersected with the constraints incs that are satisfied by all the points ofx .

• int ppl_Polyhedron_bounded_H79_extrapolation_assign_with_tokens(ppl_Polyhedron_tx, ppl_-
const_Polyhedron_ty, ppl_const_Constraint_System_tcs, unsigned∗tp)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y intersected with the constraints incs that are satisfied by all the points ofx , further intersected with all
the constraints of the form±v ≤ r and±v < r, with r ∈ Q, that are satisfied by all the points ofx . If tp
is not the null pointer, thewidening with tokensdelay technique is applied with∗tp available tokens.

• int ppl_Polyhedron_bounded_H79_extrapolation_assign(ppl_Polyhedron_t x, ppl_const_-
Polyhedron_ty, ppl_const_Constraint_System_tcs)

If the polyhedrony is contained in (or equal to) the polyhedronx , assigns tox theH79-wideningof x and
y intersected with the constraints incs that are satisfied by all the points ofx , further intersected with all
the constraints of the form±v ≤ r and±v < r, with r ∈ Q, that are satisfied by all the points ofx .

• int ppl_Polyhedron_topological_closure_assign(ppl_Polyhedron_tph)

Assigns toph its topological closure.

• int ppl_Polyhedron_add_space_dimensions_and_embed(ppl_Polyhedron_tph, ppl_dimension_-
typed)

Addsd new dimensions to the space enclosing the polyhedronph and toph itself.

• int ppl_Polyhedron_add_space_dimensions_and_project(ppl_Polyhedron_tph, ppl_dimension_-
typed)

Addsd new dimensions to the space enclosing the polyhedronph .

• int ppl_Polyhedron_concatenate_assign(ppl_Polyhedron_tx, ppl_const_Polyhedron_ty)

Seeing a polyhedron as a set of tuples (its points), assigns tox all the tuples that can be obtained by
concatenating, in the order given, a tuple ofx with a tuple ofy .

• int ppl_Polyhedron_remove_space_dimensions(ppl_Polyhedron_tph, ppl_dimension_typeds[],
size_t n)

Removes from the vector space enclosingph the space dimensions that are specified in firstn positions of
the arrayds . The presence of duplicates inds is a waste but an innocuous one.

• int ppl_Polyhedron_remove_higher_space_dimensions(ppl_Polyhedron_tph, ppl_dimension_type
d)

Removes the higher dimensions from the vector space enclosingph so that, upon successful return, the new
space dimension isd.

• int ppl_Polyhedron_map_space_dimensions(ppl_Polyhedron_tph, ppl_dimension_typemaps[],
size_t n)

Remaps the dimensions of the vector space according to apartial function. This function is specified by
means of themaps array, which hasn entries.

• int ppl_Polyhedron_expand_space_dimension(ppl_Polyhedron_tph, ppl_dimension_typed, ppl_-
dimension_typem)

Expandsthed-th dimension of the vector space enclosingph to mnew space dimensions.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 39

• int ppl_Polyhedron_fold_space_dimensions(ppl_Polyhedron_tph,ppl_dimension_typeds[], size_t
n, ppl_dimension_typed)

Modifiesph byfoldingthe space dimensions contained in the firstn positions of the arrayds into dimension
d. The presence of duplicates inds is a waste but an innocuous one.

Typedefs

• typedef size_tppl_dimension_type

An unsigned integral type for representing space dimensions.

• typedef ppl_Coefficient_tag∗ ppl_Coefficient_t

Opaque pointer.

• typedef ppl_Coefficient_tag const∗ ppl_const_Coefficient_t

Opaque pointer to const object.

• typedef ppl_Linear_Expression_tag∗ ppl_Linear_Expression_t

Opaque pointer.

• typedef ppl_Linear_Expression_tag const∗ ppl_const_Linear_Expression_t

Opaque pointer to const object.

• typedef ppl_Constraint_tag∗ ppl_Constraint_t

Opaque pointer.

• typedef ppl_Constraint_tag const∗ ppl_const_Constraint_t

Opaque pointer to const object.

• typedef ppl_Constraint_System_tag∗ ppl_Constraint_System_t

Opaque pointer.

• typedef ppl_Constraint_System_tag const∗ ppl_const_Constraint_System_t

Opaque pointer to const object.

• typedef ppl_Constraint_System_const_iterator_tag∗ ppl_Constraint_System_const_iterator_t

Opaque pointer.

• typedef ppl_Constraint_System_const_iterator_tag const∗ ppl_const_Constraint_System_const_-
iterator_t

Opaque pointer to const object.

• typedef ppl_Generator_tag∗ ppl_Generator_t

Opaque pointer.

• typedef ppl_Generator_tag const∗ ppl_const_Generator_t

Opaque pointer to const object.

• typedef ppl_Generator_System_tag∗ ppl_Generator_System_t

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 40

Opaque pointer.

• typedef ppl_Generator_System_tag const∗ ppl_const_Generator_System_t

Opaque pointer to const object.

• typedef ppl_Generator_System_const_iterator_tag∗ ppl_Generator_System_const_iterator_t

Opaque pointer.

• typedef ppl_Generator_System_const_iterator_tag const∗ ppl_const_Generator_System_const_-
iterator_t

Opaque pointer to const object.

• typedef ppl_Polyhedron_tag∗ ppl_Polyhedron_t

Opaque pointer.

• typedef ppl_Polyhedron_tag const∗ ppl_const_Polyhedron_t

Opaque pointer to const object.

Enumerations

• enumppl_enum_error_code{

PPL_ERROR_OUT_OF_MEMORY, PPL_ERROR_INVALID_ARGUMENT, PPL_ERROR_-
LENGTH_ERROR, PPL_ARITHMETIC_OVERFLOW,

PPL_STDIO_ERROR, PPL_ERROR_INTERNAL_ERROR, PPL_ERROR_UNKNOWN_-
STANDARD_EXCEPTION, PPL_ERROR_UNEXPECTED_ERROR}

Defines the error codes that any function may return.

• enumppl_enum_Constraint_Type{

PPL_CONSTRAINT_TYPE_LESS_THAN, PPL_CONSTRAINT_TYPE_LESS_THAN_OR_-
EQUAL, PPL_CONSTRAINT_TYPE_EQUAL, PPL_CONSTRAINT_TYPE_GREATER_-
THAN_OR_EQUAL,

PPL_CONSTRAINT_TYPE_GREATER_THAN}

Describes the relations represented by a constraint.

• enum ppl_enum_Generator_Type{ PPL_GENERATOR_TYPE_LINE, PPL_GENERATOR_-
TYPE_RAY, PPL_GENERATOR_TYPE_POINT, PPL_GENERATOR_TYPE_CLOSURE_-
POINT}

Describes the different kinds of generators.

Variables

• unsigned intPPL_COMPLEXITY_CLASS_POLYNOMIAL

Code of the worst-case polynomial complexity class.

• unsigned intPPL_COMPLEXITY_CLASS_SIMPLEX

Code of the worst-case exponential but typically polynomial complexity class.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 41

• unsigned intPPL_COMPLEXITY_CLASS_ANY

Code of the universal complexity class.

• unsigned intPPL_POLY_CON_RELATION_IS_DISJOINT

Individual bit saying that the polyhedron and the set of points satisfying the constraint are disjoint.

• unsigned intPPL_POLY_CON_RELATION_STRICTLY_INTERSECTS

Individual bit saying that the polyhedron intersects the set of points satisfying the constraint, but it is not
included in it.

• unsigned intPPL_POLY_CON_RELATION_IS_INCLUDED

Individual bit saying that the polyhedron is included in the set of points satisfying the constraint.

• unsigned intPPL_POLY_CON_RELATION_SATURATES

Individual bit saying that the polyhedron is included in the set of points saturating the constraint.

• unsigned intPPL_POLY_GEN_RELATION_SUBSUMES

Individual bit saying that adding the generator would not change the polyhedron.

8.3.1 Detailed Description

Some details about the C Interface.

All the declarations needed for using the PPL’s C interface (preprocessor symbols, data types, variables and
functions) are collected in the header fileppl_c.h . This file, which is designed to work with pre-ANSI
and ANSI C compilers as well as C99 and C++ compilers, should be included, either directly or via some
other header file, with the directive

#include <ppl_c.h>

If this directive does not work, then your compiler is unable to find the fileppl_c.h . So check that the
library is installed (if it is not installed, you may want tomake install , perhaps with root privileges)
in the right place (if not you may want to reconfigure the library using the appropriate pathname for the
-prefix option); and that your compiler knows where it is installed (if not you should add the path to the
directory whereppl_c.h is located to the compiler’s include file search path; this is usually done with
the-I option).

The name space of the PPL’s C interface isPPL_∗ for preprocessor symbols, enumeration values and
variables; andppl_ ∗ for data types and function names. The interface systematically usesopaque data
types(generic pointers that completely hide the internal representations from the client code) and provides
all required access functions. By using just the interface, the client code can exploit all the functionalities
of the library yet avoid directly manipulating the library’s data structures. The advantages are that (1)
applications do not depend on the internals of the library (these may change from release to release), and
(2) the interface invariants can be thoroughly checked (by the access functions).

The PPL’s C interface is initialized by means of theppl_initialize function. This function must be
calledbefore using any other interface of the library. The application can release the resources allocated
by the library by calling theppl_finalize function. After this function is calledno other interface of
the library may be useduntil the interface is re-initialized usingppl_initialize .

Any application using the PPL should make sure that only the intended version(s) of the library are ever
used. The version used can be checked at compile-time thanks to the macros PPL_VERSION_MAJOR,
PPL_VERSION_MINOR, PPL_VERSION_REVISION and PPL_VERSION_BETA, which give, respec-
tively major, minor, revision and beta numbers of the PPL version. This is an example of their use:

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 42

#if PPL_VERSION_MAJOR == 0 && PPL_VERSION_MINOR < 6
error "PPL version 0.6 or following is required"
#endif

Compile-time checking, however, is not normally enough, particularly in an environment where there is dy-
namic linking. Run-time checking can be performed by means of the functionsppl_version_major ,
ppl_version_minor , ppl_version_revision , andppl_version_beta . The PPL’s C inter-
face also provides functionsppl_version , returning character string containing the full version number,
andppl_banner , returning a string that, in addition, provides (pointers to) other useful information for
the library user.

All programs using the PPL’s C interface must link with the following libraries:libppl_c (PPL’s C
interface),libppl (PPL’s core),libgmpxx (GMP’s C++ interface), andlibgmp (GMP’s library core).
On most Unix-like systems, this is done by adding-lppl_c , -lppl , -lgmpxx , and -lgmp to the
compiler’s or linker’s command line. For example:

gcc myprogram.o -lppl_c -lppl -lgmpxx -lgmp

If this does not work, it means that your compiler/linker is not finding the libraries where it expects. Again,
this could be because you forgot to install the library or you installed it in a non-standard location. In the
latter case you will need to use the appropriate options (usually-L) and, if you use shared libraries, some
sort of run-time path selection mechanisms. Consult your compiler’s documentation for details. Notice
that the PPL is built usingLibtool and an application can exploit this fact to significantly simplify the
linking phase. See Libtool’s documentation for details. Those working under Linux can find a lot of useful
information on how to use program libraries (including static, shared, and dynamically loaded libraries) in
theProgram Library HOWTO .

For examples on how to use the functions provided by the C interface, you are referred to the
interfaces/C/lpenum/ directory in the source distribution. It contains a toyLinear Programming
solver written in C. In order to use this solver you will need to installGLPK(the GNU Linear Programming
Kit): this is used to read linear programs in MPS format.

8.3.2 Define Documentation

8.3.2.1 #define PPL_VERSION "0.7"

A string containing the PPL version.

Let Mandmdenote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR,
respectively. The format of PPL_VERSION isM "." m if both PPL_VERSION_REVISION (r) and
PPL_VERSION_BETA (b)are zero,M "." m "pre" b if PPL_VERSION_REVISION is zero and
PPL_VERSION_BETA is not zero,M "." m "." r if PPL_VERSION_REVISION is not zero and
PPL_VERSION_BETA is zero,M "." m "." r "pre" b if neither PPL_VERSION_REVISION
nor PPL_VERSION_BETA are zero.

8.3.3 Typedef Documentation

8.3.3.1 typedef const char∗ ppl_io_variable_output_function_type(ppl_dimension_typevar)

The type of output functions used for printing variables.

An output function for variables must write a textual representation forvar to a character buffer, null-
terminate it, and return a pointer to the beginning of the buffer. In case the operation fails, 0 should be
returned and perhapserrno should be set in a meaningful way. The library does nothing with the buffer,
besides printing its contents.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/software/libtool/
http://www.dwheeler.com/program-library/
http://www.gnu.org/software/glpk/
http://www.cs.unipr.it/ppl/

8.3 C Language Interface 43

8.3.4 Enumeration Type Documentation

8.3.4.1 enumppl_enum_error_code

Defines the error codes that any function may return.

Enumeration values:
PPL_ERROR_OUT_OF_MEMORYThe virtual memory available to the process has been ex-

hausted.

PPL_ERROR_INVALID_ARGUMENT A function has been invoked with an invalid argument.

PPL_ERROR_LENGTH_ERRORThe construction of an object that would exceed its maximum
permitted size was attempted.

PPL_ARITHMETIC_OVERFLOW An arithmetic overflow occurred and the computation was con-
sequently interrupted. This canonly happen in library’s incarnations using bounded integers as
coefficients.

PPL_STDIO_ERROR An error occurred during a C input/output operation. A more precise indica-
tion of what went wrong is availble viaerrno .

PPL_ERROR_INTERNAL_ERROR An internal error that was diagnosed by the PPL itself. This
indicates a bug in the PPL.

PPL_ERROR_UNKNOWN_STANDARD_EXCEPTIONA standard exception has been raised by
the C++ run-time environment. This indicates a bug in the PPL.

PPL_ERROR_UNEXPECTED_ERRORA totally unknown, totally unexpected error happened.
This indicates a bug in the PPL.

8.3.4.2 enumppl_enum_Constraint_Type

Describes the relations represented by a constraint.

Enumeration values:
PPL_CONSTRAINT_TYPE_LESS_THANThe constraint is of the forme < 0.

PPL_CONSTRAINT_TYPE_LESS_THAN_OR_EQUALThe constraint is of the forme ≤ 0.

PPL_CONSTRAINT_TYPE_EQUAL The constraint is of the forme = 0.

PPL_CONSTRAINT_TYPE_GREATER_THAN_OR_EQUALThe constraint is of the forme ≥ 0.

PPL_CONSTRAINT_TYPE_GREATER_THANThe constraint is of the forme > 0.

8.3.4.3 enumppl_enum_Generator_Type

Describes the different kinds of generators.

Enumeration values:
PPL_GENERATOR_TYPE_LINE The generator is a line.

PPL_GENERATOR_TYPE_RAYThe generator is a ray.

PPL_GENERATOR_TYPE_POINT The generator is a point.

PPL_GENERATOR_TYPE_CLOSURE_POINTThe generator is a closure point.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 44

8.3.5 Function Documentation

8.3.5.1 int ppl_banner (const char∗∗ p)

Writes toma pointer to a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

8.3.5.2 int ppl_initialize (void)

Initializes the Parma Polyhedra Library. This function must be called before any other function.

Returns:
PPL_ERROR_INVALID_ARGUMENTif the library was already initialized.

8.3.5.3 int ppl_finalize (void)

Finalizes the Parma Polyhedra Library. This function must be called after any other function.

Returns:
PPL_ERROR_INVALID_ARGUMENTif the library was already finalized.

8.3.5.4 int ppl_set_error_handler (void(∗)(enum ppl_enum_error_code code, const char
∗description) h)

Installs the user-defined error handler pointed at byh.

The error handler takes an error code and a textual description that gives further information about the
actual error. The C string containing the textual description is read-only and its existence it not guaranteed
after the handler has returned.

8.3.5.5 int ppl_new_C_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗ pph, ppl_-
const_Constraint_System_tcs)

Builds a new closed polyhedron from the system of constraintscs and writes a handle for the newly created
polyhedron at addresspph .

The new polyhedron will inherit the space dimension ofcs .

8.3.5.6 int ppl_new_C_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t ∗ pph, ppl_-
Constraint_System_tcs)

Builds a new closed polyhedron recycling the system of constraintscs and writes a handle for the newly
created polyhedron at addresspph .

Sincecs will be thesystem of constraints of the new polyhedron, the space dimension is also inherited.

Warning:
This function modifies the constraint system referenced bycs: upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 45

8.3.5.7 int ppl_new_NNC_Polyhedron_from_Constraint_System (ppl_Polyhedron_t ∗ pph, ppl_-
const_Constraint_System_tcs)

Builds a new NNC polyhedron from the system of constraintscs and writes a handle for the newly created
polyhedron at addresspph .

The new polyhedron will inherit the space dimension ofcs .

8.3.5.8 int ppl_new_NNC_Polyhedron_recycle_Constraint_System (ppl_Polyhedron_t∗ pph, ppl_-
Constraint_System_tcs)

Builds a new NNC polyhedron recycling the system of constraintscs and writes a handle for the newly
created polyhedron at addresspph .

Sincecs will be thesystem of constraints of the new polyhedron, the space dimension is also inherited.

Warning:
This function modifies the constraint system referenced bycs: upon return, no assumption can be
made on its value.

8.3.5.9 int ppl_new_C_Polyhedron_from_Generator_System (ppl_Polyhedron_t∗ pph, ppl_const_-
Generator_System_tgs)

Builds a new closed polyhedron from the system of generatorsgs and writes a handle for the newly created
polyhedron at addresspph .

The new polyhedron will inherit the space dimension ofgs .

8.3.5.10 int ppl_new_C_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗ pph, ppl_-
Generator_System_tgs)

Builds a new closed polyhedron recycling the system of generatorsgs and writes a handle for the newly
created polyhedron at addresspph .

Sincegs will be thesystem of generators of the new polyhedron, the space dimension is also inherited.

Warning:
This function modifies the generator system referenced bygs: upon return, no assumption can be
made on its value.

8.3.5.11 int ppl_new_NNC_Polyhedron_from_Generator_System (ppl_Polyhedron_t ∗ pph, ppl_-
const_Generator_System_tgs)

Builds a new NNC polyhedron from the system of generatorsgs and writes a handle for the newly created
polyhedron at addresspph .

The new polyhedron will inherit the space dimension ofgs .

8.3.5.12 int ppl_new_NNC_Polyhedron_recycle_Generator_System (ppl_Polyhedron_t ∗ pph,
ppl_Generator_System_tgs)

Builds a new NNC polyhedron recycling the system of generatorsgs and writes a handle for the newly
created polyhedron at addresspph .

Sincegs will be thesystem of generators of the new polyhedron, the space dimension is also inherited.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 46

Warning:
This function modifies the generator system referenced bygs: upon return, no assumption can be
made on its value.

8.3.5.13 int ppl_new_C_Polyhedron_from_bounding_box (ppl_Polyhedron_t ∗ pph, ppl_-
dimension_type(∗)(void) space_dimension, int(∗)(void) is_empty, int(∗)(ppl_dimension_type k,
int closed, ppl_Coefficient_t n, ppl_Coefficient_t d) get_lower_bound, int(∗)(ppl_dimension_typek,
int closed,ppl_Coefficient_tn, ppl_Coefficient_td) get_upper_bound)

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addresspph .

If an interval of the bounding box is provided with any finite but open bound, then the polyhedron is not
built and the valuePPL_ERROR_INVALID_ARGUMENTis returned. The bounding box is accessed by
using the following functions, passed as arguments:

ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The functionis_empty() will
always be called before the other functions. However, ifis_empty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th space dimension. IfI is not bounded from below, simply return
0. Otherwise, setclosed , n andd as follows: closed is set to 0 if the lower boundary ofI is open
and is set to a value different from zero otherwise;n andd are assigned the integersn andd such that the
canonical fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form
if and only if n andd have no common factors andd is positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th space dimension. IfI is not bounded from above, simply return
0. Otherwise, setclosed , n andd as follows: closed is set to 0 if the upper boundary ofI is open
and is set to a value different from 0 otherwise;n andd are assigned the integersn andd such that the
canonical fractionn/d corresponds to the least upper bound ofI.

8.3.5.14 int ppl_new_NNC_Polyhedron_from_bounding_box (ppl_Polyhedron_t ∗ pph, ppl_-
dimension_type(∗)(void) space_dimension, int(∗)(void) is_empty, int(∗)(ppl_dimension_type k, int
closed,ppl_Coefficient_t n, ppl_Coefficient_t d) get_lower_bound, int(∗)(ppl_dimension_typek, int
closed,ppl_Coefficient_tn, ppl_Coefficient_td) get_upper_bound)

Builds a new C polyhedron corresponding to an interval-based bounding box, writing a handle for the
newly created polyhedron at addresspph .

The bounding box is accessed by using the following functions, passed as arguments:

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 47

ppl_dimension_type space_dimension()

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

int is_empty()

returns 0 if and only if the bounding box describes a non-empty set. The functionis_empty() will
always be called before the other functions. However, ifis_empty() does not return 0, none of the
functions below will be called.

int get_lower_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th space dimension. IfI is not bounded from below, simply return
0. Otherwise, setclosed , n andd as follows: closed is set to 0 if the lower boundary ofI is open
and is set to a value different from zero otherwise;n andd are assigned the integersn andd such that the
canonical fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form
if and only if n andd have no common factors andd is positive,0/1 being the unique representation for
zero.

int get_upper_bound(ppl_dimension_type k, int closed,
ppl_Coefficient_t n, ppl_Coefficient_t d)

Let I the interval corresponding to thek -th space dimension. IfI is not bounded from above, simply return
0. Otherwise, setclosed , n andd as follows: closed is set to 0 if the upper boundary ofI is open
and is set to a value different from 0 otherwise;n andd are assigned the integersn andd such that the
canonical fractionn/d corresponds to the least upper bound ofI.

8.3.5.15 int ppl_Polyhedron_relation_with_Constraint (ppl_const_Polyhedron_t ph, ppl_const_-
Constraint_t c)

Checks the relation between the polyhedronph with the constraintc .

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (cho-
sen among PPL_POLY_CON_RELATION_IS_DISJOINT PPL_POLY_CON_RELATION_STRICTLY_-
INTERSECTS, PPL_POLY_CON_RELATION_IS_INCLUDED, and PPL_POLY_CON_RELATION_-
SATURATES) that describe the relation betweenph andc .

8.3.5.16 int ppl_Polyhedron_relation_with_Generator (ppl_const_Polyhedron_t ph, ppl_const_-
Generator_t g)

Checks the relation between the polyhedronph with the generatorg.

If successful, returns a non-negative integer that is obtained as the bitwise or of the bits (only PPL_POLY_-
GEN_RELATION_SUBSUMES, at present) that describe the relation betweenph andg.

8.3.5.17 int ppl_Polyhedron_shrink_bounding_box (ppl_const_Polyhedron_tph, unsigned intcom-
plexity, void(∗)(void) set_empty, void(∗)(ppl_dimension_typek, int closed,ppl_const_Coefficient_tn,
ppl_const_Coefficient_td) raise_lower_bound, void(∗)(ppl_dimension_typek, int closed,ppl_const_-
Coefficient_tn, ppl_const_Coefficient_td) lower_upper_bound)

Useph to shrink a generic, interval-based bounding box. The bounding box is abstractly provided by
means of the parameters.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 48

Parameters:
ph The polyhedron that is used to shrink the bounding box;

complexity The code of the complexity class of the algorithm to be used. Must be one of
PPL_COMPLEXITY_CLASS_POLYNOMIAL, PPL_COMPLEXITY_CLASS_SIMPLEX, or
PPL_COMPLEXITY_CLASS_ANY;

set_emptyA pointer to a void function with no arguments that causes the bounding box to become
empty, i.e., to represent the empty set;

raise_lower_boundA pointer to a void function with arguments(ppl_dimension_type k,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t
d) that intersects the interval corresponding to thek -th space dimension with[n/d,+∞) if
closed is non-zero, with(n/d,+∞) if closed is zero. The fractionn/d is in canonical form,
that is,n andd have no common factors andd is positive,0/1 being the unique representation
for zero;

lower_upper_bounda pointer to a void function with argument(ppl_dimension_type k,
int closed, ppl_const_Coefficient_t n, ppl_const_Coefficient_t
d) that intersects the interval corresponding to thek -th space dimension with(−∞, n/d] if
closed is non-zero, with(−∞, n/d) if closed is zero. The fractionn/d is in canonical
form.

8.3.5.18 int ppl_Polyhedron_maximize (ppl_const_Polyhedron_t ph, ppl_const_Linear_-
Expression_t le, ppl_Coefficient_t sup_n, ppl_Coefficient_t sup_d, int ∗ pmaximum, ppl_const_-
Generator_t ∗ ppoint)

Returns a positive integer ifph is not empty andle is bounded from above inph , in which case the
supremum value and a point wherele reaches it are computed.

Parameters:
ph The polyhedron constrainingle ;

le The linear expression to be maximized subject toph ;

sup_n Will be assigned the numerator of the supremum value;

sup_d Will be assigned the denominator of the supremum value;

pmaximum Will store 1 in this location if the supremum is also the maximum, will store 0 otherwise;

ppoint When nonzero, a point or closure point wherele reaches the extremum value will be stored
here. If ph is empty orle is not bounded from above, 0 is returned andsup_n , sup_d ,
∗pmaximum and∗ppoint are left untouched.

8.3.5.19 int ppl_Polyhedron_minimize (ppl_const_Polyhedron_t ph, ppl_const_Linear_-
Expression_t le, ppl_Coefficient_t inf_n, ppl_Coefficient_t inf_d, int ∗ pminimum, ppl_const_-
Generator_t ∗ ppoint)

Returns a positive integer ifph is not empty andle is bounded from above inph , in which case the
infimum value and a point wherele reaches it are computed.

Parameters:
ph The polyhedron constrainingle ;

le The linear expression to be minimized subject toph ;

inf_n Will be assigned the numerator of the infimum value;

inf_d Will be assigned the denominator of the infimum value;

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 49

pminimum Will store 1 in this location if the infimum is also the minimum, will store 0 otherwise;

ppoint When nonzero, a point or closure point wherele reaches the extremum value will be stored
here. If ph is empty orle is not bounded from below, 0 is returned andinf_n , inf_d ,
∗pminimum and∗ppoint are left untouched.

8.3.5.20 int ppl_Polyhedron_equals_Polyhedron (ppl_const_Polyhedron_t x, ppl_const_-
Polyhedron_ty)

Returns a positive integer ifx andy are the same polyhedron; return 0 if they are different.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value 0
is returned.

8.3.5.21 int ppl_Polyhedron_add_recycled_constraints (ppl_Polyhedron_t ph, ppl_Constraint_-
System_tcs)

Adds the system of constraintscs to the system of constraints ofph .

Warning:
This function modifies the constraint system referenced bycs: upon return, no assumption can be
made on its value.

8.3.5.22 int ppl_Polyhedron_add_recycled_constraints_and_minimize (ppl_Polyhedron_tph, ppl_-
Constraint_System_tcs)

Adds the system of constraintscs to the system of constraints ofph . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be
minimized.

Warning:
This function modifies the constraint system referenced bycs: upon return, no assumption can be
made on its value.

8.3.5.23 int ppl_Polyhedron_add_recycled_generators (ppl_Polyhedron_t ph, ppl_Generator_-
System_tgs)

Adds the system of generatorsgs to the system of generators ofph .

Warning:
This function modifies the generator system referenced bygs: upon return, no assumption can be
made on its value.

8.3.5.24 int ppl_Polyhedron_add_recycled_generators_and_minimize (ppl_Polyhedron_tph, ppl_-
Generator_System_tgs)

Adds the system of generatorsgs to the system of generators ofph . Returns a positive integer if the
resulting polyhedron is non-empty; returns 0 if it is empty. Upon successful return,ph is guaranteed to be
minimized.

Warning:
This function modifies the generator system referenced bygs: upon return, no assumption can be
made on its value.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.3 C Language Interface 50

8.3.5.25 int ppl_Polyhedron_affine_image (ppl_Polyhedron_t ph, ppl_dimension_typevar, ppl_-
const_Linear_Expression_tle, ppl_const_Coefficient_td)

Transforms the polyhedronph , assigning an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed;

var The variable to which the affine expression is assigned;

le The numerator of the affine expression;

d The denominator of the affine expression.

8.3.5.26 int ppl_Polyhedron_affine_preimage (ppl_Polyhedron_tph, ppl_dimension_typevar, ppl_-
const_Linear_Expression_tle, ppl_const_Coefficient_td)

Transforms the polyhedronph , substituting an affine expression to the specified variable.

Parameters:
ph The polyhedron that is transformed;

var The variable to which the affine expression is substituted;

le The numerator of the affine expression;

d The denominator of the affine expression.

8.3.5.27 int ppl_Polyhedron_generalized_affine_image (ppl_Polyhedron_t ph, ppl_dimension_-
type var, enum ppl_enum_Constraint_Typerelsym, ppl_const_Linear_Expression_tle, ppl_const_-
Coefficient_td)

Assigns toph the image ofph with respect to thegeneralized affine transfer functionvar′ ./ expr
denominator ,

where./ is the relation symbol encoded byrelsym .

Parameters:
ph The polyhedron that is transformed;

var The left hand side variable of the generalized affine transfer function;

relsym The relation symbol;

le The numerator of the right hand side affine expression;

d The denominator of the right hand side affine expression.

8.3.5.28 int ppl_Polyhedron_generalized_affine_image_lhs_rhs (ppl_Polyhedron_t ph, ppl_const_-
Linear_Expression_tlhs, enumppl_enum_Constraint_Typerelsym, ppl_const_Linear_Expression_t
rhs)

Assigns toph the image ofph with respect to thegeneralized affine transfer functionlhs′ ./ rhs, where./
is the relation symbol encoded byrelsym .

Parameters:
ph The polyhedron that is transformed;

lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 51

8.3.5.29 int ppl_Polyhedron_map_space_dimensions (ppl_Polyhedron_t ph, ppl_dimension_type
maps[], size_tn)

Remaps the dimensions of the vector space according to apartial function. This function is specified by
means of themaps array, which hasn entries.

The partial function is defined on dimensioni if i < n andmaps[i] != ppl_not_a_dimension ;
otherwise it is undefined on dimensioni . If the function is defined on dimensioni , then dimensioni is
mapped onto dimensionmaps[i] .

The result is undefined ifmaps does not encode a partial function with the properties described in the
specification of the mapping operator.

8.4 Prolog Language Interface

The Parma Polyhedra Library comes equipped with a Prolog interface. Despite the lack of standardization
of Prolog’s foreign language interfaces, the PPL Prolog interface supports several Prolog systems and, to
the extent this is possible, provides a uniform view of the library from each such systems.

The system-independent features of the library are described in SectionSystem-Independent Features.
SectionCompilation and Installationexplains how the various incarnations of the Prolog interface are
compiled and installed. SectionSystem-Dependent Featuresillustrates the system-dependent features of
the interface for all the supported systems.

System-Independent Features

The Prolog interface provides access to the PPL polyhedra. A general introduction to convex polyhedra,
their representation in the PPL and the operations provided by the PPL is given in SectionsThe Main
Features, Convex Polyhedra, Representations of Convex PolyhedraandOperations on Convex Polyhedra
of this manual. Here we just describe those aspects that are specific to the Prolog interface.

Overview First, here is a list of notes with general information and advice on the use of the interface.

• The Prolog interface to the PPL is initialized and finalized by the predicatesppl_initialize/0
andppl_finalize/0 . Thus the only interface predicates callable afterppl_finalize/0 are
ppl_finalize/0 itself (this further call has no effect) andppl_initialize/0 , after which
the interface’s services are usable again. Some Prolog systems allow the specification of initializa-
tion and deinitialization functions in their foreign language interfaces. The corresponding incarna-
tions of the PPL-Prolog interface have been written so thatppl_initialize/0 and/orppl_-
finalize/0 are called automatically. SectionSystem-Dependent Featureswill detail in which
cases initialization and finalization is automatically performed or is left to the Prolog programmer’s
responsibility. However, for portable applications, it is best to invokeppl_initialize/0 and
ppl_finalize/0 explicitly: since they can be called multiple times without problems, this will
result in enhanced portability at a cost that is, by all means, negligible.

• A PPL polyhedron can only be accessed by means of a Prolog term called ahandle. Note, however,
that the data structure of a handle, is implementation-dependent, system-dependent and version-
dependent, and, for this reason, deliberately left unspecified. What we do guarantee is that the
handle requires very little memory.

• A Prolog term can be bound to a valid handle by using:

ppl_new_Polyhedron_from_space_dimension/4,

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 52

ppl_new_Polyhedron_from_Polyhedron/4,
ppl_new_Polyhedron_from_constraints/3,
ppl_new_Polyhedron_from_generators/3.
ppl_new_Polyhedron_from_bounding_box/3.

These predicates will create or copy a PPL polyhedron and construct a valid handle for referenc-
ing it. The first argument (in the case ofppl_new_Polyhedron_from_Polyhedron/4 , the
first and third arguments) denotes the topology and can be eitherc or nnc indicating a C or NNC
polyhedron, respectively. The third argument (in the case ofppl_new_Polyhedron_from_-
Polyhedron/4 andppl_new_Polyhedron_from_Dimension/4 , the fourth argument) is
a Prolog term that is unified with a new valid handle for accessing this polyhedron.

• As soon as a PPL polyhedron is no longer required, the memory occupied by it should be released
using the PPL predicateppl_delete_Polyhedron/1 . To understand why this is important,
consider a Prolog program and a variable that is bound to a Herbrand term. When the variable dies
(goes out of scope) or is uninstantiated (on backtracking) the term it is bound to is amenable to
garbage collection. But this only applies for the standard domain of the language: Herbrand terms.
In Prolog+PPL, when a variable bound to a handle for a PPL Polyhedron dies or is uninstantiated, the
handle can be garbage-collected, but the polyhedra to which the handle refers will not be released.
Once a handle has been used as an argument inppl_delete_Polyhedron/1 , it becomes in-
valid.

• For a PPL polyhedron with space dimensionk , the identifiers used for the PPL variables must lie
between 0 andk − 1 and correspond to the indices of the associated Cartesian axes. When using the
predicates that combine PPL polyhedra or add constraints or generators to a representation of a PPL
polyhedron, the polyhedra referenced and any constraints or generators in the call should follow all
the (space) dimension-compatibility rules stated in SectionRepresentations of Convex Polyhedra.

• As explained above, a polyhedron has a fixed topology C or NNC, that is determined at the time
of its initialization. All subsequent operations on the polyhedron must respect all the topological
compatibility rules stated in SectionRepresentations of Convex Polyhedra.

• Any application using the PPL should make sure that only the intended version(s) of the library are
ever used. Predicates

ppl_version_major/1,
ppl_version_minor/1,
ppl_version_revision/1,
ppl_version_beta/1,
ppl_version/1,
ppl_banner.

allow run-time checking of information about the version being used.

PPL Predicate List Here is a list of all the PPL predicates provided by the Prolog interface.

ppl_version_major(?C_int)

ppl_version_minor(?C_int)

ppl_version_revision(?C_int)

ppl_version_beta(?C_int)

ppl_version(?Atom)

ppl_banner(?Atom)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 53

ppl_max_space_dimension(?Dimension_Type)

ppl_initialize

ppl_finalize

ppl_set_timeout_exception_atom(+Atom)

ppl_set_timeout(+C_unsigned)

ppl_reset_timeout

ppl_new_Polyhedron_from_space_dimension(+Topology, +Dimension_Type,
+Universe_or_Empty, -Handle)

ppl_new_Polyhedron_from_Polyhedron(+Topology_1, +Handle_1, +Topology_-
2, -Handle_2)

ppl_new_Polyhedron_from_constraints(+Topology, +Constraint_System,
-Handle)

ppl_new_Polyhedron_from_generators(+Topology, +Generator_System,
-Handle)

ppl_new_Polyhedron_from_bounding_box(+Topology, +Box, -Handle)

ppl_Polyhedron_swap(+Handle1, +Handle2)

ppl_delete_Polyhedron(+Handle)

ppl_Polyhedron_space_dimension(+Handle, ?Dimension_Type)

ppl_Polyhedron_affine_dimension(+Handle, ?Dimension_Type)

ppl_Polyhedron_get_constraints(+Handle, -Constraint_System)

ppl_Polyhedron_get_minimized_constraints(+Handle, -Constraint_System)

ppl_Polyhedron_get_generators(+Handle, -Generator_System)

ppl_Polyhedron_get_minimized_generators(+Handle, -Generator_System)

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint,
-Relation)

ppl_Polyhedron_relation_with_generator(+Handle, +Generator,
-Relation)

ppl_Polyhedron_get_bounding_box(+Handle, +Complexity, -Box)

ppl_Polyhedron_is_empty(+Handle)

ppl_Polyhedron_is_universe(+Handle)

ppl_Polyhedron_is_bounded(+Handle)

ppl_Polyhedron_bounds_from_above(+Handle, +Lin_Expr)

ppl_Polyhedron_bounds_from_below(+Handle, +Lin_Expr)

ppl_Polyhedron_maximize(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean)

ppl_Polyhedron_maximize_with_point(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean, ?Point)

ppl_Polyhedron_minimize(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 54

ppl_Polyhedron_minimize_with_point(+Handle, +Lin_Expr, ?Coefficient_1,
?Coefficient_2, ?Boolean, ?Point)

ppl_Polyhedron_is_topologically_closed(+Handle)

ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2)

ppl_Polyhedron_strictly_contains_Polyhedron(+Handle_1, +Handle_2)

ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2)

ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2)

ppl_Polyhedron_OK(+Handle)

ppl_Polyhedron_add_constraint(+Handle, +Constraint)

ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint)

ppl_Polyhedron_add_generator(+Handle, +Generator)

ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator)

ppl_Polyhedron_add_constraints(+Handle, +Constraint_System)

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System)

ppl_Polyhedron_add_generators(+Handle, +Generator_System)

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_-
System)

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)

ppl_Polyhedron_poly_hull_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_poly_hull_assign_and_minimize(+Handle_1, +Handle_2)

ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient)

ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient)

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-
Symbol, +Lin_Expr, +Coefficient)

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +Lin_Expr1,
+Relation_Symbol, +Lin_Expr2)

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_BHRZ03_widening_assign_with_token(+Handle_1, +Handle_2,
?C_unsigned)

ppl_Polyhedron_BHRZ03_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_-
token(+Handle_1, +Handle_2, +Constraint_System, ?C_unsigned)

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 55

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_-
token(+Handle_1, +Handle_2, +Constraint_System, ?C_unsigned)

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System)

ppl_Polyhedron_H79_widening_assign_with_token(+Handle_1, +Handle_2,
?C_unsigned)

ppl_Polyhedron_H79_widening_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_limited_H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System, ?C_unsigned)

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System)

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System, ?C_unsigned)

ppl_Polyhedron_bounded_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System)

ppl_Polyhedron_topological_closure_assign(+Handle)

ppl_Polyhedron_add_space_dimensions_and_embed(+Handle, +Dimension_-
Type)

ppl_Polyhedron_add_space_dimensions_and_project(+Handle, +Dimension_-
Type)

ppl_Polyhedron_concatenate_assign(+Handle1, +Handle2)

ppl_Polyhedron_remove_space_dimensions(+Handle, +List_of_PPL_Vars)

ppl_Polyhedron_remove_higher_space_dimensions(+Handle, +Dimension_-
Type))

ppl_Polyhedron_expand_space_dimension(+Handle, +PPL_Var, +Dimension_-
Type))

ppl_Polyhedron_fold_space_dimensions(+Handle, +List_of_PPL_Vars,
+PPL_Var))

ppl_Polyhedron_map_space_dimensions(+Handle, +P_Func))

PPL Predicate Specifications The PPL predicates provided by the Prolog interface are specified below.
The specification uses the following grammar rules:

Number --> unsigned integer ranging from 0 to an upper bound
depending on the actual Prolog system.

C_int --> Number | - Number C integer

C_unsigned --> Number C unsigned integer

Coefficient --> Number used in linear expressions;
the upper bound will depend on how
the PPL has been configured

Dimension_Type
--> Number used for the number of affine and

space dimensions and the names of
the dimensions;
the upper bound will depend on

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 56

the maximum number of dimensions
allowed by the PPL
(see ppl_max_space_dimensions/1)

Boolean --> true | false

Handle --> Prolog term used to identify a Polyhedron

Topology --> c | nnc Polyhedral kind;
c is closed and nnc is NNC

VarId --> Dimension_Type variable identifier

PPL_Var --> ’$VAR’(VarId) PPL variable

Lin_Expr --> PPL_Var PPL variable
| Coefficient
| Lin_Expr unary plus
| - Lin_Expr unary minus
| Lin_Expr + Lin_Expr addition
| Lin_Expr - Lin_Expr subtraction
| Coefficient * Lin_Expr multiplication
| Lin_Expr * Coefficient multiplication

Relation_Symbol
--> = equals

| =< less than or equal
| >= greater than or equal
| < strictly less than
| > strictly greater than

Constraint --> Lin_Expr Relation_Symbol Lin_Expr
constraint

Constraint_System list of constraints
--> []

| [Constraint | Constraint_System]

Generator_Denominator --> Coefficient must be non-zero
| Coefficient
| - Coefficient

Generator --> point(Lin_Expr) point
| point(Lin_Expr, Generator_Denominator)

point
| closure_point(Lin_Expr) closure point
| closure_point(Lin_Expr, Generator_Denominator)

closure point
| ray(Lin_Expr) ray
| line(Lin_Expr) line

Generator_System list of generators
--> []

| [Generator | Generator_System]

Atom --> Prolog atom

Universe_or_Empty polyhedron
--> universe

| empty

Poly_Relation polyhedron relation:
--> is_disjoint with a constraint

| strictly_intersects with a constraint
| is_included with a constraint
| saturates with a constraint
| subsumes with a generator

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 57

Poly_Relation_List list of polyhedron relations
--> []

| [Poly_Relation | Poly_Relation_List]

Complexity --> polynomial | simplex | any

Rational_Numerator
--> Coefficient | - Coefficient

Rational_Denominator
--> Coefficient must be non-zero

Rational --> Rational_Numerator rational number
| Rational_Numerator/Rational_Denominator

Bound --> c(Rational) closed rational limit
| o(Rational) open rational limit
| o(pinf) unbounded in the positive direction
| o(minf) unbounded in the negative direction

Interval --> i(Bound, Bound) rational interval

Box --> [] list of intervals
| [Interval | Box]

Vars_Pair --> PPLVar - PPLVar map relation

P_Func --> [] list of map relations
| [Vars_Pair | P_Func].

Below is a short description of each of the interface predicates. For full definitions of terminology used
here, see SectionsThe Main Features, Convex Polyhedra, Representations of Convex PolyhedraandOper-
ations on Convex Polyhedraof this manual.

ppl_version_major(?C_int) UnifiesC_int with the major number of the PPL version.

ppl_version_minor(?C_int) UnifiesC_int with the minor number of the PPL version.

ppl_version_revision(?C_int) UnifiesC_int with the revision number of the PPL version.

ppl_version_beta(?C_int) UnifiesC_int with the beta number of the PPL version.

ppl_version(?Atom) UnifiesAtom with the PPL version.

ppl_banner(?Atom) UnifiesAtom with information about the PPL version, the licensing, the lack
of any warranty whatsoever, the C++ compiler used to build the library, where to report bugs and where to
look for further information.

ppl_max_space_dimension(?Dimension_Type) UnifiesDimension_Type with the max-
imum space dimension this library can handle.

ppl_initialize Initializes the PPL interface. Multiple calls toppl_initialize does no harm.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 58

ppl_finalize Finalizes the PPL interface. Once this is executed, the next call to an interface pred-
icate must either be toppl_initialize or to ppl_finalize . Multiple calls toppl_finalize
does no harm.

ppl_set_timeout_exception_atom(+Atom) Sets the atom to be thrown by timeout exceptions
to Atom. The default value istime_out .

ppl_timeout_exception_atom(?Atom) The atom to be thrown by timeout exceptions is unified
with Atom.

ppl_set_timeout(+C_unsigned) Computations taking exponential time will be interrupted
some time afterC_unsigned ms after that call. If the computation is interrupted that way, the current
timeout exception atom will be thrown.C_unsigned must be strictly greater than zero.

ppl_reset_timeout Resets the timeout time so that the computation is not interrupted.

ppl_new_Polyhedron_from_space_dimension(+Topology, +Dimension_Type,
+Universe_or_Empty, -Handle) Creates a C or NNC polyhedronP, depending on the value
of Topology , with Dimension_Type dimensions; it is empty or the universe polyhedron depending
on whetherAtom is empty or universe , respectively.Handle is unified with the handle forP. Thus
the query

?- ppl_new_Polyhedron_from_space_dimension(nnc, 3, empty, X).

creates an empty NNC polyhedron embedded inR3 with X bound to a valid handle for accessing it.

Also the query

?- ppl_new_Polyhedron_from_space_dimension(c, 3, universe, X).

creates the C polyhedron defining the 3-dimensional vector spaceR3 with X bound to a valid handle for
accessing it.

ppl_new_Polyhedron_from_Polyhedron(+Topology_1, +Handle_1, +Topology_-
2, -Handle_2) If Handle_1 refers to a C or NNC polyhedronP1 (depending on the value of
Topology_1), then this creates a copyP2 of P1 with topology C or NNC, depending on the value of
Topology_2 . Handle_2 is unified with the handle forP2. Thus the query

?- ppl_new_Polyhedron_from_space_dimension(nnc, 3, empty, X),
ppl_new_Polyhedron_from_Polyhedron(c, X, nnc, Y).

creates an empty C polyhedron embedded inR3 referenced byX and then makes a copy, converting the
topology to an NNC polyhedron. withY bound to a valid handle for accessing it.

When usingppl_new_Polyhedron_from_Polyhedron/2 , when the source polyhedron is NNC
and the copy is C, care must be taken that the source polyhedron referenced byHandle1 is topologically
closed.

ppl_new_Polyhedron_from_constraints(+Topology, +Constraint_System,
-Handle) Creates a polyhedronP represented byConstraint_System with topology C or NNC,
depending on the value ofTopology . Handle is unified with the handle forP.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 59

ppl_new_Polyhedron_from_generators(+Topology, +Generator_System,
-Handle) Creates a polyhedronP represented byGenerator_System with topology C or
NNC, depending on the value ofTopology . Handle is unified with the handle forP.

ppl_new_Polyhedron_from_bounding_box(+Topology, +Box, -Handle) Creates a
polyhedronP represented byBox with topology C or NNC, depending on the value ofTopology , and
Handle is unified with the handle forP. A bound of the formo(Rational) can be included in an
interval inBox only if Topology is nnc .

ppl_Polyhedron_swap(+Handle1, +Handle2) Swaps the polyhedron referenced by
Handle1 with the one referenced byHandle2 . The polyhedraP andQ must have the same topology.

ppl_delete_Polyhedron(+Handle) Deletes the polyhedron referenced byHandle . After exe-
cution,Handle is no longer a valid handle for a PPL polyhedron.

ppl_Polyhedron_space_dimension(+Handle, ?Dimension_Type) Unifies the dimen-
sion of the vector space in which the polyhedron referenced byHandle is embedded withDimension_-
Type .

ppl_Polyhedron_affine_dimension(+Handle, ?Dimension_Type) Unifies the actual
dimension of the polyhedron referenced byHandle with Dimension_Type .

ppl_Polyhedron_get_constraints(+Handle, ?Constraint_System) Unifies
Constraint_System with a list of the constraints in the constraints system representing the
polyhedron referenced byHandle .

ppl_Polyhedron_get_minimized_constraints(+Handle, ?Constraint_System)
Unifies Constraint_System with a minimized list of the constraints in the constraints system
representing the polyhedron referenced byHandle .

ppl_Polyhedron_get_generators(+Handle, ?Generator_System) Unifies
Generator_System with a list of the generators in the generators system representing the poly-
hedron referenced byHandle .

ppl_Polyhedron_get_minimized_generators(+Handle, ?Generator_System)
Unifies Generator_System with a minimized list of the generators in the generators system
representing the polyhedron referenced byHandle .

ppl_Polyhedron_relation_with_constraint(+Handle, +Constraint, ?Poly_-
Relation_List) Unifies Poly_Relation_List with the list of relations the polyhedron
referenced byHandle has with Constraint . The possible relations are listed in the grammar
rules above; their meaning is given in the paragraphspecifying the relation_with operationsin Section
Operations on Convex Polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 60

ppl_Polyhedron_relation_with_generator(+Handle, +Generator, ?Poly_-
Relation_List) Unifies Poly_Relation_List with the list of relations the polyhedron
referenced byHandle has withGenerator . The possible relations are listed in the grammar rules
above; their meaning is given in the paragraphspecifying the relation_with operationsin Section
Operations on Convex Polyhedra.

ppl_Polyhedron_get_bounding_box(+Handle, +Complexity, ?Box) Succeeds if
and only if the bounding box of the polyhedron referenced byHandle unifies with the box defined by
Box. E.g.,

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box).

Box = [i(o(minf), c(1/2)), i(o(0), o(pinf))].

Note that the rational numbers inBox are in canonical form. E.g., the following will fail:

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_constraints(nnc, [B > 0, 4*A =< 2], X),
ppl_Polyhedron_get_bounding_box(X, any, Box),
Box = [i(o(minf), c(2/4)), i(o(0), o(pinf))].

The complexity classComplexity determining the algorithm to be used has the following meaning:

• polynomial allows code of the worst-case polynomial complexity class;

• simplex allows code of the worst-case exponential but typically polynomial complexity class;

• any allows code of the universal complexity class.

ppl_Polyhedron_is_empty(+Handle) b Succeeds if and only if the polyhedron referenced by
Handle is empty.

ppl_Polyhedron_is_universe(+Handle) Succeeds if and only if the polyhedron referenced
by Handle is the universe.

ppl_Polyhedron_is_bounded(+Handle) Succeeds if and only if the polyhedron referenced by
Handle is bounded.

ppl_Polyhedron_bounds_from_above(+Handle, +Lin_Expr) Succeeds if and only if
Lin_Expr is bounded from above in the polyhedron referenced byHandle .

ppl_Polyhedron_bounds_from_below(+Handle, +Lin_Expr) Succeeds if and only if
Lin_Expr is bounded from below in the polyhedron referenced byHandle .

ppl_Polyhedron_maximize(+Handle, +Lin_Expr, ?Coefficient1,
?Coefficient2, ?Boolean) Succeeds if and only if the polyhedronP referenced byHandle is
not empty andLin_Expr is bounded from above inP .

Coefficient1 is unified with the numerator of the supremum value andCoefficient2 with the
denominator of the supremum value. If the supremum is also the maximum,Boolean is unified with the
atomtrue and, otherwise, unified with the atomfalse .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 61

ppl_Polyhedron_maximize_with_point(+Handle, +Lin_Expr, ?Coefficient1,
?Coefficient2, ?Boolean, ?Point) Succeeds if and only if the polyhedronP referenced by
Handle is not empty andLin_Expr is bounded from above inP .

Coefficient1 is unified with the numerator of the supremum value,Coefficient2 with the de-
nominator of the supremum value, andPoint with a point or closure point whereLin_Expr reaches
this value. If the supremum is also the maximum,Boolean is unified with the atomtrue and, other-
wise, unified with the atomfalse .

ppl_Polyhedron_minimize(+Handle, +Lin_Expr, ?Coefficient1,
?Coefficient2, ?Boolean) Succeeds if and only if the polyhedronP referenced byHandle is
not empty andLin_Expr is bounded from below inP .

Coefficient1 is unified with the numerator of the infimum value andCoefficient2 with the de-
nominator of the infimum value. If the infimum is also the minimum,Boolean is unified with the atom
true and, otherwise, unified with the atomfalse .

ppl_Polyhedron_minimize_with_point(+Handle, +Lin_Expr, ?Coefficient1,
?Coefficient2, ?Boolean, ?Point) Succeeds if and only if the polyhedronP referenced by
Handle is not empty andLin_Expr is bounded from below inP .

Coefficient1 is unified with the numerator of the infimum value,Coefficient2 with the denomi-
nator of the infimum value, andPoint with a point or closure point whereLin_Expr reaches this value.
If the infimum is also the minimum,Boolean is unified with the atomtrue and, otherwise, unified with
the atomfalse .

ppl_Polyhedron_is_topologically_closed(+Handle) Succeeds if and only if the poly-
hedron referenced byHandle is topologically closed.

ppl_Polyhedron_contains_Polyhedron(+Handle_1, +Handle_2) Succeeds if and
only if the polyhedron referenced byHandle_1 is included in or equal to the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_strictly_contains_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referenced byHandle_1 is included in but not equal to the polyhedron
referenced byHandle_2 .

ppl_Polyhedron_is_disjoint_from_Polyhedron(+Handle_1, +Handle_2) Suc-
ceeds if and only if the polyhedron referenced byHandle_1 is disjoint from the polyhedron referenced
by Handle_2 .

ppl_Polyhedron_equals_Polyhedron(+Handle_1, +Handle_2) Succeeds if and only if
the polyhedron referenced byHandle_1 is equal to the polyhedron referenced byHandle_2 .

ppl_Polyhedron_OK(+Handle) Succeeds only if the polyhedron referenced byHandle is well
formed, i.e., if it satisfies all its implementation invariants. Useful for debugging purposes.

ppl_Polyhedron_add_constraint(+Handle, +Constraint)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 62

ppl_Polyhedron_add_constraint_and_minimize(+Handle, +Constraint) Up-
dates the polyhedron referenced byHandle to one obtained by addingConstraint to its constraint
system. Thus, the query

?- ppl_new_Polyhedron_from_space_dimension(c, 3, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_constraint(X, 4*A + B - 2*C >= 5).

will update the polyhedron with handleX to consist of the set of points in the vector spaceR3 satisfying
the constraint4x + y − 2z >= 5.

Note thatppl_Polyhedron_add_constraint_and_minimize/2 will fail if, after adding the
constraint, the polyhedron is empty.

ppl_Polyhedron_add_generator(+Handle, +Generator)

ppl_Polyhedron_add_generator_and_minimize(+Handle, +Generator) Updates
the polyhedron referenced byHandle to one obtained by addingGenerator to its generator system.
Thus, after the query

?- ppl_new_Polyhedron_from_space_dimension(c, 3, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generator(X, point(-100*A - 5*B, 8)).

will update the polyhedron with handleX to be the single point(−12.5,−0.625, 0)T in the vector space
R3.

ppl_Polyhedron_add_constraints(+Handle, +Constraint_System) Updates the
polyhedron referenced byHandle to one obtained by adding to its constraint system the constraints in
Constraint_System . E.g.,

| ?- ppl_new_Polyhedron_from_space_dimension(c, 2, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1),
ppl_Polyhedron_add_constraints(X, [4*A + B >= 3, A = 1]),
ppl_Polyhedron_get_constraints(X, CS).

CS = [4*A+1*B>=3,1*A=1] ?

The updated polyhedron referenced byHandle can be empty and a query will succeed even when
Constraint_System is unsatisfiable.

ppl_Polyhedron_add_constraints_and_minimize(+Handle, +Constraint_-
System) Updates the polyhedron referenced byHandle to one obtained by adding to its constraint
system the constraints inConstraint_System . E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 2, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1),
ppl_Polyhedron_add_constraints_and_minimize(X, [4*A + B >= 3, A = 1]),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*B>= -1,1*A=1]

This will fail if, after adding the constraints, the polyhedron is empty. E.g., the following will fail,

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 63

?- A = ’$VAR’(0), B = ’$VAR’(1),
ppl_new_Polyhedron_from_space_dimension(c, 2, universe, X),
ppl_Polyhedron_add_constraints_and_minimize(X,

[4*A + B >= 3, A = 0, B =< 0]),
ppl_Polyhedron_get_constraints(X, CS).

ppl_Polyhedron_add_generators(+Handle, +Generator_System) Updates the poly-
hedron referenced byHandle to one obtained by adding to its generator system the generators in
Generator_System .

If the system of generators representing a polyhedron is non-empty, then it must include a point (see the
paragraph on generator representation in SectionRepresentations of Convex Polyhedra). Thus care must
be taken to ensure that, before calling this predicate, either the polyhedron referenced byHandle is non-
empty or that wheneverGenerator_System is non-empty the first element defines a point. E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 3, empty, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generators(X,

[point(1*A + 1*B + 1*C, 1), ray(1*A), ray(2*A)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [ray(2*A), point(1*A+1*B+1*C), ray(1*A)]

ppl_Polyhedron_add_generators_and_minimize(+Handle, +Generator_System)
Updates the polyhedron referenced byHandle to one obtained by adding to its generator system the
generators inGenerator_System .

Unlike the predicateppl_add_generators , the order of the generators inGenerator_System is
not important. E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 3, empty, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_add_generators_and_minimize(X,

[ray(1*A), ray(2*A), point(1*A + 1*B + 1*C, 1)]),
ppl_Polyhedron_get_generators(X, GS).

GS = [point(1*A+1*B+1*C), ray(1*A)]

ppl_Polyhedron_intersection_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_intersection_assign_and_minimize(+Handle_1, +Handle_2)
Assigns to the polyhedron referenced byHandle_1 its intersection with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_poly_hull_assign(+Handle_1, +Handle_2)

ppl_Polyhedron_poly_hull_assign_and_minimize(+Handle_1, +Handle_2) As-
signs to the polyhedron referenced byHandle_1 its poly-hull with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_poly_difference_assign(+Handle_1, +Handle_2) Assigns to the
polyhedron referenced byHandle_1 its poly-difference with the polyhedron referenced byHandle_2 .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 64

ppl_Polyhedron_affine_image(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient) Transforms the polyhedron referenced byHandle assigning the affine expression
Lin_Expr /Coefficient to PPL_Var .

ppl_Polyhedron_affine_preimage(+Handle, +PPL_Var, +Lin_Expr,
+Coefficient) This is the inverse transformation to that forppl_affine_image .

ppl_Polyhedron_generalized_affine_image(+Handle, +PPL_Var, +Relation_-
Symbol +Lin_Expr, +Coefficient) Transforms the polyhedron referenced byHandle
assigning the generalized affine image with respect to the transfer functionPPL_Var Relation_-
Symbol Lin_Expr /Coefficient .

ppl_Polyhedron_generalized_affine_image_lhs_rhs(+Handle, +Lin_Expr1,
+Relation_Symbol +Lin_Expr2) Transforms the polyhedron referenced byHandle assigning
the generalized affine image with respect to the transfer functionLin_Expr1 Relation_Symbol
Lin_Expr2 .

ppl_Polyhedron_time_elapse_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedronP referenced byHandle_1 the time-elapse(P ↗ Q) with the polyhedronQ referenced by
Handle_2 .

ppl_Polyhedron_BHRZ03_widening_assign_with_token(+Handle_1, +Handle_2,
?C_unsigned) The polyhedra referenced byHandle_1 andHandle_2 are unaltered. The token
C_unsigned is 0 if a BHRZ03 widening would have changed the polyhedron referenced byHandle_1
and is 1 otherwise.

ppl_Polyhedron_BHRZ03_widening_assign(+Handle_1, +Handle_2) Assigns to the
polyhedron referenced byHandle_1 its BHRZ03-widening with the polyhedron referenced by
Handle_2 .

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign_with_token(
+Handle_1, +Handle_2, +Constraint_System, ?C_unsigned) The polyhedra ref-
erenced byHandle_1 and Handle_2 are unaltered. The tokenC_unsigned is 0 if a BHRZ03-
widening with the polyhedron referenced byHandle_2 , improved by enforcing those constraints
in Constraint_System would have changed the polyhedron referenced byHandle_1 and is 1
otherwise.

ppl_Polyhedron_limited_BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System) Assigns to the polyhedronP referenced byHandle_1
the result of its BHRZ03-widening with the polyhedron referenced byHandle_2 , improved by enforcing
those constraints inConstraint_System .

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign_with_token(
+Handle_1, +Handle_2, +Constraint_System, ?C_unsigned) The polyhedra P1

andP2 referenced byHandle_1 andHandle_2 , respectively are unaltered. The tokenC_unsigned
is 0 if a BHRZ03-widening withP2 , improved by enforcing all the constraints of the form±x ≤ r and
±x < r that are satisfied by all the points ofP1 together with the constraints inConstraint_System
would have changed the polyhedron referenced byHandle_1 and is 1 otherwise.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 65

ppl_Polyhedron_bounded_BHRZ03_extrapolation_assign(+Handle_1,
+Handle_2, +Constraint_System) Assigns to the polyhedronP referenced byHandle_1
the result of its BHRZ03-widening with the polyhedron referenced byHandle_2 improved by enforcing
all the constraints of the form±x ≤ r and±x < r that are satisfied by all the points ofP together with
the constraints inConstraint_System .

ppl_Polyhedron_H79_widening_assign_with_token(+Handle_1, +Handle_2,
?C_unsigned) The polyhedra referenced byHandle_1 andHandle_2 are unaltered. The token
C_unsigned is 0 if an H79 widening would have changed the polyhedron referenced byHandle_1
and is 1 otherwise.

ppl_Polyhedron_H79_widening_assign(+Handle_1, +Handle_2) Assigns to the poly-
hedron referenced byHandle_1 its H79-widening with the polyhedron referenced byHandle_2 .

ppl_Polyhedron_limited_H79_extrapolation_assign_with_token(+Handle_-
1, +Handle_2, +Constraint_System, ?C_unsigned) The polyhedra referenced by
Handle_1 and Handle_2 are unaltered. The tokenC_unsigned is 0 if a H79-widening with the
polyhedron referenced byHandle_2 , improved by enforcing those constraints inConstraint_-
System would have changed the polyhedron referenced byHandle_1 and is 1 otherwise.

ppl_Polyhedron_limited_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System) Assigns to the polyhedronP referenced byHandle_1 its H79-
widening with the polyhedron referenced byHandle_2 , improved by enforcing those constraints in
Constraint_System .

ppl_Polyhedron_bounded_H79_extrapolation_assign_with_token(+Handle_1,
+Handle_2, +Constraint_System, ?C_unsigned) The polyhedraP1 andP2 referenced
by Handle_1 and Handle_2 , respectively are unaltered. The tokenC_unsigned is 0 if a H79-
widening withP2 , improved by enforcing all the constraints of the form±x ≤ r and±x < r that are
satisfied by all the points ofP1 together with the constraints inConstraint_System would have
changed the polyhedron referenced byHandle_1 and is 1 otherwise.

ppl_Polyhedron_bounded_H79_extrapolation_assign(+Handle_1, +Handle_2,
+Constraint_System) Assigns to the polyhedronP referenced byHandle_1 the result of its
H79-widening with the polyhedron referenced byHandle_2 improved by enforcing all the constraints
of the form±x ≤ r and±x < r that are satisfied by all the points ofP together with the constraints in
Constraint_System .

ppl_Polyhedron_topological_closure_assign(+Handle) Assigns to the polyhedron
referenced byHandle its topological closure.

ppl_Polyhedron_add_space_dimensions_and_embed(+Handle, +Dimension_-
Type) Embeds the polyhedron referenced byHandle in a space that is enlarged byDimension_-
Type dimensions, E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 0, empty, X),
ppl_Polyhedron_add_space_dimensions_and_embed(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 66

CS = [],
GS = [point(0),line(1*A),line(1*B)]

ppl_Polyhedron_concatenate_assign(+Handle1, +Handle2) Updates the polyhedron
P1 referenced byHandle1 by first embeddingP1 in a new space enlarged by the space dimensions of the
polyhedronP2 referenced byHandle2 , and then adds to its system of constraints a renamed-apart version
of the constraints ofP2.

E.g.,

?- ppl_new_Polyhedron_from_space_dimension(nnc, 2, universe, X),
A = ’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
D = ’$VAR’(3), E = ’$VAR’(4),
ppl_new_Polyhedron_from_constraints(nnc, [A > 1, B >= 0, C >= 0], Y),
ppl_Polyhedron_concatenate_assign(X, Y),
ppl_Polyhedron_get_constraints(X, CS).

CS = [1*C > 1, 1*D >= 0, 1*E >= 0]

ppl_Polyhedron_add_space_dimensions_and_project(+Handle, +Dimension_-
Type) Projects the polyhedron referenced byHandle onto a space that is enlarged byDimension_-
Type dimensions, E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 0, empty, X),
ppl_Polyhedron_add_space_dimensions_and_project(X, 2),
ppl_Polyhedron_get_constraints(X, CS),
ppl_Polyhedron_get_generators(X, GS).

CS = [1*A = 0, 1*B = 0],
GS = [point(0)]

ppl_Polyhedron_remove_space_dimensions(+Handle, +List_of_PPL_Vars) Re-
moves the space dimensions given by the identifiers of the PPL variables in listList_of_PPL_Vars
from the polyhedron referenced byHandle . The identifiers for the remaining PPL variables are
renumbered so that they are consecutive and the maximum index is less than the number of dimensions.
E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 3, empty, X),
A=’$VAR’(0), B = ’$VAR’(1), C = ’$VAR’(2),
ppl_Polyhedron_remove_space_dimensions(X, [B]),
ppl_Polyhedron_space_dimension(X, K),
ppl_Polyhedron_get_generators(X, GS).

K = 2,
GS = [point(0),line(1*A),line(1*B),line(0)]

ppl_Polyhedron_remove_higher_space_dimensions(+Handle, +Dimension_-
Type)) Projects the polyhedron referenced to byHandle onto the first Dimension_Type
dimension. E.g.,

?- ppl_new_Polyhedron_from_space_dimension(c, 5, empty, X),
ppl_Polyhedron_remove_higher_space_dimensions(X, 3),
ppl_Polyhedron_space_dimension(X, K).

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 67

ppl_Polyhedron_expand_space_dimension(+Handle, +PPL_Var, +Dimension_-
Type)) Dimension_Type copies of the space dimension referenced byPPL_Var are added to the
polyhedron referenced to byHandle .

ppl_Polyhedron_fold_space_dimensions(+Handle, +List_of_PPL_Vars,
+PPL_Var)) The space dimensions referenced by the PPL variables in listList_of_PPL_-
Vars are folded into the dimension referenced byPPL_Var and removed. The result is undefined
if List_of_PPL_Vars does not have the properties described in the paragraphspecifying the
fold_space_dimensions operatorin SectionOperations on Convex Polyhedra.

ppl_Polyhedron_map_space_dimensions(+Handle, +P_Func)) Maps the space di-
mensions of the polyhedron referenced byHandle using the partial function defined byP_Func . The
result is undefined ifP_Func does not encode a partial function with the properties described in the para-
graphspecifying the map_space_dimensions operatorin SectionOperations on Convex Polyhedra.

Compilation and Installation

When the Parma Polyhedra Library is configured, it tests for the existence of each supported Prolog system.
If a supported Prolog system is correctly installed in a standard location, things are arranged so that the
corresponding interface is built and installed.

In the sequel,prefix is the prefix under which you have installed the library (typically/usr or
/usr/local).

As an option, the Prolog interface can track the creation and disposal of polyhedra. In fact, differently from
native Prolog data, PPL polyhedra must be explicitly disposed and forgetting to do so is a very common
mistake. To enable this option, configure the library adding-DPROLOG_TRACK_ALLOCATIONto the
options passed to the C++ compiler. Your configure command would then look like

path/to/configure --with-cxxflags="-DPROLOG_TRACK_ALLOCATION" ...

System-Dependent Features

CIAO Prolog The Ciao Prolog interface to the PPL is available both as a statically linked module and as
a dynamically linked one. Only Ciao Prolog versions 1.10 #5 and later are supported.

The Ciao Prolog interface to the PPL is available both as “PPL enhanced” Ciao Prolog interpreter and as
a library that can be linked to Ciao Prolog programs. Only Ciao Prolog versions 1.10 #5 and later are
supported.

So that it can be used with the Ciao Prolog PPL interface, the Ciao Prolog installation must be configured
with the-disable-regs option.

The ppl_ciao Executable If an appropriate version of Ciao Prolog is installed on the machine on
which you compiled the library, the commandmake install will install the executableppl_ciao
in the directoryprefix/bin . The ppl_ciao executable is simply the Ciao Prolog interpreter with
the Parma Polyhedra library linked in. The only thing you should do to use the library is to callppl_-
initialize/0 before any other PPL predicate and to callppl_finalize/0 when you are done with
the library.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

8.4 Prolog Language Interface 68

Linking the Library To Ciao Prolog Programs In order to allow linking Ciao Prolog programs to the
PPL, the following files are installed in the directoryprefix/lib/ppl : ppl_ciao.pl contains the
required foreign declarations;libppl_ciao. ∗ contain the executable code for the Ciao Prolog interface
in various formats (static library, shared library, libtool library). If your Ciao Prolog program is consti-
tuted by, say,source1.pl andsource2.pl and you want to create the executablemyprog , your
compilation command may look like

ciaoc -o myprog prefix/lib/ppl/ppl_ciao.pl ciao_pl_check.pl \
-L ’-Lprefix/lib/ppl -lppl_ciao -Lprefix/lib -lppl -lgmpxx -lgmp -lstdc++’

GNU Prolog The GNU Prolog interface to the PPL is available both as “PPL enhanced” GNU Prolog
interpreter and as a library that can be linked to GNU Prolog programs. Only GNU Prolog versions 1.2.18
and later are supported.

So that it can be used with the GNU Prolog PPL interface (and, for that matter, with any foreign code) , the
GNU Prolog installation must be configured with the-disable-regs option.

The ppl_gprolog Executable If an appropriate version of GNU Prolog is installed on the machine
on which you compiled the library, the commandmake install will install the executableppl_-
gprolog in the directoryprefix/bin . The ppl_gprolog executable is simply the GNU Prolog
interpreter with the Parma Polyhedra library linked in. The only thing you should do to use the library is
to call ppl_initialize/0 before any other PPL predicate and to callppl_finalize/0 when you
are done with the library.

Linking the Library To GNU Prolog Programs In order to allow linking GNU Prolog programs to the
PPL, the following files are installed in the directoryprefix/lib/ppl : ppl_gprolog.pl contains
the required foreign declarations;libppl_gprolog. ∗ contain the executable code for the GNU Prolog
interface in various formats (static library, shared library, libtool library). If your GNU Prolog program
is constituted by, say,source1.pl andsource2.pl and you want to create the executablemyprog ,
your compilation command may look like

gplc -o myprog prefix/lib/ppl/ppl_gprolog.pl source1.pl source2.pl \
-L ’-Lprefix/lib/ppl -lppl_gprolog -Lprefix/lib -lppl -lgmpxx -lgmp -lstdc++’

SICStus Prolog The SICStus Prolog interface to the PPL is available both as a statically linked module
or as a dynamically linked one. Only SICStus Prolog versions 3.9.0 and later are supported.

The Statically Linked ppl_sicstus Executable If an appropriate version of SICStus Prolog is in-
stalled on the machine on which you compiled the library, the commandmake install will install the
executableppl_sicstus in the directoryprefix/bin . Theppl_sicstus executable is simply the
SICStus Prolog system with the Parma Polyhedra library statically linked. The only thing you should do to
use the library is to loadprefix/lib/ppl/ppl_sicstus.pl .

Loading the SICStus Interface Dynamically In order to dynamically load the library from SICStus Pro-
log you should simply loadprefix/lib/ppl/ppl_sicstus.pl . Notice that, for dynamic linking
to work, you should have configured the library with the-enable-shared option.

SWI-Prolog The SWI-Prolog interface to the PPL is available both as a statically linked module or as a
dynamically linked one. Only SWI-Prolog versions 5.0 and later are supported.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9 PPL Directory Documentation 69

The ppl_pl Executable If an appropriate version of SWI-Prolog is installed on the machine on which
you compiled the library, the commandmake install will install the executableppl_pl in the direc-
tory prefix/bin . Theppl_pl executable is simply the SWI-Prolog shell with the Parma Polyhedra
library statically linked: from withinppl_pl all the services of the library are available without further
action.

Loading the SWI-Prolog Interface Dynamically In order to dynamically load the library from SWI-
Prolog you should simply loadprefix/lib/ppl/ppl_swiprolog.pl . This will invoke ppl_-
initialize/0 automatically but, at least for SWI-Prolog versions up to 5.0.7, it is the programmer’s
responsibility to callppl_finalize/0 . Alternatively, you can load the library directly with

:- load_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

This will call ppl_initialize/0 automatically. Analogously,

:- unload_foreign_library(’prefix/lib/ppl/libppl_swiprolog’).

will, as part of the unload process, invokeppl_finalize/0 .

Notice that, for dynamic linking to work, you should have configured the library with the
-enable-shared option.

XSB The XSB Prolog interface to the PPL is available as a dynamically linked module. Only XSB
versions 2.6 and later are supported.

In order to dynamically load the library from XSB you should load theppl_xsb module and import the
predicates you need. For things to work, you may have to copy the filesprefix/lib/ppl/ppl_-
xsb.xwam andprefix/lib/ppl/ppl_xsb.so in your current directory or in one of the XSB li-
brary directories.

YAP The YAP Prolog interface to the PPL is available as a dynamically linked module. Only YAP
versions 4.4 and later are supported.

In order to dynamically load the library from YAP you should simply loadprefix/lib/ppl/ppl_-
yap.pl . This will invokeppl_initialize/0 automatically; it is the programmer’s responsibility to
call ppl_finalize/0 when the PPL library is no longer needed. Notice that, for dynamic linking to
work, you should have configured the library with the-enable-shared option.

9 PPL Directory Documentation

9.1 /home/roberto/ppl-0.7/ppl-0.7/interfaces/C/ Directory Reference

interfaces

C

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

9.2 /home/roberto/ppl-0.7/ppl-0.7/interfaces/ Directory Reference 70

Files

• file ppl_c.h

9.2 /home/roberto/ppl-0.7/ppl-0.7/interfaces/ Directory Reference

interfacesC

Directories

• directoryC

9.3 /home/roberto/ppl-0.7/ppl-0.7/src/ Directory Reference

src

Files

• file ppl.hh

10 PPL Namespace Documentation

10.1 Parma_Polyhedra_Library Namespace Reference

The entire library is confined to this namespace.

Classes

• classChecked_Number

A wrapper for native numeric types implementing a given policy.

• classNative_Integer

A wrapper for unchecked native integer types.

• classVariable

A dimension of the vector space.

• classLinear_Expression

A linear expression.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 71

• classConstraint

A linear equality or inequality.

• classGenerator

A line, ray, point or closure point.

• classPoly_Con_Relation

The relation between a polyhedron and a constraint.

• classPoly_Gen_Relation

The relation between a polyhedron and a generator.

• classBHRZ03_Certificate

The convergence certificate for the BHRZ03 widening operator.

• classH79_Certificate

A convergence certificate for the H79 widening operator.

• classPolyhedron

The base class for convex polyhedra.

• classC_Polyhedron

A closed convex polyhedron.

• classNNC_Polyhedron

A not necessarily closed convex polyhedron.

• classDeterminate

Wraps a PPL class into a determinate constraint system interface.

• classPowerset

The powerset construction on constraint systems.

• classPolyhedra_Powerset

The powerset construction instantiated on PPL polyhedra.

Namespaces

• namespaceIO_Operators

All input/output operators are confined to this namespace.

Functions Operating on Unbounded Integer Coefficients

• void negate(GMP_Integer&x)

Assigns tox its negation.

• void gcd_assign(GMP_Integer&x, constGMP_Integer&y)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 72

Assigns tox the greatest common divisor ofx andy .

• void gcd_assign(GMP_Integer&x, constGMP_Integer&y, constGMP_Integer&z)

Assigns tox the greatest common divisor ofy andz .

• void lcm_assign(GMP_Integer&x, constGMP_Integer&y)

Assigns tox the least common multiple ofx andy .

• void lcm_assign(GMP_Integer&x, constGMP_Integer&y, constGMP_Integer&z)

Assigns tox the least common multiple ofy andz .

• void add_mul_assign(GMP_Integer&x, constGMP_Integer&y, constGMP_Integer&z)

Assigns tox the valuex + y ∗ z .

• void sub_mul_assign(GMP_Integer&x, constGMP_Integer&y, constGMP_Integer&z)

Assigns tox the valuex - y ∗ z .

• void exact_div_assign(GMP_Integer&x, constGMP_Integer&y)

Assigns tox the quotient of the integer division ofx byy .

• void exact_div_assign(GMP_Integer&x, constGMP_Integer&y, constGMP_Integer&z)

Assigns tox the quotient of the integer division ofy byz .

• void sqrt_assign(GMP_Integer&x)

Assigns tox its integer square root.

• void sqrt_assign(GMP_Integer&x, constGMP_Integer&y)

Assigns tox the integer square root ofy .

• int cmp(constGMP_Integer&x, constGMP_Integer&y)

Returns a negative, zero or positive value depending on whetherx is lower than, equal to or greater than
y , respectively.

• const mpz_class &raw_value(constGMP_Integer&x)

Returns a const reference tox .

• mpz_class &raw_value(GMP_Integer&x)

Returns a reference tox .

• size_ttotal_memory_in_bytes(constGMP_Integer&x)

Returns the total size in bytes of the memory occupied byx .

• size_texternal_memory_in_bytes(constGMP_Integer&x)

Returns the size in bytes of the memory managed byx .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.1 Parma_Polyhedra_Library Namespace Reference 73

Typedefs

• typedef mpz_classGMP_Integer

Unbounded integers are implemented using the GMP library.

• typedef COEFFICIENT_TYPECoefficient

An alias for easily naming the type of PPL coefficients.

• typedef std::set< Variable, Variable::Compare> Variables_Set

An std::set containing variables in increasing order of dimension index.

Functions

• unsignedversion_major()

Returns the major number of the PPL version.

• unsignedversion_minor()

Returns the minor number of the PPL version.

• unsignedversion_revision()

Returns the revision number of the PPL version.

• unsignedversion_beta()

Returns the beta number of the PPL version.

• const char∗ version()

Returns a character string containing the PPL version.

• const char∗ banner()

Returns a character string containing the PPL banner.

10.1.1 Detailed Description

The entire library is confined to this namespace.

10.1.2 Typedef Documentation

10.1.2.1 typedef mpz_classParma_Polyhedra_Library::GMP_Integer

Unbounded integers are implemented using the GMP library.

GMP_Integer is an alias for thempz_class type defined in the C++ interface of the GMP library. For
more information, seehttp://www.swox.com/gmp/

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.swox.com/gmp/
http://www.cs.unipr.it/ppl/

10.2 Parma_Polyhedra_Library::IO_Operators Namespace Reference 74

10.1.2.2 typedef COEFFICIENT_TYPEParma_Polyhedra_Library::Coefficient

An alias for easily naming the type of PPL coefficients.

Objects of type Coefficient are used to implement the integral valued coefficients occurring in linear expres-
sions, constraints, generators, intervals, bounding boxes and so on. Depending on the chosen configuration
options (see fileREADME.configure), a Coefficient may actually be:

• The GMP_Integer type, which in turn is an alias for thempz_class type implemented by the C++
interface of the GMP library (this is the default configuration);

• An instance of theChecked_Numberclass template, implementing overflow detection on top of a
native integral type (available template instances include checked integers having 8, 16, 32 or 64
bits);

• An instance of theNative_Integerclass template, simply wrapping a native integral types with no
overflow detection (available template instances include native integers having 8, 16, 32 or 64 bits).

10.1.3 Function Documentation

10.1.3.1 const char∗ banner ()

Returns a character string containing the PPL banner.

The banner provides information about the PPL version, the licensing, the lack of any warranty whatsoever,
the C++ compiler used to build the library, where to report bugs and where to look for further information.

10.2 Parma_Polyhedra_Library::IO_Operators Namespace Reference

All input/output operators are confined to this namespace.

10.2.1 Detailed Description

All input/output operators are confined to this namespace.

This is done so that the library’s input/output operators do not interfere with those the user might want
to define. In fact, it is highly unlikely that any pre-defined I/O operator will suit the needs of a client
application. On the other hand, those applications for which the PPL I/O operator are enough can easily
obtain access to them. For example, a directive like

using namespace Parma_Polyhedra_Library::IO_Operators;

would suffice for most uses. In more complex situations, such as

const Constraint_System& cs = ...;
copy(cs.begin(), cs.end(),

ostream_iterator<Constraint>(cout, "\n"));

theParma_Polyhedra_Librarynamespace must be suitably extended. This can be done as follows:

namespace Parma_Polyhedra_Library {
// Import all the output operators into the main PPL namespace.
using IO_Operators::operator<<;

}

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

10.3 std Namespace Reference 75

10.3 std Namespace Reference

The standard C++ namespace.

Functions

• void swap(Parma_Polyhedra_Library::GMP_Integer&x, Parma_Polyhedra_Library::GMP_Integer
&y)

Specializesstd::swap .

10.3.1 Detailed Description

The standard C++ namespace.

The Parma Polyhedra Library conforms to the C++ standard and, in particular, as far as reserved names are
concerned (17.4.3.1, [lib.reserved.names]). The PPL, however, defines several template specializations for
the standard library templatesswap()and iter_swap() (25.2.2, [lib.alg.swap]).

11 PPL Class Documentation

11.1 Parma_Polyhedra_Library::BHRZ03_Certificate Class Reference

The convergence certificate for the BHRZ03 widening operator.

Public Member Functions

• BHRZ03_Certificate()

Default constructor.

• BHRZ03_Certificate(constPolyhedron&ph)

Constructor: computes the certificate forph .

• BHRZ03_Certificate(constBHRZ03_Certificate&y)

Copy constructor.

• ∼BHRZ03_Certificate()

Destructor.

• int compare(constBHRZ03_Certificate&y) const

The comparison function for certificates.

• int compare(constPolyhedron&ph) const

Compares∗this with the certificate for polyhedronph .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.2 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Reference 76

Classes

• structCompare

A total ordering on BHRZ03 certificates.

11.1.1 Detailed Description

The convergence certificate for the BHRZ03 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:
Each convergence certificate has to be used together with a compatible widening operator. In particular,
BHRZ03_Certificatecan certify the convergence of both the BHRZ03 and the H79 widenings.

11.1.2 Member Function Documentation

11.1.2.1 int Parma_Polyhedra_Library::BHRZ03_Certificate::compare (const BHRZ03_-
Certificate & y) const

The comparison function for certificates.

Returns:
−1, 0 or 1 depending on whether∗this is smaller than, equal to, or greater thany , respectively.

Compares∗this with y , using a total ordering which is a refinement of the limited growth ordering
relation for the BHRZ03 widening.

11.2 Parma_Polyhedra_Library::BHRZ03_Certificate::Compare Struct Refer-
ence

A total ordering on BHRZ03 certificates.

Public Member Functions

• booloperator()(constBHRZ03_Certificate&x, constBHRZ03_Certificate&y) const

Returnstrue if and only ifx comes beforey .

11.2.1 Detailed Description

A total ordering on BHRZ03 certificates.

This binary predicate defines a total ordering on BHRZ03 certificates which is used when storing informa-
tion about sets of polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference 77

11.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference

A closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron.

Public Member Functions

• C_Polyhedron(dimension_type num_dimensions=0,Degenerate_Kindkind=UNIVERSE)

Builds either the universe or the empty C polyhedron.

• C_Polyhedron(const Constraint_System &cs)

Builds a C polyhedron from a system of constraints.

• C_Polyhedron(Constraint_System &cs)

Builds a C polyhedron recycling a system of constraints.

• C_Polyhedron(const Generator_System &gs)

Builds a C polyhedron from a system of generators.

• C_Polyhedron(Generator_System &gs)

Builds a C polyhedron recycling a system of generators.

• C_Polyhedron(constNNC_Polyhedron&y)

Builds a C polyhedron representing the topological closure of the NNC polyhedrony .

• template<typename Box> C_Polyhedron(const Box &box, From_Bounding_Box dummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

• C_Polyhedron(constC_Polyhedron&y)

Ordinary copy-constructor.

• C_Polyhedron& operator=(constC_Polyhedron&y)

The assignment operator. (∗this andy can be dimension-incompatible.).

• C_Polyhedron& operator=(constNNC_Polyhedron&y)

Assigns to∗this the topological closure of the NNC polyhedrony .

• ∼C_Polyhedron()

Destructor.

11.3.1 Detailed Description

A closed convex polyhedron.

An object of the classC_Polyhedronrepresents atopologically closedconvex polyhedron in the vector
spaceRn.

When building a closed polyhedron starting from a system of constraints, an exception is thrown if the
system contains astrict inequalityconstraint. Similarly, an exception is thrown when building a closed
polyhedron starting from a system of generators containing aclosure point.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.3 Parma_Polyhedra_Library::C_Polyhedron Class Reference 78

Note:
Such an exception will be obtained even if the system of constraints (resp., generators) actually defines
a topologically closed subset of the vector space, i.e., even if all the strict inequalities (resp., closure
points) in the system happen to be redundant with respect to the system obtained by removing all
the strict inequality constraints (resp., all the closure points). In contrast, when building a closed
polyhedron starting from an object of the classNNC_Polyhedron, the precise topological closure test
will be performed.

11.3.2 Constructor & Destructor Documentation

11.3.2.1 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (dimension_type num_-
dimensions= 0, Degenerate_Kindkind = UNIVERSE) [explicit]

Builds either the universe or the empty C polyhedron.

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the C polyhedron;

kind Specifies whether a universe or an empty C polyhedron should be built.

Exceptions:
std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe C polyhedron is built.

11.3.2.2 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Constraint_System &
cs) [explicit]

Builds a C polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of constraints contains strict inequalities.

11.3.2.3 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Constraint_System & cs)
[explicit]

Builds a C polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of constraints contains strict inequalities.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 79

11.3.2.4 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (const Generator_System &
gs) [explicit]

Builds a C polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it

contains closure points.

11.3.2.5 Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron (Generator_System & gs)
[explicit]

Builds a C polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points, or if it

contains closure points.

11.3.2.6 template<typename Box> Parma_Polyhedra_Library::C_Polyhedron::C_Polyhedron
(const Box & box, From_Bounding_Boxdummy)

Builds a C polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: template<typename Box> Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:
box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:
std::length_error Thrown if the space dimension ofbox exceeds the maximum allowed space di-

mension.

std::invalid_argument Thrown if box has intervals that are not topologically closed (i.e., having
some finite but open bounds).

11.4 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template
Reference

A wrapper for native numeric types implementing a given policy.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 80

Public Member Functions

• void swap(Checked_Number&y)

Swaps∗this with y .

Constructors

• Checked_Number()
Default constructor.

• Checked_Number(const signed char y)
Direct initialization from a signed char value.

• Checked_Number(const short y)
Direct initialization from a signed short value.

• Checked_Number(const int y)
Direct initialization from a signed int value.

• Checked_Number(const long y)
Direct initialization from a signed long value.

• Checked_Number(const long long y)
Direct initialization from a signed long long value.

• Checked_Number(const unsigned char y)
Direct initialization from an unsigned char value.

• Checked_Number(const unsigned short y)
Direct initialization from an unsigned short value.

• Checked_Number(const unsigned int y)
Direct initialization from an unsigned int value.

• Checked_Number(const unsigned long y)
Direct initialization from an unsigned long value.

• Checked_Number(const unsigned long long y)
Direct initialization from an unsigned long long value.

• Checked_Number(const float32_t y)
Direct initialization from a 32 bits floating-point value.

• Checked_Number(const float64_t y)
Direct initialization from a 64 bits floating-point value.

• Checked_Number(const mpq_class &y)
Direct initialization from a GMP unbounded rational value.

• Checked_Number(const mpz_class &y)
Direct initialization from a GMP unbounded integer value.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 81

• Checked_Number(const char∗y)

Direct initialization from a C string value.

Accessors and Conversions

• operator T() const

Conversion operator: returns a copy of the undelying native integer value.

• T & raw_value()

Returns a reference to the underlying native integer value.

• const T &raw_value() const

Returns a const reference to the underlying native integer value.

Assignment Operators

• Checked_Number& operator=(constChecked_Number&y)

Assignment operator.

• Checked_Number& operator+=(constChecked_Number&y)

Add and assign operator.

• Checked_Number& operator-=(constChecked_Number&y)

Subtract and assign operator.

• Checked_Number& operator∗= (constChecked_Number&y)

Multiply and assign operator.

• Checked_Number& operator/=(constChecked_Number&y)

Divide and assign operator.

• Checked_Number& operator%=(constChecked_Number&y)

Compute modulus and assign operator.

Increment and Decrement Operators

• Checked_Number& operator++()

Pre-increment operator.

• Checked_Numberoperator++(int)

Post-increment operator.

• Checked_Number& operator–()

Pre-decrement operator.

• Checked_Numberoperator–(int)

Post-decrement operator.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 82

Related Functions

(Note that these are not member functions.)

Accessor Functions

• const T &raw_value(constChecked_Number< T, Policy> &x)

Returns a const reference to the underlying native integer value.

• T & raw_value(Checked_Number< T, Policy> &x)

Returns a reference to the underlying native integer value.

Memory Size Inspection Functions

• size_ttotal_memory_in_bytes(constChecked_Number< T, Policy> &x)

Returns the total size in bytes of the memory occupied byx .

• size_texternal_memory_in_bytes(constChecked_Number< T, Policy> &x)

Returns the size in bytes of the memory managed byx .

Arithmetic Operators

• Checked_Number< T, Policy> operator+(constChecked_Number< T, Policy> &x)

Unary plus operator.

• Checked_Number< T, Policy> operator-(constChecked_Number< T, Policy> &x)

Unary minus operator.

• Checked_Number< T, Policy > operator+(constChecked_Number< T, Policy > &x, const
Checked_Number< T, Policy> &y)

Addition operator.

• Checked_Number< T, Policy > operator-(const Checked_Number< T, Policy > &x, const
Checked_Number< T, Policy> &y)

Subtraction operator.

• Checked_Number< T, Policy > operator∗ (constChecked_Number< T, Policy > &x, const
Checked_Number< T, Policy> &y)

Multiplication operator.

• Checked_Number< T, Policy > operator/(const Checked_Number< T, Policy > &x, const
Checked_Number< T, Policy> &y)

Integer division operator.

• Checked_Number< T, Policy > operator%(constChecked_Number< T, Policy > &x, const
Checked_Number< T, Policy> &y)

Modulus operator.

• void negate(Checked_Number< T, Policy> &x)

Assigns tox its negation.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.4 Parma_Polyhedra_Library::Checked_Number< T, Policy > Class Template Reference 83

• void add_mul_assign(Checked_Number< T, Policy > &x, constChecked_Number< T, Policy
> &y, constChecked_Number< T, Policy> &z)

Assigns tox the valuex + y ∗ z .

• void sub_mul_assign(Checked_Number< T, Policy > &x, constChecked_Number< T, Policy
> &y, constChecked_Number< T, Policy> &z)

Assigns tox the valuex - y ∗ z .

• void gcd_assign(Checked_Number< T, Policy> &x, constChecked_Number< T, Policy> &y)

Assigns tox the greatest common divisor ofx andy .

• void gcd_assign(Checked_Number< T, Policy> &x, constChecked_Number< T, Policy> &y,
constChecked_Number< T, Policy> &z)

Assigns tox the greatest common divisor ofy andz .

• void lcm_assign(Checked_Number< T, Policy> &x, constChecked_Number< T, Policy> &y)

Assigns tox the least common multiple ofx andy .

• void lcm_assign(Checked_Number< T, Policy> &x, constChecked_Number< T, Policy> &y,
constChecked_Number< T, Policy> &z)

Assigns tox the least common multiple ofy andz .

• void exact_div_assign(Checked_Number< T, Policy> &x, constChecked_Number< T, Policy
> &y)

Assigns tox the integer division ofx andy .

• void exact_div_assign(Checked_Number< T, Policy> &x, constChecked_Number< T, Policy
> &y, constChecked_Number< T, Policy> &z)

Assigns tox the integer division ofy andz .

• void sqrt_assign(Checked_Number< T, Policy> &x)
Assigns tox its integer square root.

• void sqrt_assign(Checked_Number< T, Policy> &x, constChecked_Number< T, Policy> &y)

Assigns tox the integer square root ofy .

Relational Operators and Comparison Functions

• bool operator==(constChecked_Number< T, Policy> &x, constChecked_Number< T, Policy
> &y)

Equality operator.

• bool operator!=(constChecked_Number< T, Policy > &x, constChecked_Number< T, Policy
> &y)

Disequality operator.

• bool operator>= (constChecked_Number< T, Policy> &x, constChecked_Number< T, Policy
> &y)

Greater than or equal to operator.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 84

• bool operator> (constChecked_Number< T, Policy > &x, constChecked_Number< T, Policy
> &y)

Greater than operator.

• bool operator<= (constChecked_Number< T, Policy> &x, constChecked_Number< T, Policy
> &y)

Less than or equal to operator.

• bool operator< (constChecked_Number< T, Policy > &x, constChecked_Number< T, Policy
> &y)

Less than operator.

• int sgn(constChecked_Number< T, Policy> &x)

Returns−1, 0 or 1 depending on whether the value ofx is negative, zero or positive, respectively.

• int cmp(constChecked_Number< T, Policy> &x, constChecked_Number< T, Policy> &y)

Returns a negative, zero or positive value depending on whetherx is lower than, equal to or greater than
y , respectively.

Input-Output Operators

• std::ostream &operator<< (std::ostream &os, constChecked_Number< T, Policy> &x)

Output operator.

• std::istream &operator>> (std::istream &is,Checked_Number< T, Policy> &x)

Input operator.

11.4.1 Detailed Description

template<typename T, typename Policy> class Parma_Polyhedra_Library::Checked_Number< T,
Policy >

A wrapper for native numeric types implementing a given policy.

The wrapper and related functions implement an interface which is common to all kinds of coefficient
types, therefore allowing for a uniform coding style. This class also implements the policy encoded by the
second template parameter. The default policy is to perform the detection of overflow errors.

11.5 Parma_Polyhedra_Library::Constraint Class Reference

A linear equality or inequality.

Public Types

• enumType{ EQUALITY, NONSTRICT_INEQUALITY, STRICT_INEQUALITY }

The constraint type.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 85

Public Member Functions

• Constraint(constConstraint&c)

Ordinary copy-constructor.

• ∼Constraint()

Destructor.

• Constraint& operator=(constConstraint&c)

Assignment operator.

• dimension_typespace_dimension() const

Returns the dimension of the vector space enclosing∗this .

• Typetype() const

Returns the constraint type of∗this .

• bool is_equality() const

Returnstrue if and only if∗this is an equality constraint.

• bool is_inequality() const

Returnstrue if and only if∗this is an inequality constraint (either strict or non-strict).

• bool is_nonstrict_inequality() const

Returnstrue if and only if∗this is a non-strict inequality constraint.

• bool is_strict_inequality() const

Returnstrue if and only if∗this is a strict inequality constraint.

• Coefficient_traits::const_referencecoefficient(Variablev) const

Returns the coefficient ofv in ∗this .

• Coefficient_traits::const_referenceinhomogeneous_term() const

Returns the inhomogeneous term of∗this .

• memory_size_typetotal_memory_in_bytes() const

Returns a lower bound to the total size in bytes of the memory occupied by∗this .

• memory_size_typeexternal_memory_in_bytes() const

Returns the size in bytes of the memory managed by∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

• dimension_typemax_space_dimension()

Returns the maximum space dimension aConstraintcan handle.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 86

• constConstraint& zero_dim_false()

The unsatisfiable (zero-dimension space) constraint0 = 1.

• constConstraint& zero_dim_positivity()

The true (zero-dimension space) constraint0 ≤ 1, also known aspositivity constraint.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, constConstraint&c)

Output operator.

• Constraintoperator==(constLinear_Expression&e1, constLinear_Expression&e2)

Returns the constrainte1 = e2 .

• Constraintoperator==(constLinear_Expression&e, Coefficient_traits::const_reference n)

Returns the constrainte = n.

• Constraintoperator==(Coefficient_traits::const_reference n, constLinear_Expression&e)

Returns the constraintn = e.

• Constraintoperator<= (constLinear_Expression&e1, constLinear_Expression&e2)

Returns the constrainte1 <= e2 .

• Constraintoperator<= (constLinear_Expression&e, Coefficient_traits::const_reference n)

Returns the constrainte <= n.

• Constraintoperator<= (Coefficient_traits::const_reference n, constLinear_Expression&e)

Returns the constraintn <= e.

• Constraintoperator>= (constLinear_Expression&e1, constLinear_Expression&e2)

Returns the constrainte1 >= e2 .

• Constraintoperator>= (constLinear_Expression&e, Coefficient_traits::const_reference n)

Returns the constrainte >= n.

• Constraintoperator>= (Coefficient_traits::const_reference n, constLinear_Expression&e)

Returns the constraintn >= e.

• Constraintoperator< (constLinear_Expression&e1, constLinear_Expression&e2)

Returns the constrainte1 < e2 .

• Constraintoperator< (constLinear_Expression&e, Coefficient_traits::const_reference n)

Returns the constrainte < n.

• Constraintoperator< (Coefficient_traits::const_reference n, constLinear_Expression&e)

Returns the constraintn < e.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 87

• Constraintoperator> (constLinear_Expression&e1, constLinear_Expression&e2)

Returns the constrainte1 > e2 .

• Constraintoperator> (constLinear_Expression&e, Coefficient_traits::const_reference n)

Returns the constrainte > n.

• Constraintoperator> (Coefficient_traits::const_reference n, constLinear_Expression&e)

Returns the constraintn > e.

• void swap(Parma_Polyhedra_Library::Constraint&x, Parma_Polyhedra_Library::Constraint&y)

Specializesstd::swap .

11.5.1 Detailed Description

A linear equality or inequality.

An object of the classConstraintis either:

• an equality:
∑n−1

i=0 aixi + b = 0;

• a non-strict inequality:
∑n−1

i=0 aixi + b ≥ 0; or

• a strict inequality:
∑n−1

i=0 aixi + b > 0;

wheren is the dimension of the space,ai is the integer coefficient of variablexi and b is the integer
inhomogeneous term.

How to build a constraint
Constraints are typically built by applying a relation symbol to a pair of linear expressions. Available
relation symbols are equality (==), non-strict inequalities (>= and<=) and strict inequalities (< and
>). The space dimension of a constraint is defined as the maximum space dimension of the arguments
of its constructor.

In the following examples it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds the equality constraint3x + 5y − z = 0, having space dimension3:

Constraint eq_c(3*x + 5*y - z == 0);

The following code builds the (non-strict) inequality constraint4x ≥ 2y−13, having space dimension
2:

Constraint ineq_c(4*x >= 2*y - 13);

The corresponding strict inequality constraint4x > 2y − 13 is obtained as follows:

Constraint strict_ineq_c(4*x > 2*y - 13);

An unsatisfiable constraint on the zero-dimension spaceR0 can be specified as follows:

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.5 Parma_Polyhedra_Library::Constraint Class Reference 88

Constraint false_c = Constraint::zero_dim_false();

Equivalent, but more involved ways are the following:

Constraint false_c1(Linear_Expression::zero() == 1);
Constraint false_c2(Linear_Expression::zero() >= 1);
Constraint false_c3(Linear_Expression::zero() > 0);

In contrast, the following code defines an unsatisfiable constraint having space dimension3:

Constraint false_c(0*z == 1);

How to inspect a constraint
Several methods are provided to examine a constraint and extract all the encoded information: its
space dimension, its type (equality, non-strict inequality, strict inequality) and the value of its integer
coefficients.

Example 2
The following code shows how it is possible to access each single coefficient of a constraint. Given an
inequality constraint (in this casex− 5y + 3z <= 4), we construct a new constraint corresponding to
its complement (thus, in this case we want to obtain the strict inequality constraintx− 5y + 3z > 4).

Constraint c1(x - 5*y + 3*z <= 4);
cout << "Constraint c1: " << c1 << endl;
if (c1.is_equality())

cout << "Constraint c1 is not an inequality." << endl;
else {

Linear_Expression e;
for (int i = c1.space_dimension() - 1; i >= 0; i--)

e += c1.coefficient(Variable(i)) * Variable(i);
e += c1.inhomogeneous_term();
Constraint c2 = c1.is_strict_inequality() ? (e <= 0) : (e < 0);
cout << "Complement c2: " << c2 << endl;

}

The actual output is the following:

Constraint c1: -A + 5*B - 3*C >= -4
Complement c2: A - 5*B + 3*C > 4

Note that, in general, the particular output obtained can be syntactically different from the (semanti-
cally equivalent) constraint considered.

11.5.2 Member Enumeration Documentation

11.5.2.1 enumParma_Polyhedra_Library::Constraint::Type

The constraint type.

Enumeration values:
EQUALITY The constraint is an equality.

NONSTRICT_INEQUALITY The constraint is a non-strict inequality.

STRICT_INEQUALITY The constraint is a strict inequality.

11.5.3 Member Function Documentation

11.5.3.1 Coefficient_traits::const_reference Parma_Polyhedra_Library::Constraint::coefficient
(Variable v) const

Returns the coefficient ofv in ∗this .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 89

Exceptions:
std::invalid_argument thrown if the index ofv is greater than or equal to the space dimension of

∗this .

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference

Wraps a PPL class into a determinate constraint system interface.

Public Member Functions

Constructors and Destructor

• Determinate(dimension_type num_dimensions=0, bool universe=true)
Builds either the top or the bottom of the determinate constraint system defined on the vector space
havingnum_dimensions dimensions.

• Determinate(const PH &p)
Injection operator: builds the determinate constraint system element corresponding to the base-level
elementp.

• Determinate(const Constraint_System &cs)
Injection operator: builds the determinate constraint system element corresponding to the base-level
element represented bycs .

• Determinate(constDeterminate&y)
Copy constructor.

• ∼Determinate()
Destructor.

Member Functions that Do Not Modify the Domain Element

• dimension_typespace_dimension() const
Returns the dimension of the vector space enclosing∗this .

• const Constraint_System &constraints() const
Returns the system of constraints.

• const Constraint_System &minimized_constraints() const
Returns the system of constraints, with no redundant constraint.

• const PH &element() const
Returns a const reference to the embedded element.

• PH & element()
Returns a reference to the embedded element.

• bool is_top() const
Returnstrue if and only if∗this is the top of the determinate constraint system (i.e., the whole vector
space).

• bool is_bottom() const

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 90

Returnstrue if and only if∗this is the bottom of the determinate constraint system.

• booldefinitely_entails(constDeterminate&y) const
Returnstrue if and only if∗this entailsy .

• bool is_definitely_equivalent_to(constDeterminate&y) const
Returnstrue if and only if∗this andy are equivalent.

• memory_size_typetotal_memory_in_bytes() const
Returns a lower bound to the total size in bytes of the memory occupied by∗this .

• memory_size_typeexternal_memory_in_bytes() const
Returns a lower bound to the size in bytes of the memory managed by∗this .

• boolOK () const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Domain Element

• void upper_bound_assign(constDeterminate&y)
Assigns to∗this the upper bound of∗this andy .

• void meet_assign(constDeterminate&y)
Assigns to∗this the meet of∗this andy .

• void add_constraint(constConstraint&c)
Assigns to∗this the meet of∗this and the element represented by constraintc .

• void add_constraints(Constraint_System &cs)
Assigns to∗this the meet of∗this and the element represented by the constraints incs .

Member Functions that May Modify the Dimension of the Vector Space

• Determinate& operator=(constDeterminate&y)
Assignment operator.

• void swap(Determinate&y)
Swaps∗this with y .

• void add_space_dimensions_and_embed(dimension_type m)
Addsmnew space dimensions and embeds the old domain element in the new vector space.

• void add_space_dimensions_and_project(dimension_type m)
Addsmnew space dimensions to the domain element and does not embed it in the new vector space.

• void concatenate_assign(constDeterminate&y)
Assigns to∗this theconcatenationof ∗this andy , taken in this order.

• void remove_space_dimensions(constVariables_Set&to_be_removed)
Removes all the specified space dimensions.

• void remove_higher_space_dimensions(dimension_type new_dimension)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 91

Removes the higher space dimensions so that the resulting space will have dimensionnew_-
dimension .

• template<typename Partial_Function> void map_space_dimensions(const Partial_Function
&pfunc)

Remaps the dimensions of the vector space according to a partial function.

Friends

• booloperator==(constDeterminate< PH> &x, constDeterminate< PH> &y)

Returnstrue if and only ifx andy are the same domain element.

• booloperator!=(constDeterminate< PH> &x, constDeterminate< PH> &y)

Returnstrue if and only ifx andy are different domain elements.

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &, constDeterminate< PH> &)

Output operator.

• void swap (Parma_Polyhedra_Library::Determinate< PH > &x, Parma_Polyhedra_-
Library::Determinate< PH> &y)

Specializesstd::swap .

11.6.1 Detailed Description

template<typename PH> class Parma_Polyhedra_Library::Determinate< PH >

Wraps a PPL class into a determinate constraint system interface.

11.6.2 Constructor & Destructor Documentation

11.6.2.1 template<typename PH> Parma_Polyhedra_Library::Determinate< PH >::Determinate
(dimension_typenum_dimensions= 0, bool universe= true) [explicit]

Builds either the top or the bottom of the determinate constraint system defined on the vector space having
num_dimensions dimensions.

The top element, corresponding to the whole vector space, is built ifuniverse is true ; otherwise the
bottom element, corresponding to the emptyset, is built. By default, the top of a zero-dimension vector
space is built.

11.6.3 Member Function Documentation

11.6.3.1 template<typename PH> void Parma_Polyhedra_Library::Determinate< PH >::add_-
constraint (constConstraint & c)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.6 Parma_Polyhedra_Library::Determinate< PH > Class Template Reference 92

Assigns to∗this the meet of∗this and the element represented by constraintc .

Exceptions:
std::invalid_argument Thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

11.6.3.2 template<typename PH> void Parma_Polyhedra_Library::Determinate< PH >::add_-
constraints (Constraint_System &cs)

Assigns to∗this the meet of∗this and the element represented by the constraints incs .

Parameters:
cs The constraints to intersect with. This parameter is not declaredconst because it can be modified.

Exceptions:
std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

11.6.3.3 template<typename PH> void Parma_Polyhedra_Library::Determinate< PH
>::remove_space_dimensions (constVariables_Set& to_be_removed)

Removes all the specified space dimensions.

Parameters:
to_be_removedThe set ofVariableobjects corresponding to the space dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if ∗this is dimension-incompatible with one of theVariableobjects

contained into_be_removed .

11.6.3.4 template<typename PH> void Parma_Polyhedra_Library::Determinate< PH
>::remove_higher_space_dimensions (dimension_typenew_dimension)

Removes the higher space dimensions so that the resulting space will have dimensionnew_dimension .

Exceptions:
std::invalid_argument Thrown if new_dimensions is greater than the space dimension of∗this .

11.6.3.5 template<typename PH> template<typename Partial_Function> void Parma_-
Polyhedra_Library::Determinate < PH >::map_space_dimensions (const Partial_Function &
pfunc)

Remaps the dimensions of the vector space according to a partial function.

See Polyhedron::map_space_dimensions.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 93

11.6.4 Friends And Related Function Documentation

11.6.4.1 template<typename PH> bool operator== (constDeterminate< PH > & x, constDeter-
minate< PH > & y) [friend]

Returnstrue if and only if x andy are the same domain element.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

11.6.4.2 template<typename PH> bool operator!= (constDeterminate< PH > & x, constDetermi-
nate< PH > & y) [friend]

Returnstrue if and only if x andy are different domain elements.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

11.7 Parma_Polyhedra_Library::Generator Class Reference

A line, ray, point or closure point.

Public Types

• enumType{ LINE, RAY, POINT, CLOSURE_POINT}

The generator type.

Public Member Functions

• Generator(constGenerator&g)

Ordinary copy-constructor.

• ∼Generator()

Destructor.

• Generator& operator=(constGenerator&g)

Assignment operator.

• dimension_typespace_dimension() const

Returns the dimension of the vector space enclosing∗this .

• Typetype() const

Returns the generator type of∗this .

• bool is_line() const

Returnstrue if and only if∗this is a line.

• bool is_ray() const

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 94

Returnstrue if and only if∗this is a ray.

• bool is_point() const

Returnstrue if and only if∗this is a point.

• bool is_closure_point() const

Returnstrue if and only if∗this is a closure point.

• Coefficient_traits::const_referencecoefficient(Variablev) const

Returns the coefficient ofv in ∗this .

• Coefficient_traits::const_referencedivisor () const

If ∗this is either a point or a closure point, returns its divisor.

• memory_size_typetotal_memory_in_bytes() const

Returns a lower bound to the total size in bytes of the memory occupied by∗this .

• memory_size_typeexternal_memory_in_bytes() const

Returns the size in bytes of the memory managed by∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

• Generatorline (constLinear_Expression&e)

Shorthand forGeneratorGenerator::line(const Linear_Expression& e).

• Generatorray (constLinear_Expression&e)

Shorthand forGeneratorGenerator::ray(const Linear_Expression& e).

• Generator point (const Linear_Expression &e=Linear_Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Shorthand for Generator Generator::point(const Linear_Expression& e, Coefficient_traits::const_-
reference d).

• Generatorclosure_point(const Linear_Expression&e=Linear_Expression::zero(), Coefficient_-
traits::const_reference d=Coefficient_one())

Shorthand for Generator Generator::closure_point(const Linear_Expression& e, Coefficient_-
traits::const_reference d).

• dimension_typemax_space_dimension()

Returns the maximum space dimension aGeneratorcan handle.

• constGenerator& zero_dim_point()

Returns the origin of the zero-dimensional spaceR0.

• constGenerator& zero_dim_closure_point()

Returns, as a closure point, the origin of the zero-dimensional spaceR0.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 95

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, constGenerator&g)

Output operator.

• void swap(Parma_Polyhedra_Library::Generator&x, Parma_Polyhedra_Library::Generator&y)

Specializesstd::swap .

11.7.1 Detailed Description

A line, ray, point or closure point.

An object of the classGeneratoris one of the following:

• a linel = (a0, . . . , an−1)T;

• a rayr = (a0, . . . , an−1)T;

• a pointp = (a0
d , . . . , an−1

d)T;

• a closure pointc = (a0
d , . . . , an−1

d)T;

wheren is the dimension of the space and, for points and closure points,d > 0 is the divisor.

A note on terminology.
As observed in SectionRepresentations of Convex Polyhedra, there are cases when, in order to repre-
sent a polyhedronP using the generator systemG = (L,R, P, C), we need to include in the finite set
P even points ofP that arenot vertices ofP. This situation is even more frequent when working with
NNC polyhedra and it is the reason why we prefer to use the word ‘point’ where other libraries use the
word ‘vertex’.

How to build a generator.
Each type of generator is built by applying the corresponding function (line , ray , point or
closure_point) to a linear expression, representing a direction in the space; the space dimen-
sion of the generator is defined as the space dimension of the corresponding linear expression. Linear
expressions used to define a generator should be homogeneous (any constant term will be simply ig-
nored). When defining points and closure points, an optional Coefficient argument can be used as a
commondivisor for all the coefficients occurring in the provided linear expression; the default value
for this argument is 1.

In all the following examples it is assumed that variablesx , y andz are defined as follows:

Variable x(0);
Variable y(1);
Variable z(2);

Example 1
The following code builds a line with directionx− y − z and having space dimension3:

Generator l = line(x - y - z);

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 96

As mentioned above, the constant term of the linear expression is not relevant. Thus, the following
code has the same effect:

Generator l = line(x - y - z + 15);

By definition, the origin of the space is not a line, so that the following code throws an exception:

Generator l = line(0*x);

Example 2
The following code builds a ray with the same direction as the line in Example 1:

Generator r = ray(x - y - z);

As is the case for lines, when specifying a ray the constant term of the linear expression is not relevant;
also, an exception is thrown when trying to build a ray from the origin of the space.

Example 3
The following code builds the pointp = (1, 0, 2)T ∈ R3:

Generator p = point(1*x + 0*y + 2*z);

The same effect can be obtained by using the following code:

Generator p = point(x + 2*z);

Similarly, the origin0 ∈ R3 can be defined using either one of the following lines of code:

Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);

Note however that the following code would have defined a different point, namely0 ∈ R2:

Generator origin2 = point(0*y);

The following two lines of code both define the only point having space dimension zero, namely
0 ∈ R0. In the second case we exploit the fact that the first argument of the functionpoint is
optional.

Generator origin0 = Generator::zero_dim_point();
Generator origin0_alt = point();

Example 4
The pointp specified in Example 3 above can also be obtained with the following code, where we
provide a non-default value for the second argument of the functionpoint (the divisor):

Generator p = point(2*x + 0*y + 4*z, 2);

Obviously, the divisor can be usefully exploited to specify points having some non-integer (but ratio-
nal) coordinates. For instance, the pointq = (−1.5, 3.2, 2.1)T ∈ R3 can be specified by the following
code:

Generator q = point(-15*x + 32*y + 21*z, 10);

If a zero divisor is provided, an exception is thrown.

Example 5
Closures points are specified in the same way we defined points, but invoking their specific constructor
function. For instance, the closure pointc = (1, 0, 2)T ∈ R3 is defined by

Generator c = closure_point(1*x + 0*y + 2*z);

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.7 Parma_Polyhedra_Library::Generator Class Reference 97

For the particular case of the (only) closure point having space dimension zero, we can use any of the
following:

Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();

How to inspect a generator
Several methods are provided to examine a generator and extract all the encoded information: its space
dimension, its type and the value of its integer coefficients.

Example 6
The following code shows how it is possible to access each single coefficient of a generator. Ifg1
is a point having coordinates(a0, . . . , an−1)T, we construct the closure pointg2 having coordinates
(a0, 2a1, . . . , (i + 1)ai, . . . , nan−1)T.

if (g1.is_point()) {
cout << "Point g1: " << g1 << endl;
Linear_Expression e;
for (int i = g1.space_dimension() - 1; i >= 0; i--)

e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, g1.divisor());
cout << "Closure point g2: " << g2 << endl;

}
else

cout << "Generator g1 is not a point." << endl;

Therefore, for the point

Generator g1 = point(2*x - y + 3*z, 2);

we would obtain the following output:

Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)

When working with (closure) points, be careful not to confuse the notion ofcoefficientwith the notion
of coordinate: these are equivalent only when the divisor of the (closure) point is 1.

11.7.2 Member Enumeration Documentation

11.7.2.1 enumParma_Polyhedra_Library::Generator::Type

The generator type.

Enumeration values:
LINE The generator is a line.

RAY The generator is a ray.

POINT The generator is a point.

CLOSURE_POINT The generator is a closure point.

11.7.3 Member Function Documentation

11.7.3.1 Generator line (constLinear_Expression& e) [static]

Shorthand forGeneratorGenerator::line(const Linear_Expression& e).

Exceptions:
std::invalid_argument Thrown if the homogeneous part ofe represents the origin of the vector space.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.8 Parma_Polyhedra_Library::H79_Certificate Class Reference 98

11.7.3.2 Generator ray (constLinear_Expression& e) [static]

Shorthand forGeneratorGenerator::ray(const Linear_Expression& e).

Exceptions:
std::invalid_argument Thrown if the homogeneous part ofe represents the origin of the vector space.

11.7.3.3 Generator point (const Linear_Expression & e = Linear_Expression::zero() ,
Coefficient_traits::const_referenced = Coefficient_one()) [static]

Shorthand forGeneratorGenerator::point(const Linear_Expression& e, Coefficient_traits::const_reference
d).

Bothe andd are optional arguments, with default valuesLinear_Expression::zero()and Coefficient_one(),
respectively.

Exceptions:
std::invalid_argument Thrown if d is zero.

11.7.3.4 Generator closure_point (const Linear_Expression & e = Linear_-
Expression::zero() , Coefficient_traits::const_reference d = Coefficient_one())
[static]

Shorthand forGeneratorGenerator::closure_point(const Linear_Expression& e, Coefficient_traits::const_-
reference d).

Bothe andd are optional arguments, with default valuesLinear_Expression::zero()and Coefficient_one(),
respectively.

Exceptions:
std::invalid_argument Thrown if d is zero.

11.7.3.5 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::coefficient
(Variable v) const

Returns the coefficient ofv in ∗this .

Exceptions:
std::invalid_argument Thrown if the index ofv is greater than or equal to the space dimension of

∗this .

11.7.3.6 Coefficient_traits::const_reference Parma_Polyhedra_Library::Generator::divisor ()
const

If ∗this is either a point or a closure point, returns its divisor.

Exceptions:
std::invalid_argument Thrown if ∗this is neither a point nor a closure point.

11.8 Parma_Polyhedra_Library::H79_Certificate Class Reference

A convergence certificate for the H79 widening operator.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.8 Parma_Polyhedra_Library::H79_Certificate Class Reference 99

Public Member Functions

• H79_Certificate()

Default constructor.

• H79_Certificate(constPolyhedron&ph)

Constructor: computes the certificate forph .

• H79_Certificate(constH79_Certificate&y)

Copy constructor.

• ∼H79_Certificate()

Destructor.

• int compare(constH79_Certificate&y) const

The comparison function for certificates.

• int compare(constPolyhedron&ph) const

Compares∗this with the certificate for polyhedronph .

Classes

• structCompare

A total ordering on H79 certificates.

11.8.1 Detailed Description

A convergence certificate for the H79 widening operator.

Convergence certificates are used to instantiate the BHZ03 framework so as to define widening operators
for the finite powerset domain.

Note:
The convergence of the H79 widening can also be certified byBHRZ03_Certificate.

11.8.2 Member Function Documentation

11.8.2.1 int Parma_Polyhedra_Library::H79_Certificate::compare (constH79_Certificate & y)
const

The comparison function for certificates.

Returns:
−1, 0 or 1 depending on whether∗this is smaller than, equal to, or greater thany , respectively.

Compares∗this with y , using a total ordering which is a refinement of the limited growth ordering
relation for the H79 widening.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.9 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference 100

11.9 Parma_Polyhedra_Library::H79_Certificate::Compare Struct Reference

A total ordering on H79 certificates.

Public Member Functions

• booloperator()(constH79_Certificate&x, constH79_Certificate&y) const

Returnstrue if and only ifx comes beforey .

11.9.1 Detailed Description

A total ordering on H79 certificates.

This binary predicate defines a total ordering on H79 certificates which is used when storing information
about sets of polyhedra.

11.10 Parma_Polyhedra_Library::Linear_Expression Class Reference

A linear expression.

Public Member Functions

• Linear_Expression()

Default constructor: returns a copy ofLinear_Expression::zero().

• Linear_Expression(constLinear_Expression&e)

Ordinary copy-constructor.

• ∼Linear_Expression()

Destructor.

• Linear_Expression(Coefficient_traits::const_reference n)

Builds the linear expression corresponding to the inhomogeneous termn.

• Linear_Expression(constConstraint&c)

Builds the linear expression corresponding to constraintc .

• Linear_Expression(constGenerator&g)

Builds the linear expression corresponding to generatorg (for points and closure points, the divisor is not
copied).

• dimension_typespace_dimension() const

Returns the dimension of the vector space enclosing∗this .

• Coefficient_traits::const_referencecoefficient(Variablev) const

Returns the coefficient ofv in ∗this .

• Coefficient_traits::const_referenceinhomogeneous_term() const

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Linear_Expression Class Reference 101

Returns the inhomogeneous term of∗this .

• memory_size_typetotal_memory_in_bytes() const

Returns a lower bound to the total size in bytes of the memory occupied by∗this .

• memory_size_typeexternal_memory_in_bytes() const

Returns the size in bytes of the memory managed by∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

• dimension_typemax_space_dimension()

Returns the maximum space dimension aLinear_Expressioncan handle.

• constLinear_Expression& zero()

Returns the (zero-dimension space) constant 0.

Related Functions

(Note that these are not member functions.)

• Linear_Expression(constVariablev)

Builds the linear expression corresponding to the variablev .

• Linear_Expressionoperator+(constLinear_Expression&e1, constLinear_Expression&e2)

Returns the linear expressione1 + e2 .

• Linear_Expressionoperator+(Coefficient_traits::const_reference n, constLinear_Expression&e)

Returns the linear expressionn + e.

• Linear_Expressionoperator+(constLinear_Expression&e, Coefficient_traits::const_reference n)

Returns the linear expressione + n.

• Linear_Expressionoperator+(constLinear_Expression&e)

Returns the linear expressione.

• Linear_Expressionoperator-(constLinear_Expression&e)

Returns the linear expression -e.

• Linear_Expressionoperator-(constLinear_Expression&e1, constLinear_Expression&e2)

Returns the linear expressione1 - e2 .

• Linear_Expressionoperator-(Coefficient_traits::const_reference n, constLinear_Expression&e)

Returns the linear expressionn - e.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Linear_Expression Class Reference 102

• Linear_Expressionoperator-(constLinear_Expression&e, Coefficient_traits::const_reference n)

Returns the linear expressione - n.

• Linear_Expressionoperator∗ (Coefficient_traits::const_reference n, constLinear_Expression&e)

Returns the linear expressionn ∗ e.

• Linear_Expressionoperator∗ (constLinear_Expression&e, Coefficient_traits::const_reference n)

Returns the linear expressione ∗ n.

• Linear_Expression& operator+=(Linear_Expression&e1, constLinear_Expression&e2)

Returns the linear expressione1 + e2 and assigns it toe1 .

• Linear_Expression& operator+=(Linear_Expression&e, constVariablev)

Returns the linear expressione + v and assigns it toe.

• Linear_Expression& operator+=(Linear_Expression&e, Coefficient_traits::const_reference n)

Returns the linear expressione + n and assigns it toe.

• Linear_Expression& operator-=(Linear_Expression&e1, constLinear_Expression&e2)

Returns the linear expressione1 - e2 and assigns it toe1 .

• Linear_Expression& operator-=(Linear_Expression&e, constVariablev)

Returns the linear expressione - v and assigns it toe.

• Linear_Expression& operator-=(Linear_Expression&e, Coefficient_traits::const_reference n)

Returns the linear expressione - n and assigns it toe.

• Linear_Expression& operator∗= (Linear_Expression&e, Coefficient_traits::const_reference n)

Returns the linear expressionn ∗ e and assigns it toe.

• std::ostream &operator<< (std::ostream &s, constLinear_Expression&e)

Output operator.

• void swap(Parma_Polyhedra_Library::Linear_Expression&x, Parma_Polyhedra_Library::Linear_-
Expression&y)

Specializesstd::swap .

11.10.1 Detailed Description

A linear expression.

An object of the classLinear_Expressionrepresents the linear expression

n−1∑
i=0

aixi + b

wheren is the dimension of the vector space, eachai is the integer coefficient of thei -th variablexi and
b is the integer for the inhomogeneous term.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.10 Parma_Polyhedra_Library::Linear_Expression Class Reference 103

How to build a linear expression.

Linear expressions are the basic blocks for defining both constraints (i.e., linear equalities or inequalities)
and generators (i.e., lines, rays, points and closure points). A full set of functions is defined to provide a
convenient interface for building complex linear expressions starting from simpler ones and from objects
of the classesVariableand Coefficient: available operators include unary negation, binary addition and
subtraction, as well as multiplication by a Coefficient. The space dimension of a linear expression is defined
as the maximum space dimension of the arguments used to build it: in particular, the space dimension of a
Variablex is defined asx.id()+1 , whereas all the objects of the class Coefficient have space dimension
zero.

Example
The following code builds the linear expression4x− 2y − z + 14, having space dimension3:

Linear_Expression e = 4*x - 2*y - z + 14;

Another way to build the same linear expression is:

Linear_Expression e1 = 4*x;
Linear_Expression e2 = 2*y;
Linear_Expression e3 = z;
Linear_Expression e = Linear_Expression(14);
e += e1 - e2 - e3;

Note thate1 , e2 ande3 have space dimension 1, 2 and 3, respectively; also, in the fourth line of code,
e is created with space dimension zero and then extended to space dimension 3 in the fifth line.

11.10.2 Constructor & Destructor Documentation

11.10.2.1 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (constConstraint
& c) [explicit]

Builds the linear expression corresponding to constraintc .

Given the constraintc =
(∑n−1

i=0 aixi + b ./ 0
)
, where./ ∈ {=,≥, >}, this builds the linear expression∑n−1

i=0 aixi + b. If c is an inequality (resp., equality) constraint, then the built linear expression is unique
up to a positive (resp., non-zero) factor.

11.10.2.2 Parma_Polyhedra_Library::Linear_Expression::Linear_Expression (constGenerator &
g) [explicit]

Builds the linear expression corresponding to generatorg (for points and closure points, the divisor is not
copied).

Given the generatorg = (a0
d , . . . , an−1

d)T (where, for lines and rays, we haved = 1), this builds the linear

expression
∑n−1

i=0 aixi. The inhomogeneous term of the linear expression will always be 0. Ifg is a ray,
point or closure point (resp., a line), then the linear expression is unique up to a positive (resp., non-zero)
factor.

11.10.3 Friends And Related Function Documentation

11.10.3.1 Linear_Expression(constVariable v) [related]

Builds the linear expression corresponding to the variablev .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Integer< T > Class Template Reference 104

Exceptions:
std::length_error Thrown if the space dimension ofv exceedsLinear_Expression::max_-

space_dimension() .

11.10.3.2 Linear_Expression & operator+= (Linear_Expression & e, const Variable v)
[related]

Returns the linear expressione + v and assigns it toe.

Exceptions:
std::length_error Thrown if the space dimension ofv exceedsLinear_Expression::max_-

space_dimension() .

11.10.3.3 Linear_Expression & operator-= (Linear_Expression & e, const Variable v)
[related]

Returns the linear expressione - v and assigns it toe.

Exceptions:
std::length_error Thrown if the space dimension ofv exceedsLinear_Expression::max_-

space_dimension() .

11.11 Parma_Polyhedra_Library::Native_Integer< T > Class Template Refer-
ence

A wrapper for unchecked native integer types.

Public Member Functions

Constructors

• Native_Integer()

Default constructor.

• Native_Integer(const signed char y)

Direct initialization from a signed char value.

• Native_Integer(const short y)

Direct initialization from a signed short value.

• Native_Integer(const int y)

Direct initialization from an signed int value.

• Native_Integer(const long y)

Direct initialization from a signed long value.

• Native_Integer(const long long y)

Direct initialization from a signed long long value.

• Native_Integer(const unsigned char y)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Integer< T > Class Template Reference 105

Direct initialization from an unsigned char value.

• Native_Integer(const unsigned short y)
Direct initialization from an unsigned short value.

• Native_Integer(const unsigned int y)
Direct initialization from an unsigned int value.

• Native_Integer(const unsigned long y)
Direct initialization from an unsigned long value.

• Native_Integer(const unsigned long long y)
Direct initialization from an unsigned long long value.

• Native_Integer(const float32_t y)
Direct initialization from a 32 bits floating-point value.

• Native_Integer(const float64_t y)
Direct initialization from a 64 bits floating-point value.

• Native_Integer(const mpq_class &y)
Direct initialization from a GMP unbounded rational value.

• Native_Integer(const mpz_class &y)
Direct initialization from a GMP unbounded integer value.

• Native_Integer(const char∗y)
Direct initialization from a C string value.

Accessors and Conversions

• operator T() const
Conversion operator: returns a copy of the undelying native integer value.

• T & raw_value()
Returns a reference to the underlying native integer value.

• const T &raw_value() const
Returns a const reference to the underlying native integer value.

Assignment Operators

• Native_Integer& operator=(constNative_Integer&y)
Assignment operator.

• Native_Integer& operator+=(constNative_Integer&y)
Add and assign operator.

• Native_Integer& operator-=(constNative_Integer&y)
Subtract and assign operator.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Integer< T > Class Template Reference 106

• Native_Integer& operator∗= (constNative_Integer&y)
Multiply and assign operator.

• Native_Integer& operator/=(constNative_Integer&y)
Divide and assign operator.

• Native_Integer& operator%=(constNative_Integer&y)
Compute modulus and assign operator.

Increment and Decrement Operators

• Native_Integer& operator++()
Pre-increment operator.

• Native_Integeroperator++(int)
Post-increment operator.

• Native_Integer& operator–()
Pre-decrement operator.

• Native_Integeroperator–(int)
Post-decrement operator.

Related Functions

(Note that these are not member functions.)

Accessor Functions

• const T &raw_value(constNative_Integer< T > &x)
Returns a const reference to the underlying native integer value.

• T & raw_value(Native_Integer< T > &x)
Returns a reference to the underlying native integer value.

Memory Size Inspection Functions

• size_ttotal_memory_in_bytes(constNative_Integer< T > &x)
Returns the total size in bytes of the memory occupied byx .

• size_texternal_memory_in_bytes(constNative_Integer< T > &x)
Returns the size in bytes of the memory managed byx .

Arithmetic Operators

• Native_Integer< T > operator+(constNative_Integer< T > &x)
Unary plus operator.

• Native_Integer< T > operator-(constNative_Integer< T > &x)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Integer< T > Class Template Reference 107

Unary minus operator.

• Native_Integer< T > operator+(constNative_Integer< T > &x, constNative_Integer< T > &y)

Addition operator.

• Native_Integer< T > operator-(constNative_Integer< T > &x, constNative_Integer< T > &y)

Subtraction operator.

• Native_Integer< T > operator∗ (constNative_Integer< T > &x, constNative_Integer< T > &y)

Multiplication operator.

• Native_Integer< T > operator/(constNative_Integer< T > &x, constNative_Integer< T > &y)

Integer division operator.

• Native_Integer< T > operator%(constNative_Integer< T > &x, const Native_Integer< T >
&y)

Modulus operator.

• void negate(Native_Integer< T > &x)
Assigns tox its negation.

• void add_mul_assign(Native_Integer< T > &x, constNative_Integer< T > &y, constNative_-
Integer< T > &z)

Assigns tox the valuex + y ∗ z .

• void sub_mul_assign(Native_Integer< T > &x, constNative_Integer< T > &y, constNative_-
Integer< T > &z)

Assigns tox the valuex - y ∗ z .

• void gcd_assign(Native_Integer< T > &x, constNative_Integer< T > &y)
Assigns tox the greatest common divisor ofx andy .

• void gcd_assign(Native_Integer< T > &x, const Native_Integer< T > &y, const Native_-
Integer< T > &z)

Assigns tox the greatest common divisor ofy andz .

• void lcm_assign(Native_Integer< T > &x, constNative_Integer< T > &y)
Assigns tox the least common multiple ofx andy .

• void lcm_assign(Native_Integer< T > &x, const Native_Integer< T > &y, const Native_-
Integer< T > &z)

Assigns tox the least common multiple ofy andz .

• void exact_div_assign(Native_Integer< T > &x, constNative_Integer< T > &y)
Assigns tox the integer division ofx andy .

• void exact_div_assign(Native_Integer< T > &x, constNative_Integer< T > &y, constNative_-
Integer< T > &z)

Assigns tox the integer division ofy andz .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.11 Parma_Polyhedra_Library::Native_Integer< T > Class Template Reference 108

• void sqrt_assign(Native_Integer< T > &x)
Assigns tox its integer square root.

• void sqrt_assign(Native_Integer< T > &x, constNative_Integer< T > &y)
Assigns tox the integer square root ofy .

Relational Operators and Comparison Functions

• booloperator==(constNative_Integer< T > &x, constNative_Integer< T > &y)
Equality operator.

• booloperator!=(constNative_Integer< T > &x, constNative_Integer< T > &y)
Disequality operator.

• booloperator>= (constNative_Integer< T > &x, constNative_Integer< T > &y)
Greater than or equal to operator.

• booloperator> (constNative_Integer< T > &x, constNative_Integer< T > &y)
Greater than operator.

• booloperator<= (constNative_Integer< T > &x, constNative_Integer< T > &y)
Less than or equal to operator.

• booloperator< (constNative_Integer< T > &x, constNative_Integer< T > &y)
Less than operator.

• int sgn(constNative_Integer< T > &x)
Returns−1, 0 or 1 depending on whether the value ofx is negative, zero or positive, respectively.

• int cmp(constNative_Integer< T > &x, constNative_Integer< T > &y)
Returns a negative, zero or positive value depending on whetherx is lower than, equal to or greater than
y , respectively.

Input-Output Operators

• std::ostream &operator<< (std::ostream &os, constNative_Integer< T > &x)
Output operator.

• std::istream &operator>> (std::istream &is,Native_Integer< T > &x)
Input operator.

11.11.1 Detailed Description

template<typename T> class Parma_Polyhedra_Library::Native_Integer< T >

A wrapper for unchecked native integer types.

The wrapper and related functions implement an interface which is common to all kinds of coefficient
types, therefore allowing for a uniform coding style.

Warning:
Native integer coefficients do not check for overflows and therefore are likely to produce unreliable
results. We are currently using them as a tool to estimate the overhead incurred by thecheckedintegral
types.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 109

11.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference

A not necessarily closed convex polyhedron.

InheritsParma_Polyhedra_Library::Polyhedron.

Public Member Functions

• NNC_Polyhedron(dimension_type num_dimensions=0,Degenerate_Kindkind=UNIVERSE)

Builds either the universe or the empty NNC polyhedron.

• NNC_Polyhedron(const Constraint_System &cs)

Builds an NNC polyhedron from a system of constraints.

• NNC_Polyhedron(Constraint_System &cs)

Builds an NNC polyhedron recycling a system of constraints.

• NNC_Polyhedron(const Generator_System &gs)

Builds an NNC polyhedron from a system of generators.

• NNC_Polyhedron(Generator_System &gs)

Builds an NNC polyhedron recycling a system of generators.

• NNC_Polyhedron(constC_Polyhedron&y)

Builds an NNC polyhedron from the C polyhedrony .

• template<typename Box> NNC_Polyhedron(const Box &box, From_Bounding_Box dummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

• NNC_Polyhedron(constNNC_Polyhedron&y)

Ordinary copy-constructor.

• NNC_Polyhedron& operator=(constNNC_Polyhedron&y)

The assignment operator. (∗this andy can be dimension-incompatible.).

• NNC_Polyhedron& operator=(constC_Polyhedron&y)

Assigns to∗this the C polyhedrony .

• ∼NNC_Polyhedron()

Destructor.

11.12.1 Detailed Description

A not necessarily closed convex polyhedron.

An object of the classNNC_Polyhedronrepresents anot necessarily closed(NNC) convex polyhedron in
the vector spaceRn.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.12 Parma_Polyhedra_Library::NNC_Polyhedron Class Reference 110

Note:
Since NNC polyhedra are a generalization of closed polyhedra, any object of the classC_Polyhedron
can be (explicitly) converted into an object of the classNNC_Polyhedron. The reason for defining
two different classes is that objects of the classC_Polyhedronare characterized by a more efficient
implementation, requiring less time and memory resources.

11.12.2 Constructor & Destructor Documentation

11.12.2.1 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (dimension_type
num_dimensions= 0, Degenerate_Kindkind = UNIVERSE) [explicit]

Builds either the universe or the empty NNC polyhedron.

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the NNC polyhedron;

kind Specifies whether a universe or an empty NNC polyhedron should be built.

Exceptions:
std::length_error Thrown if num_dimensions exceeds the maximum allowed space dimension.

Both parameters are optional: by default, a 0-dimension space universe NNC polyhedron is built.

11.12.2.2 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Constraint_-
System &cs) [explicit]

Builds an NNC polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

11.12.2.3 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Constraint_System
& cs) [explicit]

Builds an NNC polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
cs The system of constraints defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

11.12.2.4 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (const Generator_-
System &gs) [explicit]

Builds an NNC polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.13 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference 111

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.12.2.5 Parma_Polyhedra_Library::NNC_Polyhedron::NNC_Polyhedron (Generator_System &
gs) [explicit]

Builds an NNC polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
gs The system of generators defining the polyhedron. It is not declaredconst because its data-

structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the system of generators is not empty but has no points.

11.12.2.6 template<typename Box> Parma_Polyhedra_Library::NNC_Polyhedron::NNC_-
Polyhedron (const Box &box, From_Bounding_Boxdummy)

Builds an NNC polyhedron out of a generic, interval-based bounding box.

For a description of the methods that should be provided by the template class Box, see the documentation
of the protected method: template<typename Box> Polyhedron::Polyhedron(Topology topol, const Box&
box);

Parameters:
box The bounding box representing the polyhedron to be built;

dummy A dummy tag to syntactically differentiate this one from the other constructors.

Exceptions:
std::length_error Thrown if the space dimension ofbox exceeds the maximum allowed space di-

mension.

11.13 Parma_Polyhedra_Library::Poly_Con_Relation Class Reference

The relation between a polyhedron and a constraint.

Public Member Functions

• bool implies(constPoly_Con_Relation&y) const

True if and only if∗this impliesy .

• boolOK () const

Checks if all the invariants are satisfied.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.14 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference 112

Static Public Member Functions

• Poly_Con_Relationnothing()

The assertion that says nothing.

• Poly_Con_Relationis_disjoint()

The polyhedron and the set of points satisfying the constraint are disjoint.

• Poly_Con_Relationstrictly_intersects()

The polyhedron intersects the set of points satisfying the constraint, but it is not included in it.

• Poly_Con_Relationis_included()

The polyhedron is included in the set of points satisfying the constraint.

• Poly_Con_Relationsaturates()

The polyhedron is included in the set of points saturating the constraint.

Related Functions

(Note that these are not member functions.)

• booloperator==(constPoly_Con_Relation&x, constPoly_Con_Relation&y)

True if and only ifx andy are logically equivalent.

• booloperator!=(constPoly_Con_Relation&x, constPoly_Con_Relation&y)

True if and only ifx andy are not logically equivalent.

• Poly_Con_Relationoperator &&(constPoly_Con_Relation&x, constPoly_Con_Relation&y)

Yields the logical conjunction ofx andy .

• Poly_Con_Relationoperator-(constPoly_Con_Relation&x, constPoly_Con_Relation&y)

Yields the assertion with all the conjuncts ofx that are not iny .

• std::ostream &operator<< (std::ostream &s, constPoly_Con_Relation&r)

Output operator.

11.13.1 Detailed Description

The relation between a polyhedron and a constraint.

This class implements conjunctions of assertions on the relation between a polyhedron and a constraint.

11.14 Parma_Polyhedra_Library::Poly_Gen_Relation Class Reference

The relation between a polyhedron and a generator.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 113

Public Member Functions

• bool implies(constPoly_Gen_Relation&y) const

True if and only if∗this impliesy .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

• Poly_Gen_Relationnothing()

The assertion that says nothing.

• Poly_Gen_Relationsubsumes()

Adding the generator would not change the polyhedron.

Related Functions

(Note that these are not member functions.)

• booloperator==(constPoly_Gen_Relation&x, constPoly_Gen_Relation&y)

True if and only ifx andy are logically equivalent.

• booloperator!=(constPoly_Gen_Relation&x, constPoly_Gen_Relation&y)

True if and only ifx andy are not logically equivalent.

• Poly_Gen_Relationoperator &&(constPoly_Gen_Relation&x, constPoly_Gen_Relation&y)

Yields the logical conjunction ofx andy .

• Poly_Gen_Relationoperator-(constPoly_Gen_Relation&x, constPoly_Gen_Relation&y)

Yields the assertion with all the conjuncts ofx that are not iny .

• std::ostream &operator<< (std::ostream &s, constPoly_Gen_Relation&r)

Output operator.

11.14.1 Detailed Description

The relation between a polyhedron and a generator.

This class implements conjunctions of assertions on the relation between a polyhedron and a generator.

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template
Reference

The powerset construction instantiated on PPL polyhedra.

InheritsParma_Polyhedra_Library::Powerset< Parma_Polyhedra_Library::Determinate< PH> >.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 114

Public Member Functions

Constructors

• Polyhedra_Powerset(dimension_type num_dimensions=0,Polyhedron::Degenerate_Kind
kind=Polyhedron::UNIVERSE)

Builds a universe (top) or empty (bottom)Polyhedra_Powerset.

• Polyhedra_Powerset(constPolyhedra_Powerset&y)

Ordinary copy-constructor.

• Polyhedra_Powerset(const PH &ph)

If ph is nonempty, builds a powerset containing onlyph . Builds the empty powerset otherwise.

• template<typename QH> Polyhedra_Powerset(constPolyhedra_Powerset< QH > &y)

Copy-constructor allowing a source powerset with elements of a different polyhedron kind.

• Polyhedra_Powerset(const Constraint_System &cs)

Member Functions that Do Not Modify the Powerset of Polyhedra

• dimension_typespace_dimension() const

Returns the dimension of the vector space enclosing∗this .

• boolgeometrically_covers(constPolyhedra_Powerset&y) const
Returnstrue if and only if∗this geometrically coversy , i.e., if any point (in some element) ofy is
also a point (of some element) of∗this .

• boolgeometrically_equals(constPolyhedra_Powerset&y) const
Returnstrue if and only if∗this is geometrically equal toy , i.e., if (the elements of)∗this andy
contain the same set of points.

• memory_size_typetotal_memory_in_bytes() const

Returns a lower bound to the total size in bytes of the memory occupied by∗this .

• memory_size_typeexternal_memory_in_bytes() const

Returns a lower bound to the size in bytes of the memory managed by∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Powerset of Polyhedra

• void add_constraint(constConstraint&c)
Intersects∗this with constraintc .

• booladd_constraint_and_minimize(constConstraint&c)
Intersects∗this with the constraintc , minimizing the result.

• void add_constraints(const Constraint_System &cs)
Intersects∗this with the constraints incs .

• booladd_constraints_and_minimize(const Constraint_System &cs)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 115

Intersects∗this with the constraints incs , minimizing the result.

• void pairwise_reduce()
Assign to∗this the result of (recursively) merging together the pairs of polyhedra whose poly-hull is
the same as their set-theoretical union.

• template<typename Widening> void BGP99_extrapolation_assign(constPolyhedra_Powerset
&y, Widening wf, unsigned max_disjuncts)

Assigns to∗this the result of applying theBGP99 extrapolation operatorto ∗this andy , using the
widening functionwf and the cardinality thresholdmax_disjuncts .

• template<typename Cert, typename Widening> void BHZ03_widening_assign(const
Polyhedra_Powerset&y, Widening wf)

Assigns to∗this the result of computing theBHZ03-wideningbetween∗this andy , using the widen-
ing functionwf certified by the convergence certificateCert .

• template<typename Widening> void BHZ03_widening_assign(constPolyhedra_Powerset&y,
Widening wf)

An instance of the BHZ03 framework using the widening functionwf certified byBHRZ03_Certificate.

Member Functions that May Modify the Dimension of the Vector Space

• Polyhedra_Powerset& operator=(constPolyhedra_Powerset&y)
The assignment operator (∗this andy can be dimension-incompatible).

• template<typename QH> Polyhedra_Powerset& operator=(constPolyhedra_Powerset< QH >
&y)

Assignment operator allowing a source powerset with elements of a different polyhedron kind (∗this
andy can be dimension-incompatible).

• void swap(Polyhedra_Powerset&y)
Swaps∗this with y .

• void add_space_dimensions_and_embed(dimension_type m)
Addsmnew dimensions to the vector space containing∗this and embeds each polyhedron in∗this
in the new space.

• void add_space_dimensions_and_project(dimension_type m)
Addsm new dimensions to the vector space containing∗this without embedding the polyhedra in
∗this in the new space.

• void intersection_assign(constPolyhedra_Powerset&y)
Assigns to∗this the intersection of∗this andy .

• void poly_difference_assign(constPolyhedra_Powerset&y)
Assigns to∗this the difference of∗this andy .

• void concatenate_assign(constPolyhedra_Powerset&y)
Assigns to∗this the concatenation of∗this andy .

• void time_elapse_assign(constPolyhedra_Powerset&y)
Assigns to∗this the result of computing thetime-elapsebetween∗this andy .

• void remove_space_dimensions(constVariables_Set&to_be_removed)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 116

Removes all the specified space dimensions.

• void remove_higher_space_dimensions(dimension_type new_dimension)
Removes the higher space dimensions so that the resulting space will have dimensionnew_-
dimension .

• template<typename Partial_Function> void map_space_dimensions(const Partial_Function
&pfunc)

Remaps the dimensions of the vector space according to a partial function.

Static Public Member Functions

• dimension_typemax_space_dimension()

Returns the maximum space dimension a Polyhedra_Powerset<PH> can handle.

Related Functions

(Note that these are not member functions.)

• Widening_Function< PH> widen_fun_ref(void(PH::∗wm)(const PH &, unsigned∗))
Wraps a widening method into a function object.

• Limited_Widening_Function< PH > widen_fun_ref (void(PH::∗lwm)(const PH &, const
Constraint_System &, unsigned∗), const Constraint_System &cs)

Wraps a limited widening method into a function object.

• std::pair< PH, Polyhedra_Powerset< NNC_Polyhedron> > linear_partition(const PH &p, const
PH &q)

Partitionsq with respect top.

• void swap (Parma_Polyhedra_Library::Polyhedra_Powerset< PH > &x, Parma_Polyhedra_-
Library::Polyhedra_Powerset< PH> &y)

Specializesstd::swap .

11.15.1 Detailed Description

template<typename PH> class Parma_Polyhedra_Library::Polyhedra_Powerset< PH >

The powerset construction instantiated on PPL polyhedra.

11.15.2 Constructor & Destructor Documentation

11.15.2.1 template<typename PH> Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::Polyhedra_Powerset(dimension_typenum_dimensions= 0, Polyhedron::Degenerate_Kindkind
= Polyhedron::UNIVERSE) [explicit]

Builds a universe (top) or empty (bottom)Polyhedra_Powerset.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 117

Parameters:
num_dimensionsThe number of dimensions of the vector space enclosing the powerset;

kind Specifies whether the universe or the empty powerset has to be built.

11.15.2.2 template<typename PH> Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::Polyhedra_Powerset(const Constraint_System &cs) [explicit]

Creates aPolyhedra_Powersetwith a single polyhedron with the same information contents ascs .

11.15.3 Member Function Documentation

11.15.3.1 template<typename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::geometrically_covers (constPolyhedra_Powerset< PH > & y) const

Returnstrue if and only if ∗this geometrically coversy , i.e., if any point (in some element) ofy is also
a point (of some element) of∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

Warning:
This may bereally expensive!

11.15.3.2 template<typename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::geometrically_equals (constPolyhedra_Powerset< PH > & y) const

Returnstrue if and only if ∗this is geometrically equal toy , i.e., if (the elements of)∗this andy
contain the same set of points.

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

Warning:
This may bereally expensive!

11.15.3.3 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_constraint (constConstraint & c)

Intersects∗this with constraintc .

Exceptions:
std::invalid_argument Thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 118

11.15.3.4 template<typename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_constraint_and_minimize (constConstraint & c)

Intersects∗this with the constraintc , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if ∗this and c are topology-incompatible or dimension-

incompatible.

11.15.3.5 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_constraints (const Constraint_System &cs)

Intersects∗this with the constraints incs .

Parameters:
cs The constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

11.15.3.6 template<typename PH> bool Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::add_constraints_and_minimize (const Constraint_System &cs)

Intersects∗this with the constraints incs , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs The constraints to intersect with.

Exceptions:
std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

11.15.3.7 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::pairwise_reduce ()

Assign to∗this the result of (recursively) merging together the pairs of polyhedra whose poly-hull is the
same as their set-theoretical union.

On exit, for all the pairsP,Q of different polyhedra in∗this , we haveP]Q 6= P ∪Q.

11.15.3.8 template<typename PH> template<typename Widening> void Parma_Polyhedra_-
Library::Polyhedra_Powerset< PH >::BGP99_extrapolation_assign (constPolyhedra_Powerset<
PH > & y, Widening wf, unsignedmax_disjuncts)

Assigns to∗this the result of applying theBGP99 extrapolation operatorto ∗this andy , using the
widening functionwf and the cardinality thresholdmax_disjuncts .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 119

Parameters:
y A finite powerset of polyhedra. Itmustdefinitely entail∗this ;

wf The widening function to be used on polyhedra objects. It is obtained from the corre-
sponding widening method by using the helper function Parma_Polyhedra_Library::widen_-
fun_ref. Legal values are, e.g.,widen_fun_ref(&Polyhedron::H79_widening_-
assign) andwiden_fun_ref(&Polyhedron::limited_H79_extrapolation_-
assign, cs) ;

max_disjunctsThe maximum number of disjuncts occurring in the powerset∗this beforestarting
the computation. If this number is exceeded, some of the disjuncts in∗this are collapsed (i.e.,
joined together).

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

For a description of the extrapolation operator, see[BGP99]and[BHZ03b].

11.15.3.9 template<typename PH> template<typename Cert, typename Widening> void Parma_-
Polyhedra_Library::Polyhedra_Powerset< PH >::BHZ03_widening_assign (const Polyhedra_-
Powerset< PH > & y, Widening wf)

Assigns to∗this the result of computing theBHZ03-wideningbetween∗this andy , using the widening
functionwf certified by the convergence certificateCert .

Parameters:
y The finite powerset of polyhedra computed in the previous iteration step. Itmustdefinitely entail

∗this ;

wf The widening function to be used on polyhedra objects. It is obtained from the cor-
responding widening method by using the helper function widen_fun_ref. Legal values
are, e.g.,widen_fun_ref(&Polyhedron::H79_widening_assign) andwiden_-
fun_ref(&Polyhedron::limited_H79_extrapolation_assign, cs) .

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

Warning:
In order to obtain a proper widening operator, the template parameterCert should be a finite con-
vergence certificate for the base-level widening functionwf ; otherwise, an extrapolation operator is
obtained. For a description of the methods that should be provided byCert , seeBHRZ03_Certificate
or H79_Certificate.

11.15.3.10 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::intersection_assign (constPolyhedra_Powerset< PH > & y)

Assigns to∗this the intersection of∗this andy .

The result is obtained by intersecting each polyhedron in∗this with each polyhedron iny and collecting
all these intersections.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.15 Parma_Polyhedra_Library::Polyhedra_Powerset< PH > Class Template Reference 120

11.15.3.11 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::poly_difference_assign (constPolyhedra_Powerset< PH > & y)

Assigns to∗this the difference of∗this andy .

The result is obtained by computing thepoly-differenceof each polyhedron in∗this with each polyhedron
in y and collecting all these differences.

11.15.3.12 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::concatenate_assign (constPolyhedra_Powerset< PH > & y)

Assigns to∗this the concatenation of∗this andy .

The result is obtained by computing the pairwiseconcatenate"concatenation" of each polyhedron in∗this
with each polyhedron iny .

11.15.3.13 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::time_elapse_assign (constPolyhedra_Powerset< PH > & y)

Assigns to∗this the result of computing thetime-elapsebetween∗this andy .

The result is obtained by computing the pairwisetime_elapse"time elapse" of each polyhedron in∗this
with each polyhedron iny .

11.15.3.14 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::remove_space_dimensions (constVariables_Set& to_be_removed)

Removes all the specified space dimensions.

Parameters:
to_be_removedThe set ofVariableobjects corresponding to the space dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if ∗this is dimension-incompatible with one of theVariableobjects

contained into_be_removed .

11.15.3.15 template<typename PH> void Parma_Polyhedra_Library::Polyhedra_Powerset< PH
>::remove_higher_space_dimensions (dimension_typenew_dimension)

Removes the higher space dimensions so that the resulting space will have dimensionnew_dimension .

Exceptions:
std::invalid_argument Thrown if new_dimensions is greater than the space dimension of∗this .

11.15.3.16 template<typename PH> template<typename Partial_Function> void Parma_-
Polyhedra_Library::Polyhedra_Powerset< PH >::map_space_dimensions (const Partial_Function
& pfunc)

Remaps the dimensions of the vector space according to a partial function.

See also Polyhedron::map_space_dimensions.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 121

11.15.4 Friends And Related Function Documentation

11.15.4.1 template<typename PH> Widening_Function< PH > widen_fun_ref (void(PH::∗)(const
PH &, unsigned ∗) wm) [related]

Wraps a widening method into a function object.

Parameters:
wm The widening method.

11.15.4.2 template<typename PH> Limited_Widening_Function< PH > widen_fun_ref
(void(PH::∗)(const PH &, const Constraint_System &, unsigned∗) lwm, const Constraint_System &
cs) [related]

Wraps a limited widening method into a function object.

Parameters:
lwm The limited widening method.

cs The constraint system limiting the widening.

11.15.4.3 template<typename PH> std::pair < PH, Polyhedra_Powerset< NNC_Polyhedron> >
linear_partition (const PH & p, const PH & q) [related]

Partitionsq with respect top.

Let p and q be two polyhedra. The function returns an objectr of type std::pair <PH,
Polyhedra_Powerset <NNC_Polyhedron > > such that

• r.first is the intersection ofp andq;

• r.second has the property that all its elements are pairwise disjoint and disjoint fromp;

• the union ofr.first with all the elements ofr.second givesq (i.e., r is the representation of a
partition ofq).

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference

The base class for convex polyhedra.

Inherited by Parma_Polyhedra_Library::C_Polyhedron, and Parma_Polyhedra_Library::NNC_-
Polyhedron.

Public Types

• enumDegenerate_Kind{ UNIVERSE, EMPTY }

Kinds of degenerate polyhedra.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 122

Public Member Functions

Member Functions that Do Not Modify the Polyhedron

• dimension_typespace_dimension() const

Returns the dimension of the vector space enclosing∗this .

• dimension_typeaffine_dimension() const

Returns0, if ∗this is empty; otherwise, returns theaffine dimensionof ∗this .

• const Constraint_System &constraints() const

Returns the system of constraints.

• const Constraint_System &minimized_constraints() const

Returns the system of constraints, with no redundant constraint.

• const Generator_System &generators() const

Returns the system of generators.

• const Generator_System &minimized_generators() const

Returns the system of generators, with no redundant generator.

• Poly_Con_Relationrelation_with(constConstraint&c) const
Returns the relations holding between the polyhedron∗this and the constraintc .

• Poly_Gen_Relationrelation_with(constGenerator&g) const
Returns the relations holding between the polyhedron∗this and the generatorg.

• bool is_empty() const

Returnstrue if and only if∗this is an empty polyhedron.

• bool is_universe() const

Returnstrue if and only if∗this is a universe polyhedron.

• bool is_topologically_closed() const

Returnstrue if and only if∗this is a topologically closed subset of the vector space.

• bool is_disjoint_from(constPolyhedron&y) const
Returnstrue if and only if∗this andy are disjoint.

• bool is_bounded() const

Returnstrue if and only if∗this is a bounded polyhedron.

• boolbounds_from_above(constLinear_Expression&expr) const
Returnstrue if and only ifexpr is bounded from above in∗this .

• boolbounds_from_below(constLinear_Expression&expr) const
Returnstrue if and only ifexpr is bounded from below in∗this .

• bool maximize(constLinear_Expression&expr, Coefficient&sup_n,Coefficient&sup_d, bool
&maximum) const

Returnstrue if and only if∗this is not empty andexpr is bounded from above in∗this , in which
case the supremum value is computed.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 123

• bool maximize(constLinear_Expression&expr, Coefficient&sup_n,Coefficient&sup_d, bool
&maximum, constGenerator∗∗const pppoint) const

Returnstrue if and only if∗this is not empty andexpr is bounded from above in∗this , in which
case the supremum value and a point whereexpr reaches it are computed.

• bool minimize (constLinear_Expression&expr, Coefficient&inf_n, Coefficient&inf_d, bool
&minimum) const

Returnstrue if and only if∗this is not empty andexpr is bounded from below in∗this , in which
case the infimum value is computed.

• bool minimize (constLinear_Expression&expr, Coefficient&inf_n, Coefficient&inf_d, bool
&minimum, constGenerator∗∗const pppoint) const

Returnstrue if and only if∗this is not empty andexpr is bounded from below in∗this , in which
case the infimum value and a point whereexpr reaches it are computed.

• bool contains(constPolyhedron&y) const
Returnstrue if and only if∗this containsy .

• bool strictly_contains(constPolyhedron&y) const
Returnstrue if and only if∗this strictly containsy .

• template<typename Box> void shrink_bounding_box (Box &box, Complexity_Class
complexity=ANY_COMPLEXITY) const

Uses∗this to shrink a generic, interval-based bounding box.

• boolOK (bool check_not_empty=false) const
Checks if all the invariants are satisfied.

Space Dimension Preserving Member Functions that May Modify the Polyhedron

• void add_constraint(constConstraint&c)
Adds a copy of constraintc to the system of constraints of∗this (without minimizing the result).

• booladd_constraint_and_minimize(constConstraint&c)
Adds a copy of constraintc to the system of constraints of∗this , minimizing the result.

• void add_generator(constGenerator&g)
Adds a copy of generatorg to the system of generators of∗this (without minimizing the result).

• booladd_generator_and_minimize(constGenerator&g)
Adds a copy of generatorg to the system of generators of∗this , minimizing the result.

• void add_constraints(const Constraint_System &cs)
Adds a copy of the constraints incs to the system of constraints of∗this (without minimizing the
result).

• void add_recycled_constraints(Constraint_System &cs)
Adds the constraints incs to the system of constraints of∗this (without minimizing the result).

• booladd_constraints_and_minimize(const Constraint_System &cs)
Adds a copy of the constraints incs to the system of constraints of∗this , minimizing the result.

• booladd_recycled_constraints_and_minimize(Constraint_System &cs)
Adds the constraints incs to the system of constraints of∗this , minimizing the result.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 124

• void add_generators(const Generator_System &gs)
Adds a copy of the generators ings to the system of generators of∗this (without minimizing the result).

• void add_recycled_generators(Generator_System &gs)
Adds the generators ings to the system of generators of∗this (without minimizing the result).

• booladd_generators_and_minimize(const Generator_System &gs)
Adds a copy of the generators ings to the system of generators of∗this , minimizing the result.

• booladd_recycled_generators_and_minimize(Generator_System &gs)
Adds the generators ings to the system of generators of∗this , minimizing the result.

• void intersection_assign(constPolyhedron&y)
Assigns to∗this the intersection of∗this andy . The result is not guaranteed to be minimized.

• bool intersection_assign_and_minimize(constPolyhedron&y)
Assigns to∗this the intersection of∗this andy , minimizing the result.

• void poly_hull_assign(constPolyhedron&y)
Assigns to∗this the poly-hull of∗this andy . The result is not guaranteed to be minimized.

• boolpoly_hull_assign_and_minimize(constPolyhedron&y)
Assigns to∗this the poly-hull of∗this andy , minimizing the result.

• void poly_difference_assign(constPolyhedron&y)
Assigns to∗this thepoly-differenceof ∗this andy . The result is not guaranteed to be minimized.

• void affine_image(Variable var, constLinear_Expression&expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to∗this the affine imageof ∗this under the function mapping variablevar to the affine
expression specified byexpr anddenominator .

• void affine_preimage(Variable var, constLinear_Expression&expr, Coefficient_traits::const_-
reference denominator=Coefficient_one())

Assigns to∗this theaffine preimageof ∗this under the function mapping variablevar to the affine
expression specified byexpr anddenominator .

• void generalized_affine_image(Variable var, const Relation_Symbol relsym, constLinear_-
Expression&expr, Coefficient_traits::const_reference denominator=Coefficient_one())

Assigns to∗this the image of∗this with respect to thegeneralized affine transfer functionvar′ ./
expr

denominator
, where./ is the relation symbol encoded byrelsym .

• void generalized_affine_image(constLinear_Expression&lhs, const Relation_Symbol relsym,
constLinear_Expression&rhs)

Assigns to∗this the image of∗this with respect to thegeneralized affine transfer functionlhs′ ./ rhs,
where./ is the relation symbol encoded byrelsym .

• void time_elapse_assign(constPolyhedron&y)
Assigns to∗this the result of computing thetime-elapsebetween∗this andy .

• void topological_closure_assign()
Assigns to∗this its topological closure.

• void BHRZ03_widening_assign(constPolyhedron&y, unsigned∗tp=0)
Assigns to∗this the result of computing theBHRZ03-wideningbetween∗this andy .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 125

• void limited_BHRZ03_extrapolation_assign(const Polyhedron&y, const Constraint_System
&cs, unsigned∗tp=0)

Improves the result of theBHRZ03-wideningcomputation by also enforcing those constraints incs that
are satisfied by all the points of∗this .

• void bounded_BHRZ03_extrapolation_assign(constPolyhedron&y, const Constraint_System
&cs, unsigned∗tp=0)

Improves the result of theBHRZ03-wideningcomputation by also enforcing those constraints incs that
are satisfied by all the points of∗this , plus all the constraints of the form±x ≤ r and±x < r, with
r ∈ Q, that are satisfied by all the points of∗this .

• void H79_widening_assign(constPolyhedron&y, unsigned∗tp=0)
Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

• void limited_H79_extrapolation_assign(constPolyhedron&y, const Constraint_System &cs, un-
signed∗tp=0)

Improves the result of theH79-wideningcomputation by also enforcing those constraints incs that are
satisfied by all the points of∗this .

• void bounded_H79_extrapolation_assign(constPolyhedron&y, const Constraint_System &cs,
unsigned∗tp=0)

Improves the result of theH79-wideningcomputation by also enforcing those constraints incs that are
satisfied by all the points of∗this , plus all the constraints of the form±x ≤ r and±x < r, with
r ∈ Q, that are satisfied by all the points of∗this .

Member Functions that May Modify the Dimension of the Vector Space

• void add_space_dimensions_and_embed(dimension_type m)
Addsmnew space dimensions and embeds the old polyhedron in the new vector space.

• void add_space_dimensions_and_project(dimension_type m)
Addsmnew space dimensions to the polyhedron and does not embed it in the new vector space.

• void concatenate_assign(constPolyhedron&y)
Assigns to∗this theconcatenationof ∗this andy , taken in this order.

• void remove_space_dimensions(constVariables_Set&to_be_removed)
Removes all the specified dimensions from the vector space.

• void remove_higher_space_dimensions(dimension_type new_dimension)
Removes the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension .

• template<typename Partial_Function> void map_space_dimensions(const Partial_Function
&pfunc)

Remaps the dimensions of the vector space according to apartial function.

• void expand_space_dimension(Variablevar, dimension_type m)
Createsmcopies of the space dimension corresponding tovar .

• void fold_space_dimensions(constVariables_Set&to_be_folded,Variablevar)
Folds the space dimensions into_be_folded into var .

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 126

Miscellaneous Member Functions

• ∼Polyhedron()

Destructor.

• void swap(Polyhedron&y)
Swaps∗this with polyhedrony . (∗this andy can be dimension-incompatible.).

• memory_size_typetotal_memory_in_bytes() const

Returns the total size in bytes of the memory occupied by∗this .

• memory_size_typeexternal_memory_in_bytes() const

Returns the size in bytes of the memory managed by∗this .

Static Public Member Functions

• dimension_typemax_space_dimension()

Returns the maximum space dimension all kinds ofPolyhedroncan handle.

Protected Member Functions

• Polyhedron(Topology topol, dimension_type num_dimensions,Degenerate_Kindkind)

Builds a polyhedron having the specified properties.

• Polyhedron(constPolyhedron&y)

Ordinary copy-constructor.

• Polyhedron(Topology topol, const Constraint_System &cs)

Builds a polyhedron from a system of constraints.

• Polyhedron(Topology topol, Constraint_System &cs)

Builds a polyhedron recycling a system of constraints.

• Polyhedron(Topology topol, const Generator_System &gs)

Builds a polyhedron from a system of generators.

• Polyhedron(Topology topol, Generator_System &gs)

Builds a polyhedron recycling a system of generators.

• template<typename Box> Polyhedron(Topology topol, const Box &box)

Builds a polyhedron out of a generic, interval-based bounding box.

• Polyhedron& operator=(constPolyhedron&y)

The assignment operator. (∗this andy can be dimension-incompatible.).

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 127

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, constPolyhedron&ph)

Output operator.

• booloperator==(constPolyhedron&x, constPolyhedron&y)

Returnstrue if and only ifx andy are the same polyhedron.

• booloperator!=(constPolyhedron&x, constPolyhedron&y)

Returnstrue if and only ifx andy are different polyhedra.

• void swap(Parma_Polyhedra_Library::Polyhedron&x, Parma_Polyhedra_Library::Polyhedron&y)

Specializesstd::swap .

• template<typename PH> boolpoly_hull_assign_if_exact(PH &p, const PH &q)

If the poly-hull betweenp andq is exact it is assigned top.

11.16.1 Detailed Description

The base class for convex polyhedra.

An object of the classPolyhedronrepresents a convex polyhedron in the vector spaceRn.

A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see
SectionRepresentations of Convex Polyhedra) and it is always possible to obtain either representation. That
is, if we know the system of constraints, we can obtain from this the system of generators that define the
same polyhedron and vice versa. These systems can contain redundant members: in this case we say that
they are not in the minimal form. Most operators on polyhedra are provided with two implementations:
one of these, denoted<operator-name >_and_minimize , also enforces the minimization of the
representations, and returns the Boolean valuefalse whenever the resulting polyhedron turns out to be
empty.

Two key attributes of any polyhedron are its topological kind (recording whether it is aC_Polyhedronor
anNNC_Polyhedronobject) and its space dimension (the dimensionn ∈ N of the enclosing vector space):

• all polyhedra, the empty ones included, are endowed with a specific topology and space dimension;

• most operations working on a polyhedron and another object (i.e., another polyhedron, a constraint
or generator, a set of variables, etc.) will throw an exception if the polyhedron and the object are
not both topology-compatible and dimension-compatible (see SectionRepresentations of Convex
Polyhedra);

• the topology of a polyhedron cannot be changed; rather, there are constructors for each of the two
derived classes that will build a new polyhedron with the topology of that class from another poly-
hedron from either class and any topology;

• the only ways in which the space dimension of a polyhedron can be changed are:

– explicit calls to operators provided for that purpose;

– standard copy, assignment and swap operators.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 128

Note that four different polyhedra can be defined on the zero-dimension space: the empty polyhedron,
either closed or NNC, and the universe polyhedronR0, again either closed or NNC.

In all the examples it is assumed that variablesx andy are defined (where they are used) as follows:

Variable x(0);
Variable y(1);

Example 1
The following code builds a polyhedron corresponding to a square inR2, given as a system of con-
straints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from a system of generators
specifying the four vertices of the square:

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
C_Polyhedron ph(gs);

Example 2
The following code builds an unbounded polyhedron corresponding to a half-strip inR2, given as a
system of constraints:

Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);
C_Polyhedron ph(cs);

The following code builds the same polyhedron as above, but starting from the system of generators
specifying the two vertices of the polyhedron and one ray:

Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + y));
gs.insert(ray(x - y));
C_Polyhedron ph(gs);

Example 3
The following code builds the polyhedron corresponding to a half-plane by adding a single constraint
to the universe polyhedron inR2:

C_Polyhedron ph(2);
ph.add_constraint(y >= 0);

The following code builds the same polyhedron as above, but starting from the empty polyhedron in
the spaceR2 and inserting the appropriate generators (a point, a ray and a line).

C_Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 129

Note that, although the above polyhedron has no vertices, we must add one point, because otherwise
the result of the Minkowsky’s sum would be an empty polyhedron. To avoid subtle errors related to
the minimization process, it is required that the first generator inserted in an empty polyhedron is a
point (otherwise, an exception is thrown).

Example 4
The following code shows the use of the functionadd_space_dimensions_and_embed :

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_embed(1);

We build the universe polyhedron in the 1-dimension spaceR. Then we add a single equality con-
straint, thus obtaining the polyhedron corresponding to the singleton set{2} ⊆ R. After the last line
of code, the resulting polyhedron is{

(2, y)T ∈ R2
∣∣ y ∈ R

}
.

Example 5
The following code shows the use of the functionadd_space_dimensions_and_project :

C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_project(1);

The first two lines of code are the same as in Example 4 foradd_space_dimensions_and_-
embed. After the last line of code, the resulting polyhedron is the singleton set

{
(2, 0)T

}
⊆ R2.

Example 6
The following code shows the use of the functionaffine_image :

C_Polyhedron ph(2, Polyhedron::EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
Linear_Expression coeff = x + 4;
ph.affine_image(x, coeff);

In this example the starting polyhedron is a square inR2, the considered variable isx and the affine
expression isx + 4. The resulting polyhedron is the same square translated to the right. Moreover, if
the affine transformation for the same variablex is x + y:

Linear_Expression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex − y. Instead, if we do not use an invertible transformation for the
same variable; for example, the affine expressiony:

Linear_Expression coeff = y;

the resulting polyhedron is a diagonal of the square.

Example 7
The following code shows the use of the functionaffine_preimage :

C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(y >= 0);
ph.add_constraint(y <= 3);
Linear_Expression coeff = x + 4;
ph.affine_preimage(x, coeff);

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 130

In this example the starting polyhedron,var and the affine expression and the denominator are the
same as in Example 6, while the resulting polyhedron is again the same square, but translated to the
left. Moreover, if the affine transformation forx is x + y

Linear_Expression coeff = x + y;

the resulting polyhedron is a parallelogram with the height equal to the side of the square and the
oblique sides parallel to the linex + y. Instead, if we do not use an invertible transformation for the
same variablex , for example, the affine expressiony:

Linear_Expression coeff = y;

the resulting polyhedron is a line that corresponds to they axis.

Example 8
For this example we use also the variables:

Variable z(2);
Variable w(3);

The following code shows the use of the functionremove_space_dimensions :

Generator_System gs;
gs.insert(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);
set<Variable> to_be_removed;
to_be_removed.insert(y);
to_be_removed.insert(z);
ph.remove_space_dimensions(to_be_removed);

The starting polyhedron is the singleton set
{
(3, 1, 0, 2)T

}
⊆ R4, while the resulting polyhedron

is
{
(3, 2)T

}
⊆ R2. Be careful when removing space dimensionsincrementally: since dimensions

are automatically renamed after each application of theremove_space_dimensions operator,
unexpected results can be obtained. For instance, by using the following code we would obtain a
different result:

set<Variable> to_be_removed1;
to_be_removed1.insert(y);
ph.remove_space_dimensions(to_be_removed1);
set<Variable> to_be_removed2;
to_be_removed2.insert(z);
ph.remove_space_dimensions(to_be_removed2);

In this case, the result is the polyhedron
{
(3, 0)T

}
⊆ R2: when removing the set of dimensions

to_be_removed2 we are actually removing variablew of the original polyhedron. For the same
reason, the operatorremove_space_dimensions is not idempotent: removing twice the same
non-empty set of dimensions is never the same as removing them just once.

11.16.2 Member Enumeration Documentation

11.16.2.1 enumParma_Polyhedra_Library::Polyhedron::Degenerate_Kind

Kinds of degenerate polyhedra.

Enumeration values:
UNIVERSE The universe polyhedron, i.e., the whole vector space.

EMPTY The empty polyhedron, i.e., the empty set.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 131

11.16.3 Constructor & Destructor Documentation

11.16.3.1 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topologytopol, dimension_type
num_dimensions, Degenerate_Kindkind) [protected]

Builds a polyhedron having the specified properties.

Parameters:
topol The topology of the polyhedron;

num_dimensionsThe number of dimensions of the vector space enclosing the polyhedron;

kind Specifies whether the universe or the empty polyhedron has to be built.

11.16.3.2 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, const
Constraint_System &cs) [protected]

Builds a polyhedron from a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if the topology ofcs is incompatible withtopol .

11.16.3.3 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, Constraint_-
System &cs) [protected]

Builds a polyhedron recycling a system of constraints.

The polyhedron inherits the space dimension of the constraint system.

Parameters:
topol The topology of the polyhedron;

cs The system of constraints defining the polyhedron. It is not declaredconst because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if the topology ofcs is incompatible withtopol .

11.16.3.4 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topologytopol, const Generator_-
System &gs) [protected]

Builds a polyhedron from a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron.

Exceptions:
std::invalid_argument Thrown if if the topology ofgs is incompatible withtopol , or if the system

of generators is not empty but has no points.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 132

11.16.3.5 Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topology topol, Generator_-
System &gs) [protected]

Builds a polyhedron recycling a system of generators.

The polyhedron inherits the space dimension of the generator system.

Parameters:
topol The topology of the polyhedron;

gs The system of generators defining the polyhedron. It is not declaredconst because its data-
structures will be recycled to build the polyhedron.

Exceptions:
std::invalid_argument Thrown if if the topology ofgs is incompatible withtopol , or if the system

of generators is not empty but has no points.

11.16.3.6 template<typename Box> Parma_Polyhedra_Library::Polyhedron::Polyhedron (Topol-
ogy topol, const Box & box) [protected]

Builds a polyhedron out of a generic, interval-based bounding box.

Parameters:
topol The topology of the polyhedron;

box The bounding box representing the polyhedron to be built.

Exceptions:
std::invalid_argument Thrown if box has intervals that are incompatible withtopol .

The template class Box must provide the following methods.

dimension_type space_dimension() const

returns the dimension of the vector space enclosing the polyhedron represented by the bounding box.

bool is_empty() const

returnstrue if and only if the bounding box describes the empty set. Theis_empty() method will
always be called before the methods below. However, ifis_empty() returnstrue , none of the functions
below will be called.

bool get_lower_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I the interval corresponding to thek -th space dimension. IfI is not bounded from below, simply return
false . Otherwise, setclosed , n andd as follows:closed is set totrue if the the lower boundary of
I is closed and is set tofalse otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the greatest lower bound ofI. The fractionn/d is in canonical form if and
only if n andd have no common factors andd is positive,0/1 being the unique representation for zero.

bool get_upper_bound(dimension_type k, bool closed,
Coefficient& n, Coefficient& d) const

Let I the interval corresponding to thek -th space dimension. IfI is not bounded from above, simply return
false . Otherwise, setclosed , n andd as follows:closed is set totrue if the the upper boundary of
I is closed and is set tofalse otherwise;n andd are assigned the integersn andd such that the canonical
fractionn/d corresponds to the least upper bound ofI.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 133

11.16.4 Member Function Documentation

11.16.4.1 Poly_Con_RelationParma_Polyhedra_Library::Polyhedron::relation_with (const Con-
straint & c) const

Returns the relations holding between the polyhedron∗this and the constraintc .

Exceptions:
std::invalid_argument Thrown if ∗this and constraintc are dimension-incompatible.

11.16.4.2 Poly_Gen_RelationParma_Polyhedra_Library::Polyhedron::relation_with (const Gen-
erator & g) const

Returns the relations holding between the polyhedron∗this and the generatorg.

Exceptions:
std::invalid_argument Thrown if ∗this and generatorg are dimension-incompatible.

11.16.4.3 bool Parma_Polyhedra_Library::Polyhedron::is_disjoint_from (constPolyhedron & y)
const

Returnstrue if and only if ∗this andy are disjoint.

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible or dimension-incompatible.

11.16.4.4 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_above (constLinear_-
Expression& expr) const

Returnstrue if and only if expr is bounded from above in∗this .

Exceptions:
std::invalid_argument Thrown if expr and∗this are dimension-incompatible.

11.16.4.5 bool Parma_Polyhedra_Library::Polyhedron::bounds_from_below (const Linear_-
Expression& expr) const

Returnstrue if and only if expr is bounded from below in∗this .

Exceptions:
std::invalid_argument Thrown if expr and∗this are dimension-incompatible.

11.16.4.6 bool Parma_Polyhedra_Library::Polyhedron::maximize (constLinear_Expression &
expr, Coefficient& sup_n, Coefficient& sup_d, bool & maximum) const

Returnstrue if and only if ∗this is not empty andexpr is bounded from above in∗this , in which
case the supremum value is computed.

Parameters:
expr The linear expression to be maximized subject to∗this ;

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 134

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value.

Exceptions:
std::invalid_argument Thrown if expr and∗this are dimension-incompatible.

If ∗this is empty orexpr is not bounded from above,false is returned andsup_n , sup_d and
maximumare left untouched.

11.16.4.7 bool Parma_Polyhedra_Library::Polyhedron::maximize (constLinear_Expression &
expr, Coefficient & sup_n, Coefficient & sup_d, bool & maximum, constGenerator ∗∗constpppoint)
const

Returnstrue if and only if ∗this is not empty andexpr is bounded from above in∗this , in which
case the supremum value and a point whereexpr reaches it are computed.

Parameters:
expr The linear expression to be maximized subject to∗this ;

sup_n The numerator of the supremum value;

sup_d The denominator of the supremum value;

maximum true if and only if the supremum is also the maximum value;

pppoint When nonzero and maximization succeeds, a pointer to a point or closure point whereexpr
reaches its supremum value will be written at this address.

Exceptions:
std::invalid_argument Thrown if expr and∗this are dimension-incompatible.

If ∗this is empty orexpr is not bounded from above,false is returned andsup_n , sup_d , maximum
andpppoint are left untouched.

11.16.4.8 bool Parma_Polyhedra_Library::Polyhedron::minimize (const Linear_Expression &
expr, Coefficient& inf_n, Coefficient& inf_d, bool & minimum) const

Returnstrue if and only if ∗this is not empty andexpr is bounded from below in∗this , in which
case the infimum value is computed.

Parameters:
expr The linear expression to be minimized subject to∗this ;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value.

Exceptions:
std::invalid_argument Thrown if expr and∗this are dimension-incompatible.

If ∗this is empty orexpr is not bounded from below,false is returned andinf_n , inf_d and
minimum are left untouched.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 135

11.16.4.9 bool Parma_Polyhedra_Library::Polyhedron::minimize (const Linear_Expression &
expr, Coefficient & inf_n, Coefficient & inf_d, bool & minimum, constGenerator ∗∗const pppoint)
const

Returnstrue if and only if ∗this is not empty andexpr is bounded from below in∗this , in which
case the infimum value and a point whereexpr reaches it are computed.

Parameters:
expr The linear expression to be minimized subject to∗this ;

inf_n The numerator of the infimum value;

inf_d The denominator of the infimum value;

minimum true if and only if the infimum is also the minimum value;

pppoint When nonzero and minimization succeeds, a pointer to a point or closure point whereexpr
reaches its infimum value will be written at this address.

Exceptions:
std::invalid_argument Thrown if expr and∗this are dimension-incompatible.

If ∗this is empty orexpr is not bounded from below,false is returned andinf_n , inf_d , minimum
andpppoint are left untouched.

11.16.4.10 bool Parma_Polyhedra_Library::Polyhedron::contains (constPolyhedron& y) const

Returnstrue if and only if ∗this containsy .

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.11 bool Parma_Polyhedra_Library::Polyhedron::strictly_contains (constPolyhedron & y)
const

Returnstrue if and only if ∗this strictly containsy .

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.12 template<typename Box> void Parma_Polyhedra_Library::Polyhedron::shrink_-
bounding_box (Box & box, Complexity_Classcomplexity= ANY_COMPLEXITY) const

Uses∗this to shrink a generic, interval-based bounding box.

Parameters:
box The bounding box to be shrunk;

complexity The complexity class of the algorithm to be used.

The template class Box must provide the following methods, whose return value, if any, is simply ignored.

set_empty()

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 136

causes the box to become empty, i.e., to represent the empty set.

raise_lower_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to thek -th space dimension with[n/d,+∞) if closed is true ,
with (n/d,+∞) if closed is false .

lower_upper_bound(dimension_type k, bool closed,
Coefficient_traits::const_reference n,
Coefficient_traits::const_reference d)

intersects the interval corresponding to thek -th space dimension with(−∞, n/d] if closed is true ,
with (−∞, n/d) if closed is false .

The functionraise_lower_bound(k, closed, n, d) will be called at most once for each pos-
sible value fork and for all such calls the fractionn/d will be in canonical form, that is,n andd have
no common factors andd is positive,0/1 being the unique representation for zero. The same guarantee is
offered for the functionlower_upper_bound(k, closed, n, d) .

11.16.4.13 bool Parma_Polyhedra_Library::Polyhedron::OK (bool check_not_empty= false)
const

Checks if all the invariants are satisfied.

Returns:
true if and only if ∗this satisfies all the invariants and eithercheck_not_empty is false or
∗this is not empty.

Parameters:
check_not_emptytrue if and only if, in addition to checking the invariants,∗this must be checked

to be not empty.

The check is performed so as to intrude as little as possible. If the library has been compiled with run-
time assertions enabled, error messages are written onstd::cerr in case invariants are violated. This is
useful for the purpose of debugging the library.

11.16.4.14 void Parma_Polyhedra_Library::Polyhedron::add_constraint (constConstraint & c)

Adds a copy of constraintc to the system of constraints of∗this (without minimizing the result).

Exceptions:
std::invalid_argument Thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

11.16.4.15 bool Parma_Polyhedra_Library::Polyhedron::add_constraint_and_minimize (const
Constraint & c)

Adds a copy of constraintc to the system of constraints of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 137

Exceptions:
std::invalid_argument Thrown if ∗this and constraintc are topology-incompatible or dimension-

incompatible.

11.16.4.16 void Parma_Polyhedra_Library::Polyhedron::add_generator (constGenerator & g)

Adds a copy of generatorg to the system of generators of∗this (without minimizing the result).

Exceptions:
std::invalid_argument Thrown if ∗this and generatorg are topology-incompatible or dimension-

incompatible, or if∗this is an empty polyhedron andg is not a point.

11.16.4.17 bool Parma_Polyhedra_Library::Polyhedron::add_generator_and_minimize (const
Generator & g)

Adds a copy of generatorg to the system of generators of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if ∗this and generatorg are topology-incompatible or dimension-

incompatible, or if∗this is an empty polyhedron andg is not a point.

11.16.4.18 void Parma_Polyhedra_Library::Polyhedron::add_constraints (const Constraint_-
System &cs)

Adds a copy of the constraints incs to the system of constraints of∗this (without minimizing the result).

Parameters:
cs Contains the constraints that will be added to the system of constraints of∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

11.16.4.19 void Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints (Constraint_-
System &cs)

Adds the constraints incs to the system of constraints of∗this (without minimizing the result).

Parameters:
cs The constraint system that will be recycled, adding its constraints to the system of constraints of

∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

Warning:
The only assumption that can be made oncs upon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 138

11.16.4.20 bool Parma_Polyhedra_Library::Polyhedron::add_constraints_and_minimize (const
Constraint_System &cs)

Adds a copy of the constraints incs to the system of constraints of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs Contains the constraints that will be added to the system of constraints of∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

11.16.4.21 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_constraints_and_-
minimize (Constraint_System &cs)

Adds the constraints incs to the system of constraints of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
cs The constraint system that will be recycled, adding its constraints to the system of constraints of

∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and cs are topology-incompatible or dimension-

incompatible.

Warning:
The only assumption that can be made oncs upon successful or exceptional return is that it can be
safely destroyed.

11.16.4.22 void Parma_Polyhedra_Library::Polyhedron::add_generators (const Generator_-
System &gs)

Adds a copy of the generators ings to the system of generators of∗this (without minimizing the result).

Parameters:
gs Contains the generators that will be added to the system of generators of∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-

incompatible, or if∗this is empty and the system of generatorsgs is not empty, but has no
points.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 139

11.16.4.23 void Parma_Polyhedra_Library::Polyhedron::add_recycled_generators (Generator_-
System &gs)

Adds the generators ings to the system of generators of∗this (without minimizing the result).

Parameters:
gs The generator system that will be recycled, adding its generators to the system of generators of

∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-

incompatible, or if∗this is empty and the system of generatorsgs is not empty, but has no
points.

Warning:
The only assumption that can be made ongs upon successful or exceptional return is that it can be
safely destroyed.

11.16.4.24 bool Parma_Polyhedra_Library::Polyhedron::add_generators_and_minimize (const
Generator_System &gs)

Adds a copy of the generators ings to the system of generators of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs Contains the generators that will be added to the system of generators of∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-

incompatible, or if∗this is empty and the the system of generatorsgs is not empty, but has no
points.

11.16.4.25 bool Parma_Polyhedra_Library::Polyhedron::add_recycled_generators_and_minimize
(Generator_System &gs)

Adds the generators ings to the system of generators of∗this , minimizing the result.

Returns:
false if and only if the result is empty.

Parameters:
gs The generator system that will be recycled, adding its generators to the system of generators of

∗this .

Exceptions:
std::invalid_argument Thrown if ∗this and gs are topology-incompatible or dimension-

incompatible, or if∗this is empty and the the system of generatorsgs is not empty, but has no
points.

Warning:
The only assumption that can be made ongs upon successful or exceptional return is that it can be
safely destroyed.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 140

11.16.4.26 void Parma_Polyhedra_Library::Polyhedron::intersection_assign (constPolyhedron &
y)

Assigns to∗this the intersection of∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.27 bool Parma_Polyhedra_Library::Polyhedron::intersection_assign_and_minimize
(constPolyhedron& y)

Assigns to∗this the intersection of∗this andy , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.28 void Parma_Polyhedra_Library::Polyhedron::poly_hull_assign (constPolyhedron & y)

Assigns to∗this the poly-hull of∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.29 bool Parma_Polyhedra_Library::Polyhedron::poly_hull_assign_and_minimize (const
Polyhedron& y)

Assigns to∗this the poly-hull of∗this andy , minimizing the result.

Returns:
false if and only if the result is empty.

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.30 void Parma_Polyhedra_Library::Polyhedron::poly_difference_assign (constPolyhe-
dron & y)

Assigns to∗this thepoly-differenceof ∗this andy . The result is not guaranteed to be minimized.

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 141

11.16.4.31 void Parma_Polyhedra_Library::Polyhedron::affine_image (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_referencedenominator = Coefficient_-
one())

Assigns to∗this the affine imageof ∗this under the function mapping variablevar to the affine
expression specified byexpr anddenominator .

Parameters:
var The variable to which the affine expression is assigned;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifvar is not a space dimension of∗this .

11.16.4.32 void Parma_Polyhedra_Library::Polyhedron::affine_preimage (Variable var, const
Linear_Expression & expr, Coefficient_traits::const_referencedenominator = Coefficient_-
one())

Assigns to∗this the affine preimageof ∗this under the function mapping variablevar to the affine
expression specified byexpr anddenominator .

Parameters:
var The variable to which the affine expression is substituted;

expr The numerator of the affine expression;

denominator The denominator of the affine expression (optional argument with default value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifvar is not a space dimension of∗this .

11.16.4.33 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (Variable var,
const Relation_Symbolrelsym, constLinear_Expression& expr, Coefficient_traits::const_reference
denominator= Coefficient_one())

Assigns to∗this the image of∗this with respect to thegeneralized affine transfer functionvar′ ./
expr

denominator , where./ is the relation symbol encoded byrelsym .

Parameters:
var The left hand side variable of the generalized affine transfer function;

relsym The relation symbol;

expr The numerator of the right hand side affine expression;

denominator The denominator of the right hand side affine expression (optional argument with default
value 1.)

Exceptions:
std::invalid_argument Thrown if denominator is zero or if expr and ∗this are dimension-

incompatible or ifvar is not a space dimension of∗this or if ∗this is a C_Polyhedron
andrelsym is a strict relation symbol.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 142

11.16.4.34 void Parma_Polyhedra_Library::Polyhedron::generalized_affine_image (const
Linear_Expression& lhs, const Relation_Symbolrelsym, constLinear_Expression& rhs)

Assigns to∗this the image of∗this with respect to thegeneralized affine transfer functionlhs′ ./ rhs,
where./ is the relation symbol encoded byrelsym .

Parameters:
lhs The left hand side affine expression;

relsym The relation symbol;

rhs The right hand side affine expression.

Exceptions:
std::invalid_argument Thrown if ∗this is dimension-incompatible withlhs or rhs or if ∗this is

aC_Polyhedronandrelsym is a strict relation symbol.

11.16.4.35 void Parma_Polyhedra_Library::Polyhedron::time_elapse_assign (constPolyhedron &
y)

Assigns to∗this the result of computing thetime-elapsebetween∗this andy .

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.36 void Parma_Polyhedra_Library::Polyhedron::BHRZ03_widening_assign (constPoly-
hedron & y, unsigned∗ tp = 0)

Assigns to∗this the result of computing theBHRZ03-wideningbetween∗this andy .

Parameters:
y A polyhedron thatmustbe contained in∗this ;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.37 void Parma_Polyhedra_Library::Polyhedron::limited_BHRZ03_extrapolation_assign
(constPolyhedron& y, const Constraint_System &cs, unsigned∗ tp = 0)

Improves the result of theBHRZ03-wideningcomputation by also enforcing those constraints incs that
are satisfied by all the points of∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid_argument Thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 143

11.16.4.38 void Parma_Polyhedra_Library::Polyhedron::bounded_BHRZ03_extrapolation_-
assign (constPolyhedron& y, const Constraint_System &cs, unsigned∗ tp = 0)

Improves the result of theBHRZ03-wideningcomputation by also enforcing those constraints incs that
are satisfied by all the points of∗this , plus all the constraints of the form±x ≤ r and±x < r, with
r ∈ Q, that are satisfied by all the points of∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid_argument Thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

11.16.4.39 void Parma_Polyhedra_Library::Polyhedron::H79_widening_assign (constPolyhedron
& y, unsigned∗ tp = 0)

Assigns to∗this the result of computing theH79-wideningbetween∗this andy .

Parameters:
y A polyhedron thatmustbe contained in∗this ;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid_argument Thrown if ∗this and y are topology-incompatible or dimension-

incompatible.

11.16.4.40 void Parma_Polyhedra_Library::Polyhedron::limited_H79_extrapolation_assign
(constPolyhedron& y, const Constraint_System &cs, unsigned∗ tp = 0)

Improves the result of theH79-wideningcomputation by also enforcing those constraints incs that are
satisfied by all the points of∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid_argument Thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 144

11.16.4.41 void Parma_Polyhedra_Library::Polyhedron::bounded_H79_extrapolation_assign
(constPolyhedron& y, const Constraint_System &cs, unsigned∗ tp = 0)

Improves the result of theH79-wideningcomputation by also enforcing those constraints incs that are
satisfied by all the points of∗this , plus all the constraints of the form±x ≤ r and±x < r, with r ∈ Q,
that are satisfied by all the points of∗this .

Parameters:
y A polyhedron thatmustbe contained in∗this ;

cs The system of constraints used to improve the widened polyhedron;

tp An optional pointer to an unsigned variable storing the number of available tokens (to be used when
applying thewidening with tokensdelay technique).

Exceptions:
std::invalid_argument Thrown if ∗this , y and cs are topology-incompatible or dimension-

incompatible.

11.16.4.42 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_embed
(dimension_typem)

Addsmnew space dimensions and embeds the old polyhedron in the new vector space.

Parameters:
m The number of dimensions to add.

Exceptions:
std::length_error Thrown if addingmnew space dimensions would cause the vector space to exceed

dimensionmax_space_dimension() .

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are not
constrained. For instance, when starting from the polyhedronP ⊆ R2 and adding a third space dimension,
the result will be the polyhedron {

(x, y, z)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

11.16.4.43 void Parma_Polyhedra_Library::Polyhedron::add_space_dimensions_and_project
(dimension_typem)

Addsmnew space dimensions to the polyhedron and does not embed it in the new vector space.

Parameters:
m The number of space dimensions to add.

Exceptions:
std::length_error Thrown if addingmnew space dimensions would cause the vector space to exceed

dimensionmax_space_dimension() .

The new space dimensions will be those having the highest indexes in the new polyhedron, which is char-
acterized by a system of constraints in which the variables running through the new dimensions are all

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 145

constrained to be equal to 0. For instance, when starting from the polyhedronP ⊆ R2 and adding a third
space dimension, the result will be the polyhedron{

(x, y, 0)T ∈ R3
∣∣ (x, y)T ∈ P

}
.

11.16.4.44 void Parma_Polyhedra_Library::Polyhedron::concatenate_assign (constPolyhedron &
y)

Assigns to∗this theconcatenationof ∗this andy , taken in this order.

Exceptions:
std::invalid_argument Thrown if ∗this andy are topology-incompatible.

std::length_error Thrown if the concatenation would cause the vector space to exceed dimension
max_space_dimension() .

11.16.4.45 void Parma_Polyhedra_Library::Polyhedron::remove_space_dimensions (const
Variables_Set& to_be_removed)

Removes all the specified dimensions from the vector space.

Parameters:
to_be_removedThe set ofVariableobjects corresponding to the space dimensions to be removed.

Exceptions:
std::invalid_argument Thrown if ∗this is dimension-incompatible with one of theVariableobjects

contained into_be_removed .

11.16.4.46 void Parma_Polyhedra_Library::Polyhedron::remove_higher_space_dimensions
(dimension_typenew_dimension)

Removes the higher dimensions of the vector space so that the resulting space will have dimensionnew_-
dimension .

Exceptions:
std::invalid_argument Thrown if new_dimensions is greater than the space dimension of∗this .

11.16.4.47 template<typename Partial_Function> void Parma_Polyhedra_-
Library::Polyhedron::map_space_dimensions (const Partial_Function &pfunc)

Remaps the dimensions of the vector space according to apartial function.

Parameters:
pfunc The partial function specifying the destiny of each space dimension.

The template class Partial_Function must provide the following methods.

bool has_empty_codomain() const

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.16 Parma_Polyhedra_Library::Polyhedron Class Reference 146

returnstrue if and only if the represented partial function has an empty codomain (i.e., it is always
undefined). Thehas_empty_codomain() method will always be called before the methods below.
However, ifhas_empty_codomain() returnstrue , none of the functions below will be called.

dimension_type max_in_codomain() const

returns the maximum value that belongs to the codomain of the partial function. Themax_in_-
codomain() method is called at most once.

bool maps(dimension_type i, dimension_type& j) const

Let f be the represented function andk be the value ofi . If f is defined ink, thenf(k) is assigned to
j andtrue is returned. Iff is undefined ink, thenfalse is returned. This method is called at mostn
times, wheren is the dimension of the vector space enclosing the polyhedron.

The result is undefined ifpfunc does not encode a partial function with the properties described in the
specification of the mapping operator.

11.16.4.48 void Parma_Polyhedra_Library::Polyhedron::expand_space_dimension (Variable var,
dimension_typem)

Createsmcopies of the space dimension corresponding tovar .

Parameters:
var The variable corresponding to the space dimension to be replicated;

m The number of replica to be created.

Exceptions:
std::invalid_argument Thrown if var does not correspond to a dimension of the vector space.

std::length_error Thrown if addingmnew space dimensions would cause the vector space to exceed
dimensionmax_space_dimension() .

If ∗this has space dimensionn, with n > 0, andvar has space dimensionk ≤ n, then thek-th space
dimension isexpandedto mnew space dimensionsn, n + 1, . . . , n + m− 1.

11.16.4.49 void Parma_Polyhedra_Library::Polyhedron::fold_space_dimensions (const
Variables_Set& to_be_folded, Variable var)

Folds the space dimensions into_be_folded into var .

Parameters:
to_be_foldedThe set ofVariableobjects corresponding to the space dimensions to be folded;

var The variable corresponding to the space dimension that is the destination of the folding operation.

Exceptions:
std::invalid_argument Thrown if ∗this is dimension-incompatible withvar or with one of the

Variableobjects contained into_be_folded . Also thrown if var is contained into_be_-
folded .

If ∗this has space dimensionn, with n > 0, var has space dimensionk ≤ n, to_be_folded is a set
of variables whose maximum space dimension is also less than or equal ton, andvar is not a member of
to_be_folded , then the space dimensions corresponding to variables into_be_folded arefolded
into thek-th space dimension.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Powerset< CS> Class Template Reference 147

11.16.4.50 void Parma_Polyhedra_Library::Polyhedron::swap (Polyhedron& y)

Swaps∗this with polyhedrony . (∗this andy can be dimension-incompatible.).

Exceptions:
std::invalid_argument Thrown if x andy are topology-incompatible.

11.16.5 Friends And Related Function Documentation

11.16.5.1 std::ostream & operator<< (std::ostream & s, constPolyhedron& ph) [related]

Output operator.

Writes a textual representation ofph on s: false is written if ph is an empty polyhedron;true is
written if ph is a universe polyhedron; a minimized system of constraints definingph is written otherwise,
all constraints in one row separated by ", ".

11.16.5.2 bool operator== (constPolyhedron& x, constPolyhedron& y) [related]

Returnstrue if and only if x andy are the same polyhedron.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
false is returned.

11.16.5.3 bool operator!= (constPolyhedron& x, constPolyhedron& y) [related]

Returnstrue if and only if x andy are different polyhedra.

Note thatx andy may be topology- and/or dimension-incompatible polyhedra: in those cases, the value
true is returned.

11.17 Parma_Polyhedra_Library::Powerset< CS> Class Template Reference

The powerset construction on constraint systems.

Public Member Functions

• const_iteratorbegin() const

A const_iterator pointing to the first element in the sequence.

• const_iteratorend() const

The past-the-end const_iterator.

• void omega_reduce() const

Erase from the sequence of disjuncts all the non-maximal elements.

Constructors and Destructor

• Powerset()
• Powerset(constPowerset&y)

Copy constructor.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Powerset< CS> Class Template Reference 148

• Powerset(const CS &d)
If d is not bottom, builds a powerset containing onlyd. Builds the empty powerset otherwise.

• ∼Powerset()
Destructor.

Member Functions that Do Not Modify the Powerset Element

• booldefinitely_entails(constPowerset&y) const
Returnstrue if ∗this definitely entailsy . Returnsfalse if ∗this may not entaily (i.e., if ∗this
does not entaily or if entailment could not be decided).

• bool is_top() const
Returnstrue if and only if∗this is the top element of the powerset constraint system (i.e., it represents
the universe).

• bool is_bottom() const
Returnstrue if and only if ∗this is the bottom element of the powerset constraint system (i.e., it
represents the empty set).

• memory_size_typetotal_memory_in_bytes() const
Returns a lower bound to the total size in bytes of the memory occupied by∗this .

• memory_size_typeexternal_memory_in_bytes() const
Returns a lower bound to the size in bytes of the memory managed by∗this .

• boolOK (bool disallow_bottom=false) const
Checks if all the invariants are satisfied.

Member Functions that May Modify the Powerset Element

• Powerset& operator=(constPowerset&y)
The assignment operator.

• void swap(Powerset&y)
Swaps∗this with y .

• void add_disjunct(const CS &d)
Adds to∗this the disjunctd.

• void least_upper_bound_assign(constPowerset&y)
Assigns to∗this the least upper bound of∗this andy .

• void upper_bound_assign(constPowerset&y)
Assigns to∗this an upper bound of∗this andy .

• void meet_assign(constPowerset&y)
Assigns to∗this the meet of∗this andy .

• void collapse()
If ∗this is not empty (i.e., it is not the bottom element), it is reduced to a singleton obtained by comput-
ing an upper-bound of all the disjuncts.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Powerset< CS> Class Template Reference 149

Protected Types

• typedef std::list< CS> Sequence

A powerset is implemented as a sequence of elements.

Protected Member Functions

• bool is_omega_reduced() const

Returnstrue if and only if∗this does not contain non-maximal elements.

• void collapse(unsigned max_disjuncts)

Upon return,∗this will contain max_disjuncts elements at most, by replacing all the exceeding
disjuncts, if any, with their upper-bound.

• template<typename Binary_Operator_Assign> void pairwise_apply_assign(const Powerset&y,
Binary_Operator_Assign op_assign)

Assigns to∗this the result of applyingop_assign pairwise to the elements in∗this andy .

Static Protected Member Functions

• void add_non_bottom_disjunct(Sequence&s, const CS &d, iterator &first, iterator last)

Adds to∗this the disjunctd, assumingd is not the bottom element and ensuring partial omega-reduction.

• void add_non_bottom_disjunct(Sequence&s, const CS &d)

Adds to∗this the disjunctd, assumingd is not the bottom element.

Protected Attributes

• Sequencesequence

The sequence container holding powerset’s elements.

• bool reduced

If true , ∗this is omega-reduced.

Related Functions

(Note that these are not member functions.)

• booloperator==(constPowerset< CS> &x, constPowerset< CS> &y)

Returnstrue if and only ifx andy are equivalent.

• booloperator!=(constPowerset< CS> &x, constPowerset< CS> &y)

Returnstrue if and only ifx andy are not equivalent.

• std::ostream &operator<< (std::ostream &s, constPowerset< CS> &x)

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.17 Parma_Polyhedra_Library::Powerset< CS> Class Template Reference 150

Output operator.

• voidswap(Parma_Polyhedra_Library::Powerset< CS> &x, Parma_Polyhedra_Library::Powerset<
CS> &y)

Specializesstd::swap .

11.17.1 Detailed Description

template<typename CS> class Parma_Polyhedra_Library::Powerset< CS>

The powerset construction on constraint systems.

This class offers a generic implementation ofpowerset constraint systemsas defined in[Bag98]. See also
the description in SectionThe Powerset Construction.

11.17.2 Member Typedef Documentation

11.17.2.1 template<typename CS> typedef std::list<CS> Parma_Polyhedra_Library::Powerset<
CS>::Sequence [protected]

A powerset is implemented as a sequence of elements.

The particular sequence employed must support efficient deletion in any position and efficient back inser-
tion.

11.17.3 Constructor & Destructor Documentation

11.17.3.1 template<typename CS> Parma_Polyhedra_Library::Powerset< CS>::Powerset()

Default constructor: builds the bottom of the powerset constraint system (i.e., the empty powerset).

11.17.4 Member Function Documentation

11.17.4.1 template<typename CS> void Parma_Polyhedra_Library::Powerset< CS >::upper_-
bound_assign (constPowerset< CS> & y)

Assigns to∗this an upper bound of∗this andy .

The result will be the least upper bound of∗this andy .

11.17.4.2 template<typename CS> void Parma_Polyhedra_Library::Powerset< CS >::add_-
non_bottom_disjunct (Sequence& s, const CS & d, iterator & first, iterator last) [static,
protected]

Adds to∗this the disjunctd, assumingd is not the bottom element and ensuring partial omega-reduction.

If d is not the bottom element and is not redundant with respect to the elements in positions between
first andlast , adds to∗this the disjunctd, erasing all the elements in the above mentioned positions
that are made omega-redundant by the addition ofd.

11.17.4.3 template<typename CS> template<typename Binary_Operator_Assign> void Parma_-
Polyhedra_Library::Powerset< CS>::pairwise_apply_assign (constPowerset< CS> & y, Binary_-
Operator_Assignop_assign) [protected]

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.18 Parma_Polyhedra_Library::Variable Class Reference 151

Assigns to∗this the result of applyingop_assign pairwise to the elements in∗this andy .

The elements of the powerset result are obtained by applyingop_assign to each pair of elements whose
components are drawn from∗this andy , respectively.

11.18 Parma_Polyhedra_Library::Variable Class Reference

A dimension of the vector space.

Public Types

• typedef voidoutput_function_type(std::ostream &s, constVariable&v)

Type of output functions.

Public Member Functions

• Variable(dimension_type i)

Builds the variable corresponding to the Cartesian axis of indexi .

• dimension_typeid () const

Returns the index of the Cartesian axis associated to the variable.

• dimension_typespace_dimension() const

Returns the dimension of the vector space enclosing∗this .

• memory_size_typetotal_memory_in_bytes() const

Returns the total size in bytes of the memory occupied by∗this .

• memory_size_typeexternal_memory_in_bytes() const

Returns the size in bytes of the memory managed by∗this .

• boolOK () const

Checks if all the invariants are satisfied.

Static Public Member Functions

• dimension_typemax_space_dimension()

Returns the maximum space dimension aVariablecan handle.

• void set_output_function(output_function_type∗p)

Sets the output function to be used for printingVariableobjects.

• output_function_type∗ get_output_function()

Returns the pointer to the current output function.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.18 Parma_Polyhedra_Library::Variable Class Reference 152

Related Functions

(Note that these are not member functions.)

• std::ostream &operator<< (std::ostream &s, constVariable&v)

Output operator.

• bool less(Variablev, Variablew)

Defines a total ordering on variables.

Classes

• structCompare

Binary predicate defining the total ordering on variables.

11.18.1 Detailed Description

A dimension of the vector space.

An object of the classVariable represents a dimension of the space, that is one of the Cartesian axes.
Variables are used as base blocks in order to build more complex linear expressions. Each variable is
identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first
axis has index 0). The space dimension of a variable is the dimension of the vector space made by all the
Cartesian axes having an index less than or equal to that of the considered variable; thus, if a variable has
indexi, its space dimension isi + 1.

Note that the “meaning” of an object of the classVariable is completely specified by the integer index
provided to its constructor: be careful not to be mislead by C++ language variable names. For instance,
in the following example the linear expressionse1 ande2 are equivalent, since the two variablesx andz
denote the same Cartesian axis.

Variable x(0);
Variable y(1);
Variable z(0);
Linear_Expression e1 = x + y;
Linear_Expression e2 = y + z;

11.18.2 Constructor & Destructor Documentation

11.18.2.1 Parma_Polyhedra_Library::Variable::Variable (dimension_typei) [explicit]

Builds the variable corresponding to the Cartesian axis of indexi .

Exceptions:
std::length_error Thrown if thei+1 exceedsVariable::max_space_dimension() .

11.18.3 Member Function Documentation

11.18.3.1 dimension_type Parma_Polyhedra_Library::Variable::space_dimension () const

Returns the dimension of the vector space enclosing∗this .

The returned value isid() +1.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

11.19 Parma_Polyhedra_Library::Variable::Compare Struct Reference 153

11.19 Parma_Polyhedra_Library::Variable::Compare Struct Reference

Binary predicate defining the total ordering on variables.

Public Member Functions

• booloperator()(Variablex, Variabley) const

Returnstrue if and only ifx comes beforey .

11.19.1 Detailed Description

Binary predicate defining the total ordering on variables.

12 PPL Page Documentation

12.1 GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–
to make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.1 GNU General Public License 154

its recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only
if its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.1 GNU General Public License 155

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.1 GNU General Public License 156

patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.1 GNU General Public License 157

BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands‘show w’ and‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than‘show w’ and
‘show c’ ; they could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright
disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon , 1 April 1989
Ty Coon, President of Vice

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 158

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

12.2 GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 159

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements",
or "History".) To "Preserve the Title" of such a section when you modify the Document means that it
remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 160

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added
material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 161

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and
any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 162

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting
from the compilation is not used to limit the legal rights of the compilation’s users beyond what the indi-
vidual works permit. When the Document is included in an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. Seehttp://www.gnu.org/copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents To use this License in a document you have written,
include a copy of the License in the document and put the following copyright and license notices just after
the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.gnu.org/copyleft/
http://www.cs.unipr.it/ppl/

12.2 GNU Free Documentation License 163

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

Index
/home/roberto/ppl-0.7/ppl-0.7/interfaces/ Direc-

tory Reference,70
/home/roberto/ppl-0.7/ppl-0.7/interfaces/C/ Di-

rectory Reference,69
/home/roberto/ppl-0.7/ppl-0.7/src/ Directory

Reference,70

add_constraint
Parma_Polyhedra_Library::Determinate,

91
Parma_Polyhedra_Library::Polyhedra_-

Powerset,117
Parma_Polyhedra_Library::Polyhedron,

136
add_constraint_and_minimize

Parma_Polyhedra_Library::Polyhedra_-
Powerset,117

Parma_Polyhedra_Library::Polyhedron,
136

add_constraints
Parma_Polyhedra_Library::Determinate,

92
Parma_Polyhedra_Library::Polyhedra_-

Powerset,118
Parma_Polyhedra_Library::Polyhedron,

137
add_constraints_and_minimize

Parma_Polyhedra_Library::Polyhedra_-
Powerset,118

Parma_Polyhedra_Library::Polyhedron,
137

add_generator
Parma_Polyhedra_Library::Polyhedron,

137
add_generator_and_minimize

Parma_Polyhedra_Library::Polyhedron,
137

add_generators
Parma_Polyhedra_Library::Polyhedron,

138
add_generators_and_minimize

Parma_Polyhedra_Library::Polyhedron,
139

add_non_bottom_disjunct
Parma_Polyhedra_Library::Powerset,150

add_recycled_constraints
Parma_Polyhedra_Library::Polyhedron,

137
add_recycled_constraints_and_minimize

Parma_Polyhedra_Library::Polyhedron,
138

add_recycled_generators
Parma_Polyhedra_Library::Polyhedron,

138
add_recycled_generators_and_minimize

Parma_Polyhedra_Library::Polyhedron,
139

add_space_dimensions_and_embed
Parma_Polyhedra_Library::Polyhedron,

144
add_space_dimensions_and_project

Parma_Polyhedra_Library::Polyhedron,
144

affine_image
Parma_Polyhedra_Library::Polyhedron,

140
affine_preimage

Parma_Polyhedra_Library::Polyhedron,
141

banner
Parma_Polyhedra_Library,74

BGP99_extrapolation_assign
Parma_Polyhedra_Library::Polyhedra_-

Powerset,118
BHRZ03_widening_assign

Parma_Polyhedra_Library::Polyhedron,
142

BHZ03_widening_assign
Parma_Polyhedra_Library::Polyhedra_-

Powerset,119
bounded_BHRZ03_extrapolation_assign

Parma_Polyhedra_Library::Polyhedron,
142

bounded_H79_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron,

143
bounds_from_above

Parma_Polyhedra_Library::Polyhedron,
133

bounds_from_below
Parma_Polyhedra_Library::Polyhedron,

133

C Language Interface,22
C_Polyhedron

Parma_Polyhedra_Library::C_Polyhedron,
78, 79

CLOSURE_POINT
Parma_Polyhedra_Library::Generator,97

closure_point
Parma_Polyhedra_Library::Generator,98

INDEX 165

Coefficient
Parma_Polyhedra_Library,73

coefficient
Parma_Polyhedra_Library::Constraint,88
Parma_Polyhedra_Library::Generator,98

compare
Parma_Polyhedra_Library::BHRZ03_-

Certificate,76
Parma_Polyhedra_Library::H79_-

Certificate,99
concatenate_assign

Parma_Polyhedra_Library::Polyhedra_-
Powerset,120

Parma_Polyhedra_Library::Polyhedron,
145

contains
Parma_Polyhedra_Library::Polyhedron,

135

Degenerate_Kind
Parma_Polyhedra_Library::Polyhedron,

130
Determinate

Parma_Polyhedra_Library::Determinate,
91

divisor
Parma_Polyhedra_Library::Generator,98

EMPTY
Parma_Polyhedra_Library::Polyhedron,

130
EQUALITY

Parma_Polyhedra_Library::Constraint,88
expand_space_dimension

Parma_Polyhedra_Library::Polyhedron,
146

fold_space_dimensions
Parma_Polyhedra_Library::Polyhedron,

146

generalized_affine_image
Parma_Polyhedra_Library::Polyhedron,

141
geometrically_covers

Parma_Polyhedra_Library::Polyhedra_-
Powerset,117

geometrically_equals
Parma_Polyhedra_Library::Polyhedra_-

Powerset,117
GMP_Integer

Parma_Polyhedra_Library,73

H79_widening_assign

Parma_Polyhedra_Library::Polyhedron,
143

intersection_assign
Parma_Polyhedra_Library::Polyhedra_-

Powerset,119
Parma_Polyhedra_Library::Polyhedron,

139
intersection_assign_and_minimize

Parma_Polyhedra_Library::Polyhedron,
140

is_disjoint_from
Parma_Polyhedra_Library::Polyhedron,

133

Library Defines,22
limited_BHRZ03_extrapolation_assign

Parma_Polyhedra_Library::Polyhedron,
142

limited_H79_extrapolation_assign
Parma_Polyhedra_Library::Polyhedron,

143
LINE

Parma_Polyhedra_Library::Generator,97
line

Parma_Polyhedra_Library::Generator,97
Linear_Expression

Parma_Polyhedra_Library::Linear_-
Expression,103

linear_partition
Parma_Polyhedra_Library::Polyhedra_-

Powerset,121

map_space_dimensions
Parma_Polyhedra_Library::Determinate,

92
Parma_Polyhedra_Library::Polyhedra_-

Powerset,120
Parma_Polyhedra_Library::Polyhedron,

145
maximize

Parma_Polyhedra_Library::Polyhedron,
133, 134

minimize
Parma_Polyhedra_Library::Polyhedron,

134

NNC_Polyhedron
Parma_Polyhedra_Library::NNC_-

Polyhedron,110, 111
NONSTRICT_INEQUALITY

Parma_Polyhedra_Library::Constraint,88

OK

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 166

Parma_Polyhedra_Library::Polyhedron,
136

operator!=
Parma_Polyhedra_Library::Determinate,

93
Parma_Polyhedra_Library::Polyhedron,

147
operator+=

Parma_Polyhedra_Library::Linear_-
Expression,104

operator-=
Parma_Polyhedra_Library::Linear_-

Expression,104
operator<<

Parma_Polyhedra_Library::Polyhedron,
147

operator==
Parma_Polyhedra_Library::Determinate,

93
Parma_Polyhedra_Library::Polyhedron,

147

pairwise_apply_assign
Parma_Polyhedra_Library::Powerset,150

pairwise_reduce
Parma_Polyhedra_Library::Polyhedra_-

Powerset,118
Parma_Polyhedra_Library,70

banner,74
Coefficient,73
GMP_Integer,73

Parma_Polyhedra_Library::BHRZ03_-
Certificate,75

compare,76
Parma_Polyhedra_Library::BHRZ03_-

Certificate::Compare,76
Parma_Polyhedra_Library::C_Polyhedron,77

C_Polyhedron,78, 79
Parma_Polyhedra_Library::Checked_Number,

79
Parma_Polyhedra_Library::Constraint

EQUALITY, 88
NONSTRICT_INEQUALITY,88
STRICT_INEQUALITY, 88

Parma_Polyhedra_Library::Constraint,84
coefficient,88
Type,88

Parma_Polyhedra_Library::Determinate,89
add_constraint,91
add_constraints,92
Determinate,91
map_space_dimensions,92
operator!=,93
operator==,93

remove_higher_space_dimensions,92
remove_space_dimensions,92

Parma_Polyhedra_Library::Generator
CLOSURE_POINT,97
LINE, 97
POINT,97
RAY, 97

Parma_Polyhedra_Library::Generator,93
closure_point,98
coefficient,98
divisor,98
line, 97
point,98
ray,97
Type,97

Parma_Polyhedra_Library::H79_Certificate,98
compare,99

Parma_Polyhedra_Library::H79_-
Certificate::Compare,100

Parma_Polyhedra_Library::IO_Operators,74
Parma_Polyhedra_Library::Linear_Expression,

100
Linear_Expression,103
operator+=,104
operator-=,104

Parma_Polyhedra_Library::Native_Integer,104
Parma_Polyhedra_Library::NNC_Polyhedron,

109
NNC_Polyhedron,110, 111

Parma_Polyhedra_Library::Poly_Con_Relation,
111

Parma_Polyhedra_Library::Poly_Gen_Relation,
112

Parma_Polyhedra_Library::Polyhedra_-
Powerset,113

add_constraint,117
add_constraint_and_minimize,117
add_constraints,118
add_constraints_and_minimize,118
BGP99_extrapolation_assign,118
BHZ03_widening_assign,119
concatenate_assign,120
geometrically_covers,117
geometrically_equals,117
intersection_assign,119
linear_partition,121
map_space_dimensions,120
pairwise_reduce,118
poly_difference_assign,119
Polyhedra_Powerset,116, 117
remove_higher_space_dimensions,120
remove_space_dimensions,120
time_elapse_assign,120
widen_fun_ref,121

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 167

Parma_Polyhedra_Library::Polyhedron
EMPTY, 130
UNIVERSE,130

Parma_Polyhedra_Library::Polyhedron,121
add_constraint,136
add_constraint_and_minimize,136
add_constraints,137
add_constraints_and_minimize,137
add_generator,137
add_generator_and_minimize,137
add_generators,138
add_generators_and_minimize,139
add_recycled_constraints,137
add_recycled_constraints_and_minimize,

138
add_recycled_generators,138
add_recycled_generators_and_minimize,

139
add_space_dimensions_and_embed,144
add_space_dimensions_and_project,144
affine_image,140
affine_preimage,141
BHRZ03_widening_assign,142
bounded_BHRZ03_extrapolation_assign,

142
bounded_H79_extrapolation_assign,143
bounds_from_above,133
bounds_from_below,133
concatenate_assign,145
contains,135
Degenerate_Kind,130
expand_space_dimension,146
fold_space_dimensions,146
generalized_affine_image,141
H79_widening_assign,143
intersection_assign,139
intersection_assign_and_minimize,140
is_disjoint_from,133
limited_BHRZ03_extrapolation_assign,

142
limited_H79_extrapolation_assign,143
map_space_dimensions,145
maximize,133, 134
minimize,134
OK, 136
operator!=,147
operator<<, 147
operator==,147
poly_difference_assign,140
poly_hull_assign,140
poly_hull_assign_and_minimize,140
Polyhedron,131, 132
relation_with,133
remove_higher_space_dimensions,145

remove_space_dimensions,145
shrink_bounding_box,135
strictly_contains,135
swap,146
time_elapse_assign,142

Parma_Polyhedra_Library::Powerset,147
add_non_bottom_disjunct,150
pairwise_apply_assign,150
Powerset,150
Sequence,150
upper_bound_assign,150

Parma_Polyhedra_Library::Variable,151
space_dimension,152
Variable,152

Parma_Polyhedra_Library::Variable::Compare,
153

POINT
Parma_Polyhedra_Library::Generator,97

point
Parma_Polyhedra_Library::Generator,98

poly_difference_assign
Parma_Polyhedra_Library::Polyhedra_-

Powerset,119
Parma_Polyhedra_Library::Polyhedron,

140
poly_hull_assign

Parma_Polyhedra_Library::Polyhedron,
140

poly_hull_assign_and_minimize
Parma_Polyhedra_Library::Polyhedron,

140
Polyhedra_Powerset

Parma_Polyhedra_Library::Polyhedra_-
Powerset,116, 117

Polyhedron
Parma_Polyhedra_Library::Polyhedron,

131, 132
Powerset

Parma_Polyhedra_Library::Powerset,150
PPL_ARITHMETIC_OVERFLOW

PPL_C_interface,43
ppl_banner

PPL_C_interface,44
PPL_C_interface

PPL_ARITHMETIC_OVERFLOW,43
PPL_CONSTRAINT_TYPE_EQUAL,43
PPL_CONSTRAINT_TYPE_GREATER_-

THAN, 43
PPL_CONSTRAINT_TYPE_GREATER_-

THAN_OR_EQUAL,43
PPL_CONSTRAINT_TYPE_LESS_-

THAN, 43
PPL_CONSTRAINT_TYPE_LESS_-

THAN_OR_EQUAL,43

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 168

PPL_ERROR_INTERNAL_ERROR,43
PPL_ERROR_INVALID_ARGUMENT,

43
PPL_ERROR_LENGTH_ERROR,43
PPL_ERROR_OUT_OF_MEMORY,43
PPL_ERROR_UNEXPECTED_ERROR,

43
PPL_ERROR_UNKNOWN_-

STANDARD_EXCEPTION,43
PPL_GENERATOR_TYPE_CLOSURE_-

POINT,43
PPL_GENERATOR_TYPE_LINE,43
PPL_GENERATOR_TYPE_POINT,43
PPL_GENERATOR_TYPE_RAY,43
PPL_STDIO_ERROR,43

PPL_C_interface
ppl_banner,44
ppl_enum_Constraint_Type,43
ppl_enum_error_code,43
ppl_enum_Generator_Type,43
ppl_finalize,44
ppl_initialize,44
ppl_io_variable_output_function_type,42
ppl_new_C_Polyhedron_from_bounding_-

box,46
ppl_new_C_Polyhedron_from_-

Constraint_System,44
ppl_new_C_Polyhedron_from_Generator_-

System,45
ppl_new_C_Polyhedron_recycle_-

Constraint_System,44
ppl_new_C_Polyhedron_recycle_-

Generator_System,45
ppl_new_NNC_Polyhedron_from_-

bounding_box,46
ppl_new_NNC_Polyhedron_from_-

Constraint_System,44
ppl_new_NNC_Polyhedron_from_-

Generator_System,45
ppl_new_NNC_Polyhedron_recycle_-

Constraint_System,45
ppl_new_NNC_Polyhedron_recycle_-

Generator_System,45
ppl_Polyhedron_add_recycled_constraints,

49
ppl_Polyhedron_add_recycled_-

constraints_and_minimize,49
ppl_Polyhedron_add_recycled_generators,

49
ppl_Polyhedron_add_recycled_-

generators_and_minimize,49
ppl_Polyhedron_affine_image,49
ppl_Polyhedron_affine_preimage,50
ppl_Polyhedron_equals_Polyhedron,49

ppl_Polyhedron_generalized_affine_image,
50

ppl_Polyhedron_generalized_affine_-
image_lhs_rhs,50

ppl_Polyhedron_map_space_dimensions,
50

ppl_Polyhedron_maximize,48
ppl_Polyhedron_minimize,48
ppl_Polyhedron_relation_with_Constraint,

47
ppl_Polyhedron_relation_with_Generator,

47
ppl_Polyhedron_shrink_bounding_box,47
ppl_set_error_handler,44
PPL_VERSION,42

PPL_CONSTRAINT_TYPE_EQUAL
PPL_C_interface,43

PPL_CONSTRAINT_TYPE_GREATER_-
THAN

PPL_C_interface,43
PPL_CONSTRAINT_TYPE_GREATER_-

THAN_OR_EQUAL
PPL_C_interface,43

PPL_CONSTRAINT_TYPE_LESS_THAN
PPL_C_interface,43

PPL_CONSTRAINT_TYPE_LESS_THAN_-
OR_EQUAL

PPL_C_interface,43
PPL_defines

PPL_VERSION,22
ppl_enum_Constraint_Type

PPL_C_interface,43
ppl_enum_error_code

PPL_C_interface,43
ppl_enum_Generator_Type

PPL_C_interface,43
PPL_ERROR_INTERNAL_ERROR

PPL_C_interface,43
PPL_ERROR_INVALID_ARGUMENT

PPL_C_interface,43
PPL_ERROR_LENGTH_ERROR

PPL_C_interface,43
PPL_ERROR_OUT_OF_MEMORY

PPL_C_interface,43
PPL_ERROR_UNEXPECTED_ERROR

PPL_C_interface,43
PPL_ERROR_UNKNOWN_STANDARD_-

EXCEPTION
PPL_C_interface,43

ppl_finalize
PPL_C_interface,44

PPL_GENERATOR_TYPE_CLOSURE_-
POINT

PPL_C_interface,43

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 169

PPL_GENERATOR_TYPE_LINE
PPL_C_interface,43

PPL_GENERATOR_TYPE_POINT
PPL_C_interface,43

PPL_GENERATOR_TYPE_RAY
PPL_C_interface,43

ppl_initialize
PPL_C_interface,44

ppl_io_variable_output_function_type
PPL_C_interface,42

ppl_new_C_Polyhedron_from_bounding_box
PPL_C_interface,46

ppl_new_C_Polyhedron_from_Constraint_-
System

PPL_C_interface,44
ppl_new_C_Polyhedron_from_Generator_-

System
PPL_C_interface,45

ppl_new_C_Polyhedron_recycle_Constraint_-
System

PPL_C_interface,44
ppl_new_C_Polyhedron_recycle_Generator_-

System
PPL_C_interface,45

ppl_new_NNC_Polyhedron_from_bounding_-
box

PPL_C_interface,46
ppl_new_NNC_Polyhedron_from_Constraint_-

System
PPL_C_interface,44

ppl_new_NNC_Polyhedron_from_Generator_-
System

PPL_C_interface,45
ppl_new_NNC_Polyhedron_recycle_-

Constraint_System
PPL_C_interface,45

ppl_new_NNC_Polyhedron_recycle_-
Generator_System

PPL_C_interface,45
ppl_Polyhedron_add_recycled_constraints

PPL_C_interface,49
ppl_Polyhedron_add_recycled_constraints_-

and_minimize
PPL_C_interface,49

ppl_Polyhedron_add_recycled_generators
PPL_C_interface,49

ppl_Polyhedron_add_recycled_generators_-
and_minimize

PPL_C_interface,49
ppl_Polyhedron_affine_image

PPL_C_interface,49
ppl_Polyhedron_affine_preimage

PPL_C_interface,50
ppl_Polyhedron_equals_Polyhedron

PPL_C_interface,49
ppl_Polyhedron_generalized_affine_image

PPL_C_interface,50
ppl_Polyhedron_generalized_affine_image_-

lhs_rhs
PPL_C_interface,50

ppl_Polyhedron_map_space_dimensions
PPL_C_interface,50

ppl_Polyhedron_maximize
PPL_C_interface,48

ppl_Polyhedron_minimize
PPL_C_interface,48

ppl_Polyhedron_relation_with_Constraint
PPL_C_interface,47

ppl_Polyhedron_relation_with_Generator
PPL_C_interface,47

ppl_Polyhedron_shrink_bounding_box
PPL_C_interface,47

ppl_set_error_handler
PPL_C_interface,44

PPL_STDIO_ERROR
PPL_C_interface,43

PPL_VERSION
PPL_C_interface,42
PPL_defines,22

Prolog Language Interface,51

RAY
Parma_Polyhedra_Library::Generator,97

ray
Parma_Polyhedra_Library::Generator,97

relation_with
Parma_Polyhedra_Library::Polyhedron,

133
remove_higher_space_dimensions

Parma_Polyhedra_Library::Determinate,
92

Parma_Polyhedra_Library::Polyhedra_-
Powerset,120

Parma_Polyhedra_Library::Polyhedron,
145

remove_space_dimensions
Parma_Polyhedra_Library::Determinate,

92
Parma_Polyhedra_Library::Polyhedra_-

Powerset,120
Parma_Polyhedra_Library::Polyhedron,

145

Sequence
Parma_Polyhedra_Library::Powerset,150

shrink_bounding_box
Parma_Polyhedra_Library::Polyhedron,

135

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

INDEX 170

space_dimension
Parma_Polyhedra_Library::Variable,152

std,75
STRICT_INEQUALITY

Parma_Polyhedra_Library::Constraint,88
strictly_contains

Parma_Polyhedra_Library::Polyhedron,
135

swap
Parma_Polyhedra_Library::Polyhedron,

146

The Library,21
time_elapse_assign

Parma_Polyhedra_Library::Polyhedra_-
Powerset,120

Parma_Polyhedra_Library::Polyhedron,
142

Type
Parma_Polyhedra_Library::Constraint,88
Parma_Polyhedra_Library::Generator,97

UNIVERSE
Parma_Polyhedra_Library::Polyhedron,

130
upper_bound_assign

Parma_Polyhedra_Library::Powerset,150

Variable
Parma_Polyhedra_Library::Variable,152

widen_fun_ref
Parma_Polyhedra_Library::Polyhedra_-

Powerset,121

The Parma Polyhedra Library User’s Manual (version 0.7). Seehttp://www.cs.unipr.it/ppl/ for more information.

http://www.cs.unipr.it/ppl/

	General Information on the PPL
	PPL Module Index
	PPL Directory Hierarchy
	PPL Namespace Index
	PPL Hierarchical Index
	PPL Class Index
	PPL Page Index
	PPL Module Documentation
	PPL Directory Documentation
	PPL Namespace Documentation
	PPL Class Documentation
	PPL Page Documentation

