PPL  1.2
C++ Language Interface

The core implementation of the Parma Polyhedra Library is written in C++. More...

Namespaces

 Parma_Polyhedra_Library::IO_Operators
 All input/output operators are confined to this namespace.
 
 std
 The standard C++ namespace.
 

Classes

struct  Parma_Polyhedra_Library::Variable::Compare
 Binary predicate defining the total ordering on variables. More...
 
class  Parma_Polyhedra_Library::Variable
 A dimension of the vector space. More...
 
class  Parma_Polyhedra_Library::Throwable
 User objects the PPL can throw. More...
 
struct  Parma_Polyhedra_Library::Recycle_Input
 A tag class. More...
 
class  Parma_Polyhedra_Library::Linear_Form< C >
 A linear form with interval coefficients. More...
 
class  Parma_Polyhedra_Library::Checked_Number< T, Policy >
 A wrapper for numeric types implementing a given policy. More...
 
class  Parma_Polyhedra_Library::Interval< Boundary, Info >
 A generic, not necessarily closed, possibly restricted interval. More...
 
class  Parma_Polyhedra_Library::Linear_Expression::const_iterator
 
class  Parma_Polyhedra_Library::Linear_Expression
 A linear expression. More...
 
class  Parma_Polyhedra_Library::Constraint
 A linear equality or inequality. More...
 
class  Parma_Polyhedra_Library::Generator
 A line, ray, point or closure point. More...
 
class  Parma_Polyhedra_Library::Grid_Generator
 A grid line, parameter or grid point. More...
 
class  Parma_Polyhedra_Library::Congruence
 A linear congruence. More...
 
class  Parma_Polyhedra_Library::Box< ITV >
 A not necessarily closed, iso-oriented hyperrectangle. More...
 
class  Parma_Polyhedra_Library::Constraint_System
 A system of constraints. More...
 
class  Parma_Polyhedra_Library::Constraint_System_const_iterator
 An iterator over a system of constraints. More...
 
class  Parma_Polyhedra_Library::Congruence_System::const_iterator
 An iterator over a system of congruences. More...
 
class  Parma_Polyhedra_Library::Congruence_System
 A system of congruences. More...
 
class  Parma_Polyhedra_Library::Poly_Con_Relation
 The relation between a polyhedron and a constraint. More...
 
class  Parma_Polyhedra_Library::Generator_System
 A system of generators. More...
 
class  Parma_Polyhedra_Library::Generator_System_const_iterator
 An iterator over a system of generators. More...
 
class  Parma_Polyhedra_Library::Poly_Gen_Relation
 The relation between a polyhedron and a generator. More...
 
class  Parma_Polyhedra_Library::Polyhedron
 The base class for convex polyhedra. More...
 
class  Parma_Polyhedra_Library::MIP_Problem::const_iterator
 A read-only iterator on the constraints defining the feasible region. More...
 
class  Parma_Polyhedra_Library::MIP_Problem
 A Mixed Integer (linear) Programming problem. More...
 
class  Parma_Polyhedra_Library::Grid_Generator_System::const_iterator
 An iterator over a system of grid generators. More...
 
class  Parma_Polyhedra_Library::Grid_Generator_System
 A system of grid generators. More...
 
class  Parma_Polyhedra_Library::Grid
 A grid. More...
 
class  Parma_Polyhedra_Library::BD_Shape< T >
 A bounded difference shape. More...
 
class  Parma_Polyhedra_Library::C_Polyhedron
 A closed convex polyhedron. More...
 
class  Parma_Polyhedra_Library::Octagonal_Shape< T >
 An octagonal shape. More...
 
class  Parma_Polyhedra_Library::PIP_Problem
 A Parametric Integer (linear) Programming problem. More...
 
struct  Parma_Polyhedra_Library::BHRZ03_Certificate::Compare
 A total ordering on BHRZ03 certificates. More...
 
class  Parma_Polyhedra_Library::BHRZ03_Certificate
 The convergence certificate for the BHRZ03 widening operator. More...
 
struct  Parma_Polyhedra_Library::H79_Certificate::Compare
 A total ordering on H79 certificates. More...
 
class  Parma_Polyhedra_Library::H79_Certificate
 A convergence certificate for the H79 widening operator. More...
 
struct  Parma_Polyhedra_Library::Grid_Certificate::Compare
 A total ordering on Grid certificates. More...
 
class  Parma_Polyhedra_Library::Grid_Certificate
 The convergence certificate for the Grid widening operator. More...
 
class  Parma_Polyhedra_Library::NNC_Polyhedron
 A not necessarily closed convex polyhedron. More...
 
class  Parma_Polyhedra_Library::Smash_Reduction< D1, D2 >
 This class provides the reduction method for the Smash_Product domain. More...
 
class  Parma_Polyhedra_Library::Constraints_Reduction< D1, D2 >
 This class provides the reduction method for the Constraints_Product domain. More...
 
class  Parma_Polyhedra_Library::Congruences_Reduction< D1, D2 >
 This class provides the reduction method for the Congruences_Product domain. More...
 
class  Parma_Polyhedra_Library::Shape_Preserving_Reduction< D1, D2 >
 This class provides the reduction method for the Shape_Preserving_Product domain. More...
 
class  Parma_Polyhedra_Library::No_Reduction< D1, D2 >
 This class provides the reduction method for the Direct_Product domain. More...
 
class  Parma_Polyhedra_Library::Partially_Reduced_Product< D1, D2, R >
 The partially reduced product of two abstractions. More...
 
class  Parma_Polyhedra_Library::Determinate< PSET >
 A wrapper for PPL pointsets, providing them with a determinate constraint system interface, as defined in [Bag98]. More...
 
class  Parma_Polyhedra_Library::Powerset< D >
 The powerset construction on a base-level domain. More...
 
class  Parma_Polyhedra_Library::Pointset_Powerset< PSET >
 The powerset construction instantiated on PPL pointset domains. More...
 
class  Parma_Polyhedra_Library::Cast_Floating_Point_Expression< FP_Interval_Type, FP_Format >
 A generic Cast Floating Point Expression. More...
 
class  Parma_Polyhedra_Library::Constant_Floating_Point_Expression< FP_Interval_Type, FP_Format >
 A generic Constant Floating Point Expression. More...
 
class  Parma_Polyhedra_Library::Variable_Floating_Point_Expression< FP_Interval_Type, FP_Format >
 A generic Variable Floating Point Expression. More...
 
class  Parma_Polyhedra_Library::Sum_Floating_Point_Expression< FP_Interval_Type, FP_Format >
 A generic Sum Floating Point Expression. More...
 
class  Parma_Polyhedra_Library::Difference_Floating_Point_Expression< FP_Interval_Type, FP_Format >
 A generic Difference Floating Point Expression. More...
 
class  Parma_Polyhedra_Library::Multiplication_Floating_Point_Expression< FP_Interval_Type, FP_Format >
 A generic Multiplication Floating Point Expression. More...
 
class  Parma_Polyhedra_Library::Division_Floating_Point_Expression< FP_Interval_Type, FP_Format >
 A generic Division Floating Point Expression. More...
 
class  Parma_Polyhedra_Library::Opposite_Floating_Point_Expression< FP_Interval_Type, FP_Format >
 A generic Opposite Floating Point Expression. More...
 
class  Parma_Polyhedra_Library::GMP_Integer
 Unbounded integers as provided by the GMP library. More...
 

Macros

#define PPL_VERSION_MAJOR   1
 The major number of the PPL version. More...
 
#define PPL_VERSION_MINOR   2
 The minor number of the PPL version. More...
 
#define PPL_VERSION_REVISION   0
 The revision number of the PPL version. More...
 
#define PPL_VERSION_BETA   0
 The beta number of the PPL version. This is zero for official releases and nonzero for development snapshots.
 
#define PPL_VERSION   "1.2"
 A string containing the PPL version. More...
 

Typedefs

typedef size_t Parma_Polyhedra_Library::dimension_type
 An unsigned integral type for representing space dimensions. More...
 
typedef size_t Parma_Polyhedra_Library::memory_size_type
 An unsigned integral type for representing memory size in bytes. More...
 
typedef PPL_COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient
 An alias for easily naming the type of PPL coefficients. More...
 

Enumerations

enum  Parma_Polyhedra_Library::Result {
  Parma_Polyhedra_Library::V_EMPTY, Parma_Polyhedra_Library::V_EQ, Parma_Polyhedra_Library::V_LT, Parma_Polyhedra_Library::V_GT,
  Parma_Polyhedra_Library::V_NE, Parma_Polyhedra_Library::V_LE, Parma_Polyhedra_Library::V_GE, Parma_Polyhedra_Library::V_LGE,
  Parma_Polyhedra_Library::V_OVERFLOW, Parma_Polyhedra_Library::V_LT_INF, Parma_Polyhedra_Library::V_GT_SUP, Parma_Polyhedra_Library::V_LT_PLUS_INFINITY,
  Parma_Polyhedra_Library::V_GT_MINUS_INFINITY, Parma_Polyhedra_Library::V_EQ_MINUS_INFINITY, Parma_Polyhedra_Library::V_EQ_PLUS_INFINITY, Parma_Polyhedra_Library::V_NAN,
  Parma_Polyhedra_Library::V_CVT_STR_UNK, Parma_Polyhedra_Library::V_DIV_ZERO, Parma_Polyhedra_Library::V_INF_ADD_INF, Parma_Polyhedra_Library::V_INF_DIV_INF,
  Parma_Polyhedra_Library::V_INF_MOD, Parma_Polyhedra_Library::V_INF_MUL_ZERO, Parma_Polyhedra_Library::V_INF_SUB_INF, Parma_Polyhedra_Library::V_MOD_ZERO,
  Parma_Polyhedra_Library::V_SQRT_NEG, Parma_Polyhedra_Library::V_UNKNOWN_NEG_OVERFLOW, Parma_Polyhedra_Library::V_UNKNOWN_POS_OVERFLOW, Parma_Polyhedra_Library::V_UNREPRESENTABLE
}
 Possible outcomes of a checked arithmetic computation. More...
 
enum  Parma_Polyhedra_Library::Rounding_Dir {
  Parma_Polyhedra_Library::ROUND_DOWN, Parma_Polyhedra_Library::ROUND_UP, Parma_Polyhedra_Library::ROUND_IGNORE , Parma_Polyhedra_Library::ROUND_NOT_NEEDED ,
  Parma_Polyhedra_Library::ROUND_STRICT_RELATION
}
 Rounding directions for arithmetic computations. More...
 
enum  Parma_Polyhedra_Library::Degenerate_Element { Parma_Polyhedra_Library::UNIVERSE, Parma_Polyhedra_Library::EMPTY }
 Kinds of degenerate abstract elements. More...
 
enum  Parma_Polyhedra_Library::Relation_Symbol {
  Parma_Polyhedra_Library::EQUAL, Parma_Polyhedra_Library::LESS_THAN, Parma_Polyhedra_Library::LESS_OR_EQUAL, Parma_Polyhedra_Library::GREATER_THAN,
  Parma_Polyhedra_Library::GREATER_OR_EQUAL, Parma_Polyhedra_Library::NOT_EQUAL
}
 Relation symbols. More...
 
enum  Parma_Polyhedra_Library::Complexity_Class { Parma_Polyhedra_Library::POLYNOMIAL_COMPLEXITY, Parma_Polyhedra_Library::SIMPLEX_COMPLEXITY, Parma_Polyhedra_Library::ANY_COMPLEXITY }
 Complexity pseudo-classes. More...
 
enum  Parma_Polyhedra_Library::Optimization_Mode { Parma_Polyhedra_Library::MINIMIZATION, Parma_Polyhedra_Library::MAXIMIZATION }
 Possible optimization modes. More...
 
enum  Parma_Polyhedra_Library::Bounded_Integer_Type_Width {
  Parma_Polyhedra_Library::BITS_8, Parma_Polyhedra_Library::BITS_16, Parma_Polyhedra_Library::BITS_32, Parma_Polyhedra_Library::BITS_64,
  Parma_Polyhedra_Library::BITS_128
}
 
enum  Parma_Polyhedra_Library::Bounded_Integer_Type_Representation { Parma_Polyhedra_Library::UNSIGNED, Parma_Polyhedra_Library::SIGNED_2_COMPLEMENT }
 
enum  Parma_Polyhedra_Library::Bounded_Integer_Type_Overflow { Parma_Polyhedra_Library::OVERFLOW_WRAPS, Parma_Polyhedra_Library::OVERFLOW_UNDEFINED, Parma_Polyhedra_Library::OVERFLOW_IMPOSSIBLE }
 
enum  Parma_Polyhedra_Library::Representation { Parma_Polyhedra_Library::DENSE, Parma_Polyhedra_Library::SPARSE }
 
enum  Parma_Polyhedra_Library::Floating_Point_Format {
  Parma_Polyhedra_Library::IEEE754_HALF, Parma_Polyhedra_Library::IEEE754_SINGLE, Parma_Polyhedra_Library::IEEE754_DOUBLE, Parma_Polyhedra_Library::IEEE754_QUAD,
  Parma_Polyhedra_Library::INTEL_DOUBLE_EXTENDED, Parma_Polyhedra_Library::IBM_SINGLE, Parma_Polyhedra_Library::IBM_DOUBLE
}
 
enum  Parma_Polyhedra_Library::PIP_Problem_Status { Parma_Polyhedra_Library::UNFEASIBLE_PIP_PROBLEM, Parma_Polyhedra_Library::OPTIMIZED_PIP_PROBLEM }
 Possible outcomes of the PIP_Problem solver. More...
 
enum  Parma_Polyhedra_Library::MIP_Problem_Status { Parma_Polyhedra_Library::UNFEASIBLE_MIP_PROBLEM, Parma_Polyhedra_Library::UNBOUNDED_MIP_PROBLEM, Parma_Polyhedra_Library::OPTIMIZED_MIP_PROBLEM }
 Possible outcomes of the MIP_Problem solver. More...
 
enum  Parma_Polyhedra_Library::Constraint::Type { Parma_Polyhedra_Library::Constraint::EQUALITY, Parma_Polyhedra_Library::Constraint::NONSTRICT_INEQUALITY, Parma_Polyhedra_Library::Constraint::STRICT_INEQUALITY }
 The constraint type. More...
 
enum  Parma_Polyhedra_Library::Generator::Type { Parma_Polyhedra_Library::Generator::LINE, Parma_Polyhedra_Library::Generator::RAY, Parma_Polyhedra_Library::Generator::POINT, Parma_Polyhedra_Library::Generator::CLOSURE_POINT }
 The generator type. More...
 
enum  Parma_Polyhedra_Library::Grid_Generator::Kind
 The possible kinds of Grid_Generator objects.
 
enum  Parma_Polyhedra_Library::Grid_Generator::Type { Parma_Polyhedra_Library::Grid_Generator::LINE, Parma_Polyhedra_Library::Grid_Generator::PARAMETER, Parma_Polyhedra_Library::Grid_Generator::POINT }
 The generator type. More...
 
enum  Parma_Polyhedra_Library::MIP_Problem::Control_Parameter_Name { Parma_Polyhedra_Library::MIP_Problem::PRICING }
 Names of MIP problems' control parameters. More...
 
enum  Parma_Polyhedra_Library::MIP_Problem::Control_Parameter_Value { Parma_Polyhedra_Library::MIP_Problem::PRICING_STEEPEST_EDGE_FLOAT, Parma_Polyhedra_Library::MIP_Problem::PRICING_STEEPEST_EDGE_EXACT, Parma_Polyhedra_Library::MIP_Problem::PRICING_TEXTBOOK }
 Possible values for MIP problem's control parameters. More...
 
enum  Parma_Polyhedra_Library::PIP_Problem::Control_Parameter_Name { Parma_Polyhedra_Library::PIP_Problem::CUTTING_STRATEGY, Parma_Polyhedra_Library::PIP_Problem::PIVOT_ROW_STRATEGY }
 Possible names for PIP_Problem control parameters. More...
 
enum  Parma_Polyhedra_Library::PIP_Problem::Control_Parameter_Value {
  Parma_Polyhedra_Library::PIP_Problem::CUTTING_STRATEGY_FIRST, Parma_Polyhedra_Library::PIP_Problem::CUTTING_STRATEGY_DEEPEST, Parma_Polyhedra_Library::PIP_Problem::CUTTING_STRATEGY_ALL, Parma_Polyhedra_Library::PIP_Problem::PIVOT_ROW_STRATEGY_FIRST,
  Parma_Polyhedra_Library::PIP_Problem::PIVOT_ROW_STRATEGY_MAX_COLUMN
}
 Possible values for PIP_Problem control parameters. More...
 

Variables

const Throwable *volatile Parma_Polyhedra_Library::abandon_expensive_computations
 A pointer to an exception object. More...
 

Functions Inspecting and/or Combining Result Values

Result Parma_Polyhedra_Library::operator& (Result x, Result y)
 
Result Parma_Polyhedra_Library::operator| (Result x, Result y)
 
Result Parma_Polyhedra_Library::operator- (Result x, Result y)
 
Result_Class Parma_Polyhedra_Library::result_class (Result r)
 
Result_Relation Parma_Polyhedra_Library::result_relation (Result r)
 
Result Parma_Polyhedra_Library::result_relation_class (Result r)
 

Functions Inspecting and/or Combining Rounding_Dir Values

Rounding_Dir Parma_Polyhedra_Library::operator& (Rounding_Dir x, Rounding_Dir y)
 
Rounding_Dir Parma_Polyhedra_Library::operator| (Rounding_Dir x, Rounding_Dir y)
 
Rounding_Dir Parma_Polyhedra_Library::inverse (Rounding_Dir dir)
 
Rounding_Dir Parma_Polyhedra_Library::round_dir (Rounding_Dir dir)
 
bool Parma_Polyhedra_Library::round_down (Rounding_Dir dir)
 
bool Parma_Polyhedra_Library::round_up (Rounding_Dir dir)
 
bool Parma_Polyhedra_Library::round_ignore (Rounding_Dir dir)
 
bool Parma_Polyhedra_Library::round_not_needed (Rounding_Dir dir)
 
bool Parma_Polyhedra_Library::round_not_requested (Rounding_Dir dir)
 
bool Parma_Polyhedra_Library::round_direct (Rounding_Dir dir)
 
bool Parma_Polyhedra_Library::round_inverse (Rounding_Dir dir)
 
bool Parma_Polyhedra_Library::round_strict_relation (Rounding_Dir dir)
 
fpu_rounding_direction_type Parma_Polyhedra_Library::round_fpu_dir (Rounding_Dir dir)
 

Functions for the Synthesis of Linear Rankings

template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_MS (const PSET &pset)
 
template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_MS_2 (const PSET &pset_before, const PSET &pset_after)
 
template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_MS (const PSET &pset, Generator &mu)
 
template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_MS_2 (const PSET &pset_before, const PSET &pset_after, Generator &mu)
 
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_MS (const PSET &pset, C_Polyhedron &mu_space)
 
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_MS_2 (const PSET &pset_before, const PSET &pset_after, C_Polyhedron &mu_space)
 
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_quasi_ranking_functions_MS (const PSET &pset, C_Polyhedron &decreasing_mu_space, C_Polyhedron &bounded_mu_space)
 
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_quasi_ranking_functions_MS_2 (const PSET &pset_before, const PSET &pset_after, C_Polyhedron &decreasing_mu_space, C_Polyhedron &bounded_mu_space)
 
template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_PR (const PSET &pset)
 
template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_PR_2 (const PSET &pset_before, const PSET &pset_after)
 
template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_PR (const PSET &pset, Generator &mu)
 
template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_PR_2 (const PSET &pset_before, const PSET &pset_after, Generator &mu)
 
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_PR (const PSET &pset, NNC_Polyhedron &mu_space)
 
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_PR_2 (const PSET &pset_before, const PSET &pset_after, NNC_Polyhedron &mu_space)
 

Detailed Description

The core implementation of the Parma Polyhedra Library is written in C++.

See Namespace, Hierarchical and Compound indexes for additional information about each single data type.

Macro Definition Documentation

#define PPL_VERSION_MAJOR   1

The major number of the PPL version.

#define PPL_VERSION_MINOR   2

The minor number of the PPL version.

#define PPL_VERSION_REVISION   0

The revision number of the PPL version.

#define PPL_VERSION   "1.2"

A string containing the PPL version.

Let M and m denote the numbers associated to PPL_VERSION_MAJOR and PPL_VERSION_MINOR, respectively. The format of PPL_VERSION is M "." m if both PPL_VERSION_REVISION (r) and PPL_VERSION_BETA (b)are zero, M "." m "pre" b if PPL_VERSION_REVISION is zero and PPL_VERSION_BETA is not zero, M "." m "." r if PPL_VERSION_REVISION is not zero and PPL_VERSION_BETA is zero, M "." m "." r "pre" b if neither PPL_VERSION_REVISION nor PPL_VERSION_BETA are zero.

Typedef Documentation

An unsigned integral type for representing space dimensions.

An unsigned integral type for representing memory size in bytes.

typedef PPL_COEFFICIENT_TYPE Parma_Polyhedra_Library::Coefficient

An alias for easily naming the type of PPL coefficients.

Objects of type Coefficient are used to implement the integral valued coefficients occurring in linear expressions, constraints, generators, intervals, bounding boxes and so on. Depending on the chosen configuration options (see file README.configure), a Coefficient may actually be:

  • The GMP_Integer type, which in turn is an alias for the mpz_class type implemented by the C++ interface of the GMP library (this is the default configuration).
  • An instance of the Checked_Number class template: with the policy Bounded_Integer_Coefficient_Policy, this implements overflow detection on top of a native integral type (available template instances include checked integers having 8, 16, 32 or 64 bits); with the Checked_Number_Transparent_Policy, this is a wrapper for native integral types with no overflow detection (available template instances are as above).

Enumeration Type Documentation

Possible outcomes of a checked arithmetic computation.

Enumerator
V_EMPTY 

The exact result is not comparable.

V_EQ 

The computed result is exact.

V_LT 

The computed result is inexact and rounded up.

V_GT 

The computed result is inexact and rounded down.

V_NE 

The computed result is inexact.

V_LE 

The computed result may be inexact and rounded up.

V_GE 

The computed result may be inexact and rounded down.

V_LGE 

The computed result may be inexact.

V_OVERFLOW 

The exact result is a number out of finite bounds.

V_LT_INF 

A negative integer overflow occurred (rounding up).

V_GT_SUP 

A positive integer overflow occurred (rounding down).

V_LT_PLUS_INFINITY 

A positive integer overflow occurred (rounding up).

V_GT_MINUS_INFINITY 

A negative integer overflow occurred (rounding down).

V_EQ_MINUS_INFINITY 

Negative infinity result.

V_EQ_PLUS_INFINITY 

Positive infinity result.

V_NAN 

Not a number result.

V_CVT_STR_UNK 

Converting from unknown string.

V_DIV_ZERO 

Dividing by zero.

V_INF_ADD_INF 

Adding two infinities having opposite signs.

V_INF_DIV_INF 

Dividing two infinities.

V_INF_MOD 

Taking the modulus of an infinity.

V_INF_MUL_ZERO 

Multiplying an infinity by zero.

V_INF_SUB_INF 

Subtracting two infinities having the same sign.

V_MOD_ZERO 

Computing a remainder modulo zero.

V_SQRT_NEG 

Taking the square root of a negative number.

V_UNKNOWN_NEG_OVERFLOW 

Unknown result due to intermediate negative overflow.

V_UNKNOWN_POS_OVERFLOW 

Unknown result due to intermediate positive overflow.

V_UNREPRESENTABLE 

The computed result is not representable.

Rounding directions for arithmetic computations.

Enumerator
ROUND_DOWN 

Round toward $-\infty$.

ROUND_UP 

Round toward $+\infty$.

ROUND_IGNORE 

Rounding is delegated to lower level. Result info is evaluated lazily.

ROUND_NOT_NEEDED 

Rounding is not needed: client code must ensure that the operation result is exact and representable in the destination type. Result info is evaluated lazily.

ROUND_STRICT_RELATION 

The client code is willing to pay an extra price to know the exact relation between the exact result and the computed one.

Kinds of degenerate abstract elements.

Enumerator
UNIVERSE 

The universe element, i.e., the whole vector space.

EMPTY 

The empty element, i.e., the empty set.

Relation symbols.

Enumerator
EQUAL 

Equal to.

LESS_THAN 

Less than.

LESS_OR_EQUAL 

Less than or equal to.

GREATER_THAN 

Greater than.

GREATER_OR_EQUAL 

Greater than or equal to.

NOT_EQUAL 

Not equal to.

Complexity pseudo-classes.

Enumerator
POLYNOMIAL_COMPLEXITY 

Worst-case polynomial complexity.

SIMPLEX_COMPLEXITY 

Worst-case exponential complexity but typically polynomial behavior.

ANY_COMPLEXITY 

Any complexity.

Possible optimization modes.

Enumerator
MINIMIZATION 

Minimization is requested.

MAXIMIZATION 

Maximization is requested.

\ Widths of bounded integer types.

See the section on approximating bounded integers.

Enumerator
BITS_8 

8 bits.

BITS_16 

16 bits.

BITS_32 

32 bits.

BITS_64 

64 bits.

BITS_128 

128 bits.

\ Representation of bounded integer types.

See the section on approximating bounded integers.

Enumerator
UNSIGNED 

Unsigned binary.

SIGNED_2_COMPLEMENT 

Signed binary where negative values are represented by the two's complement of the absolute value.

\ Overflow behavior of bounded integer types.

See the section on approximating bounded integers.

Enumerator
OVERFLOW_WRAPS 

On overflow, wrapping takes place.

This means that, for a $w$-bit bounded integer, the computation happens modulo $2^w$.

OVERFLOW_UNDEFINED 

On overflow, the result is undefined.

This simply means that the result of the operation resulting in an overflow can take any value.

Note
Even though something more serious can happen in the system being analyzed —due to, e.g., C's undefined behavior—, here we are only concerned with the results of arithmetic operations. It is the responsibility of the analyzer to ensure that other manifestations of undefined behavior are conservatively approximated.
OVERFLOW_IMPOSSIBLE 

Overflow is impossible.

This is for the analysis of languages where overflow is trapped before it affects the state, for which, thus, any indication that an overflow may have affected the state is necessarily due to the imprecision of the analysis.

\ Possible representations of coefficient sequences (i.e. linear expressions and more complex objects containing linear expressions, e.g. Constraints, Generators, etc.).

Enumerator
DENSE 

Dense representation: the coefficient sequence is represented as a vector of coefficients, including the zero coefficients. If there are only a few nonzero coefficients, this representation is faster and also uses a bit less memory.

SPARSE 

Sparse representation: only the nonzero coefficient are stored. If there are many nonzero coefficients, this improves memory consumption and run time (both because there is less data to process in O(n) operations and because finding zeroes/nonzeroes is much faster since zeroes are not stored at all, so any stored coefficient is nonzero).

\ Floating point formats known to the library.

The parameters of each format are defined by a specific struct in file Float_defs.hh. See the section on Analysis of floating point computations for more information.

Enumerator
IEEE754_HALF 

IEEE 754 half precision, 16 bits (5 exponent, 10 mantissa).

IEEE754_SINGLE 

IEEE 754 single precision, 32 bits (8 exponent, 23 mantissa).

IEEE754_DOUBLE 

IEEE 754 double precision, 64 bits (11 exponent, 52 mantissa).

IEEE754_QUAD 

IEEE 754 quad precision, 128 bits (15 exponent, 112 mantissa).

INTEL_DOUBLE_EXTENDED 

Intel double extended precision, 80 bits (15 exponent, 64 mantissa)

IBM_SINGLE 

IBM single precision, 32 bits (7 exponent, 24 mantissa).

IBM_DOUBLE 

IBM double precision, 64 bits (7 exponent, 56 mantissa).

Possible outcomes of the PIP_Problem solver.

Enumerator
UNFEASIBLE_PIP_PROBLEM 

The problem is unfeasible.

OPTIMIZED_PIP_PROBLEM 

The problem has an optimal solution.

Possible outcomes of the MIP_Problem solver.

Enumerator
UNFEASIBLE_MIP_PROBLEM 

The problem is unfeasible.

UNBOUNDED_MIP_PROBLEM 

The problem is unbounded.

OPTIMIZED_MIP_PROBLEM 

The problem has an optimal solution.

The constraint type.

Enumerator
EQUALITY 

The constraint is an equality.

NONSTRICT_INEQUALITY 

The constraint is a non-strict inequality.

STRICT_INEQUALITY 

The constraint is a strict inequality.

The generator type.

Enumerator
LINE 

The generator is a line.

RAY 

The generator is a ray.

POINT 

The generator is a point.

CLOSURE_POINT 

The generator is a closure point.

The generator type.

Enumerator
LINE 

The generator is a grid line.

PARAMETER 

The generator is a parameter.

POINT 

The generator is a grid point.

Names of MIP problems' control parameters.

Enumerator
PRICING 

The pricing rule.

Possible values for MIP problem's control parameters.

Enumerator
PRICING_STEEPEST_EDGE_FLOAT 

Steepest edge pricing method, using floating points (default).

PRICING_STEEPEST_EDGE_EXACT 

Steepest edge pricing method, using Coefficient.

PRICING_TEXTBOOK 

Textbook pricing method.

Possible names for PIP_Problem control parameters.

Enumerator
CUTTING_STRATEGY 

Cutting strategy.

PIVOT_ROW_STRATEGY 

Pivot row strategy.

Possible values for PIP_Problem control parameters.

Enumerator
CUTTING_STRATEGY_FIRST 

Choose the first non-integer row.

CUTTING_STRATEGY_DEEPEST 

Choose row which generates the deepest cut.

CUTTING_STRATEGY_ALL 

Always generate all possible cuts.

PIVOT_ROW_STRATEGY_FIRST 

Choose the first row with negative parameter sign.

PIVOT_ROW_STRATEGY_MAX_COLUMN 

Choose a row that generates a lexicographically maximal pivot column.

Function Documentation

Result Parma_Polyhedra_Library::operator& ( Result  x,
Result  y 
)
inline
Result Parma_Polyhedra_Library::operator| ( Result  x,
Result  y 
)
inline
Result Parma_Polyhedra_Library::operator- ( Result  x,
Result  y 
)
inline
Result_Class Parma_Polyhedra_Library::result_class ( Result  r)
inline

\ Extracts the value class part of r (representable number, unrepresentable minus/plus infinity or nan).

Result_Relation Parma_Polyhedra_Library::result_relation ( Result  r)
inline

\ Extracts the relation part of r.

Result Parma_Polyhedra_Library::result_relation_class ( Result  r)
inline
Rounding_Dir Parma_Polyhedra_Library::operator& ( Rounding_Dir  x,
Rounding_Dir  y 
)
inline
Rounding_Dir Parma_Polyhedra_Library::operator| ( Rounding_Dir  x,
Rounding_Dir  y 
)
inline
Rounding_Dir Parma_Polyhedra_Library::inverse ( Rounding_Dir  dir)
inline

\ Returns the inverse rounding mode of dir, ROUND_IGNORE being the inverse of itself.

Rounding_Dir Parma_Polyhedra_Library::round_dir ( Rounding_Dir  dir)
inline
bool Parma_Polyhedra_Library::round_down ( Rounding_Dir  dir)
inline
bool Parma_Polyhedra_Library::round_up ( Rounding_Dir  dir)
inline
bool Parma_Polyhedra_Library::round_ignore ( Rounding_Dir  dir)
inline
bool Parma_Polyhedra_Library::round_not_needed ( Rounding_Dir  dir)
inline
bool Parma_Polyhedra_Library::round_not_requested ( Rounding_Dir  dir)
inline
bool Parma_Polyhedra_Library::round_direct ( Rounding_Dir  dir)
inline
bool Parma_Polyhedra_Library::round_inverse ( Rounding_Dir  dir)
inline
bool Parma_Polyhedra_Library::round_strict_relation ( Rounding_Dir  dir)
inline
fpu_rounding_direction_type Parma_Polyhedra_Library::round_fpu_dir ( Rounding_Dir  dir)
inline
template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_MS ( const PSET &  pset)

\ Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters
PSETAny pointset supported by the PPL that provides the minimized_constraints() method.
Parameters
psetA pointset approximating the behavior of a loop whose termination is being analyzed. The variables indices are allocated as follows:
  • $ x'_1, \ldots, x'_n $ go onto space dimensions $ 0, \ldots, n-1 $,
  • $ x_1, \ldots, x_n $ go onto space dimensions $ n, \ldots, 2n-1 $,
where unprimed variables represent the values of the loop-relevant program variables before the update performed in the loop body, and primed variables represent the values of those program variables after the update.
Returns
true if any loop approximated by pset definitely terminates; false if the test is inconclusive. However, if pset precisely characterizes the effect of the loop body onto the loop-relevant program variables, then true is returned if and only if the loop terminates.
template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_MS_2 ( const PSET &  pset_before,
const PSET &  pset_after 
)

\ Termination test using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters
PSETAny pointset supported by the PPL that provides the minimized_constraints() method.
Parameters
pset_beforeA pointset approximating the values of loop-relevant variables before the update performed in the loop body that is being analyzed. The variables indices are allocated as follows:
  • $ x_1, \ldots, x_n $ go onto space dimensions $ 0, \ldots, n-1 $.
pset_afterA pointset approximating the values of loop-relevant variables after the update performed in the loop body that is being analyzed. The variables indices are allocated as follows:
  • $ x'_1, \ldots, x'_n $ go onto space dimensions $ 0, \ldots, n-1 $,
  • $ x_1, \ldots, x_n $ go onto space dimensions $ n, \ldots, 2n-1 $,

Note that unprimed variables represent the values of the loop-relevant program variables before the update performed in the loop body, and primed variables represent the values of those program variables after the update. Note also that unprimed variables are assigned to different space dimensions in pset_before and pset_after.

Returns
true if any loop approximated by pset definitely terminates; false if the test is inconclusive. However, if pset_before and pset_after precisely characterize the effect of the loop body onto the loop-relevant program variables, then true is returned if and only if the loop terminates.
template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_MS ( const PSET &  pset,
Generator mu 
)

\ Termination test with witness ranking function using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters
PSETAny pointset supported by the PPL that provides the minimized_constraints() method.
Parameters
psetA pointset approximating the behavior of a loop whose termination is being analyzed. The variables indices are allocated as follows:
  • $ x'_1, \ldots, x'_n $ go onto space dimensions $ 0, \ldots, n-1 $,
  • $ x_1, \ldots, x_n $ go onto space dimensions $ n, \ldots, 2n-1 $,
where unprimed variables represent the values of the loop-relevant program variables before the update performed in the loop body, and primed variables represent the values of those program variables after the update.
muWhen true is returned, this is assigned a point of space dimension $ n+1 $ encoding one (not further specified) affine ranking function for the loop being analyzed. The ranking function is of the form $ \mu_0 + \sum_{i=1}^n \mu_i x_i $ where $ \mu_0, \mu_1, \ldots, \mu_n $ are the coefficients of mu corresponding to the space dimensions $ n, 0, \ldots, n-1 $, respectively.
Returns
true if any loop approximated by pset definitely terminates; false if the test is inconclusive. However, if pset precisely characterizes the effect of the loop body onto the loop-relevant program variables, then true is returned if and only if the loop terminates.
template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_MS_2 ( const PSET &  pset_before,
const PSET &  pset_after,
Generator mu 
)

\ Termination test with witness ranking function using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters
PSETAny pointset supported by the PPL that provides the minimized_constraints() method.
Parameters
pset_beforeA pointset approximating the values of loop-relevant variables before the update performed in the loop body that is being analyzed. The variables indices are allocated as follows:
  • $ x_1, \ldots, x_n $ go onto space dimensions $ 0, \ldots, n-1 $.
pset_afterA pointset approximating the values of loop-relevant variables after the update performed in the loop body that is being analyzed. The variables indices are allocated as follows:
  • $ x'_1, \ldots, x'_n $ go onto space dimensions $ 0, \ldots, n-1 $,
  • $ x_1, \ldots, x_n $ go onto space dimensions $ n, \ldots, 2n-1 $,

Note that unprimed variables represent the values of the loop-relevant program variables before the update performed in the loop body, and primed variables represent the values of those program variables after the update. Note also that unprimed variables are assigned to different space dimensions in pset_before and pset_after.

Parameters
muWhen true is returned, this is assigned a point of space dimension $ n+1 $ encoding one (not further specified) affine ranking function for the loop being analyzed. The ranking function is of the form $ \mu_0 + \sum_{i=1}^n \mu_i x_i $ where $ \mu_0, \mu_1, \ldots, \mu_n $ are the coefficients of mu corresponding to the space dimensions $ n, 0, \ldots, n-1 $, respectively.
Returns
true if any loop approximated by pset definitely terminates; false if the test is inconclusive. However, if pset_before and pset_after precisely characterize the effect of the loop body onto the loop-relevant program variables, then true is returned if and only if the loop terminates.
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_MS ( const PSET &  pset,
C_Polyhedron mu_space 
)

\ Termination test with ranking function space using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters
PSETAny pointset supported by the PPL that provides the minimized_constraints() method.
Parameters
psetA pointset approximating the behavior of a loop whose termination is being analyzed. The variables indices are allocated as follows:
  • $ x'_1, \ldots, x'_n $ go onto space dimensions $ 0, \ldots, n-1 $,
  • $ x_1, \ldots, x_n $ go onto space dimensions $ n, \ldots, 2n-1 $,
where unprimed variables represent the values of the loop-relevant program variables before the update performed in the loop body, and primed variables represent the values of those program variables after the update.
mu_spaceThis is assigned a closed polyhedron of space dimension $ n+1 $ representing the space of all the affine ranking functions for the loops that are precisely characterized by pset. These ranking functions are of the form $ \mu_0 + \sum_{i=1}^n \mu_i x_i $ where $ \mu_0, \mu_1, \ldots, \mu_n $ identify any point of the mu_space polyhedron. The variables $ \mu_0, \mu_1, \ldots, \mu_n $ correspond to the space dimensions of mu_space $ n, 0, \ldots, n-1 $, respectively. When mu_space is empty, it means that the test is inconclusive. However, if pset precisely characterizes the effect of the loop body onto the loop-relevant program variables, then mu_space is empty if and only if the loop does not terminate.
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_MS_2 ( const PSET &  pset_before,
const PSET &  pset_after,
C_Polyhedron mu_space 
)

\ Termination test with ranking function space using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters
PSETAny pointset supported by the PPL that provides the minimized_constraints() method.
Parameters
pset_beforeA pointset approximating the values of loop-relevant variables before the update performed in the loop body that is being analyzed. The variables indices are allocated as follows:
  • $ x_1, \ldots, x_n $ go onto space dimensions $ 0, \ldots, n-1 $.
pset_afterA pointset approximating the values of loop-relevant variables after the update performed in the loop body that is being analyzed. The variables indices are allocated as follows:
  • $ x'_1, \ldots, x'_n $ go onto space dimensions $ 0, \ldots, n-1 $,
  • $ x_1, \ldots, x_n $ go onto space dimensions $ n, \ldots, 2n-1 $,

Note that unprimed variables represent the values of the loop-relevant program variables before the update performed in the loop body, and primed variables represent the values of those program variables after the update. Note also that unprimed variables are assigned to different space dimensions in pset_before and pset_after.

Parameters
mu_spaceThis is assigned a closed polyhedron of space dimension $ n+1 $ representing the space of all the affine ranking functions for the loops that are precisely characterized by pset. These ranking functions are of the form $ \mu_0 + \sum_{i=1}^n \mu_i x_i $ where $ \mu_0, \mu_1, \ldots, \mu_n $ identify any point of the mu_space polyhedron. The variables $ \mu_0, \mu_1, \ldots, \mu_n $ correspond to the space dimensions of mu_space $ n, 0, \ldots, n-1 $, respectively. When mu_space is empty, it means that the test is inconclusive. However, if pset_before and pset_after precisely characterize the effect of the loop body onto the loop-relevant program variables, then mu_space is empty if and only if the loop does not terminate.
template<typename PSET >
void Parma_Polyhedra_Library::all_affine_quasi_ranking_functions_MS ( const PSET &  pset,
C_Polyhedron decreasing_mu_space,
C_Polyhedron bounded_mu_space 
)

\ Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters
PSETAny pointset supported by the PPL that provides the minimized_constraints() method.
Parameters
psetA pointset approximating the behavior of a loop whose termination is being analyzed. The variables indices are allocated as follows:
  • $ x'_1, \ldots, x'_n $ go onto space dimensions $ 0, \ldots, n-1 $,
  • $ x_1, \ldots, x_n $ go onto space dimensions $ n, \ldots, 2n-1 $,
where unprimed variables represent the values of the loop-relevant program variables before the update performed in the loop body, and primed variables represent the values of those program variables after the update.
decreasing_mu_spaceThis is assigned a closed polyhedron of space dimension $ n+1 $ representing the space of all the decreasing affine functions for the loops that are precisely characterized by pset.
bounded_mu_spaceThis is assigned a closed polyhedron of space dimension $ n+1 $ representing the space of all the lower bounded affine functions for the loops that are precisely characterized by pset.

These quasi-ranking functions are of the form $ \mu_0 + \sum_{i=1}^n \mu_i x_i $ where $ \mu_0, \mu_1, \ldots, \mu_n $ identify any point of the decreasing_mu_space and bounded_mu_space polyhedrons. The variables $ \mu_0, \mu_1, \ldots, \mu_n $ correspond to the space dimensions $ n, 0, \ldots, n-1 $, respectively. When decreasing_mu_space (resp., bounded_mu_space) is empty, it means that the test is inconclusive. However, if pset precisely characterizes the effect of the loop body onto the loop-relevant program variables, then decreasing_mu_space (resp., bounded_mu_space) will be empty if and only if there is no decreasing (resp., lower bounded) affine function, so that the loop does not terminate.

template<typename PSET >
void Parma_Polyhedra_Library::all_affine_quasi_ranking_functions_MS_2 ( const PSET &  pset_before,
const PSET &  pset_after,
C_Polyhedron decreasing_mu_space,
C_Polyhedron bounded_mu_space 
)

\ Computes the spaces of affine quasi ranking functions using an improvement of the method by Mesnard and Serebrenik [BMPZ10].

Template Parameters
PSETAny pointset supported by the PPL that provides the minimized_constraints() method.
Parameters
pset_beforeA pointset approximating the values of loop-relevant variables before the update performed in the loop body that is being analyzed. The variables indices are allocated as follows:
  • $ x_1, \ldots, x_n $ go onto space dimensions $ 0, \ldots, n-1 $.
pset_afterA pointset approximating the values of loop-relevant variables after the update performed in the loop body that is being analyzed. The variables indices are allocated as follows:
  • $ x'_1, \ldots, x'_n $ go onto space dimensions $ 0, \ldots, n-1 $,
  • $ x_1, \ldots, x_n $ go onto space dimensions $ n, \ldots, 2n-1 $,

Note that unprimed variables represent the values of the loop-relevant program variables before the update performed in the loop body, and primed variables represent the values of those program variables after the update. Note also that unprimed variables are assigned to different space dimensions in pset_before and pset_after.

Parameters
decreasing_mu_spaceThis is assigned a closed polyhedron of space dimension $ n+1 $ representing the space of all the decreasing affine functions for the loops that are precisely characterized by pset.
bounded_mu_spaceThis is assigned a closed polyhedron of space dimension $ n+1 $ representing the space of all the lower bounded affine functions for the loops that are precisely characterized by pset.

These ranking functions are of the form $ \mu_0 + \sum_{i=1}^n \mu_i x_i $ where $ \mu_0, \mu_1, \ldots, \mu_n $ identify any point of the decreasing_mu_space and bounded_mu_space polyhedrons. The variables $ \mu_0, \mu_1, \ldots, \mu_n $ correspond to the space dimensions $ n, 0, \ldots, n-1 $, respectively. When decreasing_mu_space (resp., bounded_mu_space) is empty, it means that the test is inconclusive. However, if pset_before and pset_after precisely characterize the effect of the loop body onto the loop-relevant program variables, then decreasing_mu_space (resp., bounded_mu_space) will be empty if and only if there is no decreasing (resp., lower bounded) affine function, so that the loop does not terminate.

template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_PR ( const PSET &  pset)

\ Like termination_test_MS() but using the method by Podelski and Rybalchenko [BMPZ10].

template<typename PSET >
bool Parma_Polyhedra_Library::termination_test_PR_2 ( const PSET &  pset_before,
const PSET &  pset_after 
)

\ Like termination_test_MS_2() but using an alternative formalization of the method by Podelski and Rybalchenko [BMPZ10].

template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_PR ( const PSET &  pset,
Generator mu 
)

\ Like one_affine_ranking_function_MS() but using the method by Podelski and Rybalchenko [BMPZ10].

template<typename PSET >
bool Parma_Polyhedra_Library::one_affine_ranking_function_PR_2 ( const PSET &  pset_before,
const PSET &  pset_after,
Generator mu 
)

\ Like one_affine_ranking_function_MS_2() but using an alternative formalization of the method by Podelski and Rybalchenko [BMPZ10].

template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_PR ( const PSET &  pset,
NNC_Polyhedron mu_space 
)

\ Like all_affine_ranking_functions_MS() but using the method by Podelski and Rybalchenko [BMPZ10].

template<typename PSET >
void Parma_Polyhedra_Library::all_affine_ranking_functions_PR_2 ( const PSET &  pset_before,
const PSET &  pset_after,
NNC_Polyhedron mu_space 
)

\ Like all_affine_ranking_functions_MS_2() but using an alternative formalization of the method by Podelski and Rybalchenko [BMPZ10].

Variable Documentation

const Throwable* volatile Parma_Polyhedra_Library::abandon_expensive_computations

A pointer to an exception object.

This pointer, which is initialized to zero, is repeatedly checked along any super-linear (i.e., computationally expensive) computation path in the library. When it is found nonzero the exception it points to is thrown. In other words, making this pointer point to an exception (and leaving it in this state) ensures that the library will return control to the client application, possibly by throwing the given exception, within a time that is a linear function of the size of the representation of the biggest object (powerset of polyhedra, polyhedron, system of constraints or generators) on which the library is operating upon.

Note
The only sensible way to assign to this pointer is from within a signal handler or from a parallel thread. For this reason, the library, apart from ensuring that the pointer is initially set to zero, never assigns to it. In particular, it does not zero it again when the exception is thrown: it is the client's responsibility to do so.